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We present a comprehensive study of compact stars admixed with nonself-annihilating self-interacting
fermionic dark matter, delineating the dependence on the nuclear equation of state by considering the two
limiting parametrized equations of state for neutron star matter obtained by smoothly matching the
low-density chiral effective theory and the high-density perturbative QCD. These two parametrizations are
the limiting cases of a wide variety of smooth equations of state, i.e., the softest and stiffest possible one
without a phase transition, that generate masses and radii compatible with 2M⊙ observations and the tidal
constraint from GW170817. With an exhaustive analysis of the possible stable mass-radius configurations,
we determine the quantity of dark matter contained in stars with masses and radii compatible with the
aforementioned astrophysical constraints. We find that for dark particle masses of a few tenths of GeV, the
dark core collapses and no stable solutions are found for the two limiting ordinary matter equations of state.
For lower masses, the dark matter fraction is limited to 10%, being at most 1% for masses ranging from
0.1 GeV to 10 GeV for the limiting soft nuclear equation of state. For the limiting stiff nuclear equation of
state, the dark matter fraction can reach values of more than 10%, but the dark particle mass is being
constrained to 0.3 GeV and 10 GeV for the weak self-interacting case and has to be at least 5 GeV for the
strong self-interacting one. For dark particle masses of less than 0.1 GeV, stable neutron star configurations
should have less than 1% of self-interacting dark matter to be compatible with the constraint of the tidal
deformability from GW170817 for the two limiting ordinary matter equations of state studied.

DOI: 10.1103/PhysRevD.110.023013

I. INTRODUCTION

According to astrophysical and cosmological observa-
tions, [1–3], most of the mass present in our Universe
would appear as dark matter (DM). DM is a hypothetical
form of matter that does not absorb or reflect light, whose
detection and nature are still evasive. Several methods have
been developed to find signatures of DM, such as the direct
methods involving particle accelerators [4,5] or direct
searches based on the DM scattering off nuclear targets
in detectors [6]. Also, it has been postulated the possibility
of detecting DM and extracting information on their
properties by means of analyzing its effect on compact
stars, such as neutron stars.

Neutron stars are one of the most compact objects in our
Universe, whose masses can exceed 2M⊙ [7–10] and with
radii around 11–15 km (see latest results from the NICER
Collaboration [11–14]). Among the different indirect sear-
ches of DM in neutron stars, the authors of Refs. [15–21]
have studied the gravitational collapse of a neutron star due to
DM accretion so as to set bounds on the DM properties.
Moreover, in Ref. [22] the accretion of DM in Sun-like
or supermassive stars and the subsequent collapse into a
neutron star or a white dwarf has been analyzed. Also, there
have been studies about the modification of the cooling
pattern of compact stars due to the presence of DM, which
will finally self-annihilate [23–29], andworks on the changes
in the kinematical properties of neutron stars due to the
accretion of self-annihilating DM [30].
Neutron stars that accummulate DM have also emerged

as interesting scenarios to analyze the effects of DM onto
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hadronic (or quark) matter [27,31–74]. In these works the
masses and radii of these compact stellar objects (as well as,
in some cases, dynamical processes, such as cooling) have
been thoroughly studied assuming fermionic or bosonic
DM that interacts gravitationally with ordinary neutron star
matter (OM) or, in certain studies, through the weak force.
In this context, in Ref. [41] some of us have proposed the
possible existence of compact stars that contain DM with
Earth or Jupiter-like masses but unusual radii, the so-called
dark compact planets.
Moreover, since the GW170817 gravitational-wave

event of a binary neutron-star system [75–77], the possible
signature of DM in mergers have been also addressed,
specially in the postmerger phase [78–81]. As for the
inspiral phase, the GW signal could be modified due
the changes in the structure of neutron stars induced by
the presence of DM. Indeed, several studies have been
performed on the modifications of the second Love
number, and hence, tidal deformability due to the possible
existence of DM [44,45,49,50,52,61,62,65,67,68,73,74]. In
particular, in a previous work (Ref. [50]) it was found that
the second Love numbers for neutron stars admixed with
DM are markedly different compared to those expected for
neutron stars without DM.
In the present paper we perform an exhaustive study of

the properties of compact stars admixed with nonself-
annihilating self-interacting DM. To this end, we make use
of two different equation of state (EOS) parametrizations
for OM [82] that fulfil the well-known limits at low and
large nuclear densities while giving rise to masses and radii
that span the possible mass-radius region compatible with
2M⊙ observations and the GW170817 constraint on the
tidal deformability, thus, being the limiting cases of a wide
variety of EOS that fall between these two extreme cases.
We first perform an extensive study of possible stable mass-
radius configurations, obtaining solutions away from the
typical values for neutron stars. We then find out the
quantity of DM contained in stars with masses and radii
compatible with the aforementioned astrophysical con-
straints in terms of the mass of the DM particle and the
strength of DM self-interaction.
This work goes beyond our previous studies of

Refs. [41,50] in two ways. On the one hand, our results
are obtained using two EOS parametrizations that represent
a wide variety of EOSs, going beyond the use of a specific
model. On the other hand, we analyze the stability of mass-
radius configurations following the recent procedure
described in Ref. [58], that considers the changes in
stability that OM might induce on DM, and vice versa,
hence outdoing our previous naive study based on the
separate stability analysis of DM and OM. In this manner,
our results are independent on the model used for OM and
grounded on a formal generalisation of the stability
criterion for compact stars made of OM admixed with DM.
Moreover, we should compare our investigation with the

recent studies of Refs. [49,67,73,74]. Whether the present

and former works aim at determining the accumulated DM
fraction compatible with astrophysical observations, some
important differences can be drawn among the different
works. The conclusions of Refs. [49,73,74] are based
on a individual model, either fermionic or bosonic DM,
whereas the outcome of Ref. [67] and of our present
analysis are grounded on two limiting EOS parametriza-
tions that enclose a wide variety of EOSs. Also, the authors
of Refs. [49,67] only consider mass-radius configurations
close to the neutron-star solutions, and no stability analysis
for the different configurations has been performed in any
of Refs. [49,67,73,74], thus in stark contrast with our
present work where an exhaustive stability analysis is
carried out for mass-radius configurations close and beyond
typical mass-radius for neutron stars. Note that a detailed
comparison among the different studies will be also
presented when discussing our results.
The paper is organized as follows. In Sec. II we introduce

the Tolman-Oppenheimer-Volkov (TOV) for two fluids
and the stability criterion for the different mass-radius
configuration. In Sec. III we show the results for the
masses, radii and tidal deformabilities for the different
stable configurations and we determine the quantity of DM
that can be accumulated on compact stars depending on the
DM mass particle and the DM self-interacting strength.
Finally, in Sec. IV we present our conclusions and outlook.

II. FORMALISM

A. TOV equations for two fluids

In this work we investigate compact objects that are
made of OM admixed with nonself-annihilating self-
interacting DM. These types of matter are represented
by two fluids that only interact gravitationally. We will
follow the work of Ref. [34], where the TOV equations for
two fluids are determined. As done in Refs. [41,50], we use
the modified dimensionless TOV equations to obtain the
masses and radii,

dp0
OM

dr
¼−ðp0

OMþ ϵ0OMÞ
dν
dr

;

dmOM

dr
¼ 4πr2ϵ0OM;

dp0
DM

dr
¼−ðp0

DMþ ϵ0DMÞ
dν
dr

;

dmDM

dr
¼ 4πr2ϵ0DM;

dν
dr

¼ðmOMþmDMÞþ4πr3ðp0
OMþp0

DMÞ
rðr−2ðmOMþmDMÞ

; ð1Þ

where p0
i and ϵ0i are the dimensionless pressure and energy

density for each species (i ¼ fOM;DMg), defined as
p0
i ¼ pi=m4

f and ϵ0i ¼ ϵi=m4
f, where we have chosen the

fermionic DM particle (mf) as the common rescaling.
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In this manner we can solve the TOV equations and obtain
the physical mass Mi and radius Ri for each species after
being rescaled byMi ¼ ðM3

p=m2
fÞmi and Ri ¼ ðMp=m2

fÞri,
where Mp is the Planck mass [83].
As mentioned in the Introduction, the aim of this paper is

to further analyze the impact of DM on the mass, radius and
tidal deformability of compact objects made of OM and
DM, starting from a controlled model for OM.
Thus, we consider two different EOSs for OM that result

from the causal and smooth polytropic interpolation
between the low-density chiral effective theory and the
high-density perturbative QCD, and give rise to masses
and radii that are at the borderlines for the possible mass-
radius region compatible with 2M⊙ [82]; hence, being
representative of a wide variety of smooth EOSs that fall
between these two limiting cases. In Ref. [82] three
representative EOS parametrizations were obtained by
an interpolating polytrope built from two “monotropes”
of the form pðnÞ ¼ κnΓ matched in a smooth way, without
considering any phase transition. The addition of a third
polytropic segment (or more) would result in an increase of
the region of allowed EOSs, although small in comparison
with other uncertainties of the calculation. Taking into
account a possible first-order phase transition would lead
to an enlarged mass-radius region. As a conservative
approach we do not consider this possibility. We choose
their EOSI and EOSII as they generate values of the tidal
deformability close to the constraint coming from the
GW170817 event [76]. These EOSs are shown in Fig. 1.
We moreover map these two EOSs to the EOSs for the
inner crust [84] and the outer region [85], whereas for very
low densities (ρ < 3.3 × 103 g=cm3) we use the Harrison-
Wheeler EOS [86].
As for DM, we model it using one of the simplest

model assumption, that is, as a nonself-annihilating

self-interacting Fermi gas where the dimensionless energy
density and pressure are given by [83]

ϵ0DM ¼ 1

8π2
½ð2z3 þ zÞð1þ z2Þ12 − sinh−1ðzÞ�

þ
�

1

3π2

�
2

y2z6; ð2Þ

p0
DM ¼ 1

24π2
½ð2z3 − 3zÞð1þ z2Þ12 þ 3sinh−1ðzÞ�

þ
�

1

3π2

�
2

y2z6; ð3Þ

where z is the dimensionless Fermi momentum and
y ¼ mf=mI is defined as the ratio between the DM
particle mass (mf) and the interaction mass scale (mI).
Whereas for strong interactions mI ∼ 100 MeV (the QCD
scale, exchange of vector mesons), for weak interactions
mI ∼ 300 GeV (electroweak scale, exchange of W and Z
bosons). In Fig. 2 we show six representative dimensionful
DM EOSs for DM particle masses of 0.1 GeV and 1 GeV,
and three different strength parameters (yint ¼ 0.1; 1; 103).
We will consider these different values throughout the text,
hence moving fromweakly to strongly self-interacting DM.
In order to investigate compact objects made of OM

admixed with DM, it is essential to carry out an analysis of
the stable configurations. The computation of stable con-
figurations for a single fluid can be found in Ref. [87],
where the stability for the different radial modes is
analyzed. For the study of a multifluid system we follow
the procedure of Ref. [58], which we briefly explain here.
First we need to compute the number of particles of each

species, that in dimensionless units is obtained from

FIG. 1. EOSI and EOSII used for the high-density matter in the
neutron star core [82].

FIG. 2. EOSs for fermionic self-interacting DM. Two different
particle masses (mf ¼ 0.1 GeV and mf ¼ 1 GeV) and three
different strength parameters (yint ¼ 0.1; 10; 103) are used.
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dN0
i

dr
¼ 4π

n0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ðmOM þmDMÞ=r

p r2; ð4Þ

where n0i ¼ ni=m3
f with i ¼ fOM;DMg is the dimension-

less number density for each species and N0
i is the

dimensionless number of particles of the different fluids.
We obtain the number of particles for each species by
rescaling them as Ni ¼ N0

i ·M
3
p=m3

f, with Mp the Planck
mass (see Ref. [83]). These equations are coupled to the
TOVs of Eqs. (1) and have to be solved simultaneously.
As explained in Ref. [58], one has to consider small

radial perturbations of the equilibrium configuration by
solving the Sturm-Liouville problem, whose solutions are
determined by frequency eigenvalues. These eigenvalues
follow a hierarchy. For a single fluid, when the first
eigenvalue is ω2

0 < 0, the radial perturbation leads to an
exponential growth, causing the instability. Therefore, the
onset of instability corresponds to the point where ω2

0

becomes negative. At this point, small perturbations of the
central energy density leave the number of particles
unchanged. For a two-fluid configuration, the number of
particles for OM and DM remains stationary under varia-
tions of each of the central densities ϵci ,

�
δNOM

δNDM

�
¼
�
∂NOM=∂ϵcOM ∂NOM=∂ϵcDM
∂NDM=∂ϵcOM ∂NDM=∂ϵcDM

��
δϵcOM
δϵcDM

�
¼ 0:

ð5Þ

For a single fluid, Eq. (5) leads to the solution ∂N=∂ϵc ¼ 0,
which is equivalent to the criterion used for a single fluid,
∂M=∂pc ¼ 0 [87,88].
For a two-fluid configuration, the matrix in Eq. (5) can

be diagonalized obtaining two independent sets of varia-
bles, (ϵcA; NA) and (ϵcB; NB), with eigenvalues κA and κB.
Stable configurations can only happen when both eigen-
values, κA and κB, are positive [58]. This generalizes the
stability criterion for one fluid to two fluids. Note that in
our previous works [41,50] a naive stability study was
carried out based on a separate stability analysis of DM and
OM. However, this analysis did not take into account the
changes that one fluid could induce in the other, as
discussed in Ref. [58].
Also, we should comment that for a single fluid the

mass-radius relation is a curve and stable regions are
separated by points, whereas for two fluids, the mass-
radius relation can form one or more areas, and the stable
region(s) are delimited by a set of limiting (or critical) lines.
This is due to the fact that the matrix of Eq. (5) must have
zero determinant so as nontrivial solutions exist, thus,
leading to one condition for two independent variables ϵcOM
and ϵcDM.
This analysis is equivalent to the one presented in

Refs. [68,89–91], where the stability curves are obtained
by computing the contour lines for the total mass and the

number of particles in each of the two-fluid system. The
limiting curves for the stable region(s) are determined by
finding the extrema of the total mass following contour
lines for fixed particle numbers.

B. Tidal deformability

The tidal deformability λ is a physical quantity that
measures the induced quadrupole moment, Qij, of a star
due to the tidal field of the companion, Eij [92,93] as

Qij ¼ −λEij: ð6Þ

It is connected to the dimensionless second Love number
k2 [93,94] as

λ ¼ 2

3
k2R5; ð7Þ

where R is the radius of the star. The quantity k2 can be
calculated from

k2 ¼
8C5

5
ð1 − 2CÞ2½2þ 2CðyR − 1Þ − yR�

× f2C½6 − 3yR þ 3Cð5yR − 8Þ�
þ 4C3½13 − 11yR þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ�
þ 3ð1 − 2CÞ2½2 − yR þ 2CðyR − 1Þ� lnð1 − 2CÞg−1;

ð8Þ

where C is the compactness. The compactness, after
rescaling, is defined as C ¼ MT=R, with MT ¼ MOM þ
MDM and R ¼ maxðROM; RDMÞ. We can calculate yR ¼
yðRÞ by solving, together with the TOV of Eqs. (1), the
following equations

r
dyðrÞ
dr

þ y2ðrÞ þ yðrÞFðrÞ þ r2QðrÞ ¼ 0; ð9Þ

with

FðrÞ ¼ r − 4πr3
�ðϵ0OM þ ϵ0DMÞ − ðp0

OM þ p0
DMÞ

�
r − 2ðmOM þmDMÞ

; ð10Þ

QðrÞ¼ 4πr
r−2ðmOMþmDMÞ
× ½5ðϵ0OMþ ϵ0DMÞþ9ðp0

OMþp0
DMÞ

þ ϵ0OMþp0
OM

c2s;OM
þ ϵ0DMþp0

DM

c2s;DM
−

6

4πr2

�

−4

�ðmOMþmDMÞþ4πr3ðp0
OMþp0

DMÞ
r2ð1− 2ðmOMþmDMÞ

r Þ

�
2

; ð11Þ

where cs;iðrÞ2 ¼ dp0
i=dϵ

0
i is the squared speed of sound for

i ¼ OM;DM and the initial condition for y is given by
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yðr ¼ 0Þ ¼ 2 [93,94]. With the second Love number
we can finally compute the dimensionless tidal deform-
ability by

Λ ¼ 2k2
3C5

: ð12Þ

III. RESULTS

In this ection we present our results for the masses, radii
and tidal deformabilities for compact stars that contain DM.
We start by showing in Fig. 3 our stability analysis of the
compact stellar objects admixed with DM and the mass-
radius of the stable configurations. We fix the interaction
strength parameter to yint ¼ 0.1 and take EOSI from
Ref. [82], while considering different DM particle masses.
We note that an analogous analysis can be performed for
other interaction strength parameters and the EOSII para-
metrization of Ref. [82].
In the left plots of Fig. 3 we show contour plots for total

massMT as a function of the OM and DM central pressures
for the different DM particle masses. Note that the central
DM pressures are normalized to the DM particle mass. The
shaded areas correspond to the unstable regions, according
to the criterion discussed in Sec. II. The red lines represent
the contour lines for MT ¼ 2M⊙, whereas the thin black
solid lines depict the contour lines for different DM
fractions. In the right plots of Fig. 3, the mass-radius
configurations for the different DM particle masses are
plotted for only the stable cases, with the coloring indicat-
ing the amount of DM.
We start by analyzing the top plots of Fig. 3, where a low

mass for the DM particle is considered (mf ¼ 0.1 GeV). In
the top-left plot we observe a critical vertical line for
pc
OM ≈ 580 MeV=fm3. This pressure corresponds to the

critical pressure for a single fluid made of OM. As
discussed in Ref. [91], when one of the central pressures
is much larger compared to the other one, the fluid with the
largest central pressure dominates, and the configuration
behaves as a single fluid. This is indeed our case here since
the central pressures for DM are much smaller than the ones
for OM in the region nearby this vertical line. The stable
mass-radius configurations located to the left of this vertical
line are plotted in the top-right plot of Fig. 3, colored
according the DM content. As expected, the solutions close
to the vertical line correspond to the solutions with masses
up to 2M⊙ and radii around 10 km, since these mass-radius
configurations contain small DM fractions. When we move
further left to this critical line in the (pc

OM; p
c
DM) plane, the

DM content increases and new solutions appeared with
larger masses and radii. As discussed in Ref. [83], the total
mass of a single fermionic star increases as the particle
mass decreases (M ∝ m−2

f ). Therefore, for low DM particle
masses and a significant DM content we can have con-
figurations with masses up to 60M⊙, where a compact star

made of OM is surrounded by a massive DM halo. We find
that the larger the DM amount becomes, the larger the
maximum masses are found to be.
As for the middle plots of Fig. 3, we start with the

analysis of the middle-left plot, where we display the stable
and unstable configurations for mf ¼ 1 GeV. As discussed
previously, for low values of pc

OM or pc
DM, the system

behaves as one single fluid. In the middle-right plot, we
show again the stable mass-radius solutions colored
according to the amount of DM, while depicting the
mass-radius relations with solid blue lines for certain
DM fractions. It is interesting to note that, for a mass of
around 1 GeV, the increase of the DM fraction leads to a
decrease in the maximum mass, as well as the reduction of
the OM radii, in contrast to the case for masses below
1 GeV. This outcome was already found in Ref. [47] and
will be discussed in more detail in Fig. 4, where we analyze
the dependence of the total mass with the DM content.
In the bottom panels of Fig. 3, the configurations with

mf ¼ 10 GeV are presented. Note that two stable regions
are seen below the critical horizontal line separated by
diagonal lines in the (pc

OM; p
c
DM) plane. The one for low

pc
OM corresponds to stable solutions where the OM pres-

sures are close to those found in white dwarfs, regardless
whether the stable region at large pc

OM contains configu-
rations close to the neutron star solutions. The horizontal
line is located at pc

DM ≈ 300 · ðmf=1 GeVÞ4 MeV=fm3.
Hence, for the case of mf ¼ 10 GeV, matter behaves as
a DM fluid in the region near this critical line. Indeed, the
stable mass-radius configurations below but close to this
horizontal line in the stable region for low pc

OM correspond
to solutions for large DM fractions with masses around
10−2M⊙, as seen in the bottom-right plot of Fig. 3. The
scattered points should be seen as an area of stable
solutions. These are compatible with the dark compact
planets described in Refs. [41,47,50]. As we move away
from the horizontal critical line to lower values of pc

DM
while increasing pc

OM, thus entering the stable region for
large pc

OM, the DM content is reduced and we recover the
typical mass-radius configurations for neutron stars. We
find that there is a maximum for the amount of DM that can
be accumulated in a compact star. The stable configurations
with masses and radii similar to those of a neutron star
contain very small DM cores, and increasing the amount of
DM would make them unstable, as the DM core would
collapse, as we will discuss in the next figure.
Once the stability of the mass-radius configurations with

DM has been performed, we can now determine how the
properties (mass, radius and tidal deformability) of the stable
compact configurations change as we increase the amount of
DM. First, we analyze how the maximum total mass (Mmax)
for values close to the 2M⊙ varies with increasing DM
content (100 ·MDM=MT), as shown in Fig. 4 for the three
different DM particle masses (mf ¼ 0.1, 1, 10 GeV) and
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FIG. 3. Configurations of DM admixed with OM obtained for different DM particle masses at a fixed strength parameter of yint ¼ 0.1
and using EOSI. (Left plots) The total mass MT is shown as a function of the central pressures pc

OM and pc
DM for different DM particle

masses (different rows). The black lines represent the critical curves, and the unstable regions are shaded. The red line indicates the
contour line for MT ¼ 2M⊙. Some contour lines for different amounts of DM are also plotted in thin black solid lines. (Right plots)
The mass-radius relation for the stable configurations (total mass as a function of OM radius) is shown. The different colored lines in the
middle right plot indicate the mass-radius configurations with different fixed amount of DM (100 ·MDM=MT).
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interaction strength yint ¼ 0.1. The calculations are per-
formed with EOSI [82]. For a given DM particle mass, the
values for Mmax are obtained from the corresponding left
panel in Fig. 3 by following the critical curves, as these
limiting lines contain the information on the different
extrema of the total mass, and in particular for values close
to 2M⊙. The DM fraction for a givenMmax is determined by
the crossing between the critical curve and a given contour
line for the DM content.
As seen in Fig. 4, there are three different behaviors for

Mmax as a function of the amount of DM, depending on
the DM particle mass. For low masses (mf ¼ 0.1 GeV), the
maximum mass increases with the amount of DM. In this
scenario, DM accumulates in a halo around the neutron
star, without compromising its stability, leading to the
formation of massive configurations, as already discussed
in Fig. 3. For intermediate masses (mf ¼ 1 GeV), the
maximum masses decrease. In these configurations, a DM
core grows, while the OM radius and mass decrease, as
seen in the right-middle plot of Fig. 3. For high masses
(mf ¼ 10 GeV), the behavior is notably different; similar
to the intermediate case, a DM core is formed, but when it
reaches a certain mass, it becomes unstable, producing the
instability of the whole configuration, as mentioned in the
discussion of Fig. 3. The DM fraction at which this fast
change occurs depends on the DM particle mass and the
interaction strength. Note that the maximum mass of a pure
DM compact star, i.e., the onset of stability for a single-
fluid object, is proportional to y=m2

f [83].1 While this

analysis can be repeated using other strength parameters
and other EOSs for OM, the behavior of the maximum
masses is similar for the different cases, only depending on
the DM particle mass. The maximum mass tends to
increase at small values of mf, and the abrupt change of
stability of the DM core would still occur at high values of
the DM particle mass.
Apart from the changes in the total mass, the radius and,

hence, the tidal deformabilitywill also vary depending on the
DM fraction. As mentioned earlier, for low masses of DM
particles, a halo is created around neutron stars. As the radius
of this halo grows, the tidal deformability changes. For the
analysis we have followed contour lines of M ¼ 1.4M⊙ in
the (pc

OM; p
c
DM) plane, and plotted in Fig. 5 the tidal

deformability of these objects versus the DM fraction,
obtained from the crossings between the M ¼ 1.4M⊙ con-
tour line and those for different DM content. In this figurewe
consider EOSI for OM and the strength parameter for DM
yint ¼ 0.1. The behavior is similar for the smallest DM
particle masses ðmf ¼ 0.2; 0.4Þ GeV, that is, the DM radius
increases until it reaches the OM radius, creating a halo
and consequently increasing the tidal deformability [95].
As for mf ≳ 0.6 GeV, the tidal deformability stays below
Λ1.4 ¼ 720 [76].
In fact, the behavior of the tidal deformability with DM

masses using OM EOSI is similar to the one for OM EOSII.
In the upper panel of Fig. 6 we show the tidal deformability
for a M ¼ 1.4M⊙ star whereas in the lower panel we
display the corresponding radii (R1.4M⊙

) for OM (solid
lines) and DM (dashed lines), both quantities as functions
of the DM content. In a configuration without DM, EOSII

FIG. 5. Tidal deformability ofM ¼ 1.4M⊙ star (Λ1.4M⊙
) star as

a function of the amount of DM (100 ·MDM=MT ) for three DM
particle masses (mf ¼ 0.2, 0.4, 0.6 GeV). We consider the case of
the DM interaction strength yint ¼ 0.1 and EOSI for OM. The
gray line indicates the upper limit for the tidal deformability
obtained from GW170817 (Λ1.4 < 720) [76]. The vertical dashed
lines show the amount of DM that is needed to obtain solutions
outside Λ1.4 ≤ 720 [76] for each configuration.

FIG. 4. Maximum total mass (Mmax) for the stable configura-
tions as a function of the amount of DM (100 ·MDM=MT) for
three DM particle masses (mf ¼ 0.1, 1, 10 GeV). We consider the
case of the DM interaction strength yint ¼ 0.1 and EOSI for OM.
The gray line indicates the 2M⊙ limit [7–10].

1Note that for some configurations where the DM fraction is
very large and the star becomes purely a DM compact object, the
maximum mass is higher than 2M⊙, fulfilling again the con-
straints coming from observations.
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provides a tidal deformability of Λ1.4 ≈ 738, that is
slightly higher than the limit derived from GW170817
of Λ1.4 < 720 [76]. However, increasing the fraction of DM
can lead to results where Λ1.4 ≲ 720, as seen in Ref. [45].
This outcome can be understood by analyzing the behavior
of the radii for OM and DM. In the lower panel, for small
masses of DM particle (mf ¼ 0.2 GeV), the DM halo is
created very quickly, increasing the tidal deformability. For
larger masses (mf ¼ 0.4 GeV and mf ¼ 0.6 GeV), as we
increase the DM fraction while maintaining the total mass
constant to 1.4M⊙, the OM mass decreases. This decrease
in OM mass leads to a reduction in the OM radius, whereas
the DM radius increases steadily. Thus, the tidal deform-
ability for 1.4M⊙ stays below 720 for a larger content of
DM as compared to the mf ¼ 0.2 GeV case, agreeing with
the GW170817 observation.
Up to now we have discussed the behavior of the

maximum mass and the tidal deformability as we increase
the DM fraction for different DM particle masses and a
fixed value of the DM interaction strength. We paid
special attention on how the presence of DM might

induce deviations of these properties from the 2M⊙
observations [7–10] and tidal deformability extracted
from GW170817 event [76]. We considered two EOSs
that give rise to a large set of solutions compatible with
these two previous observations. Then, to conclude this
section, we perform an exhaustive analysis for the
maximum mass and tidal deformability by means of
considering the two EOS parametrizations, and not only
taking into account the different DM particle masses, but
also varying the interaction strength yint. In this manner
we are able to constrain the amount of DM that can be
accumulated in compact stars while still fulfilling the
aforementioned observations.
In Figs. 7 and 8 we show the amount of DM

(100 ·MDM=MT) as a function of the DM particle mass
(mf) for the strength parameter yint ¼ 0.1 (left panels),
yint ¼ 10 (middle panels) and yint ¼ 103 (right panels).
Results for EOSI for OM are shown in Fig. 7, whereas the
outcome for EOSII is displayed in Fig. 8. The black solid
curves indicate the fraction of DM with a maximum stable
mass of M ¼ 2M⊙. The regions below these lines are
composed of stable configurations with M ≥ 2M⊙. The
dashed red lines, on the other hand, are stable configura-
tions with tidal deformabilities equal to 720. In Fig. 7 the
area to the right of these red lines conforms stable
configurations with tidal deformabilities below 720 and
in Fig. 8 the red dashed lines encapsulate the areas
where Λ1.4 ≤ 720.
In Fig. 7 we find a different behavior of the maximum

mass and tidal deformability depending on the DM particle
mass, as already discussed in the Figs. 4 and 5 for
yint ¼ 0.1. For large masses, we have a DM core that
becomes unstable. As we decrease the DM particle mass,
the region of maximum masses above 2M⊙, that the core
can reach, becomes larger as the amount of DM that can be
admixed in these configurations increases. For low masses,
the amount of DM tends to 100% due to the creation of a
DM halo around the compact star. The constraint coming
from GW170817 only affects low masses, for which the
DM halo is created as the maximum radius increases.
Figure 8 is similar to Fig. 7 but obtained using EOSII.

The most notorious difference is the quantity of DM
allowed by the tidal deformability constraint, as the stable
configurations with tidal deformabilities below 720 are
encapsulated by the red dashed lines. This outcome can be
understood by looking at Fig. 6 and the left panel in Fig. 8,
both obtained for yint ¼ 0.1. In this case, for small DM
mass particles, a large DM halo is created and, hence, the
tidal deformability has values above 720 for all DM
fractions. For intermediate masses between approximately
0.3 GeVand 10 GeV, the tidal deformability reaches values
below 720 for DM fractions above 5% as the OM radius
decreases whereas the DM halo has not been formed yet.
For larger masses, DM becomes unstable and no solutions
are found. Similar allowed DM contents are obtained for

FIG. 6. In the top panel the tidal deformability of M ¼ 1.4M⊙
star (Λ1.4M⊙

) is shown whereas the corresponding radii (R1.4M⊙
)

for OM (solid lines) and DM (dashed lines) are displayed in the
low panel, both quantities as function of the amount of DM
(100 ·MDM=MT) for three DM particle masses (mf ¼ 0.2, 0.4,
0.6 GeV). We consider the case of the DM interaction strength
yint ¼ 0.1 and EOSII for OM. Again, the vertical dashed lines
show the amount of DM that is needed to obtain solutions outside
Λ1.4 ≤ 720 [76] for each configuration.
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larger interaction strengths but the encapsulated region is
shifted to larger DM particle mass with increasing yint.
Moreover, we can extract some conclusions by compar-

ing the DM fractions as a function of the DM particle mass
for the two EOSs. For large DM particle masses, the
instability region is independent of the OM EOS used. The
slope of the 2M⊙ line in the high DMmass region in Figs. 7
and 8 is caused by the DM core that becomes unstable,
whose mass only depends on the DM particle mass and
interaction strength. As mentioned earlier, in these cases,
since pc

DM is much higher that pc
OM, the stability of the DM

core dominates the stability of the whole configuration.
Regarding low DM particle masses, the limiting 2M⊙ line

is shifted to larger DM fractions when using EOSII. As this
EOS generates higher masses, the DM fraction needed to
reduce the maximum mass to 2M⊙ would be also be larger.
As mentioned in the Introduction, our results should be

compared to the outcome of Refs. [49,67,73,74]. We
should first note that our present work is focused on
determining possible stable solutions close and beyond
the neutron star configurations, while Refs. [49,67] former
studies concentrate on masses and radii close to the ones of
neutron stars. With regard to these latter mass-radius
solutions, our work and the ones of Refs. [49,73,74] aim
at determining the amount of either fermionic or bosonic
DM that can be accumulated in neutron stars taking into

FIG. 8. The same as Fig. 7 but forOMEOSII.Whereas the regions below the black solid curves indicate solutionswithM ≥ 2M⊙ [7–10],
the red dashed lines encapsulate the areas where Λ1.4 ≤ 720 [76]. The region being compatible with the astrophysical constraints extends
to the unphysically limiting case of pure DM compact stars, as those configurations could reach 2M⊙ and give rise to small tidal
deformabilities.

FIG. 7. Amount of DM (100 ·MDM=MT ) as a function of its particle mass (mf) for different interaction strength parameters yint
(different columns for yint ¼ 0.1; 10; 103) using EOSI for OM. The black curves show the DM fractions that produce maximum stable
masses with M ¼ 2M⊙ [7–10]. The regions below these limiting curves indicate solutions with masses above M ¼ 2M⊙. The red
dashed lines give the DM fraction with Λ1.4 ¼ 720. The area to the right of the dashed red lines are stable configurations with tidal
deformabilities below 720 [76].
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account certain astrophysical constraints, such as 2M⊙
observations and the tidal constraint coming from the
GW170817 event. In the case of Ref. [49] a rough estimate
of the accreted DM into neutron stars in the most central
region of the Galaxy is used and in Ref. [74] the DMmodel
is constrained from observational limits imposed on the
DM self-interaction cross section. A similar trend for the
DM fraction with DM particle masses and interaction
strengths is observed in all works. However, the calcu-
lations in Refs. [49,73,74] have been based on a specific
model for the OM EOS, so the conclusions are model
dependent, as compared to our analysis based on two
representative OM EOSs which delineate the lower and
upper limits of the mass-radius curves of OM. Moreover,
there is no mention on the stability of the solutions, as we
have discussed at length in our present work. Concerning
Ref. [67], the authors have chosen two EOSs, one soft and
one stiff, to serve as the limiting cases, representing an
envelope for numerous microscopic hadronic EOSs. They
have constrained DM as a self-interacting Fermi gas,
depending on the DM particle mass, interaction strength
parameter yint and a general coupling for the self-interaction
g (for self-annihilation), based on observations for the
mass, radius and tidal deformability of neutron stars as well
as the accepted cosmological dark matter freeze-out values
and self-interaction cross sections obtained from galactic
dynamics. Whereas this former study is also aiming at
providing model-independent results for the DM content as
ours, the discussion on the stability analysis of the different
mass-radius configurations is missing, which is particularly
important for large DM particle masses when the DM core
becomes unstable.

A. Massive compact stars

Up to now we have discussed the amount of DM that can
be accumulated in compact stars while still fulfilling the
2M⊙ and tidal deformability constraints considering the
two limiting OM EOSs. However, from Fig. 3 it is clear that
some stable solutions with DM reach 60M⊙ for the case of
EOSI. Therefore, it is interesting to explore whether more
massive configurations than 2M⊙ can be obtained while
still fulfilling the tidal deformability constraint, in particular
in view of two recent observations, that is, the black widow
pulsar PSR J0952-0607 of 2.35� 0.17M⊙ [96] and the
compact object with mass 2.5–4.5M⊙ detected in the
gravitational wave event GW230529_18150 [97].
In order to see whether we can find stable solutions with

DM content with masses similar to PSR J0952-0607 or
GW230529_18150 while still fulfilling the tidal deform-
ability constraint, in Fig. 9 we show the maximum mass as
a function of the amount of DM for two DM particle masses
(0.1 GeV and 0.3 GeV) using EOSI. The dashed vertical
lines indicate the maximum amount of DM compatible with
Λ1.4 < 720 for each particle mass. As shown in this figure,
it is not possible to find solutions with masses close to

either the pulsar PSR J0952-0607 or the heaviest compact
object in the GW230529_18150merger while still fulfilling
the tidal deformability constraint. For mf ¼ 0.1 GeV the
maximum amount of DM allowed by the tidal constraint is
compatible with masses∼2M⊙, whereas formf ¼ 0.3 GeV
theDMcontent can go above 10%but themaximummass of
the compact object remains below 2M⊙. For smaller or
larger particle masses as well as larger interaction strengths,

FIG. 9. Maximum mass as a function of the amount of DM,
using EOSI for OM and yint ¼ 0.1 for DM, and two DM particle
masses (0.1 GeVand 0.3 GeV). The dashed vertical lines indicate
the maximum amount of DM compatible with Λ1.4 < 720 for
each particle mass. The green and purple areas represent the
masses in PSR J0952-0607 and GW230529_18150, respectively.

FIG. 10. Maximum mass as a function of the amount of DM,
using EOSII for OM and yint ¼ 0.1 for DM, and two DM particle
masses (0.3 GeVand 0.4 GeV). The dashed vertical lines indicate
the minimum and maximum amount of DM compatible with
Λ1.4 < 720 for each particle mass. The green and purple areas
represent the masses in PSR J0952-0607 and GW230529_18150,
respectively.
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the situation is similar so that no solutionswithmasses above
2M⊙ compatible with the tidal constraint are found.
With regards to the case of considering EOSII, in Fig. 10

we observe that for mf ¼ 0.3 GeV or 0.4 GeV the mass of
PSR J0952-0607 can be reached while the tidal constraint is
still fulfilled, as the DM amount associated with this
maximum mass falls between the minimum and maximum
limits in DM content determined by the tidal constraint,
indicated by the dashed vertical lines for each mass.
However, maximum masses larger than 2.5M⊙ cannot be
obtained, thus no solutions with masses in the 2.5–4.5M⊙
mass range of the compact object in GW230529_18150 are
found. For larger or smaller masses and larger interaction
strengths, no solutions with masses close to the PSR J0952-
0607mass compatible with the tidal constraint are obtained.

IV. SUMMARY

In this paper we have performed a comprehensive study
of compact stars admixed with nonself-annihilating self-
interacting DM. We have started from two parametrized
EOSs for OM that fulfil the well-known limits at low and
large nuclear densities while giving rise to masses and radii
that span the possible mass-radius region compatible with
2M⊙ observations and the constraint on the tidal deform-
ability coming from the GW170817 event, hence being
representative of a wide variety of EOSs that fall between
these two limiting cases. We aim at determining the amount
of DM that can be accumulated in compact stars while still
fulfilling these previous astrophysical constraints by means
of a controlled scheme for OM, thus going beyond the use
of individual models.
To this end, we have first carried out the analysis of the

possible mass-radius stable configurations following the
procedure of Ref. [58]. In that work the authors take into
account the fact that any variation in the stability of one of
the systems would affect the other, and vice versa. Thus, we
have improved on our previous naive stability analysis of
two separate OM and DM fluids of Refs. [41,50]. In this
manner, we have obtained stable mass-radius configura-
tions of OM and DM with radii smaller than 10 km and
masses similar to Earth-like or Jupiter-like stellar objects,
as already reported in Refs. [41,50], whereas new con-
figurations have appeared for very low DM particle mass,
such as those configurations consisting of OM surrounded
by a massive DM halo, with masses reaching up to 60M⊙.
Then, we have studied how maximum masses around

2M⊙ and tidal deformabilities for 1.4M⊙ stars vary as a
function of the DM fraction for different DM particle
masses and interaction strengths considering the two EOS
parametrizations. Whereas there is a strong dependence on

the maximum masses close to 2M⊙ with the DM particle
mass, the tidal deformability for 1.4M⊙ depends on both
the DM particle mass and the EOS. As a general trend, we
find that for large DM particle masses above few tenths of
GeV, no stable solutions compatible with the astrophysical
observables are found as the DM core becomes unstable.
As the DM particle mass is reduced, more and more stable
configurations appear compatible with 2M⊙ as the DM
fraction increases. The specific values of the DM fraction
depend on the self-interaction strength and the EOS. For the
soft nuclear EOSI, the DM fraction is limited to 10%.
Typically, for masses ranging from 0.1 GeV to 10 GeV, the
DM fraction can be at most 1%. For a stiff nuclear EOS,
such as EOSII, the DM fraction can be increased to 10% or
more. However, the mass is constrained to be between
0.3 GeVand 10 GeV for the weak self-interacting case and
has to be at least 5 GeV for the strong self-interacting DM.
For DM particle masses of less than 0.1 GeV, stable neutron
star configurations with more than 1% of self-interacting
DM are ruled out by the constraint of the tidal deformability
from GW170817 irrespective on the chosen limiting
nuclear EOS.
To finalize our summary, some remarks are in order on

the recent observations of compact stars with more than
2M⊙, such as the black widow pulsar PSR J0952-0607 and
the compact object in the mass gap detected in the
GW230529_18150 event. Although large mass compact
stars with DM can be found, our study indicates that it is
difficult to reconcile masses above 2.5M⊙ with the tidal
deformability constraint from GW170817, even when
including a possible fermionic self-interacting DM com-
ponent in the neutron star.
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