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The internal structure and abundance of dark matter halos and subhalos are powerful probes of the nature
of dark matter. In order to compare observations with dark matter models, accurate theoretical predictions
of these quantities are needed. We present a fast and accurate method to describe the tidal evolution of
subhalos within their parent halo, based on a semianalytic approach. We first consider idealized N-body
simulations of subhalos within their host halo, using a generalized mass density profile that describes their
properties in a variety of dark matter models at infall, including popular warm, cold, and self-interacting
ones. Using these simulations we construct tidal “tracks” for the evolution of subhalos based on their
conditions at infall. Second, we use the results of these simulations to build semianalytic models for tidal
effects, including stripping and heating and implement them within the code GALACTICUS. Our semi-
analytic models can accurately predict the tidal evolution of both cored and cuspy subhalos, including the
bound mass and density profiles, providing a powerful and efficient tool for studying the postinfall
properties of subhalos in different dark matter models.

DOI: 10.1103/PhysRevD.110.023019

I. INTRODUCTION

The vast majority of the matter density of the Universe
(∼85%) is known to be nonbaryonic, i.e. made of some-
thing other than the quarks and baryons of the standard
model of particle physics. Understanding the fundamental
physical nature of dark matter (DM) has been a long
standing goal of physics and cosmology. The commonly
accepted model postulates that DM is composed by a
massive nonrelativistic particle (sometimes known as the
weakly interacting massive particle), and behaves cosmo-
logically as cold dark matter (CDM).

However, while the CDM model has shown excellent
agreement with observations on large scales, such as the
cosmic microwave background and large-scale structure of
galaxy distributions, reproducing some observations on
subgalactic scales is challenging within the model [1,2].
Examples of these challenges include the cusp-core
problem [3–5], the too-big-to fail problem [6], and diversity
problem [7,8]. To solve these issues, a number of alter-
native DM models have been proposed, including, e.g.
warm dark matter [9–12], fuzzy dark matter [13–18], self-
interacting dark matter (SIDM) [19,20], and primordial
black holes [21–23].
A particularly powerful probe of the nature of DM is the

abundance and internal structure of halos and subhalos.
These are the bound hierarchical structures that form as a
result of gravity, as the universe evolves. Alternate dark
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matter models predict different density profiles and abun-
dance for small DM halos and subhalos. The demographics
and internal structure of halos and subhalos already provide
some of the most stringent limits on alternative dark matter
models, including from observations of Milky Way satel-
lites [24–34] and strong gravitational lensing [29,35–40].
In order to interpret the observation of DM halos and

subhalos in terms of reliable constraints on the nature of DM,
it is essential to have accurate theoretical predictions to
compare with. Numerical simulations have been shown to
be an essential tool to connect the fundamental physics to the
growth of structure in the Universe. With the rapid develop-
ment in the computing resources and techniques, state-of-the-
art cosmological simulations are pushing the boundary of
numerical capability, i.e. to resolve the smallest dark matter
halos [41–46] and to simulate a large cosmic volume [47,48].
In practice, numerical simulations are always limited by

resolution, especially when we focus on the evolution of
subhalos. Unlike isolated halos, subhalos are subject to
frequent tidal interactions with their host halos, which leads
to mass loss, tidal heating, and possible disruption. Even
state-of-the-art simulations may suffer from artificial dis-
ruption of subhalos [49], which may lead to biased results
when comparing with observations.
One way to control numerical artifacts is to run idealized

simulations, in which case only one subhalo is evolved
in the host potential so that one can run high-resolution
simulations with manageable computing resource. Using
such methods, van den Bosch and Ogiya [49] carried out a
detailed study of numerical artifacts in simulations result-
ing from gravitational softening, discreteness noise, and
two-body relaxation. They also derived the requirements
for obtaining properly converged results. Using a similar
approach, Aguirre-Santaella et al. [50] studied the evolu-
tion of subhalos in a realistic Milky Waylike host potential
including contributions from the galactic bulge and disk.
However, in order to compute statistical properties of
subhalos, one needs a model to describe the tidal evolution
of subhalos so that one could look at the evolution of a
population of subhalos within the context of a cosmological
model. In order to achieve this, one can either build analytic
models using appropriate approximations, or train non-
parametric models such as the one presented in Ref. [51].
In this work, we first run idealized N-body simulations

to study the evolution of DM halos with different initial
density profiles in a host gravitational potential, aiming
to include a broad range of dark matter profiles that may
be produced by different DM models. Previous studies
[52–55] have shown that, as subhalos evolve in the host,
their maximum circular velocity, Vmax,

1 and the radius at
which this maximum is reached, Rmax, follow a universal
“tidal track” for a specific initial density profile. Both
Vmax=Vmax;0 and Rmax=Rmax;0 are functions of fractional

mass remaining in the subhalo and are not sensitive to how
mass is stripped from the subhalos. We calculate the tidal
tracks for different initial dark matter profiles, including
DM halos with cored profiles and those with extremely
cuspy profiles. Cored profiled can result from nongravita-
tional interactions between DM particles, e.g. in fuzzy
dark matter [15,16] and SIDM [19,20] models, while
extremely cuspy profiles are found in SIDM model
when a halo undergoes core collapse [56–60]. Notably,
Penarrubia et al. [53] has found that for DM profiles with
different inner slopes, the tidal track is significantly differ-
ent. We verify such dependence on the inner slope and also
investigate the influence of the density slope at larger radii.
We then build improved semianalytic models for the

tidal effects, including tidal stripping and tidal heating,
and calibrate these models to the idealized simulations. In
previous work [59,61–63], similar semianalytic models
have been used to describe the tidal evolution of DM
halos initialized with Navarro-Frenk-White (NFW) density
profiles [64]. To model the density evolution of a subhalo
due to tidal heating, a commonly used approach is to estimate
the heating energy rate using the impulse approximation [65].
See also Ref. [66] for another approach using the adiabatic
limit. From theheating energy, the expansion ofmass shells in
a subhalo canbe solved andconverted to the change in density
profile [61,63]. Inoneofourprevious studies [67],we showed
that by including the contribution from the second-order
perturbation in the heating energy, we can reproduce the tidal
track for NFW halos accurately. In this work we will extend
these models to other dark matter profiles.
This paper is organized as follows. In Sec. II, we describe

the setup of our idealized simulations. InSec. III,we showour
results from the simulations and give fitting functions for the
tidal tracks and density transfer functions assuming different
initial density profiles. In Sec. IV, we describe our semi-
analytic models and show the calibrations of the model
parameters. Conclusions and discussions are given in Sec. V.

II. SIMULATION SETUP

We simulate the evolution of a subhalo in a static host
halo potential. For the definition of virial radius, rvir, we
make use of the spherical collapse model [68]

ρ̄ð< rvirÞ ¼ Δvirρm ¼ ΔvirΩm
3H2

0

8πG
: ð1Þ

At z ¼ 0, Δvir ¼ 329.621. Cosmological parameters
from [69] are adopted, i.e. Ωm¼0.3153, ΩΛ¼0.68470,
H0 ¼ 67.36 km=s=Mpc.

A. Initial conditions

The host is defined to have an NFW density profile [64]

ρNFWðrÞ ¼
ρ0

r
rs
ð1þ r

rs
Þ2 ; ð2Þ

1The circular velocity is defined as V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMðrÞ=rp

.
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where ρ0 is the characteristic density and rs is the scale
radius. The acceleration due to the host is then given by

aNFWðrÞ ¼ −4πρ0r3s
�
ln

�
1þ r

rs

�
−

r
rs

1þ r
rs

�
1

r2 þ r2softening

r
r
;

ð3Þ
where the term involving rsoftening, the gravitational soft-
ening length, is introduced to soften the potential in the
inner regions [70]. For consistency, the value of rsoftening is
taken to be the same as that used for gravitational softening
between particles. For the host, we choose

ρ0 ¼ 3.797 × 106M⊙=kpc3; ð4Þ
rs ¼ 23.69 kpc; ð5Þ
rvir ¼ 263.2 kpc; ð6Þ
Mvir ¼ 1012M⊙: ð7Þ

The host mass and concentration, chost ¼ rvir=rs, are
chosen to represent the typical values for the Milky Way
DM halo (see e.g. [71]).
At the initial time the subhalo is assumed to be

spherically symmetric and has a density profile described
by [72–74]

ρðrÞ ¼ ρ0
ð rrsÞγ½1þ ð rrsÞα�ðβ−γÞ=α

: ð8Þ

The above parametrization with three free parameters are
also known as the “Nuker” model which was first used
to describe the surface brightness profile of galactic
nuclei [75]. To enforce that the subhalo has a finite total
mass, we truncate the subhalo density profile at r > rvir
following [76]

ρðrÞ ¼ ρ0
cγð1þ cαÞðβ−γÞ=α

�
r
rvir

�
κ

exp

�
−
r − rvir
rdecay

�
; ð9Þ

where c ¼ rvir=rs is the halo concentration and

κ ¼ −
γ þ βcα

1þ cα
þ rvir
rdecay

: ð10Þ

We take rdecay=rvir ¼ 0.1, with which the total mass of
subhalo is 1.02 − 1.2Mvir;sub depending on the parameters
ðα; β; γÞ. Other parameters in the subhalo density profile
are taken to be

rs;sub ¼ 1.279 kpc; ð11Þ

rvir;sub ¼ 26.32 kpc; ð12Þ

Mvir;sub ¼ 109M⊙: ð13Þ

The above subhalo mass and concentration are typical
values for dwarf satellite galaxies in the Milky Way (see
e.g. [77]). For this choice of subhalo mass, the dynamical
friction effect is not important (see Sec. IVA), thus it is
appropriate to simulate its tidal evolution assuming a static
host potential. Note that we fix the virial mass of the
subhalo, such that ρ0 will differ for different combinations
of ðα; β; γÞ.
Given the density profile of a subhalo, an N-body

realization is generated by sampling particle positions from
that density profile. For the initial velocities of particles
we assume an isotropic velocity dispersion and use
Eddington’s formula [78] to compute the velocity distri-
bution function as a function of radius, taking into account
the effects of gravitational softening using the approach
of [70]. Velocities are then sampled from that distribution
function at the position of each particle. We take a particle
mass ofMp ¼ 102M⊙ so that the subhalo contains N ∼ 107

particles within its virial radius initially. We limit our
analysis to the simulation outputs when the subhalo is
still resolved by at least 104 particles so that its density
profile can be well measured. For the choice of softening
length, we follow Ref. [51], in which it is suggested that
forN ¼ 106 a value of rsoftening ¼ 0.0003rvir;sub is sufficient
to mitigate the numerical artifacts [49]. We rescale the
softening length according to the particle number, i.e.
rsoftening ∝ N1=3

p [79] and take

rsoftening ¼ 1.39 × 10−4rvir;sub ¼ 0.00367 kpc: ð14Þ

As we will discuss below, for the case γ ¼ 1.5, we also
check the convergence of our results by using different
numbers of particles and varying the softening length.
The subhalo is initially placed at the apocenter of its orbit

at R ¼ 0.7rvir;host as in Ref. [53] and given a tangential
velocity vt, where vt is determined by assuming different
pericentric/apocentric ratios, Rp=Ra. For each combination,
we run the simulation with different values of Rp=Ra so that
the tidal tracks are well measured at early times and at the
same time include the regime where the subhalos have been
heavily stripped.

B. Orbital and tidal evolution

The GADGET-4 code [80] is used to simulate the evolution
of the subhalo within the static host potential. Instead of the
TreePM method commonly used in previous simulations,
we make use of a new feature in GADGET-4, the so-called
fast multipole method which has the advantage that the
momentum is better conserved. We did not switch on the
“PMGRID” option since we find for the simulations we
perform the pure fast multipole method is faster and more
accurate. The parameters controlling the accuracy of force
computation and time integration are taken to be
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ERRTOLINTACCURACY ¼ 0.01;
MAXSIZETIMESTEP ¼ 0.01;
MINSIZETIMESTEP ¼ 0.00;

TYPEOFOPENINGCRITERION ¼ 1;
ERRTOLTHETA ¼ 0.1;

ERRTOLTHETAMAX ¼ 1.0;
ERRTOLFORCEACC ¼ 0.001:

Our tests show that the above values are sufficient for
most of the cases we have run (but see Sec. III A 1 for the
exceptional case with an extremely cuspy profile). Details
of each parameter can be found in the GADGET-4

documentation.2

The particles are evolved using the hierarchical time
integration scheme introduced in GADGET-4. The time step,
Δti for particle i is determined based on its acceleration ai:

Δti ¼ min

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηrsoftening

jaij

s
;Δtmax

)
; ð15Þ

where η is set by the parameter “ERRTOLINTACCURACY,”
and Δtmax is set by “MAXSIZETIMESTEP.” For the extremely
cuspy case with γ ¼ 1.5, we find that the results for the tidal
track are not converged with the fiducial settings and an
extremely small η is needed to achieve convergence, so we
also test a fixed, global time step in which case all particles
are forced to have the same time step size determined by the
minimum over Δti (see Sec. III A 1).
The subhalo is evolved for 37 Gyr. The particle data

are output every 0.09778 Gyr. For each snapshot, we
performed a self-binding analysis (see Sec. III) to identify
particles that remain bound to the subhalo, and computed
the rotation curve of the subhalo using those bound
particles.

C. Analysis

A reliable self-binding analysis is very important for
identifying subhalos and determining their properties (such
as the bound mass). Typically, in cosmological simulations,
various halo finders such as Rockstar [81] and AHF [82]
have been employed in both cosmological and idealized
simulations (see, for example [83]). Robust detection
and characterization of subhalos in such simulations is
challenging—for example, recent studies show that the
commonly used Rockstar halo finder fails to find a non-
negligible fraction of subhalos [84,85]. In the present work
we have the advantage that all particles begin as members
of the subhalo—we therefore know the starting point which
allows us to proceed in a more careful and controlled
manner from one snapshot to the next. Our self-binding

algorithm is implemented in the GALACTICUS code [86] to
perform this analysis.
For each snapshot of a simulation, we carry out a self-

binding analysis to determine which particles remain bound
to the subhalo. This is an iterative process, which proceeds
as follows:
(1) At the beginning of simulation, all particles are

assumed to be gravitationally bound to the subhalo.
For snapshots at later times, we use the bound/
unbound status of particles from the previous snap-
shot in the first iteration of our algorithm.

(2) The center-of-mass position rc:m: and velocity vc:m:
are determined from all bound particles.

(3) The gravitational potential energy and kinetic energy
are computed for each bound particle:

Ep;i ¼ −
X
i≠j

mpΦij; ð16Þ

Ek;i ¼
1

2
mpðvi − vc:m:Þ2: ð17Þ

Here Φij is the gravitational potential between
particles i and j taking into account the effect of
the gravitational softening used in the simulation.
Note that when computing Ep;i, only contributions
from particles identified as being bound to the
subhalo in the previous iteration are included.

(4) Particles with positive total energy, Et;i ¼ Ep;i þ Ek;i
are considered unbound and excluded from later
analysis.

(5) Repeat steps (2)–(4) until the following criterion is
satisfied:

jMbound −Mprevious
bound j

ðMbound þMprevious
bound Þ=2 < ϵ: ð18Þ

For all analyses, we take ϵ ¼ 10−3.
(6) The center of the subhalo is determined by searching

for the particle with the most negative Ep;i, which
corresponds to the position with the highest density.
Similarly, the representative velocity of the subhalo
is determined by the particle with the most negative
Ev;i. Here Ev;i is computed in the same way as Ep;i

but replacing the coordinates of particles with
velocities, following the approach of [87].

After completing the analysis described above, the center
of the subhalo in phase space is then used to compute
the density profile and velocity dispersion profile of the
subhalo as a function of radius.
This procedure is similar to the one used by van den

Bosch and Ogiya [49]. In Ref. [49], the authors use the 5%
most-bound particles to determine the center-of-mass
properties of the subhalo. In our analysis, we compute
rc:m: and vc:m: using all bound particles, which in general

2https://wwwmpa.mpa-garching.mpg.de/gadget4/gadget4_
manual.pdf.

XIAOLONG DU et al. PHYS. REV. D 110, 023019 (2024)

023019-4

https://wwwmpa.mpa-garching.mpg.de/gadget4/gadget4_manual.pdf
https://wwwmpa.mpa-garching.mpg.de/gadget4/gadget4_manual.pdf
https://wwwmpa.mpa-garching.mpg.de/gadget4/gadget4_manual.pdf
https://wwwmpa.mpa-garching.mpg.de/gadget4/gadget4_manual.pdf
https://wwwmpa.mpa-garching.mpg.de/gadget4/gadget4_manual.pdf
https://wwwmpa.mpa-garching.mpg.de/gadget4/gadget4_manual.pdf


gives smoother results for Mbound. Furthermore, our con-
vergence criteria differ slightly from that of Ref. [49], based
on the bound mass rather than the center-of-mass position
and velocity.
The evolution of a subhalo’s density profile as it orbits

within a host potential can be characterized by its Vmax and
Rmax. As the subhalo evolves, it is subjected to the tidal
force of the host halo. Vmax=Vmax;0 and Rmax=Rmax;0 evolve
along a so-called tidal track which is largely independent
of precisely how mass is stripped away from the subhalos
[52–55]. Here Vmax;0 andRmax;0 are the initial values of these
parameters. While the tidal track is insensitive to the host
potential, it does show significant differences for different
initial density profiles [53]. Therefore, finding the tidal tracks
for different dark matter profiles is crucial for modeling
how subhalo evolution in a host potential may differ under
various assumptions for the nature of the dark matter particle.
We compute Vmax and Rmax from bound particles for

each snapshot of our simulations. In practice, after finding
the center of the subhalo, we compute the mass profile
using radial bins. At small radii, i.e. r < 4rkernel with
rkernel ¼ 2.8rsofening, linear bins are used to reduce the
discreteness noise. The bin width is taken to be rkernel.
At larger radii, logarithmic bins are used and the bin width
is taken to beΔ log10 R ¼ 0.1. The mass profile data is then
super-sampled by a factor of 40 using a cubic spline
interpolation to determine Vmax and Rmax. We find that
this approach allows us to obtain more accurate Vmax and
Rmax that are less affected by discreteness noise.

III. RESULTS

A. Tidal tracks

The tidal tracks, Vmax=Vmax;0 versus Rmax=Rmax;0, for
different combinations of ðα; β; γÞ are shown in Figs. 1–3.
First, we keep α and β fixed at 1 and 3 (the values for an
NFW profile), respectively, and change γ (the logarithmic
slope of density profile at small radii), see Fig. 1. As can be
seen, for γ ≤ 1, the results from GADGET-4 are in good
agreement with the fitting functions found by [53], dotted,
and [55], red dashed, for γ ¼ 1 only. However, for γ ¼ 1.5
we find that the tidal track obtained from GADGET-4

simulations deviates from the [53] fitting function at late
times (i.e. for small values of Vmax=Vmax;0 and Rmax=Rmax;0).
Increasing or decreasing the gravitational softening length by
a factor of 3 slightly changes our results, but can not explain
the large deviation from the fitting curve.
For γ ¼ 0, we find that as the subhalo evolves in the host

potential, both Vmax=Vmax;0 and Rmax=Rmax;0 decrease
(from the upper right corner toward the lower left
corner). However, as tidal evolution proceeds further,
there exists a turnaround at Rmax=Rmax;0 ∼ 0.3, after which
Rmax=Rmax;0 begins to increase. This is because the core
expands significantly due to tidal heating which results in
larger Rmax.

We next increase β from 3 to 4, which produces a
more rapid decrease of density at large radii—results are
shown in Fig. 2. Such profiles have been widely used
in modeling the density profile of spherical galaxies, see
e.g. [72,88–90]. Compared to the cases with β ¼ 3 and the
same γ, the cases with β ¼ 4 are less influenced by tidal
effects. For example, if we compare the blue circles in
Fig. 2 with the blue circles in Fig. 1, both having the
same Rp=Ra, at the end of the simulation Vmax=Vmax;0 and
Rmax=Rmax;0 change less relative to their initial values than
in the case with β ¼ 4. However, the slope of the tidal track
in the case with β ¼ 4 is steeper.
Finally, we also run two cases with a different value of

α ¼ 2 as shown in Fig. 3. The parameter α controls how
smoothly the density profile slope transits from inner value
to the value at larger radii. For this value of α, we limit
our simulations to cored profiles with γ ¼ 0 and β ¼ 3, 4.
Such density profiles have been found to well describe the
observed density profile of Galactic globular clusters that
are unaffected by tidal effects [91].3

We fit the tidal tracks obtained from our simulations
using the same fitting function introduced in Ref. [53]:

gðxÞ ¼ 2μxη

ð1þ xÞμ ; ð19Þ

where x ¼ MboundðtÞ=Mboundð0Þ is the bound mass fraction,
and g is Vmax=Vmax;0 or Rmax=Rmax;0. To mitigate the effect
of numerical artifacts, we limit our fitting to the data with
bound mass fraction Mbound=Mbound;0 > 10−3 so that the
subhalo is resolved by more than 104 particles. The best-fit
parameters are listed in Table I. The fitting function
with the best-fit parameters is shown in Figs. 1–3 by the
solid lines.
For the case α ¼ 1, β ¼ 3, and γ ¼ 1, Ref. [55] proposed

a slightly different fitting formula:

Vmax=Vmax;0 ¼
2αðRmax=Rmax;0Þβ

½1þ ðRmax=Rmax;0Þ2�−α
ð20Þ

with α ¼ 0.4 and β ¼ 0.65. The best-fit function for
this case found in this work is very close to the results
of Ref. [55].
For the case with ðα;β;γÞ¼ð1;3;0Þ, the fitting function

Eq. (19) cannot capture the turnaround of the tidal track
(see the top left panel of Fig. 1), so we exclude the last data
point in the lower right corner from our fitting process.

1. Convergence tests for extremely cuspy subhalos

As our result for γ ¼ 1.5 differs significantly from
that shown found by Ref. [53], we conducted additional
convergence tests for this case. There are three parameters

3Our parameter β corresponds to the parameter γ in Ref. [91].
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that control the time and spatial resolution of the simu-
lation: (1) time step size criterion; (2) softening length,
rsoftening; (3) particle number, N.
In GADGET-4, the time step size is chosen based on the

softening length and the particle acceleration a, as defined
in Eq. (15). Another time step size criterion that has been
used in literature is based on the local dynamical time:

Δt ¼ ηdynffiffiffiffiffiffi
Gρ

p ; ð21Þ

where ρ is the local density. In this work ηdyn is set to the
same value as the η parameter used in the acceleration-
based time step criterion, Eq. (15). To compute the local
density, we use the same algorithm as the smoothed-
particle hydrodynamics method implemented in GADGET-4

for gas particles [80], i.e. a cubic spline kernel is used to
compute the density at the particle position from the 64
nearest neighbor particles. Adding the local dynamical time

step size criterion does not change the results too much,
see the left panel of Fig. 4.
As we decrease the parameter η, the results slowly

converge, but the differences from the results of Ref. [53]
remain. Possible explanations for the differences include
the following: (i) To run the simulations, [53] uses
SUPERBOX [92], which computes the gravitational
interactions using multiple layers of grids while we use
GADGET-4, which computes the gravitational interactions
using FFM; (ii) the details of our self-binding analysis
differ from the approach in Ref. [53].4

FIG. 1. Tidal tracks for ðα; βÞ ¼ ð1; 3Þ and different values of γ and pericentric/apocentric ratios, Rp=Ra, from N-body simulations
using GADGET-4. Lines show the fitting functions found of [53], dotted, [55], red dashed, for γ ¼ 1 only, and this work (solid). Note that
for the case with γ ¼ 0.5, the last data point, i.e. the one with the lowest Vmax=Vmax;0 has been excluded from fitting. For γ ¼ 1.5 (lower
right panel), the results from the fiducial runs (circles and triangles) are not converged below Rmax=Rmax;0 ∼ 0.22 (vertical dashed line).
Using a global time step size (squares and stars) leads to better converged results, see the discussions in the Sec. III A 1.

4Even for the cases where the tidal tracks we find agreewell with
the results of [53], the dependence ofVmax=Vmax;0 andRmax=Rmax;0
onMbound=Mbound;0 differ from those foundby [53], indicating some
difference in which particles are considered to be bound to the
subhalo. For example, for the case ðα; β; γÞ ¼ ð1; 3; 1Þ, we find that
we must multiply the bound mass we obtain by a factor of 2, to
obtain an approximate match with Vmax as a function of
Mbound=Mbound;0 as found by [53], see Appendix A.
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FIG. 2. Tidal tracks for ðα; βÞ ¼ ð1; 4Þ and different values of γ from N-body simulations using GADGET-4. Solid black lines show the
fitting functions found in this work. For comparisons, the fitting functions for the same ðα; γÞ, but β ¼ 3 are also shown in each panel
(light gray lines).

FIG. 3. Tidal tracks for ðα; γÞ ¼ ð2; 0Þ and different values of β from N-body simulations using GADGET-4. Solid lines show the fitting
functions found in this work.
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Interestingly, we find that using a global time step size,
i.e. all particles are evolved using the same time step,
significantly improves convergence allowing the use of a
larger time step, see the right panel of Fig. 4. The
computing time required to achieve converged results
is then much shorter than that using individual time step
sizes for each particle. This suggests that to simulate
extremely cuspy subhalos, the time step size criterion
should be chosen carefully and using a global time step
size may be helpful (see also Refs. [93,94]). We also find
that, when we use a very large time step size, e.g. η ¼ 0.5,
the results are unconverged, but are in fact closer to the
fitting function obtained by [53]. For this case, the time
step size Δt ¼ 1.2 Myr, which is still smaller than the one
used by [53], i.e. Δt ¼ 4.6 Myr. Therefore, it is possible
that the results for the case with γ ¼ 1.5 shown in [53]
are not fully converged. A direct comparison between

GADGET-4 and SUPERBOX using the same initial conditions
and postanalysis would be required to further confirm this
hypothesis.

B. Evolution of density profiles

In previous studies, Hayashi et al. [52] and Peñarrubia
et al. [53,95] have shown that, beyond just Vmax and Rmax,
the evolution of subhalo density profiles also follows a
universal behavior and depends only on the remaining
fraction of bound mass. A transfer function that connects
the current density profile ρðr; tÞ to the initial one, ρðr; 0Þ,
can be defined as

Hðr; xÞ ¼ ρðr; tÞ
ρðr; 0Þ ; ð22Þ

where x ¼ Mbound=Mboundð0Þ is the bound mass fraction.
In Ref. [52], a fitting function is proposed as

Hðr; xÞ ¼ ft
1þ ðr=rteÞδ

; ð23Þ

with rte the effective tidal radius, ft a normalization factor
that quantifies the density drop in the center, and δ ¼ 3. By
calibrating to N-body simulations simulations, Ref. [52]
gives the following fitting formulae for rte and ft:

log10
rte
rs

¼ 1.02þ 1.38log10xþ 0.37ðlog10xÞ2; ð24Þ

log10 ft ¼ 0.007þ 0.35 log10 xþ 0.39ðlog10 xÞ2
þ 0.23ðlog10 xÞ3: ð25Þ

TABLE I. Best-fit parameters for Eq. (19) for tidal tracks with
different initial density profiles.

α β γ μV ηV μR ηR

1 3 0 0.8317 0.4218 −0.3737 0.1976
1 3 0.5 0.7152 0.3600 −0.08328 0.2819
1 3 1 0.6175 0.2895 0.5529 0.4675
1 3 1.5 0.3358 0.1692 1.207 0.6845

1 4 0 0.9149 0.4982 −0.1739 0.1543
1 4 0.5 0.6286 0.3968 −0.003293 0.2660
1 4 1 0.4830 0.3055 0.5597 0.4802
1 4 1.5 0.3469 0.2018 1.254 0.7847

2 3 0 1.055 0.5114 −0.06394 0.1182

2 4 0 1.412 0.8288 −0.1514 −0.002544

FIG. 4. Convergence test for ðα; β; γÞ ¼ ð1; 3; 1.5Þ, Rp=Ra ¼ 1=200. Left: tidal tracks from N-body simulations with different time
step size parameter η (circle and squares) and softening length rsoftening (stars). Triangles show the simulation results with an additional
time step size criterion based on the local dynamical time scale, Eq. (21). Increasing the number of particles by a factor of 4 and
decreasing rsoftening accordingly by a factor of 41=3 (diamonds) do not grantee converged results. Right: tidal tracks from N-body
simulations using a global time step size and different η. With a global time step size, converged results are obtained at larger η than the
cases using the fiducial adaptive time step size. For very large time steps, e.g. η ¼ 0.5 (black stars) results are not converged.
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In a more recent study, Green et al. [54] have examined
the density evolution of subhalos utilizing the DASH
library [51], a large set of high-resolution, idealized
simulations. They find that the density transfer function
has an additional dependence on the initial concentration of
subhalos and proposed a more general formula:

Hðr; x; cÞ ¼ ft
1þ ½ rrte ð

rvir;sub−rte
rvir;sub

Þ�δ ; ð26Þ

where the concentration parameter c enters in the virial
radius, and rte, ft and δ are also concentration dependent:

rte ¼ rvir;subxb1ðc=10Þ
b2cb3ð1−xÞb4 exp

�
b5

�
c
10

�
b6ð1 − xÞ

�
;

ð27Þ

ft ¼ xa1ðc=10Þa2ca3ð1−xÞa4 ; ð28Þ

δ ¼ c0xc1ðc=10Þ
c2cc3ð1−xÞc4 : ð29Þ

The values of the parameters in the above equations are
given in Table 1 of Ref. [54].
Since, in the current work, we fix the subhalo concen-

tration at 20.5 [see Eqs. (11) and (12)], we choose to fit the
density profile measured from our simulations using the
simpler formula, Eq. (23). Reference [54] found that their
best fit value for δ is 2–3. Therefore, we consider two cases:
δ ¼ 3 and δ ¼ 2. We emphasize that sometimes it can be
useful to have a density profile that leads to analytic
formula for certain physical quantities, such as the enclosed

mass within a given radius. The case with δ ¼ 2 has been
widely used in modeling subhalo density profiles in
the analysis of strong gravitational lenses (e.g. [35]).
Applying the transfer function Eq. (23) with δ ¼ 2 to
the NFW profile, the lensing convergence can be computed
analytically [96].
We first measure the density transfer function H of

subhalos at the apocenters of their orbits from our simu-
lations with different initial subhalo profiles. Then we fit
Eq. (23) to these measured transfer functions to find the
best fit rte and rt. rte and rt as a function of the bound mass
fraction for different γ. Results are shown in Fig. 5 (colored
markers). For each value of γ, we have combined the
simulation data for different subhalo orbits, i.e. different
value of Rp=Ra. Inspired by the work of Refs. [52,54],
we fit the mass dependence in rte and rt assuming

rte
rvir;sub

¼ ð1þ AÞxB
1þ Ax2B

exp ½−Cð1 − xÞ�; ð30Þ

ft ¼
ð1þDÞxE
1þDx2E

: ð31Þ

These functions are chosen to ensure that at the beginning
of the simulation (x ¼ 1), rte ¼ rvir;sub and ft ¼ 1.
The best fit formula are shown in Fig. 5 (colored curves)

for ðα; βÞ ¼ ð1; 3Þ and different γ. We also compare our
fitting functions to those obtained by Hayashi et al. [52]
(black curve) and Green et al. [54] (gray curve) for initial
NFW profiles, i.e. γ ¼ 1. We find that the effective tidal
radius rte we obtain is in broad agreement with that from

FIG. 5. Best-fit parameters for the density profile as a function of bound mass fraction for ðα; βÞ ¼ ð1; 3Þ and different γ. Left: the
effective tidal radius in Eq. (23). The filled (open) circles are obtained by fitting Eq. (23) to the density profiles measured from
simulation assuming δ ¼ 3 (δ ¼ 2). For each γ, data from simulations with different Rp=Ra are combined. The colored lines show the
fitting formula Eq. (30) with our best-fit parameter values. The fitting functions from Hayashi et al. (2003) [52] (black) and Green et al.
(2019) [54] (gray) are also shown. Right: the normalization parameter ft in Eq. (23). The purple stars show the best-fit values for rte and
ft when excluding measurements of the density profiles at r < 10−2. The Hayashi et al. (2003) fitting function is calibrated only for
Mbound=Mbound;0 > 4 × 10−2, thus at small mass ratios an extrapolation has be used (black dotted line).
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Hayashi et al. at x > 4 × 10−2. At x < 4 × 10−2, the fitting
formula from Hayashi et al. shows an upturn, which does
not appear in our results. However, we note that the
Hayashi et al. fitting function was calibrated only for
x > 4 × 10−2. Our result for rte is lower than that found by
Green et al. Here we have taken into account the difference
in definition of halo concentration in our work from Green
et al., but this has only a small effect. Since the number of
particles in our simulations is 10 times higher than that used
by Green et al., we can better resolve the central region
of the subhalo. We have tried excluding radii bins with
r < 10−2rvir;sub from our fitting. Our results are then in
good agreement with those from Green et al., as shown by
the stars in Fig. 5. This suggests that the difference we see is
due to numerical resolution and the range of radii bins used
in the fitting process. For ft, a similar difference between
our results and those obtained by Green et al. is also seen,
as shown in the right panel of Fig. 5. The fitting function
from Green et al. overestimates the density decrease in the
central region of subhalos due to tidal effects. Similar
findings has been reported in Ref. [55]. Again, we show
that we can recover the Green et al. results by excluding the
data points at small radii from the our fitting procedure.
In Fig. 6, we show the density transfer function of

subhalos at different times for cuspy (left panel) and cored
(right panel) initial profiles. For comparison, we also show
our best fit formula and the models from Green et al. [54]
and Errani et al. [55].
For the cuspy case, after one orbit we see that our fitting

results (solid and dashed curves) better capture the density
suppression at large radii than does the model by Errani
et al. After 4 orbits, when the subhalo is heavily stripped,
our fitting results perform slightly worse that those from
Errani et al. but are still in good agreement with the

simulation data (open circles) below 0.2rvir;sub. On the
other hand, the model from Green et al. underestimates
the central density of subhalos when subhalos are heavily
stripped.
For the cored case, ours fitting results also work

reasonably well, even while cored subhalos are more
strongly influenced by tidal effects. After 3 orbits, the
central density of the subhalo decreases to 10% of its
initial value.
A full list of the best fit parameters for subhalos with

different combinations of ðα; β; γÞ is shown in Tables II
and III. We note that the fitting functions Eqs. (30) and (31)
we choose result in tidal radii and central densities that
decrease as a power-law in the bound mass fraction at very
small bound mass fractions. This is a good assumption in
most cases, but, for the case with a flat core, i.e. γ ¼ 0, tidal
heating can lead to significant core expansion (see Sec. IV),

FIG. 6. Density profiles of subhalos from the fitting functions (lines; with line type indicating the specific fitting function used as
indicated in the panel) compared with the simulation data (colored circles). Left: the subhalo initially has a cuspy core with
ðα; β; γÞ ¼ ð1; 3; 1Þ. The blue (orange) circles shows the density profiles after the subhalo completes 1 (4) orbit(s) as indicated in the
panel. Right: the subhalo initially has a flat core with ðα; β; γÞ ¼ ð1; 3; 0Þ. The vertical dashed lines indicate 2.8rsoftening.

TABLE II. Best-fit parameters in Eqs. (30) and (31) for density
transfer function Eq. (23) with different initial profiles. δ ¼ 3 has
been assumed.

α β γ A B C D E

1 3 0 −0.9309 0.04703 0.7684 1.402 0.6325
1 3 0.5 −0.2291 0.4123 1.399 1.087 0.4523
1 3 1 0.9093 0.6368 2.185 1.436 −0.2491
1 3 1.5 0.8353 0.7340 2.432 0.08093 0.08491

1 4 0 41.33 0.6082 4.070 1.088 0.7280
1 4 0.5 0.4212 −0.3816 3.629 0.6879 0.4862
1 4 1 15.92 0.7194 4.982 0.3359 0.2508
1 4 1.5 104.1 1.247 6.630 0.1514 0.1284

2 3 0 −0.9646 −0.002371 2.511 1.314 0.8240

2 4 0 5.793 × 10−7 −1.623 5.471 0.7780 1.213
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which makes rte eventually begin to increase with decreas-
ing bound mass faction (see the left panels of Figs. 5
and 16). This feature can be partially captured by our fitting
functions, but the fitting function will drop again at
sufficiently low x, see Appendix B. For this reason, the
best fit formula for the cases with γ ¼ 0 should be used
with caution at a bound mass fraction much smaller than
the value where we have available measurements.

IV. SEMIANALYTIC MODELS

In the previous section, we showed tidal tracks and
fitting formula results for DM subhalos with different
initial density profiles. These empirical fitting formulas
can be implemented in semianalytic models such as
GALACTICUS [86] to study the statistical properties of
subhalos. On the other hand, a physical model for tidal
evolution that can reproduce these tidal tracks would be
extremely useful, especially when extrapolating tidal tracks
into regimes where artificial disruption [97] can occur. In a
previous study [67], we showed that by using an improved
model for tidal heating that accounts for the second-order
heating terms, we could accurately reproduce the tidal
track for NFW profiles. In this work, we will extend the
model of Ref. [67] to the more general density profile in
Eq. (8). Furthermore, in many applications, in addition to
the Vmax-Rmax track, the Vmax-Mbound relation, and the time
evolution of Mbound are required in order to build a
complete model for the evolution of subhalos. In
Ref. [98], the tidal stripping model in GALACTICUS was
calibrated to cosmological cold dark matter N-body sim-
ulations, ELVIS [44] and Caterpillar [45]. In this work, we
extend this tidal stripping model and recalibrate it to our
simulations of subhalos with different density profiles.
In the remainder of this section we detail the orbital

and tidal physics included in our model, and present
results for the calibration of the parameters of this model.
All the models described below are implemented

in the public semianalytic model for galaxy formation,
Galacticus [86].5

A. Orbital evolution

When a subhalo evolves in a host potential, its accel-
eration can be written as

a ¼ ag þ adf ; ð32Þ

where ag is the gravitational acceleration from the host, and
adf is the dynamical friction caused by the overdense wake
of host particles that generated behind the subhalo when it
orbits within the host. Using the Chandrasekhar formula,
adf can be computed as [99]

adf ¼ −4πG2 lnΛMsubρhostðrsubÞ
Vsub

V3
sub

×

�
erfðXvÞ −

2Xvffiffiffi
π

p exp ð−X2
vÞ
�
; ð33Þ

where G is the gravitational constant, Msub is the
bound mass of the subhalo, ρhost is the host density at
the subhalo position, rsub is the distance to the host center,
Xv ¼ Vsub=

ffiffiffi
2

p
σv with Vsub the velocity of subhalo, σv is

the velocity dispersion of host particles, and lnΛ is the
Coulomb logarithm.
Dynamical friction is only significant for subhalos

with large mass ratios Msub=Mhost. In our simulations,
Msub=Mhost ¼ 1=1000, and the dynamical friction effect is
not relevant. Furthermore, we treat the host as a static
potential, which will not generate dynamical friction
since the host does not respond to the gravity of the
subhalo. However, the subhalo’s orbital radius still decays
slowly with time due to the so-called self-friction effect
[49,51,100–102], which arises from the interaction
between the subhalo and particles stripped away from it
through tidal forces. A detailed treatment of self-friction
will be presented elsewhere [103]. In the current work, we
mimic this effect approximately using (33) and adjust lnΛ
to match the orbital evolution of subhalos measured from
simulations. The details of this treatment do not signifi-
cantly affect the calibration of our model.

B. Tidal stripping

Subhalos are subject to the tidal force from the host.
The tidal force pulls material in the subhalo away from its
center. When the gravitational attraction from the subhalo is
smaller than the tidal force, the subhalo particles will be
able to become unbound, leading to mass loss from the
subhalo. This happens outside the tidal radius which is
defined as

TABLE III. Best-fit parameters in Eqs. (30) and (31) for density
transfer function Eq. (23) with different initial profiles. δ ¼ 2 has
been assumed.

α β γ A B C D E

1 3 0 −0.9984 5.503 × 10−4 1.235 1.482 0.6364
1 3 0.5 −0.1921 0.4268 1.463 1.171 0.4500
1 3 1 0.6849 0.6644 2.078 0.7583 0.2338
1 3 1.5 0.9839 0.7688 2.518 −0.9951 1.315 × 10−4

1 4 0 39.42 0.5883 4.054 1.185 0.7373
1 4 0.5 2.066 0.3871 3.636 0.7524 0.4777
1 4 1 13.99 0.7222 5.009 0.3684 0.2231
1 4 1.5 83.40 1.216 6.620 0.2850 0.1053

2 3 0 −1.024 0.001643 2.413 1.371 0.8315

2 4 0 3.273 × 10−6 −1.946 5.847 0.8384 1.231

5https://github.com/galacticusorg/galacticus.
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rt ¼
�

GMsubð< rtÞ
γcω

2 − d2Φ
dr2 jrsub

�
1=3

: ð34Þ

Here ω ¼ jrsub × Vsubj=V2
sub is the angular frequency of the

subhalo orbit, and Φ is the gravitational potential of the
host at the subhalo position. The term γcω

2 accounts for
the centrifugal force in the coordinate system rotating
with the subhalo. Different definitions of tidal radius have
been used in previous studies, for example γc ¼ 0 are
used by Refs. [52,62,104,105], and γc ¼ 1 are used in
Refs. [106,107]. In Ref. [97], both definitions have been
tested against idealized simulations, and the authors found
that neither case can perfectly reproduce the tidal mass loss
measured in simulations. However, in their calculations,
they did not take into account the change of subhalo density
profile when it loses mass and is heated by tidal shocks.
In the current work, we find that after accounting for the
evolution of the density profile, as described in the
next subsection, fixing γc ¼ 0 gives a better match to
simulation results.
Given the tidal radius, the subhalo mass outside of this is

assumed to be lost on a timescale T loss:

dMsub

dt
¼ −αs

Msub −Msubð< rtÞ
T loss

; ð35Þ

where αs is a free parameter that controls the efficiency of
tidal stripping. There exist several relevant physical time-
scales that could be chosen for T loss: (i) orbital timescale:
Torbit ¼ 2π=maxfωt;ωrg with ωt and ωr are the instanta-
neous frequencies of tangential and radial motion, respec-
tively (this choice is adopted by Yang et al. [98]); (ii) the
dynamical timescale Tdyn¼2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3t =16GMsubð<rtÞ

p
[108].

These two timescales are related but may differ signifi-
cantly when the subhalo is close to the pericenter of its
orbit. In this work, we find that the latter results in better fits
to measurements from our simulations. Thus we will use it
as our fiducial choice.

C. Tidal heating

As a subhalo orbits within its host and loses mass due to
tidal stripping, its density profile also changes with time
due to two effects: (i) after some mass is removed from the
subhalo, it will revirialize and approach a new equilibrium
with a different density profile; (ii) particles in the subhalo
gain energy from tidal shocks, also known as the tidal
heating effect, leading to the expansion of subhalo. When
the subhalo passes through the pericenter of its orbit, both
tidal stripping and tidal heating are strong. The subhalo
loses a large fraction of the mass outside the tidal radius and
at the same time is heated. As the subhalo approaches the
apocenter of its orbit, it will begin to revirialize, resulting in
a less concentrated density profile. As the subhalo becomes
less concentrated, the tidal radius shrinks further and more

mass will be stripped from the subhalo. The process of
revirialization is complicated [109]. In the current work, we
focus on the density profile at successive apocenters for two
reasons. First, the subhalo spends more time near apocenter
during its orbit through its host. Second, at apocenter, the
subhalos have had enough time since the strong mass loss
and heating at pericenter to be revirialized, allowing us to
apply the heating model proposed in [61,63].
In these models of tidal heating, each spherical mass

shell in the subhalo receives some heating energy resulting
in a change in its specific energy changes ofΔϵ. As a result,
the mass shell expands from its initial radius ri to a final
radius rf after revirialization. If no shell crossing happens,
using the virial theorem and energy conservation, we have

Δϵ ¼ GMi

2ri
−
GMi

2rf
; ð36Þ

where Mi is the enclosed mass within ri. Note that if no
shell crossing happens,Mi is unchanged after expansion by
definition. Given the initial density of the mass shell, ρi,
and the relation between ri and rf from solving Eq. (36), the
density of the mass shell after reaching new equilibrium can
be written as

ρf ¼ ρi
r2i
r2f

dri
drf

; ð37Þ

where we have assumed mass conservation. Knowing the
final mass profile, we can then compute Vmax and Rmax and
predict the tidal track for subhalos starting from a chosen
initial profile.
To find Δϵ, we use the impulse approximation [65,109]

and compute the heating rate per unit mass as [61]

Δϵ̇ðrÞ ¼ ϵh
3
½1þ ðωpTshockÞ2�−γhr2gabGab; ð38Þ

where ϵh is a coefficient needed to be calibrated to
simulations, ωp is the angular frequency of particles at
the half-mass radius of the subhalo, Tshock ¼ rsub=Vsub is
timescale of tidal shock, γh is the adiabatic index, gab is the
tidal tensor, and Gab is the time integral of gab [63,98]:

GabðtÞ ¼
Z

t

0

dt0
�
gabðtÞ − βh

GabðtÞ
Torbit

�
: ð39Þ

Here, for repeated indices, Einstein summation convention
is adopted. As in [98], a decaying term − Gab

Torbit
is added to

the integral (39) to account for the fact that the impulse
approximation is not valid on timescales larger than
Torbit when the movement of particles within the subhalo
are non-negligible. In this work, we introduce a new
coefficient βh which controls the precise timescale for this
decaying term.
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The term in the square brackets in Eq. (38) accounts
for the adiabatic correction, i.e. the heating energy gained
by particles with orbital timescale much smaller than Tshock
is suppressed due to “adiabatic shielding” [110–112].
Gnedin et al. [109] find γh ¼ 2.5 for ωpTshock ≲ 1, while
it is shown that γh ¼ 1.5 in the regime ωpTshock ≳ 4. On the
other hand, [98] find that a value of γh ¼ 0 predicts a
Vmax-Mbound relation that is in better agreement with high-
resolution cosmological N-body simulations Caterpillar
[45] and ELVIS [44]. In this work, we have tried both
γh ¼ 2.5 and γh ¼ 0, and reach a similar conclusion as [98],
i.e. γh ¼ 0 results in Vmax matching more closely with
simulation results. This is partially due to the fact that the
decaying term introduced in Eq. (39) also acts to suppress
the heating energy.
As shown in Ref. [67], using Eq. (38) to compute the

heating energy results in a reasonable match to the tidal
tracks of NFW subhalos. However, they find that to get a
more accurate model, one needs to take into account the
second-order energy perturbations hE2i1=2 explicitly. The
second-order energy perturbation is usually of the same
order as the first-order term given in Eq. (38), but has a
different radial dependence [67,109]. Following [67], we
write the total heating energy as

ΔϵðrÞ ¼ Δϵ1ðrÞ þ Δϵ2ðrÞ
¼ Δϵ1ðrÞ þ

ffiffiffi
2

p
f2ð1þ χvÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϵ1ðrÞσ2rðrÞ

q
; ð40Þ

where ϵ1 and ϵ2 are the contributions from the first-order
and second-order energy perturbations, f2 is a coefficient,
χv is the position-velocity correlation (see Ref. [109]),
and σr is the radial velocity dispersion of subhalo prior to
any tidal heating. Reference [109] shows that χv depends
only weakly on the density profile, so we fix χv at a typical
value of −0.333. Any uncertainty of χv is absorbed in the
coefficient f2.
In the heating model presented above, we assumed

that there is no shell crossing. However, this may not be
valid for all dark matter halos, especially those with
cored density profiles. From Eqs. (38) and (40), we can
see that the total heating energy ΔϵðrÞ ∝ r at small radii.
For a density profile with an inner logarithmic slope of −γ,
i.e. ρðrÞ ∝ r−γ , the gravitational potential ΦðrÞ ∼ GMðrÞ=
r ∝ r2−γ . Thus if γ < 1 there always exist a radius r0 below
which ΔϵðrÞ > GMðrÞ=2r. According to Eq. (36), mass
shells with ri < r0 will then have a final radius of infinity,
which means that the no shell crossing assumption is
broken. More accurately, shell crossing happens when
drf=dri < 0, in which case the enclosed mass with ri is
no longer constant and one needs to take into account this
in Eq. (36). Solving Eq. (36) with shell crossing is
complicated. Instead, we keep Eq. (36) unchanged, but
modify Δϵ to avoid shell crossing. Note that this does not
mean shell crossing does not happen, but each mass shell is

now interpreted an an effective mass shell after the new
equilibrium is reached. We first compute the ratio

ξðriÞ ¼
ΔϵðriÞ
GMi=2ri

: ð41Þ

To avoid drf=dri < 0, we assume that at small radii, i.e.
r < rcrossing, ξðriÞ is constant such that ΔϵðriÞ is propor-
tional to the gravitational potential:

ΔϵðriÞ ¼ ξðrcrossingÞ
GMi

2ri
: ð42Þ

To ensure that, after tidal heating, the density profile
remains continuous at rcrossing,

6 we require that both ξ
and dξ=dr are continuous at rcrossing or equivalently

ξðrcrossingÞ ¼
ΔϵðrcrossingÞ

GMðr < rcrossingÞ=2rcrossing
; ð43Þ

dξðriÞ
dri

����
ri¼rcrossing

¼ 0: ð44Þ

The shell crossing radius, rcrossing, and ξðrcrossingÞ are
uniquely determined by Eqs. (43) and (44).
Figure 7 shows the ratio ξ as a function of the initial

radius of mass shells computed from Eqs. (40) and (42)
compared with that measured from simulations. Here, we
consider a cored subhalo with ðα; β; γÞ ¼ ð1; 3; 0Þ and

FIG. 7. Heating energy ratio, ξ, from our model Eq. (40) (solid
curve) and that includes the monotonic correction Eq. (42)
(dashed curves), compared with that measured directly from
simulations (colored circles). The colored dotted curves show the
heating energy from two-body relaxation.

6From Eqs. (36) and (37), this requires thatΔϵ is differentiable.
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Rp=Ra ¼ 2=5. As can be seen, the model prediction
without the monotonic correction (solid curves) overesti-
mates the heating energy ratio at small radii. On the other
hand, the heating energy measured from simulations

(colored circles) flattens out with decreasing radius, which
verifies our assumption Eq. (42) (see the dashed curves). At
radii close to the softening length (vertical line), the effects
of two-body relaxation [108] (dotted curves) become

TABLE IV. Priors and median values (with 16th and 84th percentiles) for model parameters (rows) for dark matter
subhalos with different inner slopes (columns).

Prior γ ¼ 0 γ ¼ 0.5 γ ¼ 1 γ ¼ 1.5

αs [0, 20] 4.4þ8.5
−2.3 1.06þ0.11

−0.089 3.93þ0.77
−0.58 > 16.2

ϵh [0, 6] 0.262þ0.042
−0.028 0.166þ0.013

−0.012 0.0741þ0.0052
−0.0047 0.0403þ0.0093

−0.0084

f2 [0, 2] 0.21þ0.039
−0.035 0.166þ0.023

−0.023 0.547þ0.043
−0.041 1.04þ0.22

−0.18

βh [0, 4] 0.37þ0.16
−0.11 0.0986þ0.047

−0.044 0.278þ0.039
−0.034 0.358þ0.054

−0.047

lnR ½−14; 0� −2.13þ0.12
−0.11 −1.92þ0.11

−0.096 −2.77þ0.085
−0.08 2.52þ0.08

−0.077

FIG. 8. Posterior distributions over model parameters for different values of γ.
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significant leading to the rise of ξ. Here, we compute the
heating specific energy due to two-body relaxation as

Δϵtwo-bodyðrÞ ¼ 2αtwo-body
lnΛ
NðrÞ

vðrÞ3
r

ðt − t0Þ; ð45Þ

where αtwo-body is the efficiency of two-body relaxation
heating, vðrÞ is the circular velocity, t and t0 are the current
and initial time, respectively, NðrÞ is the number of
particles within radius r, and the Coulomb logarithm is
computed as

lnΛ ¼ 1

2
ln

2
641þ

0
B@ r

max
n
rsoftening;

ffiffiffiffiffiffiffiffiffi
2GMp

v2

q o
1
CA

2
3
75: ð46Þ

To compute the contribution of two-body relaxation to the
heating energy in Fig. 7, we take αtwo-body ¼ 0.006. We
have also checked the case with γ ¼ 0.5, for which similar
behavior in ξ is found. For γ ≥ 1, ξðriÞ is monotonic, thus
no correction is needed, but the two-body relaxation
heating is also dominated at very small radii, leading to
the formation of an artificial core in halo center.

D. Calibrations

In the semianalytic models presented in the previous
subsection, there are in total four free parameters that must
be calibrated to simulations. One of these parameters is αs
in the tidal stripping model, the others are the parameters
ϵh, f2, and βh in the tidal heating model. We calibrate these
parameters by comparing the predictions for Mbound, Vmax
and Rmax from our models to the results measured from
simulations presented in Sec. III. To perform this calibra-
tion we define a likelihood function as

lnLðMbound; Vmax; Rmaxjα; ϵh; f2; βhÞ

¼ −
1

2

X
i

��
Mp

bound;i −Mbound;i

σM;i

�2

þ ln ð2πσ2M;iÞ
�

−
1

2

X
i

��
Vp
max;i − Vmax;i

σV;i

�2

þ ln ð2πσ2V;iÞ
�

−
1

2

X
i

��
Rp
max;i − Rmax;i

σR;i

�2

þ ln ð2πσ2R;iÞ
�
; ð47Þ

where Mp
bound;i, V

p
max;i, and Rp

max;i are model predictions at
the ith snapshot. Here, σM;i, σV;i, and σR;i represent the
combined uncertainties in the measurements and the model.
Given that our models, like any models, are imperfect, we
introduce a free parameter R that quantifies the model
uncertainties and write the total uncertainties as

σ2M;i ¼ σ̃2M;i þ ðRMp
bound;iÞ2; ð48Þ

σ2V;i ¼ σ̃2V;i þ ðRVp
max;iÞ2; ð49Þ

σ2R;i ¼ σ̃2R;i þ ðRRp
max;iÞ2: ð50Þ

Here σ̃M;i and σ̃V;i are the Poisson errors measured from
simulations, and σ̃R;i is defined as half of the radial bin
width used for computing Vmax.

7

We run Monte Carlo Markov chain simulations for
dark matter profiles with different density slopes at small
radii, from cored profiles (γ ¼ 0) to very cuspy profiles
(γ ¼ 1.5). We refrain from performing Monte Carlo
Markov chain simulations for all the combinations of
ðα; β; γÞ shown in Sec. III as we find that the model
parameters are mostly sensitive to the inner slope of dark
matter halo. We have checked that our models also
work well for other choices of the parameter that control
the outer profile of the subhalos. In the remainder of this
section, we set ðα; βÞ ¼ ð1; 3Þ.
For model parameters fαs; ϵh; f2; βhg we adopt uniform

priors. For R, a loguniform prior is used. The priors
and resulting median values are listed in Table IV. The
posteriors of model parameters for different dark matter
profiles are shown in Fig. 8. We find that for γ ¼ 1.5, the
tidal stripping efficiency parameter αs is unconstrained
from above. We report the 16th percentile in Table IV as a
conservative lower bound. In practice, this means that our
model might have underestimated the tidal radius rt in this
case such that there is not enough mass outside rt to be
stripped. Including partial of the contribution from the
centrifugal force in computing rt, i.e. assuming a nonzero

FIG. 9. Tidal tracks from semianalytic models (lines) compared
with N-body simulations (circles). Colors indicate different
values of the inner slope of the density profile, γ, as indicated
in the figure.

7Note that we have performed a supersampling of the subhalo
profiles, thus the bin width used here is smaller than the original
radial bin width (see Sec. II C).
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value of γs in Eq. (34), may help improve the fitting.
Nevertheless, our current model already fits the bound mass
evolution very well for γ ¼ 1.5, see Fig. 10.
In Fig. 9, we show the predicted tidal tracks for different

γ from our best-fit models compared with the results from
N-body simulations. For the cases with γ ¼ 1 and γ ¼ 1.5,
our models agree very well with the simulation results. For
the cases with γ ¼ 0.5 and γ ¼ 0, the agreement is some-
what worse, but nevertheless captures the overall behavior
reasonably well. Notably, for the cored case (γ ¼ 0), our
model reproduces the turnaround of the tidal track when the
subhalo is heavily stripped.
In Fig. 10, we also show the bound mass evolution for

different γ from our best-fit models compared with the

results from N-body simulations. The corresponding den-
sity profiles at different times for γ ¼ 1 and γ ¼ 0 are
shown in Fig. 11.
Ideally, we would expect that the values of the model

parameters should be consistent across different dark matter
profiles, if our model correctly captures the dependence of
tidal stripping and heating on the subhalo density profile.
However, we find that there does not exist a single set of
model parameters that fit all the cases accurately (see
Fig. 8). Thus we report the best-fit parameters for each dark
matter profile separately. This also suggests that there are
additional dependencies on the inner slope of dark matter
halo profiles that are not fully captured by our current
model. For γ that is not listed in Table IV, we suggest doing
an interpolation. We defer exploration of a universal model
to future work.

V. CONCLUSIONS AND DISCUSSIONS

We have run high-resolution idealized simulations to
study the evolution of dark matter subhalos under the tidal
effects from their host. We consider a generalized dark
matter halo profile controlled by three parameters α, β, and
γ [see Eq. (8)]. By changing these parameters, we can
represent a dark matter profile with a flat core (γ ¼ 0) or
NFW-like cuspy profile (γ ¼ 1). We have run simulations
with different combinations of these parameters and found
the fitting functions for the tidal track in each case. The
Vmax-Rmax tracks we find for different γ, the inner slope of
dark matter profile, are in agreement with the previous
studies by Ref. [53] expect for the case with a extremely
cuspy profile, i.e. γ ¼ 1.5. We have checked the conver-
gence of the results for γ ¼ 1.5 and found that using a
global time step size leads to better converged results. Our
converged results still show some differences from the one
in Ref. [53]. We note that Ref. [53] uses a global, fixed time

FIG. 10. Bound mass as a function of time from semianalytic
models (lines) compared with N-body simulations (circles).
Colors indicate different values of the inner slope of the density
profile, γ, as indicated in the figure. Other parameters in the
density profile are fixed at ðα; βÞ ¼ ð1; 3Þ.

FIG. 11. Density evolution of cuspy (left panel) and cored subhalos (right panel) from semianalytic models (lines) compared with
N-body simulations (circles). Colors indicate different times.
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step size, similar to the global time step size in our
convergence tests. We find that their time step size may
be too large to obtain converged tidal track.
We have also run tests with lower subhalo concen-

tration and a host potential that grows with time, see
Appendix C. While the bound mass of subhalos in these
cases evolves differently than the fiducial settings (i.e.
lower concentration subhalos are more influenced by the
tidal effects), the tidal tracks are only marginally affected,
confirming that the tidal tracks are mostly sensitive to the
bound mass fraction. Furthermore, we find that adding a
Miyamoto and Nagai disk [113] and Hernquist bulge [72]
potential to the host to mimic the Milky Way disk and
bugle also does not have a significant impact on the tidal
track—the difference from the fiducial case is less than
10% (see Appendix D).
From the simulation data, we measure the density

transfer function that connects the current density profile
of a subhalo to its initial profile. Similar to previous studies
[52–55,95], we find that the transfer function is mainly
sensitive to the bound mass fraction and is insensitive to
the subhalo orbit. Using a similar fitting formula to that
proposed in Ref. [52] for the transfer function, we find the
effective tidal radius, rte, and normalization parameter, ft,
[see Eq. (23)] and give fitting formula for rte and ft as
functions of bound mass fraction, see Eqs. (30) and (31).
These transfer function fits can be used to model the
density evolution of subhalo with a variety of density
profiles.
We then present improved semianalytic models for

tidal stripping and tidal heating built on our previous
work [67]. In our previous work [67], the semianalytic
models were calibrated only to dark matter halos with
NFW profiles. In this work, we extend the calibration to
other profiles. We find that the no shell crossing
assumption in our previous tidal heating model is not
valid for cored dark matter profiles. To overcome this
issue, we propose a simple modification to the heating
energy. The modified model is shown to work well for
cored dark matter profiles.
For CDM, it is well known that the dark matter halos are

well described by the NFW profile. But for other types of
dark matter particle this is not necessarily true. For
example, for SIDM, due to frequently scattering between
dark matter particles in the halo center, a constant density
core can form. At later stages of the evolution of SIDM
halos, core collapse can happen leading to a very cuspy
density profile. Core formation can also happen in other
dark matter models such as fuzzy dark matter due to
additional pressure from the quantum effects or, in CDM
models, due to baryonic feedback. Thus considering the

evolution for different dark matter profiles is useful to
allow comparison of different dark matter models with
observations of subhalos. Using the semianalytic models
presented in this work will allow us to predict the
statistical properties of subhalos in different dark matter
models and distinguish these models by comparing with
observations such as the Milky Way satellite populations
and strong gravitational lenses.
One limitation of the current work is that we consider

only one typical host mass of 1012M⊙ with NFW profile
and a fixed subhalo mass of 109M⊙. The concentration of
the host and subhalo are also fixed. Although the tidal
tracks are not very sensitive to changes in the host
properties, they have a weak dependence on the concen-
tration of subhalos [54]. Thus the semianalytic models
presented in this work need to be tested against a larger
set of simulations covering a range of halo masses and
concentrations. It will also be useful to test the calibrated
models against cosmological simulations as done in [59,98]
and take into account the preinfall tidal effects [114–116].
A more detailed study on this will be presented in a
forthcoming paper.
Furthermore, in the current work, we have ignored

nongravitational interactions between dark matter particles.
In future works, we will explore the possibility to include
other effects in different dark matter scenarios, e.g.
enhanced tidal stripping in fuzzy dark matter models due
to “quantum tunneling” [18,117], core evolution [56–60]
and ram pressure stripping [118] in SIDM model.
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APPENDIX A: EVOLUTION OF Rmax AND Vmax
AS FUNCTIONS OF THE BOUND MASS

FRACTION

In Sec. III, we have shown Rmax versus Vmax tracks for
different initial subhalo density profiles. In Figs. 12–14,
we show Rmax and Vmax as functions of the bound mass
fraction together with our best fit fitting formula.
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FIG. 12. Rmax and Vmax for ðα; βÞ ¼ ð1; 3Þ and different values of γ from N-body simulations using GADGET-4. Solid lines show the
fitting functions found in this work.
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FIG. 13. Rmax and Vmax for ðα; βÞ ¼ ð1; 4Þ and different values of γ from N-body simulations using GADGET-4. Solid black lines show
the fitting functions found in this work. For comparisons, the fitting functions for the same ðα; γÞ, but β ¼ 3 are also shown in each panel
(light gray lines).
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APPENDIX B: FITTING FUNCTIONS FOR DENSITY EVOLUTION

In Sec. III B, we have shown the best fit parameters for the density transfer function for ðα; βÞ ¼ ð1; 3Þ and different γ.
Best parameters for other combinations of ðα; β; γÞ are shown in Fig. 15.

FIG. 14. Rmax and Vmax for ðα; γÞ ¼ ð2; 0Þ and different values of β from N-body simulations using GADGET-4. Solid lines show the
fitting functions found in this work.

FIG. 15. Best-fit parameters for the density profile as a function of bound mass fraction for ðα; βÞ ¼ ð1; 4Þ and different γ. Left: the
effect tidal radius in Eq. (23). The filled (open) circles are obtained by fitting Eq. (23) to the density profiles measured from simulation
assuming δ ¼ 3 (δ ¼ 2). Right: the normalization parameter ft in Eq. (23).

XIAOLONG DU et al. PHYS. REV. D 110, 023019 (2024)

023019-20



APPENDIX C: EFFECTS OF SUBHALO
CONCENTRATION AND TIME-EVOLVING

HOST POTENTIAL

To test how subhalo concentration may affect the tidal
tracks. We run a few tests for subhalos with NFW profiles,
i.e. ðα; β; γÞ ¼ ð1; 3; 1Þ and half of the fiducial concen-
tration. As shown in Fig. 17, subhalos with lower concen-
trations (colored dashed curves) are more influenced by the
tidal stripping and have faster mass loss compare to the
fiducial cases (colored solid curve). But the Rmax versus
Vmax tracks are only marginally affected. A detailed study
of a even larger change in subhalo concentrations as done in
Green et al. [54] is needed to determine the possible weak
dependence of tidal tracks on subhalo concentrations.
In the fiducial simulations, we have a static host

potential. However, in the realistic case, the host halo
grows with time by accreting small halos. So we also run a

test in which the host have a initial mass of 1012M⊙
(Milky Way size) and its mass grows linearly with time and
reaches 8 × 1012M⊙ (group size) at the end of the simu-
lation. The subhalo has an initial velocity that matches
the static host case with Rp=Ra ¼ 1=20. Again, the subhalo
has faster mass loss, but tidal tracks are only marginally
affected, see the black curve (left panel) and triangles (right
panel) in Fig. 17.

APPENDIX D: EFFECTS OF GALACTIC DISK
AND BULGE

In the fiducial simulations, we assume the host have an
NFW profile and neglect any possible contribution from the
baryons in the halo. To test whether our results are affected
by the baryonic potential, we add a Miyamoto and Nagai
disk potential [113]

FIG. 16. Best-fit parameters for the density profile as a function of bound mass fraction for ðα; γÞ ¼ ð1; 0Þ and different β. Left: the
effect tidal radius in Eq. (23). The filled (open) circles are obtained by fitting Eq. (23) to the density profiles measured from simulation
assuming δ ¼ 3 (δ ¼ 2). Right: the normalization parameter ft in Eq. (23).

FIG. 17. Bound mass evolution and tidal tracks for NFW subhalos with different concentration (colored lines) and a time-evolving
host potential (black line). For the case with evolving host potential, the subhalo is initially put on the same orbit as the static host case
with Rp=Ra ¼ 1=20.
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ΦMN ¼ −
GMMNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ
�
Rd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2d þ z2

q �
2

s ; ðD1Þ

and a Hernquist bulge potential [72]

ΦHQ ¼ −
GMHQ

Rþ AHQ
; ðD2Þ

to the static host potential. For the fiducial host mass of
1012M⊙, we choose the following parameters in Eqs. (D1)
and (D2) to mimic the Milky Way disk and bulge [71,119]:

MMN ¼ 6.98 × 1010M⊙; ðD3Þ

Rd ¼ 6.0 kpc; ðD4Þ

zd ¼ 1.2 kpc; ðD5Þ

MHQ ¼ 1.05 × 1010M⊙; ðD6Þ

AHQ ¼ 0.46 kpc: ðD7Þ

The subhalo is assumed to have an NFW profile at the
beginning of the simulation. We choose the ratio of
pericenter to apocenter distances to be Rp=Ra ¼ 1=50 so
that the subhalo can enter within the disk radius Rd. The
subhalo orbital plane is tilted by an angle of π=6 with
respect to the disk plane.
As shown in Fig. 18, the subhalo has a faster mass loss

compared to the fiducial “DM-only” simulation. But only a
small difference (less than 10%) is observed in the Vmax
versus Rmax track.
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