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The vast majority of gravitational-wave signals from stellar-mass compact binary mergers are too weak
to be individually detected with present-day instruments and instead contribute to a faint, persistent
background. This astrophysical background is targeted by searches that model the gravitational-wave
ensemble collectively with a small set of parameters. The traditional search models the background as a
stochastic field and estimates its amplitude by cross-correlating data from multiple interferometers. A
different search uses gravitational-wave templates to marginalize over all individual event parameters and
measure the duty cycle and population properties of binary mergers. Both searches ultimately estimate the
total merger rate of compact binaries and are expected to yield a detection in the coming years. Given the
conceptual and methodological differences between them, though, it is not well understood how their
results should be mutually interpreted. In particular, when a detection of an astrophysical compact binary
background is claimed by either approach, which portion of the population is in fact contributing to this
detection? In this paper, we use the Fisher information to study the implications of a background detection
in terms of which region of the Universe each approach probes. Specifically, we quantify how information
about the compact binary merger rate is accumulated by each search as a function of the event redshift. For
the LIGO design sensitivity and a uniform-in-comoving-volume distribution of equal-mass 30M⊙ binaries,
the traditional cross-correlation search obtains 99% of its information from binaries up to redshift 2.5
(average signal-to-noise ratio < 8), and the template-based search from binaries up to redshift 1.0 (average
signal-to-noise ratio ∼8). While we do not calculate the total information accumulated by each search, our
analysis emphasizes the need to pair any claimed detection of the stochastic background with an assessment
of which binaries contribute to said detection. In the process, we also clarify the astrophysical assumptions
imposed by each search.
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I. INTRODUCTION

For every compact binary merger [1] observed by the
LIGO [2] and Virgo [3] observatories, there are many more
that are too distant and too weak to be directly detected.
Although these distant binaries may be individually indis-
tinguishable from instrumental noise, their population may
be collectively detectable via the slight coherence it imparts
across networks of widely separated gravitational-wave

detectors [4–6]. The resulting collection of weak signals is
colloquially referred to as the astrophysical gravitational-
wave background. Current constraints based on the indi-
vidually detectable tail of the total population suggest that
this astrophysical background is several orders of magni-
tude larger than any expected cosmological stochastic
background in the relevant frequency range [6–8].1 If
detected, the stochastic background will offer indirect
information about the properties of compact binaries
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1For this reason, we will drop the “astrophysical” designation
in the rest of the paper, with the understanding that unless
explicitly noted otherwise we refer to the astrophysical stochastic
gravitational-wave background.
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beyond the horizons of present-day detectors [9–13]; it is
therefore a prime target for a variety of gravitational-wave
searches [6,14,15].
Traditional searches for the background (both astrophysi-

cal and cosmological) rely on the cross-correlation between
detector pairs. These searches model the background
gravitational-wave strain as a mean-zero stochastic field
that is continuous and Gaussian and measure its variance.
The steep low-frequency noise of ground-based detectors
[16] suggests that any autocorrelations induced by the
stochastic background are subdominant and can therefore
be neglected; this is often referred to as the weak signal limit
[4,5,17]. But given sufficiently long observation times, the
stochastic background will manifest as excess cross power
between instruments. Given current predictions for the
power spectrum of the stochastic background [6,7], a
detection is unlikely in the current observing run, but
may be feasible during the next observing run if the
Advanced LIGO sensitivity target [18] is reached.
An alternative search strategy is motivated by the fact

that the background is neither continuous nor Gaussian.
Given current merger rate estimates, we expect that a black
hole binary (neutron star binary) merges every 5–10 min
(5–60 s) in the mass range relevant for ground-based
detectors [7]. As black hole binary coalescences last for
OðsecondsÞ in the ground-based detector frequency band
[1,19,20], the black hole background is expected to be
composed of distinct nonoverlapping transient signals. For
neutron star binaries the duration is OðminutesÞ [21] so
these signals overlap. However, given a low frequency
cutoff of 10 or 20 Hz, it is still unlikely that the relevant
background lies in the confusion noise limit [22–26],
though subject to large uncertainty on the binary neutron
star merger rate [6]. While the non-Gaussianity of the
compact binary background does not bias the cross-
correlation search in the low-signal limit, it does imply
that it is suboptimal [27].
Given distinct—though individually undetectable—

transient signals, the author of Ref. [28] proposed a search
that relies on the matched-filter technique that has success-
fully resulted in the detection of individually resolved
binaries, e.g., [29]. This template-based search utilizes
phase-coherent gravitational waveform models to margin-
alize over the properties of individual events that may (or
may not) be present within every segment of data, regard-
less of whether the events rise above the threshold for direct
detection. An extended version also infers and/or margin-
alizes over the properties of the compact-binary population
[30]. In general, template-based techniques are expected to
be more sensitive than cross-correlation ones as the former
include (even vanishingly small) information about the
waveform phase, while the latter rely solely on excess
power. Whereas cross-correlation searches might require
years of integration to claim a detection of a gravitational-
wave background, it is argued that the template-based

search might reach a detection given only days of data at
design sensitivity [28]. If such an improvement is realized,
the template-based search would represent a remarkable
leap in sensitivity and enable imminent detection.
The stark difference in sensitivity motivates the main

question of this study: when we detect a background with
either search, which region of the Universe have we
successfully probed and what astrophysical assumption
have we made about this region? A direct time-to-detection
estimate does not fully address this question as the two
searches make different astrophysical assumptions and are
not necessarily sensitive to the same population of binaries
at the same regions in the Universe. Instead, the authors of
Ref. [30] examined the template-based search’s ability to
infer a cutoff in the binary redshift distribution and
concluded that there is some information from binaries
at the edge of resolvability. Additionally, the cross-
correlation and template-based formalisms are constructed
in terms of different physical quantities and rely on
different detection statistics, specifically the gravitational
wave energy density and the event rate, respectively.
The reliance on different statistics is not merely a

technical inconvenience, but also reveals a conceptual
incompatibility between approaches. The energy density
and event rate can be mathematically related to each other
only after assuming a specific merger rate distribution for
sources across the Universe. Gravitational-wave detectors
measure spacetime strain, which can be trivially converted
to intensity and energy density without further assump-
tions. This suggests that the cross-correlation search can
infer the gravitational-wave energy density directly from
the data, with no assumption on source distribution. The
template-based analysis, on the other hand, is based on the
measurement of a nonzero rate of events. The conversion
from measured strain to an event rate (or duty cycle) relies
on a Bayes factor that compares the hypotheses that a data
segment contains signal or noise, which in turn depends on
assumptions about the prior or astrophysical distribution of
sources, including the mass, spin, and redshift distribution.
While Ref. [30] relaxes the mass and spin dependence, the
assumption of knowledge of the redshift distribution
remains. If an analysis intrinsically assumes perfect knowl-
edge of how sources are distributed in the Universe, this
begs the question: how much information is actually
coming from the unresolved sources compared to what
is extrapolated from the resolved ones?
The goal of our work is to study the sensitivity of the

cross-correlation and template-based searches and identify
the astrophysical assumptions each search makes. We use
the Fisher information matrix to quantify the information
accumulated by each search and study how this information
is accumulated by observing binaries at different redshifts.
In lieu of a technically challenging full implementation of
the template-based search, we consider a simplified pop-
ulation of compact binaries where all parameters are known
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other than the distance/redshift. This simplified setup does
not allow us to compare the total information accumulated
by each search, but it yields the relative contribution by
binaries at different redshifts. For 30M⊙ binaries, the cross-
correlation (template-based) search accumulates 99% of its
information from binaries up to redshift 2.5 (1.2). The same
redshift estimates for 70M⊙ binaries are 1.5 (1.6). With the
hopefully imminent detection of a stochastic background in
LIGO data, our study emphasizes the need to carefully
assess the sensitivity and assumptions of our search
methods.
The rest of the paper presents the details of our

calculation. We begin in Sec. II by reviewing the stochastic
background and its characterization. In Sec. III we lay out
the two search methodologies, highlighting the targeted
observables. In Sec. IV we describe the theory and calculate
the functional forms of the Fisher information for each
search with respect to a common parameter, and in Sec. V
we study the information functions in different scenarios.
Finally, we draw our conclusions in Sec. VI.

II. THE COMPACT BINARY BACKGROUND

In this section, we introduce the basics of the gravitational-
wave stochastic background and establish notation. The
familiar reader can skip ahead to Sec. III where we introduce
the search methods.
The background of unresolved compact binaries is

generally characterized by its dimensionless energy-density
spectrum [4,8],2

ΩGWðfÞ ¼
1

ρc

dρGW
d ln f

; ð1Þ

where ρGW is the energy density in gravitational waves
(GW) and ρc is the Universe’s closure energy density. The
present-day ΩGWðfÞ in the frequency range 10 Hz < f <
103 Hz is dominated by the integrated merger history of
compact binaries over all redshifts. For simplicity,
we consider a single class of compact binaries with
ensemble-averaged source-frame energy spectra dEs=dfs
(a subscript s denotes source-frame quantities), and define
RðzÞ to be the number of mergers per unit comoving
volume Vc per unit source-frame time ts, i.e., the source-
frame merger rate density

RðzÞ ¼ dN
dVcdts

: ð2Þ

Given gravitational-wave sources up to redshift zmax, the
present-day dimensionless energy-density spectrum is [6]

ΩGWðfÞ ¼
f
ρc

Z
zmax

0

RðzÞ dEs

dfs

����
fð1þzÞ

dts
dz

dz

¼ f
ρc

Z
zmax

0

RðzÞ
ð1þ zÞHðzÞ

dEs

dfs

����
fð1þzÞ

dz; ð3Þ

where HðzÞ ≈H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3 þ ΩΛ

p
is the Hubble

parameter at redshift z and H0 is the Hubble constant.
The total detector-frame merger rate R is

R ¼
Z

zmax

0

dz
RðzÞ
1þ z

dVc

dz
: ð4Þ

Here dVc=dz is the comoving volume per unit redshift. The
factor of 1þ z converts the source-frame rate into the
detector-frame rate as measured at Earth.
Both the gravitational-wave energy-density and the total

merger rate depend on the source-frame rate density,
RðzÞ. It is convenient to write the latter as the product
RðzÞ ¼ R0rðzÞ, where R0 is the local merger rate at z ¼ 0
and rðzÞ is themerger rate density function normalized to 1 at
z ¼ 0. Then, in terms of the total rateR, the local merger rate
becomes

R0 ¼ R

�Z
zmax

0

dz
rðzÞ
1þ z

dVc

dz

�
−1

≡ RIðzmaxÞ−1; ð5Þ

wherewe have defined the integral IðzmaxÞwhich quantifies
the ratio between total and local merger rate, given zmax. We
also define the normalized probability distribution for source
redshift, pðzÞ,

pðzÞ ¼
RðzÞ
1þz

dVc
dzR zmax

0 dz0 Rðz0Þ
1þz0

dVc
dz0

¼ R0

R
rðzÞ
1þ z

dVc

dz

≡ 1

R
RðzÞ; ð6Þ

defining RðzÞ to be the event rate per unit detector-
frame time.
So far, searches targeting the stochastic background via

ΩGWðfÞ have operated under the assumption that the signal
is continuous and Gaussian. However, the background is
only Gaussian in the limit of large numbers of sources that
saturate the detector time stream and satisfy the central limit
theorem. Given the current set of compact binary detections
[7], it is clear that this is not the case [24]. As merging black
holes are expected to strongly contribute to the GW energy
density [31], this suggests the astrophysical stochastic
background is non-Gaussian and intermittent in the detec-
tor frequency band, with a cadence dictated by the
prevalence of black hole binary mergers in the Universe.

2This formalism is largely inspired by the cosmological
background, but it is applied to the astrophysical background
as well.
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To quantify the non-Gaussianity and intermittence of the
signal and inspired by [27], Ref. [28] split the data in
segments of duration τ and denoted the probability that a
given segment contains a signal as ξ. This duty cycle ξ can
be related to the merger rate. Given the total detector-frame
merger rate R, the probability that Ns gravitational-wave
signals are present in a data segment with duration τ is
Poisson distributed

pðNsjR; τÞ ¼
ðRτÞNse−Rτ

Ns!
: ð7Þ

Then the duty cycle ξ is simply the probability that N ≥ 1
signals are present in the data segment:

ξ ¼
X∞
Ns¼1

pðNsjR; τÞ

¼ 1 − pð0jR; τÞ
¼ 1 − e−R0IðzmaxÞτ: ð8Þ

In the limit where Rτ ≪ 1, this becomes simply ξ ≈ Rτ.
Assuming a segment length τ ∼OðsÞ,3 the expected duty
cycle of the black hole background is ξ ∼ 10−3.
The cross-correlation analysis (described in Sec. III A) is

typically expressed in terms of the ΩGWðfÞ spectrum, as it
was conceived for Gaussian and continuous backgrounds.
The template-based search (described in Sec. III B), on the
other hand, was proposed with a non-Gaussian and
intermittent background in mind and is hence framed in
terms of ξ. In Sec. IV we also work in terms of independent
parameters that the observables of both searches can be
mapped to. Specifically, we use Eqs. (3), (4), and (8) to
express the cross-correlation and template-based searches
in terms of the same quantities, R0 and zmax, for direct
comparison.

III. STOCHASTIC BACKGROUND
SEARCH METHODS

We consider two searches that target the subthreshold
population of binary mergers in ground-based detectors:
the cross-correlation search (relevant quantities are labeled
as “CC”) and the template-based search (“TB”).

A. Cross-correlation search

The most common search for the stochastic gravitational-
wave background relies on the cross-correlation spectrum
between the (frequency domain) data d̃1ðfÞ and d̃2ðfÞ

measured by two gravitational-wave detectors to construct
an optimal (i.e., unbiased minimum-variance) statistic for
ΩGWðfÞ [4,5,17],

Ω̂GWðfÞ ¼
2QðfÞ
γðfÞ

Rðd̃1ðfÞd̃�2ðfÞÞ
Tseg

; ð9Þ

where Tseg is the time segment duration over which data are
measured. Here and throughout this discussion we use
“hatless” symbols to denote physical quantities and “hatted”
symbols to denote their estimates based on data. The data
are Fourier transforms of strain data and hence have units
½d̃� ¼ Hz−1. The function QðfÞ is defined as

QðfÞ ¼ f3
10π2

3H2
0

; ð10Þ

and converts the strain power spectrum to a dimensionless
energy-density spectrum. The factor γðfÞ is the overlap
reduction function [32,33], which quantifies the geometrical
sensitivity of the cross-correlated detector pair to an
isotropic background. The factor of 2 in Eq. (9) accounts
for the contribution of negative frequencies. The variance of
the statistic in Eq. (9) is [6]

σ̂2GWðfÞ ¼
1

2

�
QðfÞ
γðfÞ

�
2

P̂1ðfÞP̂2ðfÞ; ð11Þ

where P̂1ðfÞ and P̂2ðfÞ are the one-sided strain power
spectra of the data in detectors 1 and 2, respectively,
defined as

P̂IðfÞ ¼
2

Tseg
jd̃IðfÞj2: ð12Þ

The energy density spectrum can be decomposed as

ΩGWðfÞ ¼ ΩrefEðf=frefÞ; ð13Þ

with an overall amplitude ΩGWðfrefÞ≡Ωref at reference
frequency fref. The spectral shape Eðf=frefÞ can be
assumed known or parametrized Eðf=frefÞ and inferred
[34]. For example, for compact binary sources Eðf=frefÞ
should be universal, as the inspiral frequency evolution is
independent of rðzÞ. This is true up to a turnover frequency
that corresponds to the redshifted merger frequency of the
binaries. If we are not sensitive to the spectrum turnover, as
is the case with current ground-based interferometers, we
can treat the spectral shape of the signal as redshift-
independent and set Eðf=frefÞ ∝ ðf=frefÞ2=3.
In practice, cross-correlation spectra are estimated inde-

pendently for a large number of short time segments, each of
Oð100 sÞ, and combined via a weighted average. Since a
large number (104–105) of such time segments are combined,
the resulting cross-correlation measurements Ω̂GWðfÞ are

3With current detector sensitivity, and in order to avoid double-
counting, it is reasonable to pick a segment duration such that
there is at most one event per data segment. The segment duration
is therefore chosen to be comparable to the time a signal spends in
the detector frequency band.
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well-described by Gaussian statistics even in the case of an
intermittent signal. As shown in [17], this cross-correlation
statistic is a sufficient statistic for the stochastic signal in the
case where the signal is Gaussian and weak compared to
detector noise4 and can be derived from the mean-zero
Gaussian likelihood

pCCðd̃jΩGW; Pn;IÞ ¼
Y
f

1

j2πCðfÞj e
−1
2
d̃†C−1d̃: ð14Þ

Here, d̃ is the data vector d̃ ¼ ðd̃1; d̃2ÞT, andΩGWðfÞ appears
in the data covariance as the intrinsic variance of the
gravitational-wave signal [17],

CðfÞ ¼ Tseg

4

 
P1ðfÞ γðfÞPGWðfÞ

γðfÞPGWðfÞ P2ðfÞ

!
; ð15Þ

where

PGWðfÞ ¼
ΩGWðfÞ
QðfÞ ≡Ωref

Eðf=frefÞ
QðfÞ : ð16Þ

For stationary noise within each analysis segment the noise
covariance is diagonal in frequency; hence, the total like-
lihood is a product of Gaussian likelihoods evaluated at each
frequency. The PIðfÞ parameters are the expected power
spectra in each detector and can be explicitly written as the
sum of the noise and gravitational-wave power spectra,

PIðfÞ ¼ Pn;IðfÞ þ PGWðfÞ: ð17Þ

This implies both diagonal and off-diagonal terms of the
covariance in Eq. (15) depend on the gravitational-wave
energy density, giving rise to autocorrelation and cross-
correlation terms, respectively. The noise power spectra
Pn;IðfÞ are additional parameters of the search and may in
principle be estimated alongside ΩGWðfÞ.
In the weak signal limit, the autocorrelation terms in

Eq. (14) can be neglected, such that PIðfÞ ≈ Pn;IðfÞ and
the likelihood reduces to

pCCðΩ̂GWjΩGWÞ ∝
Y
f

exp

�
−
ðΩ̂GWðfÞ −ΩGWðfÞÞ2

2σ̂2GWðfÞ
�
;

ð18Þ
where hatted quantities are directly estimated from the data.
To simplify parameter estimation, we fix Eðf=frefÞ ¼
ðf=frefÞ2=3 such that the likelihood of Eq. (18) refers to
a single parameter, Ωref , and depends only on quantities
derived from the data as well as the assumed EðfÞ. It is

possible to remove this second dependence by reexpressing
the likelihood in the full spectrum ΩGWðfÞ and constrain
each frequency bin independently; however, Ωref is typi-
cally preferred as this allows us to marginalize over the
spectrum and improve detection statistics.

B. Template-based search

The template-based search adopts a different approach
that is more similar to the traditional matched-filter
searches for individually detectable signals [28,30,35]. In
this search, the entire strain time series measured by a
gravitational-wave detector network is divided into Nt time
segments, each with duration τ. For instance, the search for
a stochastic background from black-hole binaries divides
one year of data into approximately Nt ¼ 107 segments of
τ ¼ 4 s duration, given the reasonable expectation that
each segment contains≪ 1 signal on average [28]. Here the
segment length is selected by considering the expected
single-event duration at present sensitivity. This is in stark
contrast with the typical choices made for the cross-
correlation analysis, where the segment duration is typi-
cally on the timescale of a few minutes to access lower
frequency content, handle noise nonstationarity, and min-
imize the computational cost of the search [36].
Within every time segment i, a template-based analysis

computes the marginalized likelihood (or “evidence”) that a
compact binary merger is (hypothesis Si) or is not
(hypothesis N i) present. The marginalized likelihood for
the signal hypothesis is obtained via marginalization over
all source parameters θ of the binary,

pTBðdijSiÞ ¼
Z

pðdijθ;SiÞpðθjSiÞdθ; ð19Þ

where di is the data comprising segment i, pðdijθ;SiÞ is the
likelihood of having obtained these data in the presence of a
source with parameters θ (binary masses, spins, redshift,
etc.), and pðθjSiÞ is the prior on the source parameters θ.
With the segment-by-segment signal and noise evidences

in hand, the template-based analysis then seeks to measure
the duty cycle ξ, i.e., the fraction of time segments
containing a gravitational-wave signal (see discussion in
Sec. II). The relevant likelihood across all Nt segments is

pTBðfdigjξÞ ¼
Y
i

pðdijξÞ

¼
Y
i

½pðdijSiÞpðSijξÞ þ pðdijN iÞpðN ijξÞ�

¼
Y
i

½ξpðdijSiÞ þ ð1 − ξÞpðdijN iÞ�; ð20Þ

where, by definition, pðSijξÞ ¼ ξ is the probability that a
signal is present in segment i; correspondingly, pðN ijξÞ ¼
1 − ξ is the probability that a signal is absent. Factoring out
pðdijN iÞ, we can rewrite the likelihood as

4Aweak signal is a signal that does not appreciably contribute
to the power measured by a single detector [5], such that the
variance of the data can be equated to the variance of the noise.

BACKGROUND INFORMATION: A STUDY ON THE … PHYS. REV. D 110, 023014 (2024)

023014-5



pTBðfdigjξÞ ¼
Y
i

pðdijN iÞ½ξbi þ ð1 − ξÞ�; ð21Þ

where bi is the Bayes factor between signal and noise
hypotheses in segment i:

bi ¼
pðdijSiÞ
pðdijN iÞ

: ð22Þ

Within the framework of the template-based search, obser-
vation of the stochastic background amounts to con-
straining ξ away from zero. Equivalently, the Bayes
factor Bξ between the “signal” hypothesis that allows
0 ≤ ξ ≤ 1 and the “noise” hypotheses in which ξ ¼ 0,

Bξ ¼
R
1
0 pðfdigjξÞpðξÞdξ
pðfdigjξ ¼ 0Þ ; ð23Þ

can be used as a detection statistic given some prior on the
duty cycle pðξÞ.
In contrast to Eq. (18), which only depends on the data

and the inferred quantities, Eq. (23) also depends on a
collection of binary parameter priors. These include priors
on compact binary masses m, spins χ, and redshift z (or,
equivalently, distance). These priors encode our belief
about the underlying population of compact binaries.
Choosing a particular prior pðm; χ; zjSiÞ when evaluating
Eq. (21) amounts to assuming that the population distri-
bution of these parameters is perfectly known. An extended
version of the template-based analysis relaxes the
assumption of a known population distribution for masses
and spins [30]. Instead, the population prior pðm; χjSiÞ is
parametrized, and the resulting set of hyperparameters are
added to the search. Conceptually, this is equivalent to
performing a search for compact binary mergers while
simultaneously performing a population analysis to mea-
sure their ensemble properties [7,37]. However, a fixed
prior on the binary redshift remains: the current formulation
of the search assumes perfect knowledge of how compact
binaries are distributed with redshift. This assumption,
combined with the presence of resolved low-redshift
binaries, raises the question of whether a measurement
of ξ > 0 is informed by binaries at high redshift, or is
instead dominated primarily by foreground binaries.
This question motivates our study: below we revisit the

sensitivity of stochastic searches and quantify the impact of
resolved sources in the template-based case.

IV. INFORMATION CONTENT

The different assumptions, methodology, and formalism
between the cross-correlation and template-based searches
make a direct comparison in terms of a simple time-to-
detection difficult. We instead consider the Fisher infor-
mation for each search and examine how this information is
gathered as a function of source redshift and for different

astrophysical assumptions about the event distribution.
Given a likelihood pðdjΛÞ for data d conditioned on
parameters Λ ¼ fΛig, the Fisher information matrix is
defined as the expectation value over data realizations

FijðΛÞ ¼
�
−

∂
2

∂Λi∂Λj
lnpðdjΛÞ

	
: ð24Þ

In the high signal-to-noise ratio limit where the likelihood
becomes approximately Gaussian, the inverse Fisher matrix
F−1
ij corresponds to the covariance matrix quantifying the

uncertainties on parameters Λi. The Fisher information,
meanwhile, is defined as the matrix determinant:

IðΛÞ ¼ detFijðΛÞ: ð25Þ

The strong signal-to-noise assumption of the Fisher for-
malism is not in tension with the previously defined low-
signal limit employed for the cross-correlation search. The
latter refers to the fact that the autocorrelation of strain data
is dominated by detector noise, rather than astrophysical
signals. The former, in contrast, refers to the detectability of
excess cross power due to the gravitational-wave back-
ground, after integrating over a sufficiently long period of
time. In other words, even though the individual signals are
subthreshold, the applicability of the Fisher formalism
refers to the stochastic signal as a whole.
The cross-correlation and template-based searches are

framed in terms of different observables; i.e., Λ is different
in each case. The cross-correlation search reports a meas-
urement of the amplitude Ωref , i.e., ΛCC ¼ Ωref . The
template-based search, meanwhile, reports a measurement
of the duty cycle ξ, i.e., ΛTB ¼ ξ. The duty cycle of a
population and its total fractional energy density can be
related by combining Eqs. (3), (5), and (8); however, this
requires prior knowledge of the source redshift distribution
rðzÞ. Equivalently, knowledge of rðzÞ is required to convert
the fractional energy density emitted by a population to its
local merger rate density R0, and therefore to ξ. Comparing
the two searches thus relies on prior knowledge of rðzÞ,
which raises doubts as to what is actually being measured,
as opposed to extrapolated, to produce the individual search
results as well as in their comparison. To make progress,
our strategy here is to parametrize rðzÞ and infer it along-
side each search parameter.
Extending each search to also probe the source redshift

distribution amounts to a parametrization of rðzÞ≡ rðz; λÞ
and additional parameters λ. Here, we adopt the redshift
distribution parametrization of Eq. (5), with λ ¼ zmax,
similar to [30]. For the template-based search this results
in ΛTB ¼ fξ; zmaxg. In terms of the likelihood in Eq. (21),
the duty cycle ξ is explicit, while zmax enters through the
distance/redshift prior used in the Bayes factor calculation,
biðzmaxÞ. However, varying zmax while keeping ξ constant
would result in a change in the redshift distribution of the
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local, individually detectable sources. Since this is expected
to be well-constrained by the time of detection of the
stochastic background, we instead reparametrize the analy-
sis to explicitly separate the local merger rate R0 from the
source redshift distribution, ΛTB ¼ fR0; zmaxg.
In the case of the cross-correlation search, the only

parameter considered in the likelihood of Eq. (18) is Ωref .
For direct comparison with the template-based search, we
also need to express this likelihood in terms of the same R0

and zmax parameters, linked toΩref through Eqs. (3) and (5).
We therefore also consider a 2d version of the cross-
correlation search with ΛCC ¼ fR0; zmaxg, though both
parameters enter the likelihood only through their Ωref
combination. In what follows, we discuss both the case
where the maximum cutoff zmax is assumed known and
fixed (1d searches), and the case where it is a free parameter
(2d searches). For the 1d comparison, we present results in
Ωref , as this naturally quantifies the background amplitude;
while for the 2d case, we use R0 and zmax for the reasons
detailed above.
A back-of-the-envelope calculation clarifies the

ensuing detailed calculation in the 1d case. Here, the

cross-correlation search is sensitive to the GW energy
density while the template-based one is sensitive to the
local merger rate. In the cross-correlation case, the energy
density of N events contained in a volume ∝ D3 scales as
N × E ∼D, as the single event energy is E ∝ D−2. This
means that the total energy density scales roughly linearly
with event distance. Meanwhile, for the template-based
search the likelihood is dominated by the ξ × b term,
which scales as ξ × b ∝ N × eSNR

2=2 ∼D3 × eD
−2=2, where

b is an event Bayes factor as in (21), and we have assumed
that b ∝ eSNR

2=2 implying a loud signal. This indicates that
events at large D will contribute less to this search, as the
Bayes factor decreases rapidly with distance. In what
follows, to avoid taking this loud signal approximation for
events around/below the detection threshold, we evaluate
Bayes factors numerically.

A. Cross-correlation search

We calculate the Fisher information for the cross-
correlation search starting from the full likelihood of
Eq. (14) which may be expanded as [17]

lnpCCðd̃jΩrefÞ∼−Nseg

X
f

�
ln jCðfÞj þ

�
Tseg

4

�
2P1ðfÞP̂2ðfÞ þP2ðfÞP̂1ðfÞ− 2γ2ðfÞQ−2ðfÞΩrefEðf=ffÞΩ̂GWðfÞ

jCðfÞj
�
; ð26Þ

where the determinant of the covariance is

jCðfÞj ¼
�
Tseg

4

�
2

½P1ðfÞP2ðfÞ − γ2ðfÞP2
GWðfÞ�; ð27Þ

and Nseg is the total number of segments used in the
analysis. In what follows, we consider the noise terms Pn;I

entering the data power spectra PI in Eq. (17) to be known.
We proceed to calculate the Fisher matrix in logΩref and

Ωref , FlogΩref
and FΩref

, respectively. Here FlogΩref
corre-

sponds to the fractional uncertainty on Ωref , and thus scales
with the sensitivity of the search. In contrast, FΩref

scales
with both the sensitivity and the value ofΩref itself. In terms
of logΩref we have

FCC
logΩref

¼
�
−

∂
2

∂ logΩ2
ref

lnpCCðd̃jΩrefÞ
	
; ð28Þ

where the angle brackets imply calculating the expectation
value at maximum likelihood over many realizations;
hence, first derivatives of the likelihood are dropped.

Under the noise stationarity assumption, each frequency
contributes to the likelihood calculation independently;
hence, the total contribution is the sum over individual
frequencies:

FCC
logΩref

¼ Ω2
ref

X
f

E2ðfÞFCC
Ωf
; ð29Þ

where

FCC
Ωf

¼
�
−

∂
2

∂Ω2
f

lnpCCðd̃jΩfÞ
	
; ð30Þ

computed at the individual frequency f, where
Ωf ¼ ΩrefEðfÞ. Taking the maximum likelihood limit
(which amounts to setting hatted quantities equal to their
unhatted counterparts, assuming these are unbiased estima-
tors), defining βðfÞ ¼ γðfÞ2 − 1, and dropping the explicit
frequency dependence from the functions γ, β, Pn;I , E, and
Q for conciseness, we find

FCC
Ωf

¼ NsegE2
2β2Ω2

f − 2βQðPn;1 þ Pn;2ÞΩf þQ2ðP2
n;1 þ 2γ2Pn;1Pn;2 þ P2

n;2Þ
ðPn;1QðΩf þQPn;2Þ þΩfðQPn;2 − βΩfÞÞ2

: ð31Þ
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In accordance with the standard cross-correlation search,
we take the low-signal limit and expand FCC

Ωf
in

ϵ ¼ γΩf=ðF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn;1Pn;2

p Þ, which yields to first order,

FCC
Ωf

¼ AðfÞ þ BðfÞΩf þOðϵ2Þ; ð32Þ

where

AðfÞ ¼ Nseg
ðP2

n;1 þ 2γ2Pn;1Pn;2 þ P2
n;2Þ

Q2P2
n;1P

2
n;2

; ð33Þ

BðfÞ ¼ −2Nseg
ðP3

n;1 þ 3γ2P2
n;1Pn;2 þ 3γ2Pn;1P2

n;2 þP3
n;2Þ

Q3P3
n;1P

3
n;2

:

ð34Þ

The term FCC
logΩref

is then

FCC
logΩref

¼ Ω2
ref

X
f

E2ðfÞ½AðfÞ þ BðfÞEðfÞΩref �: ð35Þ

Since we are restricting to a single parameter here, Eq. (35)
gives the Fisher information gathered in a cross-correlation
search for the fractional uncertainty in Ωref and has two
limiting cases. In the limit where the signal Ωref → 0, i.e., a
Universe with no compact binaries, the absolute informa-
tion per frequency bin is FCC

Ωf
→ AðfÞ. Hence, AðfÞ

quantifies the information inherent in a nondetection of
the stochastic background, and only depends on the search
sensitivity ∼Pn1; Pn2. The relative information, Eq. (35), is
then zero as expected for vanishingly small signals, as in
this case; if the stochastic background is undetectable, then
we have infinite fractional uncertainty on its size. This
makes sense qualitatively, and though the Fisher formalism
is only strictly applicable in the strong signal limit, it
provides the Cramer-Rao lower bound on the variance of
the estimator. The term BðfÞ, on the other hand, quantifies
the information contributed by a measurable stochastic
signal. The Fisher information FCC

Ωref
itself scales intuitively

with the size of the stochastic background: given the
negative sign of BðfÞ, as ΩGW grows FCC

Ωref
decreases.

However, the Fisher information FCC
logΩref

can in principle
increase or decrease, depending on which term dominates
Eq. (35). That is, as ΩGW is increased, absolute uncertainty
on δΩref grows, but fractional uncertainty δΩref=Ωref
decreases as long as we are in the weak-signal approxi-
mation.5 Finally, information increases as observing time
grows. At fixed analysis segment length Tseg, the number of
segments grows linearly with time and FCC

Ωref
∝ Nseg. This is

expected as the variance of the measured stochastic field
power scales as 1=Tobs [5].
Figure 1 shows AðfÞ and −BðfÞ, for the two-detector

network of Advanced LIGO detectors, each with design
sensitivity [38] assuming one year of data. As seen in
Eqs. (33) and (34), the functional forms of these spectra
depend on both the overlap reduction function and the
individual detector sensitivities. The 5 orders of magnitude
between the two curves imply that for typical values of the
background amplitude (Ωf < 10−8) and at this sensitivity
the AðfÞ term dominates FCCðΩfÞ, verifying the weak-
signal approximation. In the case in question, the majority
of the information is gathered at ∼45 Hz, where AðfÞ is
maximum for this specific configuration.6 As sources at
cosmological distances are redshifted, this “most inform-
ative” frequency can be translated into a most informative
redshift, given the source mass. At the top of Fig. 1 we have
added axes with the “merger redshift” Z at which equal-
mass binaries of different masses merge, at the correspond-
ing frequency on the x axis. We select three component
mass values for this example, 70M⊙, 30M⊙, 10M⊙, which
we reprise in Sec. IV to calculate the Fisher information.
Binaries with larger mass merge at lower frequencies, and
conversely binaries with smaller mass contribute to lower

FIG. 1. A and B spectra from Eq. (32) as a function of
frequency. The top x axes mark the redshift Z at which equal-
component-mass binaries merge emitting at the frequency in the
lower x axis for different binary masses. The frequency corre-
sponding to maximum stochastic sensitivity, 45 Hz, is marked
with a gray dashed line.

5This may be seen qualitatively by observing that, in Eq. (32),
the BðfÞΩf term can compete with the AðfÞ term when Ωf is of
the order of the noise terms Pn;i.

6As discussed, the spectral shapes of AðfÞ and BðfÞ will
necessarily vary for different detector pairs. In general, the larger
the separation between detectors, the lower we expect these
functions to peak in frequency, due to the form of the overlap
reduction function [5].
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frequencies only when highly redshifted. For example, a
binary composed of two 70M⊙ black holes merges at
around ∼60 Hz at z ¼ 0, and can contribute to lower
frequencies in the band (20 < f < 60 Hz) when redshifted
by z < 1.5. On the other hand, a 10M⊙ equal-mass binary
system can only contribute to a signal at frequencies
< 60 Hz if redshifted by z > 6. This implies, in general,
that ΩðfÞ at peak sensitivity ∼45 Hz is larger for higher-
mass binary populations.
Finally, we calculate the Fisher matrix for the 2d

extension to the cross-correlation search with parameters
R0 and zmax,

FCC
R0;zmax

≡
� FCC

R0R0
FCC
R0zmax

FCC
zmaxR0

FCC
zmaxzmax

�
: ð36Þ

Each of the Fisher terms here can be related to the Fisher
matrix in Ωref using the chain rule. The first diagonal
term is

FCC
R0R0

¼ −
�
∂
2 lnp
∂R2

0

	
¼
�
Ωref

R0

�
2X

f

E2ðfÞFCC
Ωf

≡ R−2
0 FCC

logΩref
; ð37Þ

using the fact that

∂Ωf

∂R0

≡Ωref

R0

EðfÞ; ð38Þ

as per Eqs. (3) and (13).
The second diagonal term is similarly derived as

FCC
zmaxzmax

¼ −
�
∂
2 lnp
∂z2max

	
¼
X
f

ðΩ0
fÞ2FCC

Ωf
; ð39Þ

where

Ω0
f ≡

∂Ωf

∂zmax
ð40Þ

is the integrand of Eq. (3) evaluated at zmax.
Finally, the off-diagonal terms are

FCC
R0zmax

¼ FCC
zmaxR0

¼ −
�

∂
2 lnp

∂R0∂zmax

	

¼
�
Ωref

R0

�X
f

EðfÞΩ0
fF

CC
Ωf
: ð41Þ

B. Template-based search

The template-based search likelihood, Eq. (21), depends
on the redshift distribution parameters R0 and zmax explic-
itly through the ξðR0; zmaxÞ parameter, Eq. (8), and

implicitly through the Bayes factors biðzmaxÞ, Eq. (A2),
which depend on prior distributions on source parameters
that in turn rely on zmax. The likelihood is then rewritten as

pTBðfdigjR0; zmaxÞ
¼
Y
i

pðdijN iÞ½ξðR0; zmaxÞbiðzmaxÞþ ð1− ξðR0; zmaxÞÞ�;

ð42Þ

and the Fisher matrix is

FTB
R0;zmax

≡
 

FTB
R0R0

FTB
R0zmax

FTB
zmaxR0

FTB
zmaxzmax

!
: ð43Þ

Starting with the diagonal term in R0 and writing
pTB ≡ pTBðfdigjR0; zmaxÞ, ξ ¼ ξðR0; zmaxÞ, bi ¼ biðzmaxÞ
for conciseness, we find

FTB
R0R0

¼
�
−

∂
2

∂R2
0

lnpTB

	

¼ −
�

∂ξ

∂R0

∂

∂ξ

�
∂ξ

∂R0

∂

∂ξ
lnpTB

�	
: ð44Þ

The brackets signify ensemble averaging over data real-
izations, which we interpret in practice as utilizing all
available data and evaluating the derivatives at the maxi-
mum of the likelihood. Since the first derivative vanishes at
the maximum we get

FTB
R0R0

¼ −
�

∂ξ

∂R0

�
2
�
∂
2 lnpTB

∂ξ2

	
: ð45Þ

Substituting Eq. (42) we obtain

FTB
R0R0

¼ A2
X
i

ðbi − 1Þ2
ð1þ ξðbi − 1ÞÞ2 ; ð46Þ

where

A≡ ∂ξ

∂R0

¼ IðzmaxÞτe−R0IðzmaxÞτ ¼ IðzmaxÞτð1 − ξÞ; ð47Þ

where IðzmaxÞ is defined as in Eq. (5). The Fisher matrix
diagonal term in zmax is

Fzmaxzmax
¼
X
i

ðξ0ðbi − 1ÞÞ2 − 2ξ0b0i þ ðξb0iÞ2
ð1þ ξðbi − 1ÞÞ2 ; ð48Þ

where

b0 ≡ ∂b
∂zmax

; ð49Þ
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ξ0 ¼ ∂ξ

∂zmax
¼ τR0I 0ðzmaxÞð1 − ξÞ: ð50Þ

Finally, the off-diagonal terms are

FR0zmax
¼ FzmaxR0

¼ A
X
i

ξ0ðbi − 1Þ2 − b0i
ð1þ ξðbi − 1ÞÞ2 : ð51Þ

V. SENSITIVITY REACH

We quantify the dependence of the Fisher information on
the merger rate redshift distribution with simulated popula-
tions. We adopt a constant normalized merger rate density
rðzÞ such that the merger rate RðzÞ is uniform in comoving
volume, a local merger rate of R0 ¼ 30 Gpc−3 y−1 [7], and
vary zmax such that

RðzÞ ¼

 R0

1þz
dVc
dz z ≤ zmax

0; z > zmax

: ð52Þ

We consider three distinct populations, made up of equal-
mass, nonspinning black hole binaries with source-frame
masses of 10M⊙, 30M⊙, and 70M⊙, respectively. We
calculate the Fisher information for each population at
varying zmax, over one year of data from a network of two
LIGO detectors at design sensitivity [38].

A. Cross-correlation search

For the cross-correlation search, both the 1d and the 2d
Fisher matrices in Eqs. (28) and (36) can be calculated
analytically. The spectrum ΩGWðfÞ is calculated for each
population and at each zmax using Eq. (3). The emitted

energy spectrum dEs=dfs is a function of source-frame
chirp mass Mc [39],

dEs

dfs
¼ ðGπÞ2=3M5=3

c

3
EðfsÞ; ð53Þ

where the function EðfsÞmay be found, e.g., in [39]. During
the inspiral phase, i.e., for frequencies lower than the merger
frequency, EðfsÞ ≈ f−1=3s , implying ΩGWðfÞ ∝ f2=3s , which
is generally a good approximation to the low-frequency
background spectral shape. To model the background spec-
trum at higher frequencies, we adopt an analytical inspiral-
merger-ringdown approximation for EðfsÞ [39,40].
We start by considering the single-parameter, 1d case.

We compute the Fisher matrix in logΩref of Eq. (35)
varying the cutoff zmax in the computation of Ωref and plot
FCC
logΩref

as a function of zmax in the left panel of Fig. 2. This
plot illustrates how the Fisher matrix (equivalently, the
Fisher information as we are in 1d) increases with zmax as
further distant binaries contribute to the total Ωref . The
information plateaus at varying zmax, depending on the
mass, reach higher values for higher masses as expected.
The zmax at which FCC

logΩref
plateaus is a combination of the

redshift at which the binaries emitting at the most sensitive
frequency merge (Z in Fig. 1) and the redshift at which
binaries no longer appreciably contribute to Ωref . For
example, for zmax ¼ 5, 99% of the background amplitude
is accumulated from binaries within z < 2.9, independently
of mass.
To understand how binaries in each redshift bin con-

tribute to the total information, we consider the case of a
Universe with binaries up to zmax ¼ 5. We calculate the
contribution of a redshift shell ½z; zþ δz� to the background
δΩGWðzÞ ¼ ΩGWðzþ δzÞ − ΩGWðzÞ and plug this into the

FIG. 2. Left: Single-parameter Fisher matrix FCC
logΩref

, Eq. (35), calculated for varying zmax, for each equal-mass binary population
considered. Right: Cumulative sum of the information FCC

log δΩref ðzÞ contributed from binaries in a redshift shell ½z; zþ δz� as a function of
z for a Universe with binaries up to zmax ¼ 5 and for each mass. The dots indicate the redshift at which 99% of information is
accumulated. Both plots indicate that the information saturates at a mass-dependent redshift ∼2.
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information Eq. (35) to obtain the information contribution
of that shell FCC

log δΩrefðzÞ. The right panel of Fig. 2 shows the

cumulative sum of FCC
log δΩrefðzÞ, i.e., the cumulative infor-

mation in logΩref , for each mass. We pinpoint on the plot
the redshift at which 99% of the information has been
accumulated: z99%10M⊙

¼ 2.2, z99%30M⊙
¼ 2.5, z99%70M⊙

¼ 1.5. This
is evidently highly dependent on the mass.
We now turn to the two-parameter, 2d information matrix

shown in Eq. (36) for the R0 and zmax parameters. Similar to
the single-parameter case above, we compute the individual
matrix components for varying zmax andplot them in Fig. 3 as
a function of zmax. The diagonal FCC

R0R0
term has the same

form asFCC
logΩref

, up to anR2
0 rescaling, as seen inEq. (37), and

may be similarly interpreted. The diagonal FCC
zmaxzmax

term,
Eq. (39), monotonically decreases as it is dominated by the
Ω0ðfÞ term summed over frequencies, which decreases as
less and less ΩðfÞ is accumulated at higher redshifts. Stated
differently, information about zmax is provided by binaries
close to zmax, which have lower signal-to-noise ratio (SNR)
as zmax increases. The cross term FCC

R0zmax
, Eq. (41), encodes

correlations between R0 and zmax which decrease as zmax
increases.

B. Template-based search

The information content of the template-based search as
outlined in Eqs. (43), (46), (48), (51) needs to be computed
numerically. In a real search, parameter estimation needs to
be performed on all time segments within a given dataset in
order to marginalize over the 15 parameters of quasicircular
binaries and calculate the Bayes factor bi for each segment
i. To avoid the prohibitive computational cost of such an
analysis, here we consider a simplified toy model where the
only inferred parameter is the distance of the binary, while
all other parameters are known. This simplification will
artificially boost the sensitivity of the search, resulting in
unrealistically high estimates for the total Fisher informa-
tion. However, we adopt this approximation as we are more
interested in the Fisher dependence with redshift than its
absolute value.

We proceed to compute the information matrix numeri-
cally for different zmax values up to zmax ¼ 4 and for equal-
mass populations of binaries with component masses 30M⊙
and 70M⊙.

7 For each zmax wedrawbinaries up to that redshift
and simulate one year of data, which we divide into Nseg ¼
7; 889; 400 segments of length τ ¼ 4 s. In practice, givenR0

and rðzÞ,we calculate the number of expected events during a
year of observation, Nmax

ev ¼ 16; 470, for the largest zmax
simulation. Assuming that there is at most one event per data
segment,Nmax

ev is then the number of segments that contain a
signal for that realization. For eachmass population and zmax,
we generate data by considering the subset of events with
z < zmax, resulting in Nev segments with events. We then
calculate the Bayes factor bi of the search for each segment
assuming a redshift prior of rðzÞwith the appropriate zmax as
detailed in Appendix.
This procedure leaves the vast majority of segments

without signals which still need to be summed over, e.g., in
Eq. (46). To estimate the noise segment contribution, we
employ the BILBY library [41] and simulate Nnoi realiza-
tions of Gaussian noise. For each segment i, we numeri-
cally compute the Bayes factor, bi, and its derivative with
respect to zmax, b0i, with the same prior as the signal
segments, as described in Appendix. To reduce the com-
putational cost, we restrict Nnoi ¼ 78; 800 which are then
reused to obtain the desired number of noise segments
Nseg − Nev. This procedure could potentially cause artifacts
in the noise contribution to the information, but we assume
these will not dominate the total information, as the
information contributed by the noise segments will be
much smaller than that contributed by segments containing
events, and we expect Nnoi to be sufficiently large to
capture the variability in noise-segment Bayes’ factors.
The information matrix terms for each realization are

shown in Fig. 4 as a function of zmax. These terms exhibit
qualitatively similar trends as Fig. 3 for the cross-correlation
search, albeit with some numerical noise. The FTB

R0R0
term

FIG. 3. Fisher matrix terms for the two-parameter, 2d version of the cross-correlation search for R0; zmax for different equal-mass
populations. We consider Universes with varying zmax and plot the Fisher terms as a function of zmax.

7We omit the lowest mass, 10M⊙, as preliminary calculations
were dominated by numerical noise.
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increases monotonically to a mass-dependent plateau, as the
information on the local merger rate is concentrated at lower
redshifts. The plateau value varies with mass as higher mass
binaries may be detected further away. The FTB

R0zmax
and

FTB
zmaxzmax

terms peak at different 0 < zmax < 1.5 redshifts,
depending on the interplay between the Bayes factor (dras-
tically higher at lower redshifts) and the number of events per
redshift shell.
We then restrict to the zmax ¼ 4 realization and calculate

the cumulative contribution of events to the Fisher terms as
a function of redshift. This is similar to the right panel of
Fig. 2 for the cross-correlation search, only here we
consider all Fisher terms. Moreover, since the template-
based Fisher terms are already expressed as a sum over
events, we simply restrict the sums to segments with events
in that redshift bin. Results are shown in Fig. 5. The three
FTB terms plateau in redshift according to the mass. We
consider the redshift value up to which 99% of each term
has been accumulated (indicated with a dotted line in
Fig. 5): z99%30M⊙

¼ 1.2, z99%70M⊙
¼ 1.6. These are the same for

the three terms. Vertical solid lines denote the “resolvabil-
ity” cutoff, i.e., the redshift at which the average

two-detector SNR is 8: zres30M⊙
¼ 1.0 and zres70M⊙

¼ 1.4.
The resolvability cutoffs are close to the redshifts at which
the terms plateau, with < 5% of the contribution coming
between zres and z99%. For reference, the maximum redshift
at which binaries with these masses can be observed at the
chosen sensitivity are zmax

30M⊙
¼ 2.0 and zmax

70M⊙
¼ 2.4.

C. Comparison and discussion

We now compare the information content and sensitivity
reach of the template-based and cross-correlation searches.
Given the simplifications made to the calculation of the
template-based Bayes’ factors, a direct comparison of the
total information accumulated by the two searches is not
meaningful; in reality, the template-based search as formu-
lated in [28,30] would require sampling and marginalizing
over many more waveform and population parameters,
which would impact the recovered information. Instead,
we focus on comparisons of the redshift dependence of the
information and specifically the relative contribution of
different redshifts in the cases of single-parameter and
two-parameter searches.

FIG. 4. Similar to Fig. 3 but for the template-based search. Dots indicate the zmax values used for the numerical realizations, and lines
correspond to interpolation. Ringing in the curves at zmax < 1 is due to the low number of events at these redshifts. The Fisher terms
display qualitatively similar trends as the equivalent results for the cross-correlation search in Fig. 3.

FIG. 5. Similar to the right panel of Fig. 2 but for the template-based search and all terms of the 2d Fisher. Here we consider the
zmax ¼ 4 case. Dots again indicate the redshift up to which 99% of each term has been accumulated. Vertical solid lines indicate the
redshift zres at which events have on average SNR ¼ 8, for each mass. The plateau in each Fisher term occurs slightly beyond this SNR
threshold. Arrow markers indicate the redshift of the maximum SNR horizon cutoff for each mass considered.

RENZINI, CALLISTER, CHATZIIOANNOU, and FARR PHYS. REV. D 110, 023014 (2024)

023014-12



Starting with the single-parameter case, we consider the
current formulation of the template-based search that
assumes a known rate distribution [28,30]. We select
logΩref as the common parameter to compare searches
with. For the cross-correlation search, the relevant infor-
mation is given in Eq. (35) (expressed as the Fisher term,
which is identical to the information in 1d). For the
template-based search, we need to convert Eq. (46) from
R0 to logΩref . Equations (3) and (13) imply that R0 andΩref
differ solely by a constant,

∂R0

∂Ωref
≡ R0

Ωref
: ð54Þ

It is then straightforward to calculate the information in
logΩref from the information in R0,

FTB
logΩref

¼ FTB
logR0

¼ R2
0F

TB
R0R0

; ð55Þ

where FTB
R0R0

is given in Eq. (46). The top panels of Fig. 6
show FTB

logΩref
and FCC

logΩref
as a function of zmax (top) and

their derivatives with respect to zmax (bottom).8

Starting with the top left panel, the template-based search
information in logΩref reaches Oð102Þ larger values than
the cross-correlation one at all redshifts. This result is
qualitatively expected as a phase-coherent search is more
sensitive than a power-based one especially when loud,
resolved signals are concerned. However, the quantitative
result is subject to the caveat about the simplicity of our
template-based search implementation. More interesting,
on the other hand, is the dependence with zmax, as
information in both searches saturates at zmax ∼ 1–2.
Increasing zmax means adding binaries at high redshift.
Once the information saturates, adding more binaries at

FIG. 6. Top left: FCC
logΩref

and FTB
logΩref

for the cross-correlation and template-based searches, respectively, as a function of the maximum
redshift the population extends to, zmax, and different masses. Though the absolute value of the information is not comparable between
searches, they both show a similar trend with zmax, plateauing at some mass-dependent value for zmax ∼ 1–2. Bottom left: derivatives of
FCC
logΩref

and FTB
logΩref

with respect to zmax, F0
logΩref

. Dotted lines in the left column plots report the SNR ¼ 8 resolvability cutoffs discussed
in the text. Right column: similar to the left panels but for the determinant of the 2d Fisher matrix in the case of the two-parameter search
for R0 and zmax. In the latter plot, all curves have been multiplied by a constant C ¼ 10−159 for visualization purposes. The values of zmax
at which derivatives change sign for the Fisher matrix determinants of the two searches are marked on the x axis, and are shown in gray
solid (dashed) lines for the template-based (cross-correlation) search results in the top panel.

8To avoid taking the numerical derivative of the noisy FTB
R0R0

term shown in Fig. 4, we fit it with an error function and take the
derivative of the latter.

BACKGROUND INFORMATION: A STUDY ON THE … PHYS. REV. D 110, 023014 (2024)

023014-13



higher redshifts does not contribute information about the
total energy density. In other words, the gravitational-wave
energy density is primarily informed from binaries at
redshift ≲1–2.
The bottom left panel of Fig. 6 further demonstrates

this point through the derivative of the information with
respect to zmax. In the template-based case, the derivative
is larger at low redshifts ≲1 before sharply turning over.
In the cross-correlation case, the derivative exhibits a
slighter decline with zmax. This suggests that in the
template-based search, local binaries contribute relatively
more information than distant ones. For reference, ver-
tical dotted lines again show the resolvability cutoff,
where the average signal SNR is 8. In both searches, the
information trend is mass-dependent. As zmax increases,
sources are redshifted to higher masses and lower
frequencies. More massive sources are potentially red-
shifted out of the LIGO frequency band, while light
sources are redshifted into the most sensitive band region.
The stark difference in the mass-dependent trends
between the searches is due to their different frequency
sensitivity: the cross-correlation search includes an over-
lap reduction function that pushes the sensitivity to lower
frequencies, while the template-based search is most
sensitive to the central part of the LIGO sensitivity band
∼102 Hz [42].
Finally, we examine the two-parameter searches in the

right panel of Fig. 6 by plotting the determinant of the 2d
Fisher matrix from Eqs. (36) and (43) (top) and its
derivative (bottom). Adding zmax as a parameter allows
us to probe directly the ability of each search to infer the
high-redshift population properties. As in the 1d case,
the amplitude of the information is much higher for the
template-based search across all zmax values; this con-
clusion is subject to the usual caveats about our simplified
analysis. More importantly, the derivatives (bottom
right panel) in all cases peak at varying redshifts before
sharply declining and becoming negative. For the
cross-correlation search the derivatives start declining at
ẑCC10M⊙

¼ 1.6, ẑCC30M⊙
¼ 1.2, ẑCC70M⊙

¼ 0.8, while the same

numbers for the template-based search are ẑTB30M⊙
¼ 0.4,

ẑTB70M⊙
¼ 0.7. The fact that the derivatives decline at a

higher redshift again suggests that higher-redshift events
have a larger impact relative to low-redshift events for the
cross-correlation than the template-based search.
Returning to the fact that the derivatives become negative

after their initial peak, the template-based search results in a
larger decline of the total information as zmax increases, i.e.,
more negative derivatives. Assuming that information
about R0 is almost entirely coming from redshift ≲1–2
sources, e.g., top panel of Fig. 6, the decline in information
comes from the fact that as zmax increases, it becomes less
well measured.

VI. CONCLUSIONS

In this paper, we compared the information content of
two searches for the gravitational-wave background from
the binary black holes: the cross-correlation and template-
based searches. The two searches employ different method-
ologies as well as astrophysical assumptions about the
black hole population. As a consequence, they result in
considerably different and thus complementary sensitivities
to the binary black hole population, in terms of both mass
and redshift distribution. Specifically, the template-based
search collects most of its information from binaries at
lower redshift than the cross-correlation one. In other
words, detection of the stochastic background with the
former probes binaries at lower redshifts than detection
with the latter. Though the exact numerical results pre-
sented in Sec. V depend on our specific simulated pop-
ulation, we expect this qualitative trend to be robust for
most black hole masses measured to date. However, for
larger masses, where the signal is shorter in band and peaks
at lower frequencies, this may no longer hold. Ideally, a
detection with both searches would allow us to complement
and expand our knowledge of the binary population as a
function of both redshift and mass.
We further clarified the astrophysical assumptions of

each search and how these affect their sensitivity. At their
simplest form, the template-based search targets the event
rate while the cross-correlation search is formulated
directly through the gravitational-wave energy density.
While the latter can be directly measured, the former
requires assumptions about the astrophysical distribution
of black holes in the form of the priors that enter its Bayes
factor calculation. Extensions of the template-based search
to simultaneously infer the redshift distribution with the
event rate (as was done with the mass and spin distribution
[30]) would likely reduce its sensitivity, but we argue that
they are essential. Assuming a known redshift distribution
when detecting the stochastic background mixes informa-
tion between low-redshift, resolvable events and high-
redshift, unresolvable ones. To quantify this effect, we
considered the case of fixed equal-mass binaries and
compared the redshift cutoff at which the binaries have
SNR ¼ 8 on average with the redshift where the Fisher
information saturates (see Fig. 5 and related discussion).
We found the two to be very close, and significantly smaller
than the maximum redshift at which the same binaries may
be observed; less than 6% of the information is accumu-
lated beyond the average resolvability cutoff.
In addition to the two search methods discussed in this

paper, a hybrid search method [43] targets the excess cross-
correlated power assuming the intermittent Gaussian mix-
ture model of Eq. (20). A similar information analysis
dedicated to this novel search will be necessary to assess a
detection. As this intermittent cross-correlated search relies
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on the combination of cross-correlated data in a mixture-
model likelihood, we expect its capabilities and sensitivity
to lie somewhere in between the cross-correlation and
template-based searches described here.
O4 and future O5 data bring us closer to the detection of

an astrophysical stochastic background. At the same time,
searches for this background employ vastly different
methodologies and assumptions. As these searches adapt
their formulation, it remains essential to study the sensi-
tivity reach of whichever search claims detection.
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APPENDIX: BAYES FACTOR CALCULATION
FOR THE TEMPLATE-BASED SEARCH

The template-based search Fisher calculation requires
Bayes factors bi and their derivatives b0i with respect to zmax
for each segment i. The data are given by the sum of the
signal strain hi plus a Gaussian noise realization ni,

diðfÞ ¼ hiðfÞ þ niðfÞ: ðA1Þ

In the case of noise-only segments, where no signal is
injected, hi ≡ 0. For segments with a signal, the strains hi
are obtained by simulating IMRPHENOMD [49] waveforms
in a LIGO interferometer using the BILBY package [41]
injection routine, assuming Gaussian noise with design
sensitivity [42]. The distances used for the injections are
drawn from the normalized distance merger rate distribu-
tion pðzÞ shown in Eqs. (6) and (52) with a zmax ¼ 4. All
other binary parameters remain fixed: we assume zero-spin,
face-on binaries at 0° right ascension, 0° declination. These
correspond to the best configuration which maximizes the
binary SNR; to account for the average binary inclination
and sky position, we rescale the strain by an angle-average
factor of 2.2648 [50,51].
To calculate bi, we take the same (uniform-in-comoving-

volume) distance distribution pðzÞ used to simulate the

binary black hole population as our distance prior. We
construct a single-parameter model in redshift z for the
signal, which we will marginalize over, and generate a set
of frequency-domain templates hðf; zÞ for varying z.
Planck15 cosmology [52] is assumed to relate redshift
and luminosity distance, where necessary. All other param-
eters in the templates are fixed to match the injections
detailed above. We generate three template sets, one for
each fixed source-frame binary mass: 10, 30, and 70M⊙.
The Bayes factor for data segment i [53]

biðzmaxÞ ¼
R zmax
0 dzpðzÞpðdijz; SÞR zmax
0 dzpðzÞpðdijNÞ ; ðA2Þ

here pðdijz; SÞ and pðdijNÞ are the signal and noise
likelihood, respectively, which are defined as

pðdijz; SÞ ∼ e−
1
2
ðdi−hðzÞjdi−hðzÞÞ;

pðdijNÞ ∼ e−
1
2
ðdijdiÞ; ðA3Þ

where the brackets ðjÞ denote the sensitivity-weighted inner
product

ðajbÞ ¼ 4Re

�Z
∞

0

df
aðfÞ · b⋆ðfÞ

PðfÞ
�
; ðA4Þ

where PðfÞ is the one-sided detector power spectral
density. Expanding out the inner products, simplifying
terms, and setting the normalization of pðzÞ to 1, this
reduces to

biðzmaxÞ ¼
Z

zmax

0

dzpðzÞe−1
2
ðhðf;zÞjhðf;zÞÞþðdiðfÞjhðf;zÞÞ: ðA5Þ

The derivative of the Bayes factor with respect to zmax is the
integrand of Eq. (A5) evaluated at zmax,

b0iðzmaxÞ¼pðzmaxÞ
× ðe−1

2
ðhðf;zÞjhðf;zÞÞjzmaxþðhðf;zÞjdiðfÞÞjzmax −biðzmaxÞÞ:

ðA6Þ

To account for the use of two detectors, we substitute di
above with a 2d data vector with identical entries,
di ¼ ðdi; diÞ, assuming we have two identical coaligned
and colocated detectors. To further simplify our calculation,
we use two limits to calculate Bayes factors for signal and
noise segments, respectively. In the presence of a signal, we
assume this dominates the likelihood calculation such that
the two-detector Bayes factor reduces to

b2- deti ðzmaxÞ ≈
Z

zmax

0

dzpðzÞe−ðhðf;zÞjhðf;zÞÞþ2ðhiðfÞjhðf;zÞÞ

¼ e2biðzmaxÞ: ðA7Þ
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This approximation leads to optimistic estimates of signal vs noise Bayes factors. Conversely, in the presence of noise the
two-detector Bayes factor is

b2- deti ðzmaxÞ ¼
Z

zmax

0

dzpðzÞe−ðhðf;zÞjhðf;zÞÞeðn1;iðfÞþn2;iðfÞjhðf;zÞÞ

¼
Z

zmax

0

dzpðzÞe−ðhðf;zÞjhðf;zÞÞþ
ffiffi
2

p ðniðfÞjhðf;zÞÞÞ; ðA8Þ

where in the final equality we assume the two noise realizations are drawn from the same distribution. In practice, we draw n1
and n2 individually as this is more convenient in our code implementation.
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