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The explosion of core-collapse supernovae (CCSNe) is an extremely challenging problem, and there
are still large uncertainties regarding which stars lead to successful explosions that leave behind a neutron
star, and which ones will form a black hole instead. In this paper, we simulate 341 progenitors at three
different metallicities using spherically symmetric simulations that include neutrino-driven convection
via a mixing-length theory. We use these simulations to improve previously derived explosion criteria
based on the density and entropy profiles of the presupernova progenitor. We also provide numerical fits
to calculate the final mass of neutron stars based on either compactness, the location of the Si=Si-O
interface, or the Chandrasekhar mass. The neutron star birth mass distribution derived from our
1Dþ simulations is bimodal, contrary to what the most popular 1D CCSN simulations have shown so far.
We compare the theoretically derived neutron star mass distributions with the observed ones and discuss
potential implications for population synthesis studies. We also analyze the black hole mass distribution
predicted by our simulations. To be consistent with current models of matter ejection in failed SNe,
a large fraction of the envelope must be expelled, leading to small black holes in the low-mass gap.
One black hole in this mass region has recently been observed in the GW230529 event by the LIGO-
Virgo-KAGRA collaboration. Our results naturally agree with this detection, which the most popular
prescriptions for explodability and remnant masses are not able to reproduce. In general, we find that the
explosion outcome and mass of the remnant strongly depend on the precollapse structure of the
progenitor. However, their dependence on the initial mass of the star and the mass of the CO core is
highly uncertain and nonlinear.

DOI: 10.1103/PhysRevD.110.023007

I. INTRODUCTION

Core-collapse supernovae (CCSNe) are an extremely
complex phenomenon, for which more and more sophis-
ticated models have been developed in the last several
decades [1–8]. The last ten years have produced a large
number of self-consistent exploding simulations in three
dimensions from many different groups [9–19]. This has
significantly improved our understanding of the relevant
physical processes that occur during the postbounce and
explosion phases. In particular, of crucial importance
for the explosion are the standing accretion shock insta-
bility (SASI) [20–23] and, to an ever greater extent,
neutrino-driven turbulent convection [24–27]. However,
multidimensional simulations are still too computationally

expensive to explore the parameter space of supernovae
(SNe) efficiently.
One of the most important problems in CCSNe concerns

the explodability as a function of zero age main sequence
(ZAMS) mass, as well as the resulting explosion properties
such as remnant masses, nucleosynthesis yields, light
curves, explosion energies etc…. The only viable options
to investigate a wide range of ZAMS masses and metal-
licities are currently spherically symmetric simulations (but
see [28] for a recent large suite of 2D models), semi-
analytical prescriptions, or a combination of both.
The goal of this paper is to study the explodability and

remnant mass distribution of a wide range of progenitors
with different ZAMS masses and metallicities.
Neutron stars (NSs) and black holes (BHs) are the two

possible remnants left behind after the successful (or failed)
explosion of a supernova. Studying their formation and
population can help understand several phenomena, ranging*lbocciol@berkeley.edu
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from gamma-ray bursts (GRBs), binary mergers, exotic
accretion scenarios, and many others. It is therefore impor-
tant to have reliable models that can predict the birth-mass
distribution of NSs and BHs.
However, mass and radius measurements of NSs are

quite challenging. The vast majority of existing mea-
surements are performed on millisecond pulsars, which
are believed to have experienced some degree of mass
accretion from a companion and are therefore not repre-
sentative of the birth-mass distribution. Another challenge
that theoretical predictions have to face is that most stellar
models simulate isolated single stars, whereas most
massive stars experience significant binary interactions
throughout their lives.
The case of BHs is even more uncertain, both from a

theoretical and observational standpoint. The best con-
straints on their mass are given by the measurements of the
LIGO-Virgo-KAGRA (LVK) collaboration [29]. However,
the low end of their mass distribution, which can be
extremely useful to constrain which massive stars give
birth to black holes, is affected by large uncertainties. There
are a few objects that could fall in this low-mass range
between 2M⊙ and 3M⊙, and classifying them as high-
mass NSs or low-mass BHs is quite challenging, not to
mention the uncertainties regarding their formation chan-
nel. However, a 2.5 − 4.5M⊙ object, which is most likely
the first stellar-mass black hole ever observed, has recently
been detected by the LVK collaboration [30], and this is the
first step to putting more stringent constraints on the low-
end of black hole masses. Predicting the final mass of a
black hole is also a theoretical challenge, since even in
failed SN events weak shocks can form, and eject a fraction
of the envelope [31–36]. However, the precise mechanisms
responsible for this, and the amount of matter ejected, are
still uncertain.
In the past, there have been several studies aimed at

studying the remnant mass distributions, based on different
1D simulations as well as semianalytical models [37–42].
For the birth-mass distribution of NSs, all of these studies
predict a large peak at ∼1.2–1.4M⊙, whose existence has
been shown by countless works and observations. More
interesting is instead the presence (or absence) of another
small peak at ∼1.7–1.8M⊙, which is where most of the
disagreement among the previously mentioned studies
rises. The discrepancy concerning the birth-mass distri-
bution of BHs is even larger, and different studies use
different prescriptions to decide what fraction of the star
will contribute to the final mass of the black hole.
In this paper, we present a simple recipe to determine the

explodability and compute NS and BH masses based on the
density and entropy profiles of the pre-SN progenitor.
In Sec. II we present an overview of some of the

previously derived explosion models, and then we briefly
describe the method used in this work to simulate the
explosion of 341 pre-SN models. These simulations are an
extension to a larger ZAMS mass range and lower

metallicity of the previously simulated models of [43]
(hereafter BR23). In Sec. III we also generalize the
explodability criterion already derived by BR23 in light
of the larger set of simulations performed in the present
study. The main results of this paper are presented in
Sec. IV, where we provide theoretical mass distributions
of NSs and BHs, and compare them to the most recent
observations. Finally, in Sec. V we summarize the main
findings of this paper and comment on future research
directions.

II. THE EXPLOSION MODEL

Simulating the explosion of CCSNe is an impressively
tough feat. Only in the last couple of decades have
simulations started showing reliable, robust explosions.
However, these typically occur in high-fidelity multidi-
mensional simulations that require millions of CPU hours.
To date, only one study employing 100 2D simulations
has been performed [28], due to their very high computa-
tional cost. The overwhelming majority of studies are
performed using either semianalytical models or spheri-
cally symmetric, 1D simulations, which are still extremely
useful and widely used.

A. Previous models

The simplest way to achieve an explosion is to use the
so-called piston [44] or bomb models [45]. The former use
a moving inner boundary at some mass coordinate Mpiston,
mimicking the expansion of the shock. The latter inject a
certain amount of thermal energy at some mass coordinate
Mbomb for a few seconds, which revives the shock and
launches the explosion. In both cases the models are
calibrated to reproduce a certain explosion energy and
the amount of Nichel ejected, based on observational
constraints.
Later models employed more sophisticated numerical

setups, but based on the same core idea. The most well-
known example is the model of [46], where a hydro-
dynamic simulation collapses the star, and then the inner
core is manually excised and replaced with a contracting
inner boundary emitting some neutrino luminosity Lν;c
according to a simplified, semianalytical proto-neutron star
(PNS) cooling model. The time evolution of the inner
boundary is chosen to reproduce explosion energy and
Nichel mass of SN 1987A [47]. This is the model used
by [48,49], and later [39], who derived explodabilities and
remnant masses for a number of stars at solar metallicity.
Another popular semianalytical model is the one by [38],

who assume the explosion to happen in three steps:
collapse and bounce, convective engine, and eventual
postexplosion fallback. The second phase is particularly
important and is the fundamental reason why self-
consistent spherically symmetric simulations do not show
any explosions (except for very rare cases of low-mass,
low-compactness stars) whereas their multidimensional
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counterparts do [6,24,25,50]. Therefore, [38] use a semi-
analytical prescription for the convective velocity (later
revised in [42]) that adds the necessary energy to achieve an
explosion. A similar approach has also been developed
by [51,41].
Another method adopted in the past is to simulate

the collapse and postbounce phases with self-consistent,
state-of-the-art spherically symmetric simulations. As men-
tioned above, however, simulations in spherical symmetry
do not show any explosions. In these simulations, the
energy deposited by neutrinos in the gain region (i.e., the
region with positive net neutrino heating) is not enough to
successfully launch an explosion, since convection is not
present. To overcome this, one option is to artificially
increase the neutrino heating in the gain region by some
factor fheat. This was, for example, the method adopted
by [52], who also employed a simple prescription to
model neutrino emission and absorption. They noticed
that progenitors with larger compactness needed a larger
value of fheat to explode, and therefore concluded that
progenitors above a certain compactness ξ2.5 would not
explode, where:

ξM ¼ M=M⊙

RðMbary ¼ MÞ=1000 km
; ð1Þ

and RðMbary ¼ MÞ is the radial coordinate that encloses a
mass M. [52] used ξ2.5 at the time of bounce. In the
remainder of the paper, however, wewill refer to the pre-SN
compactness values, i.e., at the very beginning of the
collapse phase, unless stated otherwise.
Another option, which is a bit more sophisticated, is to

take some energy from the heavy-lepton neutrinos, which
would otherwise not interact with matter outside of the
PNS, and deposit it into the gain region. [53] devised this
method and applied it to simulations with a bit more
sophisticated neutrino transport. They calibrated their
energy deposition in such a way that progenitors with
larger compactness experience less energy deposition,
which was done specifically to prevent high-compactness
progenitors from exploding.
The fundamental idea of all of the models described

above is the same: the explosion must be triggered by
depositing energy behind the shock. The first piston and
bomb models simply added this energy by hand into the
model. The model from [46] was devised to take this
energy from a physical source, which in their case was
neutrinos. The models of [38,54] have the advantage of
being relatively simple and include convective energy,
which would otherwise be absent from 1D models.
However, they heavily rely on semianalytical prescriptions.
The models of [52,53] also take this extra energy from
neutrinos, but they follow the evolution of the PNS self-
consistently and, in the case of [53], employ a robust
treatment of neutrino transport [55]. In conclusion, all of

these different methods introduce the extra energy into their
model using a prescription that is: (i) extremely simple but
derived from a physical mechanism like convection
[38,54]: (ii) more sophisticated but the energy is arbitrarily
transferred from neutrinos to matter without following an
accurate physical model [46,52,53].

B. 1D+ model including neutrino-driven
convection

In this paper, we will take a different approach, and use
self-consistent simulations that include the effects of
convection through STIR, a parametric model for con-
vection developed by [56]. The advantage of this model is
that it is derived from the Reynolds decomposition of
the Euler equations, where the closure adopted is chosen
using a mixing-length theory (MLT) approach. Therefore,
the extra energy in the model is calculated starting from a
physically consistent model. It should be noted that the
form of the ensuing equations is not explicitly energy-
conserving [57]. However, this is a minor drawback
considering that, in all of the models described above, a
certain amount of energy has to be somehow injected (in
some cases crudely) into the model. Moreover, one could
argue that STIR still effectively conserves energy if one
accounts for the free energy associated with the convec-
tively unstable thermodynamic gradients [57,58]. The
equation describing the evolution of the total energy can
be derived by combining equations 27 and 29 from [56]:

∂ρetot
∂t

þ 1

r2
∂

∂r
½r2vrðρetot þ Pþ PturbÞ − r2ρD∇etot�

¼ −ρvrgþQν − ρv2turb
∂vr
∂r

þ ρvturbω2
BVΛmix: ð2Þ

where etot ¼ eþ v2turb, Pturb ¼ ρv2turb, vturb is the turbulent
(i.e., convective) velocity, and D is a diffusion coefficient.
Notice that e includes the contributions from both internal
and kinetic energy. The most important quantities in the
model are the mixing length Λmix, and the Brunt-Väisälä
frequency ω2

BV:

Λmix ¼ αMLT
P
ρg

; ð3Þ

ω2
BV ¼ g

�
1

ρ

∂ρð1þ ϵÞ
∂r

−
1

ρc2s

∂P
∂r

�
; ð4Þ

where P is the pressure, ρ is the density, and g is the
local gravitational acceleration. Notice that all of the
above equations assume Newtonian gravity for simplicity.
However, the model used in this paper includes general
relativistic effects, which can be very important, especially
forωBV. More details on these equations and how they were
derived can be found in [59,60,56].
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The simulations presented in this paper were all run
with GR1D

1 [59,61,62]. Since the original code was modi-
fied with the addition of neutrino-driven convention, an
inherently multidimensional effect, we will refer to the code
and the resulting 1D simulations as GR1D+ and 1D+,
respectively.
Convection ismore efficient for larger values of αMLT, and

therefore the shock is revived to larger radii. The procedure
for calibrating αMLT is described at length in [43,59,63]. To
summarize it, one compares the GR1D+ simulations to 3D
simulations of the same initial progenitor. More specifically,
one can compare the time evolution of the shock radius and,
more importantly, the energy generated by neutrino-driven
convection in the gain region. Then one can select the value
of αMLT for which these quantities best match the 3D results.
This value lies in the best-fit range 1.5 ≤ αMLT ≤ 1.52. As
discussed in BR23, we select a value of αMLT ¼ 1.51, which
we will use for the remainder of this paper.
As shown by [59], the calibration is somewhat dependent

on spatial and neutrino energy resolution. Therefore, to
avoid re-calibrating, we utilize the same numerical setup
used in BR23. For this study, we simulated 3 sets of pre-SN
progenitors:
(1) the “Zero Metallicity” set: 30 progenitors at

zero metallicity from [64] in the mass range
11M⊙ ≤ M ≤ 40M⊙;

(2) the “Low Metallicity” set: 111 progenitors at a
metallicity z ¼ 10−4z⊙ from [64] in the mass range
11M⊙ ≤ M ≤ 75M⊙;

(3) the “Solar Metallicity” set: 200 progenitors at solar
metallicity z ¼ z⊙ from [49] in the mass range
9M⊙ ≤ M ≤ 120M⊙.

For the simulations at solar metallicity, we used the
existing simulations from BR23 in the mass range
12M⊙ ≤ M ≤ 28M⊙. All of the simulations presented in
this paper were run for more than 2 seconds in case of
explosion, long after the shock has left the computational
domain. For the nonexploding ones, we only ran the
simulation far enough to observe the shock fallback. All
simulations were run using 18 neutrino energy groups,
and adopting the SFHo equation of state (EOS) for nuclear
matter at high density [65,66]. More details on the
simulation setup are given in BR23.

III. EXPLODABILITY OF MASSIVE STARS

The problem of predicting the explosion outcome of
supernovae based on pre-SN properties is of great theo-
retical and practical interest. From a theoretical point of
view, it can inform as to what the cause of the explosion is,
and provide a causal connection between pre-SN properties
and the explosion dynamics. From a practical point of view,
knowing which stars explode and which ones do not can

help guide population synthesis and galactic chemical
evolution simulations in determining explosion outcome
and remnant properties of a star based on its thermody-
namic structure.
Most population synthesis codes [67–74], however, only

carry information about the carbon-oxygen (CO) core of
massive stars. As shown by recent population studies of
core-collapse supernovae, the explosion outcome is sensi-
tive to the structure of the silicon and oxygen shell formed
after the end of silicon burning. The dependence of the pre-
collapse thermodynamic profiles on the ZAMS mass of the
star and the mass of the CO core is affected by several
uncertainties, varies among different codes [75], and can
be highly nonlinear. Therefore, reliable predictions for the
explodability in population synthesis codes can only be
done if the structure of the precollapse star is computed.
This is currently beyond most codes’ capabilities, but
promising efforts toward having access to the full thermo-
dynamic structure of the star are underway [76].
In this paper, we provide remnant masses and explosion

outcome predictions based on the final pre-SN structure of
the star. These predictions could eventually be expressed in
terms of properties of the CO core using a procedure similar
to what was done in [77], but that goes beyond the scope of
this paper and is left for future work.

A. The explosion criterion of BR23

The explodability of massive stars has been a highly
debated topic in the past few years. Historically, it was
believed that stars less massive than ∼20M⊙ would explode
in a supernova and form a neutron star. Stars more massive
than ∼20M⊙ would instead lead to failed supernovae and
form a black hole. Recently, this has been challenged by
several studies [28,43,48,49,51,56]. It is now well accepted
that the general picture is quite different. The explodability
as a function of zero age main sequence (ZAMS) mass is
nonmonotonic. Therefore, there are “islands of explod-
ability” in certain mass ranges, and failed SN in others. The
explodability as a function of ZAMS mass according to our
simulations is shown in the upper panels of Fig. 1. For
example, for the solar metallicity set there is an island
of failed SNe between 12M⊙ and 15M⊙, around 18M⊙,
21M⊙, 28M⊙, and above 100M⊙. The location of these
islands of explodability is however a debated topic. For
example, [48] derived an explosion criterion using simu-
lations where the explosion was artificially triggered.
Using their method for the same solar metallicity set
presented here, they showed that most stars explode
except for the mass ranges 22M⊙ ≲M ≲ 25M⊙ and
28M⊙ ≲M ≲ 50M⊙.
Other studies, which employed either 2D simulations [28]

or 1Dþ simulations like the ones presented here [43,56],
showed instead that stars in the mass ranges 22M⊙ ≲M ≲
25M⊙ and 28M⊙ ≲M ≲ 50M⊙ explode, whereas stars in
the mass range 12M⊙ ≲M ≲ 15M⊙ yield failed explosions.

1The code is publicly available at https://github.com/
evanoconnor/GR1D.
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The results of all three studies are in excellent agree-
ment with each other and, more importantly, with a suite
of a dozen 3D simulations from [17]. In those 3D
simulations, the range 22M⊙ ≲M ≲ 25M⊙ was not
covered (only one 25M⊙ star, from a slightly different
progenitor set, was simulated), but no stars in the range
12M⊙ ≲M ≲ 15M⊙ yielded explosions, whereas all of the
others did, in agreement with the three studies men-
tioned above.
An important caveat to this discussion is that the ZAMS

mass ranges quoted here are only valid for the specific
sets of stellar evolution calculations used to produce
the pre-SN progenitors. As shown in BR23, the stellar
evolution code (and the assumptions and approximations
used in the stellar evolution calculations) can modify the
explodability as a function of ZAMS mass quite signifi-
cantly [43,78]. Therefore, one should be cautious when
referring to the CCSN outcome of specific ZAMS masses
and metallicities, since the evolution of those stars is quite
uncertain. As we will show in the remainder of this
paper, what matters for the outcome of a CCSN are the

thermodynamic profiles of that star at the end of its life.
Therefore, one can say with (relative) certainty whether a
specific pre-SN density profile will lead to an explosion.
However, what initial ZAMS mass and metallicity produce
that density profile is more ambiguous, due to the large
uncertainties that affect the numerical evolution of mas-
sive stars.
In BR23, an explodability criterion was derived which

predicts whether a given star explodes based on the
thermodynamic structure of the pre-SN progenitor. Here,
we briefly summarize their criterion, and then illustrate
how we extended it in light of the wider range of ZAMS
masses range analyzed in this paper and, more importantly,
in light of the two additional progenitors sets at zero and
low metallicity. The BR23 criterion states that:
(1) if t̃accr > 0.4 s, the star will not explode;
(2) if t̃accr < 0.4 s, the star will explode if δρ2Si=O=

ρ2Si=O > 0.08.
Here, ρSi=O is the density of the pre-SN progenitor at
which the Si=O interface is located (see Sec. 5.2 of BR23),
δρSi=O is the magnitude of the density drop at that interface,

FIG. 1. The upper, middle, and lower panels show the outcome of the 1Dþ simulations for zero, low, and solar metallicity simulations
described in the text. The low metallicity refers to z ¼ 10−4z⊙. In this work, a successful shock revival is considered a successful
explosion. The first line of each panel shows the outcome of the simulations carried out with GR1D+. The second line shows the
predicted outcome according to the criterion of BR23. The third line refers to the predicted outcome according to the criterion described
in Sec. III. Gray areas indicate that no pre-SN progenitor at that ZAMS mass was available, and therefore no simulation was performed.
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and t̃accr is the time after bounce when the Si=O interface is
accreted through the shock:

t̃accr ¼ Ctff − t0 ¼ C
ffiffiffiffiffiffiffiffiffi
π

4Gρ̄

r
− t0: ð5Þ

The coefficients C and t0 were derived by fitting this
equation to the actual time of accretion of the Si=Si-O
interface found in the simulations. The values found by
BR23 for KEPLER progenitors were C ¼ 0.78 and
t0 ¼ 0.13 s. Since the progenitors at zero and low metal-
licity of [64] were also computed with the KEPLER code, we
do not expect these coefficients to significantly change
once we add these progenitors to the fit. As expected, once
we add the new simulations performed at lower metallic-
ities and the ones at solar metallicity for M < 12M⊙ and
M > 28M⊙, we obtain the same value of t0 ¼ 0.13 s and a
slightly lower value of C ¼ 0.76. For consistency with
previous work, we chose to adoptC ¼ 0.78, but we verified
that both values of C lead to the same results.
The Si=O interface is particularly relevant for the

explosion because the entropy jump, and therefore the
density drop, is very pronounced, which causes the ram
pressure of the infalling material to decrease significantly. It
is also important to point out that, even though we refer to it
as a Si=O interface for simplicity, in most cases, the largest
entropy jump (i.e., density drop) is located inside the
silicon shell, where a pocket of oxygen has formed (e.g.,
see left panel of Fig. 4 from BR23). Therefore, a more
appropriate definition would be the Si=Si-O interface. For
conciseness purposes, and since it has largely been referred
to as Si=O interface in the SN literature, we adopt the latter
in all subscripts hereafter. However, it is important to note
that this could be a misleading naming convention.
The addition of progenitors at low and zero metallicities

(in particular the ones with masses M > 30M⊙) required a
slight change in the explodability criterion. Those progeni-
tors, compared to the ones analyzed in BR23, have very
large compactnesses and are more likely to explode. This
suggests that a more nuanced criterion, which also con-
siders compactness, should be used. A detailed analysis of
the role of compactness is currently underway [79], but for
the purposes of this article, a simple phenomenological
criterion can instead be used:
(1) if ξ2.0 > 0.5, the star will explode;
(2) if ξ2.0 < 0.5 and t̃accr < 0.3 s, the star will not

explode;
(3) if ξ2.0 < 0.5 and t̃accr < 0.3 s, the star will explode

if δρ2Si=O=ρ
2
Si=O > 0.08.

This simple criterion significantly improves the prediction
rate compared to the one by BR23, as shown in Fig. 1 and
Table I. It also suggests that compactness might play an
important role in determining the explosion.
Finally, it should be noted that the explosion outcome of

high-compactness progenitors is still a topic of debate.

Traditionally, high-compactness, very high-mass stars were
considered to lead to failed SN and form black holes, as
discussed in Sec. II. Even 3D simulations have yet to agree
on whether a supernova can be produced by these high-
compactness progenitors, and what the remnant of these
events will be [80,81]. It should be stressed that the
simulations presented in this paper are conducted in
spherical symmetry, and therefore no fallback is present
after the explosion sets in. All of the successful explosions
leave behind a neutron star, with only one exception
described in Sec. IVA. However, 3D simulations of high
compactness progenitors [80,81], show that, in some cases,
despite an explosion develops, late-time fallback can
accrete enough mass on the central object to produce a
small black hole. The amount of late-time fallback is highly
uncertain since long-term simulations that follow the shock
until it breaks out of the envelope are computationally
extremely challenging. Only a few of these simulations
have been performed [82–85], and all of them are for
relatively low mass (up to 20M⊙), low-compactness
progenitors. Only more simplistic, semianalytical prescrip-
tions have been used so far to model late-time fallback to
investigate whether small-mass BHs can be produced in the
explosion of high-mass, high-compactness progenitors,
both in 1D [86] and 3D [87].

IV. REMNANT MASSES FROM SIMULATIONS

In this section, we analyze the properties of the CCSN
remnants obtained from simulations. Moreover, we present
a recipe to predict the masses of both NSs and BHs, based
on the pre-SN properties of the progenitor stars.

A. Neutron stars

As mentioned above, our simulations were run in
spherical symmetry, and therefore no fallback is present.
Once the explosion sets in, the accretion stops, and the
baryonic mass of the PNS will remain constant until the end
of the simulation. By solving the TOV equation for the
given EOS, it is straightforward to convert the baryonic

TABLE I. False positives (FP) and false negatives (FN)
produced by the criterion of BR23 versus the one derived in
this work when compared to the results of the simulations for the
zero, low, and solar metallicity sets described in Sec. II B.

Zero metallicity Low metallicity Solar metallicity

BR23

FP 6.7% 17.1% 8.0%
FN 23.3% 10.8% 1.5%

This work

FP 3.3% 4.5% 8.0%
FN 0.0% 2.7% 0.0%
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mass into the gravitational mass of the cold NS. This is the
NS mass MNS that we will refer to hereafter.
All of the simulations that successfully produce an

explosion leave behind a NS, with the only exception
of the 75M⊙ progenitor from the low metallicity set.
This particular progenitor has the largest compactness
(ξ2.0 ¼ 0.99) of all progenitors and shows a successful
shock revival occurs at around 0.2 s. However, due to its
large compactness, its PNS baryonic mass is very large, i.e.,
MPNS ¼ 2.57M⊙. This causes the simulation to stop at
∼0.4 s, since the PNS is collapsing to a BH. Indeed, a
baryonic mass of 2.57M⊙ would correspond to a gravita-
tional mass of roughly 2.13M⊙, which is larger than the
maximum mass of a cold NS allowed by the SFHo EOS,
which is ∼2.05M⊙. We decided to exclude this progenitor
from our analysis since it is unclear whether the initial
shock expansion would continue after BH formation.
Neutrino emission will shut off, and this has often been
shown to cause the shock to fall back without being able to
break out of the star. On the other hand, a weak shock might
still be launched [31–35], which would unbind a larger
fraction of the envelope compared to cases where BH
formation occurs without any shock revival at all (discussed
in the next Section). Rather than handling the fallback for
this one progenitor ad hoc, we prefer excluding it from the
analysis altogether for consistency. Moreover, this one
75M⊙ progenitor would be greatly disfavored by the initial
mass function (IMF), and therefore excluding it will not
appreciably affect our results and conclusions.
Generally speaking, the more compact the star (i.e., the

shallower the density profile is), the larger the mass of
the neutron star will be since the mass accretion during the
stalling phase will be larger. This intuitively suggests
that the neutron star’s mass is tightly correlated with the
compactness of the star. The latter is (mostly) the conse-
quence of convective phenomena occurring during the
post-main sequence evolution. Intuitively, one can also
expect the remnant mass to be tightly correlated with the
mass of the iron core. More specifically, the mass of the
iron core is a lower bound for the final mass of the remnant,
since the Fe-peak elements present inside the core cannot
be ejected. If they were, we would observe a much higher
abundance of such elements [88], which we do not. A more
accurate predictor of the final remnant mass could however
be the Chandrasekhar mass, which is generally considered
to be ∼1.4M⊙. However, as described in [37], this value
can vary depending on the electron fraction and entropy in
the core:

MCh ¼ MCh;0

�
1þ

�
se
πYe

�
2
�
¼ 5.38Y2

e

�
1þ

�
se
πYe

�
2
�
;

ð6Þ

where se and Ye are the electron entropy per baryon and
electron fraction in the core, respectively. Typically, the

Chandrasekhar mass is evaluated at the pre-collapse stage,
which we consider to be the time when the velocity drops
below 1000 km=s inside the core. It can be shown that the
entropy in the core se is mostly determined by the details
of carbon burning [89]. Above a certain mass, central
C-burning occurs in radiative rather than convective equi-
librium, which changes the subsequent stages of evolution
and, essentially, completely bypasses the neutrino-cooling
phase [89], which is responsible for decreasing the central
entropy of the core. This eventually leads to an abrupt
increase of iron core mass, central entropy, and compact-
ness above a certain mass. As [37] pointed out, this would
naturally lead to a bimodal neutron star mass distribution.
This is illustrated in Fig. 2, and we will come back to it later
in the section.
In the literature, another quantity that has been shown to

correlate with the mass of the neutron star is M4, i.e., the
mass coordinate of the layer where the specific entropy per
baryon of the pre-SN progenitor rises above 4 [48,49,77].
This layer almost always coincides with (or is very close to)
the Si=Si-O interface. As showed by BR23 and [28],
as well as by several 3D simulations [11,16,24,90], the
explosion sets in relatively quickly after this layer is
accreted, and therefore one expects a correlation between
the mass coordinate of this layer and the final mass of the
remnant. Contrary to previous studies, we do not use M4,
but rather we consider the exact mass location of the
Si=Si-O interface MSi=O, i.e., the enclosed mass below the
density ρSi=O, since it gives a much better correlation with
MNS. The location of the Si=Si-O interface is calculated
according to the definition of BR23.
This correlation is shown in the first of the two rightmost

panels of Fig. 4. It is worth pointing out that the outliers
all lie in the upper left region of the plots, because the
deviation from the trend is caused by the fact that the
explosion for those progenitors sets in much later compared

FIG. 2. Chandrasekhar mass calculated using Eq. (6) for all
metallicities combined, weighted by an IMF with an exponent
of −2.35.
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to when the Si=Si-O interface is accreted through the
shock, and therefore more mass is accreted onto the central
PNS. As expected from the discussion above, the NS mass
MNS is also highly dependent on the Chandrasekhar mass
MCh of the presupernova star. This is shown in the second
of the two rightmost panels of Fig. 4. The correlation
between MNS and MCh is quite good, although some clear
outliers can be seen at low metallicity (the 50, 55, and
60M⊙ progenitors), as well as a few at solar metallicity
for MCh < 1.4M⊙.
The tightest correlation can be seen between MNS and

compactness calculated at different mass coordinates: ξ1.5,
ξ1.75, ξ2.0, and ξ2.25 (left 4 panels of Fig. 4). The choice to
pick these four different compactnesses can be understood
by analyzing Fig. 3. The correlation between MNS and ξ1.5
is very good at low values of ξ1.5, and then gets pro-
gressively worse at larger values. This is not surprising

since, for NSs with MNS ≳ 1.36M⊙ (corresponding to a
baryonic mass of 1.5M⊙), what determines the mass of the
remnant is not only the accretion of the layers within an
enclosed mass of 1.5M⊙, but also the accretion of layers
outside that mass shell. Therefore, even if the density
profile up to an enclosed mass of 1.5M⊙ is very similar, if
the density outside this layer is different then the resulting
mass of the remnant will be different. This explains why
MNS diverges as a function of ξ1.5 once MNS goes above
∼1.36M⊙. A similar argument holds for ξ1.75 and ξ2.0, for
which the steepening of the trend occurs at values of MNS
above ∼1.56M⊙ and ∼1.75M⊙, respectively, and it is not
as pronounced as it is for ξ1.5. Finally, if one looks at MNS
as a function of ξ2.25, the trend is linear at large masses,
without any steepening. This is again not surprising since a
baryonic mass of 2.25M⊙ corresponds to a NS with a
gravitational mass of roughly 1.94M⊙, which is very close

FIG. 3. Gravitational mass of the NS as a function of compactness of the pre-SN progenitor, as defined by Eq. (1). The gray crosses
indicate the points where the dependence of MNS on compactness steepens. Specifically, the abscissa of each cross is located at
ξ1.5 ¼ 0.6, ξ1.75 ¼ 0.6, and ξ2.0 ¼ 0.6 [see the fit in Eq. (7)]. The ordinate of each cross is instead located at 1.36M⊙, 1.56M⊙, and
1.75M⊙, i.e., the gravitational mass corresponding to a baryonic mass of 1.5M⊙, 1.75M⊙, and 2.0M⊙, respectively. The fact that the
crosses lie along the data points shows that our choice of ξ1.5 ¼ 0.6, ξ1.75 ¼ 0.6, and ξ2.0 ¼ 0.6 is consistent with the idea that Nss with
baryonic masses above 1.5M⊙, 1.75M⊙, and 2.0M⊙, cannot be described using ξ1.5, ξ1.75, and ξ2.0, which is why the curve steepens
above that threshold.

FIG. 4. The four leftmost panels show the correlation between different compactnesses and the gravitational mass of the NS. Each dot
represents a different simulation for progenitors with zero (yellow), low (green), and zero (purple) metallicities. The black solid lines
show the fit described in Eq. (7). The penultimate (last) panel shows the correlation betweenMSi=O (MCh) and the gravitational mass of
the NS The ZAMS mass. The solid lines in the two rightmost panels represent the broken power-law fits (eq. (8) described in the text.
The ZAMS mass of the “outliers” is also shown as an annotation.
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to the maximum NS mass of 2.05M⊙. Therefore, only the
density profile inside an enclosed mass of 2.25M⊙ dictates
the final mass of the NS.
It is also interesting to notice that there is a clear

correlation between MNS and ξ1.5 at small values of
compactness. However, for ξ1.75, ξ2.0, and ξ2.25, the stars
with the smallest compactness show essentially a diver-
gence in MNS. The reason is very similar to the divergence
(or steepening) that happens at large values of compactness.
For these low-compactness stars, the final NS mass is
dictated by the accretion history of the inner ∼1.2–1.5M⊙.
However, these stars have very shallow density profiles,
and therefore very extended envelopes, which makes their
compactnesses ξ1.75, ξ2.0, and ξ2.25 extremely small. Their

interior structure could however be quite different, as
demonstrated by their different values of ξ1.5, which
explains why they have very different MNS despite having
very similar (practically zero) ξ1.75, ξ2.0, and ξ2.25. This
effect can also be seen, to a less dramatic extent, in the
steepening of MNS as a function of ξ2.25 for compactnesses
below ∼0.4.
To summarize, there is a clear correlation betweenMSi=O

and MNS, and an even better one between compactness and
MNS. In particular, the final NS mass seems to be best
predicted by the compactness calculated at an enclosed
mass that is not too much smaller, nor larger, than the final
NS mass. Therefore, we find that a very simple fit, which is
at the same time very accurate, is the following:

MNS ¼

8>>><
>>>:

0.191 × ξ1.5 þ 1.242 ξ1.5 < 0.6;

0.578 × ξ1.75 þ 1.237 ξ1.5 ≥ 0.6; ξ1.75 < 0.6;

0.914 × ξ2.0 þ 1.262 ξ1.5 ≥ 0.6; ξ1.75 ≥ 0.6; ξ2.0 < 0.6;

0.665 × ξ2.25 þ 1.514 ξ2.0 ≥ 0.6:

ð7Þ

This is shown in the left 4 panels of Fig. 4, and will be
referred to as ξ-fit hereafter.
Similarly, we fit a broken power-law to MNS as a

function of MSi=O using the python package ASTROPY [91].
The functional form is the following:

fðxÞ ¼ A

�
x
xb

�
−α1

�
1

2

�
1þ

�
x
xb

�
1=Δ

��ðα1−α2ÞΔ
; ð8Þ

where x ¼ MSi=O and fðxÞ ¼ MNS. This will be referred
to as MSi=O-fit hereafter. The best-fit values for the para-
meters are A ¼ 1.934M⊙, xb ¼ 2.245M⊙, α1 ¼ −0.938,
α2 ¼ 0.163, and Δ ¼ 0.085.
The same functional form with x ¼ MCh is used to fit

MNS as a function of the Chandrasekhar mass. This will
be referred to as MCh-fit hereafter. The best-fit values
for the parameters are A ¼ 1.928M⊙, xb ¼ 1.790M⊙,
α1 ¼ −1.194, α2 ¼ −0.163, and Δ ¼ 0.027.
It is interesting to note that the outliers are roughly the

same progenitors for all of the fits, although as can be seen
from Fig. 4, that is not always the case. Due to the large
differences compared to the bulk of all of the other progeni-
tors, the 45, 50, and 55M⊙ progenitors of the lowmetallicity
set have been excluded from theMCh-fit. Indeed, theirMNS is
equal to theirMCh, whereas for all of the other progenitors the
NS mass is always larger than MCh. Because of the steep
dependence of MNS on MSi=O and MCh, the NS masses for
progenitors similar to the 17.2M⊙ and 19.5M⊙ progenitors
are significantly underestimated by the fit. However, the
dependence of MNS on the different compactnesses is not as
steep, and therefore the underestimation is not as dramatic.
This will be shown more clearly in the next section.

B. Theoretical neutron star mass distributions

The observed population of neutron star is known to have a
large peak around∼1.4M⊙, and there is strong evidence for a
second peak (or at least an extended tail) at around∼1.9M⊙,
as shown by [92]. This is based on the observation of
hundreds of millisecond pulsars found in our Galaxy. Some
of these are known to have experienced accretion from a
companion star, which increased their mass compared to
when they were formed. Therefore, one should compare the
stars simulated in this work only to single-star systems or
binary systems with little to no mass transfer [40]. One
category of objects that satisfies this requirement is slow-
spinning pulsars, whose low spin indicates very little mass
accretion [93]. Another category of objects is double neutron
star (DNS) systems, where two neutron stars orbit each other.
In this case, however, it is less clear howclose they are to their
birth masses [94,95], since some of these systems are
expected to have experienced some degree of accretion.
At the same time, they tend to have very low masses, as well
as a very narrow mass distribution (as explained below),
which suggests a very clear evolutionary path.
This leaves us with three observed NS mass distribu-

tions. The probability density function (PDF) of slow-
spinning pulsars and double neutron stars is described by a
simple Gaussian:

PðMNSÞ ¼
1

σ
ffiffiffiffiffiffi
2π

p exp

�
−
ðMNS − μÞ2

2σ

�
; ð9Þ

whereμ¼1.49M⊙ and σ¼0.19M⊙ for slow pulsars (dashed
black line in Fig. 5) and μ ¼ 1.33M⊙ and σ ¼ 0.09M⊙
for double neutron stars (dotted black line in Fig. 5).
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The bimodal distribution of millisecond pulsars from [92]
(solid black line in Fig. 5) is a combination of two Gaussians
in the form of Eq. (9) weighted by a relative ratio r:

PðMNSÞ ¼ ð1 − rÞ Gðμ1; σ1Þ þ rGðμ2; σ2Þ; ð10Þ

where μ1 ¼ 1.393M⊙, σ1 ¼ 0.064M⊙, μ2 ¼ 1.807M⊙,
σ2 ¼ 0.177M⊙, and r ¼ 0.425. The distribution of slow-
spinningNShas been derived for a relatively small population
of only ∼12 objects, whereas the population of DNS has
roughly twice as many objects and the population of
millisecond pulsars is quite large, counting >100 objects.
To compute mass distributions from the simulations, we

assume a Salpeter IMF (initial mass function) with an
exponent α ¼ −2.35 [96], independent of metallicity. The
NS masses are then calculated by converting the baryonic
mass of the PNS at the end of the simulation to the
corresponding gravitational mass of a cold NS by solving
the TOV equation. This provides an empirical NS mass
distribution directly from the simulations.Moreover, one can
establish which stars explode as predicted by our explod-
ability criterion described in Sec. III, and then calculate the
NS mass based on the ξ-fit, MSi=O-fit, and MCh-fit described
in this section. Therefore, this leads to four sets ofNSmasses:
(i) the one calculated directly from GR1D+ simulations;
(ii) the one predicted by our explodability criterion and the
ξ-fit; (iii) the one predicted by our explodability criterion and
the MSi=O-fit; (iv) the one predicted by our explodability
criterion and the MCh-fit. The advantage of calculating NS

masses from (ii), (iii), and (iv) is that they only depend on the
density, entropy, and electron fraction profiles of the pre-SN
progenitor, without the need to perform any CCSN simu-
lations. These four sets of NS masses can then be used to
compute NS mass distributions (see Fig. 5) by weighting
them with the IMF.
From observations we expect the NS mass distribution

to be either Gaussian [Eq. (9)] or bimodal [Eq. (10)].
Therefore, we fit both distributions to the data and then
compare them to determine which one best fits the data. All
the fits were performed with the “fit” method from the
python module statsmodels [97]. To perform the fit,
we generated 20 000 synthetic samples based on the
theoretical NS masses weighted with the IMF, for each
of the four sets of NS masses described above. The best-fit
bimodal and Gaussian distributions are shown in Fig. 5, and
the best-fit parameters are summarized in Table II. Finally,
in Table III we show the value of the maximum log-
likelihood, as well as the value of the KS test and the
corresponding p-value for all of the fits. As can be easily
concluded by looking at the histograms, the bimodal
distribution fits the data much better, as confirmed by
the much larger log-likelihood, for all metallicities.
We also performed a KS test to investigate whether the

fitted distribution is compatible with the data. The detailed
procedure is reported in Appendix A. With the null
hypothesis being that the data was drawn from the fitted
distribution, a p-value above 0.05 indicates that the null
hypothesis cannot be rejected. Avalue below 0.05 indicates

FIG. 5. Comparison between theoretical (in colors) and observed (in black) gravitational mass distributions of NSs. The shaded
regions show the histograms of the raw data, and the solid colored lines show the fitted distributions for NS masses calculated from
simulations (in red, set (ii) in Sec. IV B), from the ξ-fit (in orange, set (ii) in Sec. IV B), from theMSi=O-fit (in blue, set (iii) in Sec. IV B),
and from theMCh-fit (in green, set (iv) in Sec. IV B). The solid black line shows the distribution of millisecond pulsars from [92], and the
dashed and dotted black lines show the distribution of double NSs and slow pulsars, respectively, from [93].
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that the null hypothesis can be rejected with 95% confi-
dence. Unsurprisingly, the bimodal fit always has a p-value
> 0.05, with only a few exceptions. More interestingly, the
Gaussian distribution is compatible with the data for the
zero and low metallicity sets, whereas it is not for solar
metallicities and for all metallicities combined.
However, one should carefully interpret these results. As

explained in appendix A, the result of the KS test generally

depends on the number of samples used for the test, and the
more one generates, the smaller the result of the KS test. In
other words, the p-value depends on the number of bins
chosen when binning the data. The fewer bins one has, the
higher the p-value will be, since with less information one
cannot constrain the empirical distribution. The KS test
results reported in Table III were obtained by choosing a
number of bins that is half of the total number of data

TABLE II. Best-fit parameters for the Gaussian and bimodal
fits for the four sets of theoretical NS masses described in
Sec. IV B.

Gaussian fit

μ Zero Low Solar All

GR1D+ 1.54 1.59 1.47 1.51
ξ-fit 1.56 1.59 1.47 1.51
MSi=O-fit 1.56 1.61 1.46 1.50
MCh-fit 1.54 1.60 1.45 1.49

σ Zero Low Solar All

GR1D+ 0.23 0.21 0.18 0.20
ξ-fit 0.23 0.20 0.17 0.19
MSi=O-fit 0.23 0.19 0.17 0.19
MCh-fit 0.25 0.19 0.18 0.20

Bimodal fit

μ1 Zero Low Solar All

GR1D+ 1.42 1.45 1.42 1.43
ξ-fit 1.43 1.46 1.42 1.43
MSi=O-fit 1.44 1.47 1.37 1.42
MCh-fit 1.42 1.46 1.36 1.41

σ1 Zero Low Solar All

GR1D+ 0.11 0.11 0.11 0.11
ξ-fit 0.11 0.10 0.11 0.11
MSi=O-fit 0.12 0.094 0.062 0.10
MCh-fit 0.15 0.092 0.089 0.12

μ2 Zero Low Solar All

GR1D+ 1.89 1.83 1.84 1.84
ξ-fit 1.88 1.83 1.84 1.84
MSi=O-fit 1.90 1.83 1.64 1.83
MCh-fit 1.88 1.81 1.66 1.82

σ2 Zero Low Solar All

GR1D+ 0.071 0.073 0.041 0.062
ξ-fit 0.062 0.066 0.032 0.057
MSi=O-fit 0.060 0.071 0.16 0.072
MCh-fit 0.077 0.078 0.15 0.071

r Zero Low Solar All

GR1D+ 0.25 0.37 0.12 0.20
ξ-fit 0.27 0.36 0.10 0.19
MSi=O-fit 0.25 0.36 0.33 0.19
MCh-fit 0.27 0.37 0.29 0.19

TABLE III. Properties of the best-fit distributions for the four
sets of theoretical NS masses described in Sec. IV B. The MLL is
the maximum log-likelihood of the best-fit distribution. The KS-
test is the value of the Kolmogorov-Smirnov test, and the p-value
is the probability of rejecting the null hypothesis that the raw data
are not drawn from the fitted distribution. To perform the KS test,
we binned the NS masses by choosing a number of equal-width
bins equal to half of the total number of NS masses in each of the
four sets of theoretical NS masses. A more detailed description of
the procedure is given in appendix A.

Gaussian fit

MLL Zero Low Solar All

GR1D+ 1163 3277 6334 4098
ξ-fit 1349 3594 7626 4881
MSi=O-fit 1117 4365 7256 4996
MCh-fit −455 4628 6457 4180

KS-test Zero Low Solar All

GR1D+ 0.31 0.20 0.20 0.16
ξ-fit 0.30 0.21 0.18 0.17
MSi=O-fit 0.30 0.20 0.21 0.17
MCh-fit 0.28 0.21 0.18 0.15

p-value Zero Low Solar All

GR1D+ 0.17 0.074 0.0057 0.0034
ξ-fit 0.19 0.055 0.0084 0.00092
MSi=O-fit 0.19 0.072 0.00082 0.00082
MCh-fit 0.26 0.057 0.0079 0.0046

Bimodal fit

MLL Zero Low Solar All

GR1D+ 6645 7095 10352 8185
ξ-fit 7920 8272 11889 9378
MSi=O-fit 6141 8527 12663 9188
MCh-fit 2384 8245 9309 7170

KS-test Zero Low Solar All

GR1D+ 0.27 0.16 0.14 0.11
ξ-fit 0.27 0.15 0.14 0.12
MSi=O-fit 0.28 0.16 0.11 0.11
MCh-fit 0.26 0.16 0.18 0.12

p-value Zero Low Solar All

GR1D+ 0.30 0.24 0.082 0.12
ξ-fit 0.31 0.27 0.056 0.041
MSi=O-fit 0.27 0.24 0.24 0.071
MCh-fit 0.32 0.24 0.0086 0.051
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points. The dependence of the KS test on the number of
bins is shown in Appendix A.
This naturally brings us to compare our theoretical

results with the observed distributions. We will focus on
the comparison between the observed distributions and the
theoretical result for all metallicities combined. First, the
ξ-fit, the MSi=O-fit, and the MCh-fit reproduce the distri-
bution from the GR1D+ simulations quite well, with the
ξ-fit being better at predicting the variance of the two peaks,
which is not surprising considering the outliers at solar
metallicities seen in the MSi=O-fit and MCh-fit in Fig. 4,
which are responsible for widening the distribution (see
also the third panel of Fig. 5). All four theoretical
distributions have peaks at the same locations, which are
systematically slightly larger than the peak locations of the
distribution from [92], but qualitatively very similar.
Usually, as mentioned above, a possible explanation of

the bimodal nature (or extended tail) of the observed
population of ms pulsars is that the NS birth-mass dis-
tribution is a Gaussian centered at around 1.4M⊙. Then,
some NSs will accrete matter via binary interactions,
hence giving rise to the second peak (or extended tail)
seen by [92]. However, nothing prevents the birth-mass
distribution itself from being bimodal (Özel, private com-
munication), as seen in our simulations. Moreover, a
bimodal birth-mass distribution means that producing
pulsars with large masses does not necessarily require
accreting a significant amount of mass.
The birth-mass distribution we find has a wider low-mass

peak and a narrower high-mass peak compared to [92]. In
this scenario, both low-mass and high-mass NSs could
accrete mass via binary interactions, which could give rise
to a widening of the peak at high masses and, potentially,
also to a narrowing of the peak at low masses.
It is also instructive to discuss the Gaussian fit to the

distribution even though a KS test can already conclude
that our theoretical NSs cannot be drawn from Gaussian, as
discussed above. As can be seen in the last panel of Fig. 5,
the Gaussian fits for all four theoretical distributions are in
extremely good agreement with the distribution of slow
pulsars. As mentioned above, this distribution has been
derived from a small sample of pulsars, and therefore a
bimodal nature of the underlying distribution cannot be
excluded. Moreover, the agreement between the theoretical
Gaussian fits and the observed distribution suggests that, if
the underlying distribution was indeed bimodal, a Gaussian
fit would produce exactly the distribution that has been
observed. In other words, if we assume that the true birth-
mass distribution is equal to the bimodal distribution we
find in the simulations, a small sample of objects would be
indeed distributed according to the observed distribution of
slow pulsars. We want to stress that this is a speculative
conclusion since no robust statistical argument supports it.
Nonetheless, it shows that robust conclusions about the
bimodality (or lack thereof) of the birth-mass distribution of

NSs cannot be made without larger samples of observed
slow pulsars.
As can be seen by looking at the distribution of double

NSs, our results seem to be underproducing low-mass NSs.
This could have a few different explanations. Firstly, the
narrow peak of the observed distribution suggests a
preferred evolution channel of these stars, and therefore
it should be most likely combined with other observations
(like slow pulsars, for example), to properly derive a birth-
mass distribution, which could shift the peak to larger
masses. Secondly, our simulated progenitors are stars that
developed an iron core with masses of 9M⊙ and above in
the solar metallicity set, and 11M⊙ and above in the zero
and low metallicity sets. However, electron-capture super-
novae at around 8 − 10M⊙ are responsible for producing
the lowest mass NSs and will be very much favored by the
IMF. Therefore, the theoretical distributions derived here
likely exclude a large number of low-mass NSs which
could explain the population represented by double NSs.
Moreover, this would be compatible with the fact that the
vast majority of binaries are composed by two relatively
small massive stars (find reference).
As mentioned above, when combining all of the

metallicities, the ξ-fit, the MSi=O-fit, and the MCh-fit
correctly reproduce the results from the simulations.
However, unsurprisingly, at solar metallicity the MSi=O-
fit and MCh-fit grossly misrepresents the distribution
obtained from simulations. This could have been intui-
tively concluded by noticing the large deviation in the NS
masses predicted by both fits compared to the results of
the simulations for some solar-metallicity progenitors (see
Fig. 4). Therefore, we recommend using the ξ-fit rather
than one based on MSi=O or MCh since it is less susceptible
to progenitors exploding long after the accretion of the
Si=Si-O interface. As discussed in the previous section,
the stars whose MNS is poorly reproduced by theMSi=O-fit
and MCh-fit, explode much later than the accretion of the
Si=Si-O interface, and therefore both fits systematically
underestimate the mass of the final compact object. A
detailed study of what causes the explosion of these stars
to be so different is beyond the scope of this paper and is
currently underway [98].
To summarize, our simulations show a clear bimodal

distribution across all metallicities. The bimodal nature of
the Chandrasekhar mass distribution shown in Fig. 2
naturally translates into a bimodal NS birth-mass distribu-
tion, as had been already recognized by [37]. The differ-
ence with previous work [48,51,99] is that the stars with
larger Chandrasekhar masses do not successfully explode
according to those studies. However, with our parametric
model for ν-driven convection, we expect them to explode
and therefore make up the second peak of the birth mass
distribution. The large discrepancy in the explodability
predicted by our model and the studies mentioned above is
illustrated in Fig. 8, and discussed in more detail at the end
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of the Sec. IV C The comparison with observations showed
that a bimodal NS birth-mass distribution would indeed be
possible, and would also naturally explain the high-mass
NSs without needing to accrete a large amount of mass. The
best predictor for the final NS mass is the compactness of
the progenitor right before collapse. Therefore, without
needing to perform any CCSN simulation, using the
explodability criterion described in Sec. III and the ξ-fit
from Eq. (7) one can predict the outcome of the supernova
and the mass of the remnant. For the cases in which the
explosion is not successful, a BH will be formed, as
discussed in the next section.

C. Black holes

The origin of black holes as a consequence of stellar
collapse is highly uncertain. The detection of a failed SN is
particularly challenging since the disappearance of a star
can oftentimes be compatible with obscuration due to dust.
Therefore, the same event could be interpreted as a failed
SN or a sudden obscuration of the source due to a dusty
environment caused by some ejection event [100,101].
Nonetheless, it is possible to set some constraints to the
fraction of failed SNe ffSNe, i.e., ffSNe ¼ 0.16þ0.23

−0.12 accord-
ing to [102] and ffSNe < 0.23 for sources with absolute
magnitudes > −14 according to [100].
In this study, we compute the fraction of failed SNe by

assuming that stars with ZAMS masses around 8M⊙
(which we did not include in our simulations due to
the lack of available stellar evolution models) lead to
successful supernovae, regardless of metallicity. The
fate of stars around this mass, that can end their life
either as a white dwarf (WD) or as a NS, is quite uncer-
tain. Typically, these progenitors are not very well
studied [103], in part due to their complexity and the
large uncertainties that affect their evolution. Moreover,
simulating the neutrino-driven mechanism as well as the
initial flame propagation is very challenging, although
some multidimensional simulations have very recently
started to explore this [84,104,105]. The lowest mass stars
that will lead to electron-capture supernovae, and there-
fore produce a NS rather than a WD, are believed to be
around 8 − 8.5M⊙ [103], and the fraction of failed SNe
can vary by a few percent depending on where this lower
boundary is. The fraction of failed SNe from our simu-
lations is shown in Fig. 6. Notice that the fraction of failed
SNe is extremely sensitive to the fate of stars on the lower
end of the mass range. Therefore, for the zero and low
metallicity progenitors, we assume that all progenitors
between 8M⊙ and 11M⊙ explode. However, in the solar
metallicity set, we found that the 10.75M⊙ progenitor
does not explode, which is surprising considering that all
of the low-mass progenitors should most likely explode,
and it could be due to stochastic fluctuations and/or to the
large uncertainties affecting stellar evolution. This alone
affects the explosion fraction tremendously, as shown in

Fig. 6. If one assumes that this progenitor explodes, and
the lower end of electron-capture SNe is located at ∼8M⊙,
the fraction of failed SNe found in our simulations is
consistent with all current constraints.
Another uncertainty regarding stellar-mass black holes

involves their birth masses, which heavily depend on the
amount of fallback experienced by the central compact
object. In other words, the black hole mass distribution
depends on what fraction of the outer envelope will be
ejected, and what fraction will be accreted onto the central
compact object. The ejection of the outer envelope can
be a consequence of several different mechanisms [31–36],
and the fraction of the envelope that will be ejected will
likely vary among different progenitors. For simplicity,
we adopt a common approach often found in the litera-
ture [38,42,77,99], where we assume that a fraction fej of
the hydrogen envelope will be ejected, and use the same
value for all progenitors.
Similarly to what was done for NSs in Sec. IVA,

we present two different sets of theoretical BH masses:
(i) the one calculated directly from GR1D+ simulations;
(ii) the one predicted by the explodability criterion pre-
sented in Sec. III. Once established which stars will
produce a failed SN based on (i) and (ii), the BH mass
MBH is computed by subtracting the ejected mass from the
total presupernova mass Mpresn:

FIG. 6. Fraction of failed SNe for the three different sets of
metallicities. The horizontal black line and gray shaded region are
the fraction of failed SNe inferred by [102] and its 90% con-
fidence interval, respectively. The horizontal blue line shows the
most stringent upper limit (i.e., sources with absolute magnitudes
< −14) from [100]. The filled circles show the fraction of
failed SNe calculated directly from our simulations, with the
assumption that stars between 8M⊙ and the smallest ZAMS mass
in each set (i.e., 11M⊙ for the zero and low metallicity sets, and
9M⊙ for the solar metallicity set) successfully explode. The
empty circle is instead the fraction of failed SNe assuming that
the 10.75M⊙ progenitor in the solar metallicity set successfully
explodes, although in our simulations it fails.
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MBH ¼ Mpresn − fejMH; ð11Þ

where MH is the mass of the hydrogen envelope and fej is
the fraction of the hydrogen envelope that has been ejected.
The LVK collaboration has significantly improved our

understanding of the mass distribution of BHs. In particu-
lar, the recently announced event GW230529 completely
revolutionized what we know about stellar mass black
holes (i.e., BHs formed in CCSNe). The more massive
companion in this binary merger event is an object with
mass 3.6þ0.8

−1.2M⊙ at >90% confidence level, with a prob-
ability >90% that this object is indeed a BH and not a very
massive NS. This is a much higher confidence compared to
GW190814 [106], in which the 2.6M⊙ cannot be clearly
classified as a high-mass NS or a low-mass BH. Therefore,
one can conclude that GW230529 shows the existence of
stellar black holes in the low-mass gap. Given the very
recent announcement of this event and the large uncertainty
in the mass of the larger object, we decided to use the
truncated power law previously derived by [107] to
describe the mass distribution. However, instead of using
mmin ¼ 6.8M⊙ as the lower end of the BH mass distribu-
tion, we use the recently derived value of mmin ¼ 3.6M⊙.
The observed BH mass distribution we adopted is the

following [107]:

PðMBHÞ ∝ Sðmjmmin; δmÞm−α; ð12Þ

where mmin ¼ 3.6M⊙, δm ¼ 3M⊙, α ¼ 7.1, and
Sðmjmmin; δmÞ is a smoothing function defined as:

Sðmjmmin; δmÞ ¼

8>><
>>:

0 ðm < mminÞ
1

fðm0Þþ1
ðmmin ≤ m < mmin þ δmÞ

1 ðm ≥ mmin þ δmÞ;
ð13Þ

with m0 ¼ m −mmin and

fðm0Þ ¼ exp

�
δm
m0 þ

δm
m0 − δm

�
: ð14Þ

This is shown as a dotted dashed black line in Fig. 7.
Similarly to what was done in the previous section, we

consider two possible shapes for our simulated data: a
Gaussian and a truncated power law (PL) in the form of
Eq. (12), where we allow both α and mmin to vary, and we
keep δm ¼ 3M⊙ since it is simply a smoothing parameter.
For the remainder of this section, we exclude the 100M⊙
and 120M⊙ progenitors at solar metallicity from part of the
analysis. These are Wolf-Rayet stars that have lost all of
their hydrogen envelopes and have pre-SN masses around
∼6M⊙, much smaller than any of the other stars. Since they
lost all of their hydrogen envelope, according to Eq. (11)
they will produce BHs of ∼6M⊙, regardless of fej.
Therefore, we only include them in the analysis of BH

FIG. 7. Comparison between theoretical (in colors) and observed (in black) gravitational mass distributions of NSs. Different colors
correspond to theoretical distributions calculated assuming that different fractions fej of the hydrogen envelope have been ejected [see
Eq. (11)]. Solid lines correspond to theoretical distributions derived directly from simulations (set (i) in Sec. IV C), dashed lines
correspond to theoretical distributions derived using the explodability criterion from Sec. III (set (i) in Sec. IV C). The dotted-dashed line
shows the observed distribution inferred by the LVK collaboration, including the most recent GW230529 observation [30].
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masses corresponding to fej ≥ 0.5. Otherwise, they would
form BHs more than 1M⊙ smaller compared to the other
stars, which would significantly impact the fit, despite these
stars having an extremely low contribution to the full
population due to the very small IMF at such high ZAMS
masses. For fej ≥ 0.5 many of the other stars will produce
BHs with masses comparable to or lower than 6M⊙, and we
can include these two progenitors in the analysis since they
do not skew the fit at low masses anymore.
After calculating the BH masses according to procedures

(i) and (ii) outlined above, we generate 20 000 synthetic
black holes by weighting each BH mass with a Salpeter
IMF with an exponent α ¼ −2.35. Then, using the “fit”
method from the python module statsmodels [97] we
compute the best-fit distribution by maximizing the log-
likelihood. The best-fit truncated PL and Gaussian distri-
butions are shown in Fig. 7 for different values of fej and
for each of the metallicities, as well as for all of the
metallicities combined. For simplicity, we only analyze the
distribution of BHs for all of the metallicities combined
due to the small samples of BHs produced at each given
metallicity: 45, 32, and 7 for the solar, low, and zero
metallicity sets, respectively. Therefore, for the remainder
of this section, we always refer to the full set of the
combined metallicities, unless stated otherwise.
The best-fit parameters are summarized in Table IV for

both the BH masses calculated from simulations (i.e.,
procedure (i) described above, labeled as GR1D+) and
the ones derived from our explodability criterion (i.e.,
procedure (ii) described above, labeled as pre-SN criterion).
Table V shows the value of the maximum log-likelihood, as
well as the value of the KS test and the corresponding
p-value for all of the fits. The p-value for the truncated PL
is always >0.05, whereas the Gaussian distribution has a
p-value consistently lower than 0.01. Therefore, we con-
clude that a truncated PL is best to describe the data. This is
not at all surprising since the pre-supernova mass grows
approximately linearly with ZAMS mass, and therefore the
low-end of the BH mass distribution will be truncated by
construction, and then the power-law behavior is a conse-
quence of the power-law distributed weights from the IMF.

A value of fej ≳ 0.8 provides the closest distribution to
what has been observed by LIGO. However, as mentioned
above, the uncertainty in the masses of GW230529 is quite
large, due to the low signal-to-noise ratio caused by the low
amplitude of the gravitational waves from this event and the
fact that only LIGO Livingston was online at the time.
Previous studies on the remnant mass distributions

have derived different values for fej. For example, [99]
adopt fej ¼ 1, and in some cases argue for the He-shell to
be ejected as well, whereas [39] find fej ¼ 0.9. Other
studies [38,41] use different prescriptions where fej might
be different for different progenitors and, in some cases, a
fraction of the He-shell could also be ejected.
Broadly speaking, our simulations produce lower-mass

BHs compared to previous studies. This is a direct
consequence of the completely different explodability
pattern compared to previous studies. As an example,
Fig. 8 shows the difference between the outcomes of
the simulations carried out in this work versus the ones
from [49]. The pre-SN progenitors simulated in the
two studies are exactly the same, but in our case, the
explosion is achieved using the STIR, a physically moti-
vated 1Dþ model calibrated on multidimensional simu-
lations, described in Sec. II B. Instead, [49] used an ad hoc
prescription to manually change the neutrino luminosity
emitted from the PNS calibrated on observed pro-
perties of supernovae [46]. The other studies mentioned
above [38,51,99] tend to have explodabilities that overall
resemble [49]. On the other hand, 1Dþ simulations
from [56] and 2D simulations from [28] resemble the
explodability pattern obtained by our simulations. For a
more detailed discussion of these differences, we refer the
reader to the discussion given in BR23.
As can be seen by the strikingly different explodability

pattern in Fig. 8, our simulations produce black holes
for ZAMS masses 12M⊙ < MZAMS < 15M⊙, and do
not produce black holes for ZAMS masses 22M⊙ <
MZAMS < 25M⊙, whereas [49] predict the exact opposite.
Therefore, the black holes obtained in this work are much
smaller. Hydrodynamic simulations [31–36] seem to con-
sistently indicate that the hydrogen envelope is most likely

FIG. 8. Comparison between the explodability found using GR1D+ simulations (upper panel) versus the explodability found by [49].
The initial pre-SN progenitors are, in both cases, the ones used in [49]. Notice that the upper panel is the same upper panel of the solar
metallicity set shown in Fig. 1.
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ejected in the vast majority of cases, which would suggest
fej ∼ 1.0. According to our simulations, this would corre-
spond to a minimum BH mass of ∼2.6M⊙, which corre-
sponds to the mass of the smaller object in the merger event
GW190814 [106]. Therefore, this would imply a continu-
ous transition between NSs and BHs, i.e., no “low-mass
gap” between NSs and BHs, which is what the most recent
LVK results [30] show.
As was also mentioned in Sec. IVA, different stellar

evolution codes predict different pre-supernova structures
and, as a consequence, different BH and NS mass dis-
tributions. In particular, as shown in BR23, for the stellar
evolution code FRANEC [75] our simulations show that
black holes are formed at around 13 − 14M⊙ and in the
region between 20M⊙ and 24M⊙, which would modify the
resulting BH and NS mass distributions. An investigation
of how different stellar evolution codes and prescriptions
affect the mass distributions of compact remnants is beyond
the scope of this work and is left for future work.
Finally, it should be stressed that some of the most

common prescriptions used for population synthesis cal-
culations, such as [38,77], do not predict any black holes in
the low-mass gap. Our model, instead, naturally explains
the presence of low-mass black holes for values of fej close
to 1, which is what the most recent, although still uncertain,
theory seems to indicate. It is worth pointing out that
another possible channel for creating low-mass black holes
is if a high-compactness progenitor would initially launch
an explosion and then later form a black hole due to late-
time fallback. This has been recently seen by [81], where an
explosion of a 40M⊙ progenitor yielded a successful
explosion followed by the formation of a ∼2.63M⊙ black
hole. This is still a relatively unexplored phenomenon, due
to its complexity and computational demand, and it is
therefore unclear if black holes with masses∼3–5M⊙ could
be produced that way. For now, as we have shown, the
black hole formation channel presented in this work can
naturally explain a plethora of black holes at low masses.
To summarize, the remnant masses predicted by our

simulations are in excellent agreement with the most recent
LVK results [30], which seem to indicate that there is no
mass gap, and therefore there is a smooth transition
between NSs and BHs. To obtain such low-mass stellar
black holes, values of fej > 0.8 are required, which is what
the current models of failed SNe suggest. Given the large
uncertainty in the masses of GW230529, the exact location
of the low-mass cutoff for stellar black holes is still not well
constrained, and could be anywhere within the range
2.5 − 4.5M⊙, and therefore all values of fej > 0.8 are
plausible. The difference between the BH masses derived
using the explodability found directly from the simulation
and the BH masses derived assuming the explodability
predicted by the criterion described in Sec. III is very small.
Therefore, one can robustly predict the outcome of the
supernova and the mass of the resulting BH (after choosing

the value of fej) simply based on the pre-SN density and
entropy profiles.

V. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the remnant masses
of 341 1Dþ simulations for progenitors spanning a
wide range of ZAMS masses and metallicities. The
explodability of CCSNe remains a challenging problem,
affected by uncertainties in the supernova engine itself
as well as by uncertainties in the stellar evolution [78].
We showed that 1Dþ simulations [43,56] predict a very
different explodability pattern compared to previous 1D
studies [38,48,51,99]. However, they are consistent with
the most recent 2D and 3D simulations [17,28], due to
the physically consistent (although parametric) model for
ν-driven convection implemented.
We provide a robust criterion to predict the explodability

of CCSNe based on the pre-SN density and entropy
profiles. This criterion is a modification of the one derived
by BR23, to account for the exploding high-compactness
progenitors at low and zero metallicity which, according to
the simpler criterion of BR23, are predicted to produce a
failed SN.
The masses of neutron stars produced by the explosion

of CCSNe are highly dependent on the pre-SN structure
of the massive star in question. In particular, there is a
positive correlation between the Chandrasekhar mass and
the gravitational mass of the final, cold neutron star.
Generally, the Chandrasekhar mass is always slightly
smaller than the mass of the neutron star. The dependence
of the Chandrasekhar mass MCh on the ZAMS mass of the
star is nontrivial, and affected by several uncertainties.
Broadly speaking, one expects stars above a certain ZAMS
mass to burn Carbon in radiative equilibrium, rather than in
convective equilibrium. This eventually causes the star to
completely bypass the neutrino cooling phase in the latest
stages its life. This prevents the central entropy from
decreasing, and therefore one naturally expects a bimodal
distribution of MCh. This would therefore translate into a
bimodal distribution of NS masses [37]. However, most
previous 1D studies found that the stars that burn carbon in
radiative equilibrium do not successfully explode, but
instead lead to the formation of a black hole. Therefore,
most of those studies found a single-peaked NS mass
distribution. Our 1Dþ simulations, however, find that these
stars (e.g., stars with ZAMSmasses 22M⊙ ≲M ≲ 25M⊙ at
solar metallicity, according to the KEPLER stellar evolu-
tion code [49]) successfully explode, in agreement with 2D
and 3D simulations.
In light of this novel result, we analyzed the remnant

masses from our 1Dþ simulations and derived four
theoretical distributions. The first is calculated directly
from the GR1D+ simulations. The remaining three are
calculated using the explodability criterion described in
Sec. III, and three different fits to compute the neutron star
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gravitational mass based on compactness,MSi=O, andMCh.
In all cases, we found a robust second peak at ∼1.8M⊙,
compatible with the observed population of ms pulsars
from [92]. This could potentially have a significant impact
on binary population synthesis calculations, since one
would be able to produce very massive neutron stars
directly from a SN, without the need to accrete large
amounts of matter via binary interactions.
When compared to previous 1D simulations, our GR1D+

simulations also produce lower mass black holes (e.g., for
stars with ZAMS masses 12M⊙ ≲M ≲ 15M⊙ at solar
metallicity, according to the KEPLER stellar evolution
code [49]). We derived black hole mass distributions
directly from our simulations and also using the explod-
ability criterion described in Sec. III. Given the very high
accuracy of our explodability criterion, the two theoretical
distributions are in excellent agreement. In all cases, a
truncated power-law fits the data much better than a
Gaussian. This is not surprising and is simply due to the
linear dependence of the BH mass on the ZAMS mass, and
the power-law behavior of the IMF.
We then compared these results with the BH mass

distribution observed by the LVK collaboration, in light
of the very recent event GW230529 [30]. A black hole in
the so-called “low-mass gap” was observed, which is
naturally explained by our simulations if one assumes that
more than 80% (and up to 100%) of the hydrogen envelope
is expelled. Indeed, there is a general consensus [31–36]
that most (if not the entirety) of the hydrogen envelope will
be ejected, which corresponds to the range of fej that we
found. This can have a significant impact on binary
population synthesis calculations, since many more black
holes (although with a smaller mass) compared to pre-
dictions of previous 1D studies will be produced, since stars
with ZAMS masses 12M⊙ ≲M ≲ 15M⊙ are more favored
by the IMF. However, it is important to stress that the
fraction of failed SNe is still compatible with the most
recent (and more stringent) observational data, even though
these 1Dþ simulations produce black holes for stars that
are favored by the IMF.
In conclusion, the explosion properties of CCSNe are

still affected by several uncertainties, and the explodability
of CCSNe is still a highly debated topic. More sophisti-
cated 3D (and, although less reliable, 2D) simulations are
required to shed more light on this complicated phenome-
non. With that in mind, we have presented 1Dþ simu-
lations that are in very good agreement with the most recent
sets of 2D and 3D simulations. We used these simulations
to derive a simple explodability criterion that generalizes
the one derived by BR23. Moreover, we derived simple fits
to calculate the remnant masses of neutron stars and black
holes solely based on the pre-SN structure of massive stars,
regardless of metallicity. The two main findings of this
paper are the bimodal nature of NS birth mass distribution,
as well as the presence of many black holes in the low-mass

gap. Both of these hypotheses are completely viable, and
future observations will be able to put better constraints on
both of them, with the latter being already confirmed by the
most recent results [30] of the LVK collaboration.
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APPENDIX A: FITTING PROCEDURE
FOR NS MASSES

The fitting procedure to derive NS mass distributions is
as follows:

(i) select the successful explosions directly from the
simulations (set (i) in Sec. IV B) or by using the
explodability criterion described in Sec. III (sets (ii),
(iii), and (iv) in Sec. IV B);

(ii) calculate the NS mass by converting the final
baryonic mass of the PNS to gravitational mass
(set (i) in Sec. IV B) or by using the ξ-fit, MSi=O-fit,
or MCh-fit (sets (ii), (iii), and (iv), in Sec. IV B)
described in Eqs. (7) and (8);

(iii) generate 20 000 synthetic observations by ran-
domly sampling the NS masses weighted by an
IMF ∝ M−2.35

ZAMS;
(iv) perform a ML fit using the python module stats-

models [97].
Notice that, instead of using the final baryonic mass of
the PNS as a proxy for the final mass of the cold NS, one
could also define a mass cut Mcut, as done for example
in [53]. Below Mcut, matter will accrete onto the compact
object, and above Mcut matter will instead be ejected.
However, the mass cut is located extremely close (in mass)
to the PNS, and we did not find any appreciable differences
in the remnant mass defined in these two different ways.
To perform the KS test to assess the goodness-of-fit, one

has to first bin the data. The results reported in Table III
were derived assuming a number of bins equal to half of the
total number of successful simulations. For completeness,
we show in Fig. 9 how the p-value for the KS test changes
as a function of the number of equal-width bins chosen. As
one would intuitively expect, with only a few bins the KS
test cannot reject the null hypothesis.
Due to the potential ambiguity of the KS test in this

scenario, we also computed the Kullback–Leibler (KL)
divergence between the fitted distribution and the actual
distribution of the data. This metric essentially determines
how “close” two distributions are. Similarly to the KS test,
we first need to bin the data to perform the comparison, and
we show in Fig. 10 that, regardless of this choice, the
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FIG. 10. Kullback–Leibler divergence computed between the four fitted distributions described in Sec. IV B (i.e., the four rows in the plot)
and the raw data as a function of the number of equal-width bins used to bin the data, for different metallicities and all metallicities combined
(i.e., the four columns in the plot). Red-filled circles represent theKLdivergence calculated between a bimodal theoretical distribution and the
raw data; black-filled circles represent the KL divergence calculated between a Gaussian theoretical distribution and the raw data.

FIG. 9. Probability of rejecting the null hypothesis (p-value) for the Kolmogorov–Smirnov test as a function of the number of equal-
width bins used to bin the data. The KS test has been performed between the four fitted distributions described in Sec. IV B (i.e., the four
rows in the plot) and the raw data, for different metallicities and all metallicities combined (i.e., the four columns in the plot). Values
below 0.05 indicate that the data is not distributed according to the fitted distribution. Red-filled circles represent the p-value calculated
assuming a bimodal theoretical distribution; black-filled circles represent the p-value calculated assuming a Gaussian theoretical
distribution. Red (black) crosses indicate the values reported in Table III for the bimodal (Gaussian) fit.
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bimodal distribution is always a closer representation of
the data.

APPENDIX B: FITTING PROCEDURE
FOR BH MASSES

The fitting procedure to derive BH mass distributions is
as follows:

(i) select the successful explosions directly from the
simulations (set (i) in Sec. IV C) or by using
the explodability criterion described in Sec. III
(set (ii) in Sec. IV B);

(ii) calculate the BH mass by ejecting a fraction fej of
the hydrogen envelope [Eq. (11)];

(iii) generate 20 000 synthetic observations by randomly
sampling the BH masses weighted by an IMF ∝
M−2.35

ZAMS;
(iv) perform a ML fit using the python module stats-

models [97].
In this approach, fej is essentially almost a free parameter,
although some theoretical studies suggest values closer to 1
as more plausible [31–36].
Due to the small samples of data compared to the case of

NSs, we only show the results of the KS test and KL
divergence for the combined metallicities case, for different
values of fej in Figs. 11 and 12. The procedure is the same
followed in the case of NSs.

FIG. 11. Probability of rejecting the null hypothesis (p-value) for the Kolmogorov–Smirnov test as a function of the number of equal-
width bins used to bin the data. The KS test has been performed between the two fitted distributions described in Sec. IV C (shown as
filled or empty circles) and the raw data for different values of fej. Values below 0.05 indicate that the data is not distributed according to
the fitted distribution. Red circles represent the p-value calculated assuming a bimodal theoretical distribution; black circles represent the
p-value calculated assuming a Gaussian theoretical distribution. Crosses and plus symbols indicate the values reported in Table V for fit
performed using the explodability obtained in the simulations and the explodability predicted by the pre-SN explodability criterion
described in Sec. III, respectively.
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FIG. 12. Kullback–Leibler divergence computed between the two fitted distributions described in Sec. IV B (shown as filled or empty
circles) and the raw data as a function of the number of equal-width bins used to bin the data, for different values of fej. Red circles
represent the KL divergence calculated between a bimodal theoretical distribution and the raw data; black circles represent the KL
divergence calculated between a Gaussian theoretical distribution and the raw data.

TABLE IV. Best-fit parameters for the Gaussian and truncated power-law fits for the two sets of theoretical BH masses described in
Sec. IV C, for different values of fej.

Gaussian fit

μ

fej 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

GR1D+ 13.50 12.55 11.60 10.69 9.78 8.85 7.91 7.00 6.08 5.16 4.23
pre-SN criterion 13.49 12.55 11.60 10.70 9.75 8.79 7.90 6.94 6.02 5.09 4.16

σ

fej 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

GR1D+ 2.92 2.65 2.49 2.34 2.20 2.03 1.86 1.72 1.61 1.46 1.35
pre-SN criterion 2.95 2.79 2.59 2.40 2.23 2.00 1.91 1.69 1.55 1.41 1.28

Truncated PL fit

mmin

fej 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

GR1D+ 9.58 8.80 8.04 7.32 6.63 5.81 5.22 4.44 3.65 2.87 2.09
pre-SN criterion 9.90 9.12 8.34 7.56 6.78 5.98 5.22 4.44 3.65 2.87 2.09

α

fej 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

GR1D+ 6.11 6.09 6.01 6.08 6.21 5.88 6.57 6.29 6.10 5.76 5.33
pre-SN criterion 7.52 7.42 7.63 7.20 7.01 6.68 6.74 6.47 6.21 5.80 5.42
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