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In the presence of anisotropic neutrino and antineutrino fluxes, the quantum kinetic equations drive
coherent oscillations in neutrino helicity, frequently referred to as spin oscillations. These oscillations
depend directly on the absolute mass scale and Majorana phase, but are usually too transient to produce
important effects. In this paper we present a full momentum-space analysis of Majorana neutrino spin
oscillations in a snapshot of a three-dimensional neutron star merger simulation. We find an interesting
angular dependence that allows for that resonant and adiabatic oscillations to occur along specific
directions in a large volume of the merger remnant. The solid angle spanned by these directions is
extremely narrow in general. We then analyze spin transformation in the presence of flavor transformation
by characterizing how the effect’s resonance and timescale change during a fast-flavor instability. For this
analysis, we derive a generalized resonance condition that poses a restrictive requirement for resonance to
exist in any flavor channel. We determine that spin oscillations at all locations in the merger snapshot have a
length scale that is too large for significant oscillations to be expected even where there exist resonant and
adiabatic directions.
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I. INTRODUCTION

Neutrino transport plays a crucial role in the dynamical
evolution of neutron star mergers (NSMs) and core collapse
supernovae (CCSNe). In neutron star mergers, abundant
weak nuclear interactions give rise to a massive outward
neutrino flux that crucially influences the mass outflow and
nucleosynthesis evolution of the event [1–6]. Importantly,
the relative strengths of the electron neutrino and anti-
neutrino absorption and emission rates determine the
equilibrium ratio of protons to neutrons and the consequent
fate of nucleosynthesis, thereby governing the proportions
of elements that are formed in the ejecta (e.g., [7]).

Neutrinos are similarly important in canonical CCSNe,
and in addition are the factor that fundamentally drives the
explosion itself (e.g., [8,9]).
As a consequence, our understanding of NSMs and

CCSNe is only as good as our comprehension of the
complex neutrino processes that transpire in these events. A
large body of research has focused on neutrino transport
effects (e.g., [10,11]), as well as exploring methods for
modeling flavor transformation and probing sensitivity to
neutrino flavor transformation effects (e.g., [12–16] and
references therein).
In addition to neutrino transport and flavor transforma-

tions, another phenomenon within the neutrino sector that
could emerge in NSMs and CCSNe involves neutrinos
potentially undergoing helicity or spin transformation,
which would drive active-to-sterile conversions for
Dirac neutrinos and neutrino-antineutrino conversion for
Majorana neutrinos (see e.g., [17–19] and references
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therein). Although such conversions have yet to be dem-
onstrated experimentally, a significant amount of helicity
transformation would change the rate of energy transport
and the path of nucleosynthesis in NSMs and CCSNe. If
such an astrophysical site exists, inputs from probes of the
fundamental Dirac or Majorana nature of the neutrino [20],
the existence of sterile neutrinos [21], and the neutrino
masses [22] will be crucial to developing detailed models.
Helicity oscillations (also referred to in various contexts

as spin or spin-flavor oscillations) of Dirac as well as
Majorana-type neutrinos were first proposed as an explan-
ation to the solar neutrino deficit [23–29], before the
Mikheyev-Smirnov-Wolfenstein (MSW) resonance even-
tually gained acceptance as the favored solution to this
problem. At the same time, it was recognized that these
effects could also be present in supernovae and neutron star
environments [29–31], and the prospect of resonantly
enhanced helicity oscillations was also identified [28,29].
Neutrino spin oscillations can be driven in several ways.

These early works considered the scenario where external
magnetic fields can couple to a nonzero Dirac or Majorana
neutrino magnetic dipole moment to induce spin preces-
sion, an effect that has since been further explored in more
detail [32–49]. This can also serve to probe the Dirac/
Majorana nature of the neutrino [50]. In the standard
model, a small magnetic moment is tied to the neutrino
mass, but in beyond-standard-model physics there can be
additional contributions to the neutrino magnetic moment
that are unrelated to the mass (e.g., [23,32]). Previous
research has shown that this effect is only significant in the
presence of extremely large magnetic fields, large neutrino
moments (typically larger than the standard model value
based on limits on neutrino masses), or both, although
resonances can arise that enhance helicity transformation
probabilities (e.g., [28,29,35,41,48]). Alternatively,
spin-flip effects can be driven by strong gravitational fields
or alternate theories of gravity [51–59], which more
generally can drive helicity conversions for any spinning
particle.
Finally, spin oscillations can be driven by an anisotropic

background due to an axial-vector potential generated by
neutrino forward scattering on polarized or asymmetric
matter or neutrino currents [60–64]. These anisotropy-
induced spin oscillations, which are the focus of this paper,
occur independently of an intrinsic magnetic dipole
moment and can also affect both Dirac and Majorana
neutrinos. This form of helicity oscillation imposes a
dependence of the quantum kinetic equations (QKEs) on
the neutrino absolute mass scale and Majorana phases,
potentially leading to observable manifestations of these
parameters.
Recent studies developed the formalism for extending

the neutrino evolution equations to include helicity coher-
ence induced by anisotropic matter/neutrino backgrounds
[18,60,61,63–66], as well as neutrino-antineutrino pair

correlations [63–66]. The magnitude of this helicity-
changing Hamiltonian is proportional to the neutrino mass
and inversely proportional to the neutrino momentum,
leading to helicity oscillations with negligible amplitudes
in most circumstances. It was recognized, however, that
helicity transformations through this channel could also be
resonantly enhanced [61,66]. Significant helicity trans-
formations require not only the presence of a resonance,
but the resonance must also be adiabatic so that the
oscillations occur on a sufficiently short timescale com-
pared to the evolution of the background (i.e., before the
resonance is lost). It was demonstrated subsequently that
a potential nonlinear amplification mechanism could
enhance the prospects of resonant helicity transformation
for Majorana neutrinos [62], using a simple parametric
form for the neutrino forward-scattering potential from
ordinary matter.
Later, Refs. [67,68] performed numerical investigations

of this effect in CCSN/NSM settings. Reference [67]
investigated spin-coherence prospects for Majorana neu-
trinos during the deleptonization burst phase of a CCSN
using both 2-flavor and 3-flavor treatments. It was found
that the nonlinear amplification mechanism from [62] is not
able to operate effectively unless experimentally forbidden
values of neutrino mass (∼10 eV) were used. Nevertheless,
it was noted that, if spin transformations were to take hold
during this phase of the explosion, it would have substantial
implications for the ensuing flavor evolution and the
expected neutrino signal at detectors. Reference [68] like-
wise explored this phenomenon in an NSM environment
for both Dirac and Majorana neutrinos, using a 2-flavor
calculation, and found no significant spin transformations,
even when the neutrino mass was artificially increased
to 100 eV.
In both works, spin oscillations were found to be too

transient to produce significant transformations. However,
these models contained many simplifications. For example,
both studies invoked the single-angle approximation (albeit
in different geometries) wherein background neutrinos
traveling along different trajectories are all assumed to
follow a flavor (and helicity) evolution history identical to
the test neutrino. Reference [67] assumed a spherically
symmetric neutrino “bulb” source to model neutrino
emission from a CCSN, whereas Ref. [68] modeled the
neutrino source as a disk, to represent the central object
formed in the immediate aftermath of an NSM. The impo-
sition of the single-angle approximation explicitly forbids
the fast-flavor instability [14,15]. In [67], this permitted a
physical separation of the respective regimes where helicity
and flavor conversion occur. In particular, the helicity
resonance was found to precede flavor conversion, and
hence only one spin resonance (the νe-ν̄e channel) needed
to be considered. Reference [68] examined the interplay
between the spin resonance and flavor evolution induced by
a Matter-Neutrino Resonance [69–78], but no significant

PURCELL, RICHERS, PATWARDHAN, and FOUCART PHYS. REV. D 110, 023003 (2024)

023003-2



spin transformations were observed, even when resonances
in multiple channels (e.g., νe-ν̄e, νe-ν̄x, etc.) were
considered.
To add to this complexity, if realized in NSMs, the fast-

flavor instability (FFI) has the potential to significantly
transform neutrino distributions due to coherent neutrino-
neutrino interactions. It has been shown that so-called
crossings in the angular neutrino distribution yield insta-
bility [79,80], and that the FFI is largely ubiquitous in
neutron star mergers [81–83]. The interplay between flavor
transformation and collisions (e.g., [84–86]) and the net
effect of flavor transformation on global scales (e.g., [87])
are very active areas of research, but the FFI itself appears
to be a dominant and lasting effect that significantly
changes neutrino flavor distributions. Because of the large
and ubiquitous impact of fast-flavor transformation, we
take a first stab at estimating the impact this instability
could have on helicity transformation.
In this paper, we generalize previous analyses of

anisotropy-induced spin oscillations by studying the effect
in the 3-flavor regime and by considering its full three-
dimensional structure in an anisotropic background and in
the context of fast-flavor instability in a neutron star merger
remnant. In Sec. II we review the theory behind neutrino
flavor and helicity coherence. In Sec. III we describe our
approach to probing for resonance and adiabaticity of
helicity transformations in multidimensional, 3-flavor
dynamical simulations of neutron star mergers, including
our approach to testing the potential impact of flavor
instabilities. We present the results of our calculations in
Sec. IV and provide concluding remarks in Sec. V.

II. BACKGROUND

In this section we outline the theory behind neutrino spin
transformation. In Sec. II A we describe the neutrino
distribution function and neutrino flux density. In
Sec. II B we describe a generalized, spin-dependent form
of the QKEs for a neutrino ensemble, derived in [60,88],
which contain a term capable of generating coherent
helicity transformation in anisotropic media. We analyti-
cally express the time-evolution operator from the QKEs in
terms of a chiral 4-potential Σα that depends on the neutrino
flux density and background matter distribution.
Throughout this paper we will use natural units

ℏ ¼ c ¼ 1. We will employ the convention that a tensor
T presenting a spacetime index α; flavor indices a, b; and
helicity indices h, h0 will be denoted as ½Tα

hh0 �ab, unless
flavor or helicity indices are left implicit. A spacetime
index will always be written explicitly. A tensor with no
spacetime index will simply be denoted Tab

hh0 .

A. The neutrino distribution function

A weakly interacting neutrino ensemble can be fully
described by its set of two-point Green’s functions,

encoding single-particle propagation amplitudes. Although
multiparticle correlations may have important conse-
quences (e.g., Refs. [89–91]), we follow [60,88] and
neglect that possibility in this work. Given annihilation
operators ai;p⃗;h (bi;p⃗;h) for (anti)neutrinos of mass state i,
three-momentum p⃗, and helicity h, we can express these
two-point functions as

hai;p⃗;h; a†j;p⃗0;h0 i ¼ ð2πÞ32nijðp⃗Þδð3Þðp − p0Þfijhh0 ðp⃗Þ; ð1Þ

hbi;p⃗;h; b†j;p⃗0;h0 i ¼ ð2πÞ32nijðp⃗Þδð3Þðp − p0Þf̄ijhh0 ðp⃗Þ: ð2Þ

Here the hi brackets denote the quantum mechanical and
statistical ensemble average, and nij ¼ 2ωiωj=ðωi þ ωjÞ is
the normalization factor, where ωiðp⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

i

p
. Note

that the correlations ha†; b†i and ha; bi pairing neutrinos
and antineutrinos should in general also be considered [64].
However these correlations generate transformation only
for very low-energy neutrinos, with DeBroglie wavelength
comparable to the length scale of the surrounding astro-
physical environment [61,64,92].
The numbers fijhh0 ðp⃗; xÞ and f̄ijhh0 ðp⃗; xÞ (which in general

are position dependent) encode the full information of the
neutrino ensemble, and can be assembled into distribution
functions

Fðp⃗; xÞ ¼
�
fLL fLR
fRL fRR

�

F̄ðp⃗; xÞ ¼
�
f̄LL f̄LR
f̄RL f̄RR

�
: ð3Þ

Here flavor indices are suppressed, so each fhh0 is a square
nf × nf matrix, where nf is the number of neutrino flavors.
Diagonal elements fiihh represent occupation numbers for
states of helicity h and mass state i, and off diagonal
components give the quantum coherence of states with
different mass and/or helicity. For Majorana neutrinos, the
distribution function is entirely described by F and is
related to F̄ by fhh0 ¼ f̄Thh0, where the transpose acts on
flavor indices.
Building distribution functions from two-point correla-

tions in this manner can only be done in the mass eigenstate
basis; to switch to the flavor basis we make use of the
Pontecorvo-Maki–Nakagawa–Sakata matrix U and convert
the distribution functions via fðflavorÞ ¼ UfðmassÞU†. All
quantities in this paper will be expressed in the flavor basis,
and explicit flavor indices will be indicated by a, b in a
superscript.
It will be convenient to define a position-dependent net

neutrino flux density Jα given by
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JαðxÞ ¼
Z

d3p
ð2πÞ3 n

αðp⃗Þ�fLLðp⃗; xÞ − f̄RRðp⃗; xÞ
�
; ð4Þ

where J0 gives the neutrino number density, and the spatial
components Ji encode the number flux density. nα ¼ ð1; p̂Þ
is the neutrino propagation direction. The full net neutrino
current density over all flavors is then TrfJα, where Trf
indicates a trace over flavor indices.

B. Neutrino spin oscillations in the QKEs

The neutrino QKEs characterize the evolution of the
distribution functions F and F̄. Here we outline the QKEs
for a Majorana neutrino ensemble, including the important
generalizations pioneered in [60–65] that lead to terms
which generate coherent helicity oscillations. Specifically,
we use QKEs that are derived including spin degrees of
freedom and second-order contributions in a power count-
ing scheme defined by ratios of relevant quantities (neu-
trino masses, mass splitting, forward scattering-induced
matter potentials, and external gradients) to the character-
istic neutrino energy in the ensemble.
The QKEs are

Dp⃗;xFðp⃗; xÞ ¼ −i
�
Hðp⃗; xÞ; Fðp⃗; xÞ�þ Cðp⃗; xÞ;

D̄p⃗;xF̄ðp⃗; xÞ ¼ −i
�
H̄ðp⃗; xÞ; F̄ðp⃗; xÞ�þ C̄ðp⃗; xÞ ð5Þ

where Dp⃗;x is a differential operator generalizing the Vlasov
term of transport equations, Hðp⃗; xÞ is a Hamiltonian-like
coherent evolution operator, and Cðp⃗; xÞ is an inelastic
collision term encoding direction-changing interactions.
We neglect the collision term in this paper, as the length
scale of inelastic interactions is far larger than that of the
fast-flavor instability (e.g., [84,93]). However, we will
show that the characteristic helicity transformation length
scale is large compared to the collisional length scale, so if
helicity transformations are present, the collisional term
would be needed for realistic evolution. H̄ðp⃗; xÞ and
C̄ðp⃗; xÞ are antineutrino analogs of these operators.
Before continuing, we must define a spacetime coor-

dinate basis formed by two lightlike 4-vectors nαðp⃗Þ ¼
ð1; p̂Þ, n̄αðpÞ ¼ ð1;−p̂Þ and two transverse 4-vectors
xα1;2 ¼ ð0; x̂1;2Þ. These satisfy n · xi ¼ n̄ · xi ¼ 0, xi · xj ¼
δij, and we demand that p̂; x1, and x2 form a right-handed
triad. The choice of x1 and x2 is then arbitrary up to a
rotation around n, but the algebra turns out to be simplest
with the “standard gauge” defined by taking x1 to have the
same azimuthal angle as nα [60,61]. With these conditions,
the basis is fully defined by the direction of p⃗, and can be
written in spherical coordinates as

nα ¼ ð1; cosðϕÞ sinðθÞ; sinðϕÞ sinðθÞ; cosðθÞÞ
xα1 ¼ ð0; cosðϕÞ cosðθÞ; sinðϕÞ cosðθÞ;− sinðθÞÞ;
xα2 ¼ ð0;− sinðϕÞ; cosðϕÞ; 0Þ; ð6Þ

where θ, ϕ are the polar and azimuthal angles of p⃗ (the
θ ¼ 0 and ϕ ¼ 0 directions are in reference to an arbitrary
choice of orthonormal coordinates).
The coherent evolution operator Hðp⃗; xÞ can be broken

up into chiral components as

Hðp⃗; xÞ ¼
�

HL HLR

H†
LR HR

�
;

H̄ðp⃗; xÞ ¼
�

H̄L HLR

H†
LR H̄R

�
; ð7Þ

where each element on the rhs of Eq. (7) is a 3 × 3 matrix
(flavor indices are omitted). The off diagonal block HLR
drives coherent oscillations between left- and right-handed
neutrinos, while the diagonal blocks HL and HR drive
neutrino flavor change. We can express these as [60,61]

HR ¼ Σκ
R þ 1

2jp⃗j
�
m†m − ϵij∂iΣj

R þ 4Σþ
RΣ−

R

�

HL ¼ Σκ
L þ 1

2jp⃗j
�
mm† − ϵij∂iΣj

L þ 4Σ−
LΣ

þ
L

�

HLR ¼ −
1

jp⃗j
�
Σþ
Rm

† −m†Σþ
L

�
: ð8Þ

The Σκ
L;R and m†m=2jp⃗j terms in the diagonal components

of HLðp⃗; xÞ and HRðp⃗; xÞ are present in standard analyses
of neutrino oscillations. The first encodes forward scatter-
ing on background matter and other neutrinos, and the
second controls vacuum oscillations. All other terms,
including the off diagonal spin-flip component HLR, arise
only in the presence of helicity coherence [60,61,88]. Here
m is the neutrino mass matrix, for which we describe our
particular assumptions in Sec. III. Since in this paper we
ignore inelastic collision terms and focus on state dynamics
for a given p⃗ and x, we refer to Hðp⃗; xÞ simply as the
Hamiltonian of the system.
Σκ
L (Σκ

R), Σi
L (Σi

R), and Σ�
L (Σ�

R ) are projections onto the
previously mentioned basis of a chiral 4-potential Σα

generated by forward scattering on background matter
and neutrinos:

ΣαðxÞ ¼
�Σα

LðxÞ 0

0 Σα
RðxÞ

�
: ð9Þ

Specifically, Σκ
L;R ¼ nαðp⃗ÞΣα

L;R and Σi
L;R ¼ xi · Σα

L;R,
and Σ�

L;R ≡ ð1=2Þe�iϕðx1 � ix2ÞαΣα
L;R.

Σα is generated by forward scattering on electrons,
nucleons, and background neutrinos, specifically receiving
contributions from the one-loop self-energy Feynman
diagrams in Fig. 1. The total potential factoring into
Eq. (8) is the sum of the matter and neutrino contributions:

Σα
R ¼ Σα

Rjν þ Σα
Rjmat: ð10Þ
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The potential contributed by background neutrinos is
given by

½Σα
R�abjν ¼

ffiffiffi
2

p
GFð½Jα�ab þ δabTrf ½Jα�Þ; ð11Þ

where the indices a and b indicate flavor and ½Jα�ab is the
neutrino flux density. The expression for the matter con-
tribution is similar, but can be simplified by assuming an
unpolarized, charge-neutral matter background with equal
amounts of left- and right-handed electrons and nucleons.
This is a good approximation in the absence of strong
magnetic fields. Additionally, we transform all quantities to
a comoving reference frame such that the local velocity of
matter (i.e., everything but neutrinos) is zero and assume
that there is not sufficient energy to produce significant
numbers of μ and τ leptons [1]. These assumptions lead to a
matter contribution given by

½Σα
R�abjmat ¼

ffiffiffi
2

p
GFnB

	
Yeδ

eaδeb þ 1 − Ye

2
δab



uα; ð12Þ

where Ye is the local electron fraction, nB is the baryon
number density, and uα ¼ f1; 0; 0; 0g is the fluid four-
velocity.
The expressions for the antineutrino evolution operator

H̄ are identical to those in Eq. (8), except that the sign of the
terms multiplied by 1

2jp⃗j in HR and HL are flipped. For

Majorana neutrinos, ΣR ¼ −ΣT
L, whereas for Dirac neutri-

nos Σα
L ≈ 0 [61], though we limit the present work to

Majorana neutrinos for simplicity.

III. METHODS

This section details the theoretical and computational
techniques employed in our three-dimensional analysis of
spin oscillations and the fast-flavor instability. Section III A
outlines the equations we use to identify resonant and
adiabatic helicity oscillations. Section III B describes the
neutron star merger simulation [3] we used for our analysis,

and explains how we reconstructed the time evolution
operator (8) and relevant spin oscillation parameters from
the data of the merger. Section III C describes our particle-
in-cell simulation of the QKEs with which we locally
simulate the fast-flavor instability in the neutron star
merger.
Throughout this paper we will use a Normal Hierarchy

neutrino mass matrix constructed from the best-fit mass-
squared differences and mixing angles given in [94];
specifically we take Δm2

21 ¼ 7.42 × 10−5 eV2, Δm2
31 ¼

2.514× 10−3 eV2, θ12 ¼ 33.44°, θ13 ¼ 8.57°, θ23 ¼ 49.0°,
and δCP ¼ 195°. Following [95] we take Σmν ¼ 0.26 eV, a
high upper bound to give the best possible chance to spin
flip effects which grow linearly with the neutrino mass.
These values lead to masses m1 ¼ 0.08227 eV, m2 ¼
0.08268 eV, and m3 ¼ 0.09505 eV. We take the magni-
tude of the neutrino momentum to be jp⃗j ¼ 10 MeV, a
representative value for NSM neutrinos [10]. Note that this
does not match the location- and species-dependent average
neutrino energy, but is sufficient for determining the
importance of the helicity-transforming parts of the
Hamiltonian and allows for easy rescaling under different
assumptions of mass or energy.

A. Conditions for significant helicity oscillations

Similar to the MSW mechanism [96,97], a neutrino can
experience significant helicity transformation when it
passes through a resonance adiabatically. Reference [67]
quantifies this under the assumption that there are equal
fluxes of all heavy lepton neutrino flavors, but in the
presence of the FFI this is not necessarily guaranteed. In
this section we generalize the criteria for significant helicity
transformation so it can be applied in realistic neutron star
merger scenarios in the presence of dynamical flavor
transformation.

1. Resonance

For significant transformation, the Hamiltonian must be
misaligned from the particle’s quantum state in a way that
sources helicity coherence. We can determine this by
looking at the Hamiltonian’s eigenvectors. Specifically,
assuming a constant Hamiltonian H, an initial six-
dimensional (3-flavor, 2-spin) neutrino state vector
jνð0Þi evolves as

jνðtÞi ¼
X6
k

akjλkie−iEkt; ð13Þ

where k indexes energy eigenstates and eigenvalues jλki
and Ek, and ak are the components of jνð0Þi in the energy
basis. Note that resonance in helicity oscillations cannot
occur if the eigenvectors jλki are all either purely left-
handed or purely right-handed; there have to be some
eigenvectors that are mixed in helicity with a large

FIG. 1. Tree-level Feynman diagrams encoding forward scat-
tering contributions to Σα [60].
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component in both the left- and right-handed subspaces.
This is because resonance requires that the changing phases
e−iEkt causes all the left-handed parts of the eigenvectors to
cancel out at some point in time in Eq. (13), and all the
right-handed parts to cancel out at a later point in time, so
that we get an initially right-handed neutrino transitioning
to a left-handed neutrino. But eigenvectors are orthogonal,
and therefore there is no superposition of purely left-
handed (or right-handed) eigenvectors that cancels to 0.
We therefore have that a necessary condition for resonance
is that at least one eigenvector of the Hamiltonian has
“sufficiently large” left- and right-handed parts.
Quantitatively, for neutrinos with NF flavor states, we

show in the Appendix that a necessary condition for
helicity resonance is

Ω ≥ 1; ð14Þ

where

Ω ¼ 2N2
Fmax

j
ð1 − jRhλjjλjiR − LhλjjλjiLjÞ; ð15Þ

jλji is the jth eigenvector, and jλjiL;R is the same
eigenvector with all right- and left-handed components
respectively set to zero. See the Appendix for a derivation
of Eq. (14).
This generalized resonance condition allows for a

treatment of helicity oscillations applicable to a general
mixture of an arbitrary number of neutrino flavors, which
was not possible with previous approaches. If a neutrino
distribution shows minimal flavor coherence such that the
Hamiltonian is approximately flavor diagonal, we can use
arguments analogous to MSW resonance to derive that
resonant helicity oscillations are guaranteed between fla-
vor-helicity states jaLi and jbRi if and only if

jHaa
L −Hbb

R j ≪ jHab
LRj: ð16Þ

Hence we have a necessary and sufficient condition for
helicity resonance between each pair of flavors a and b,
assuming negligible flavor mixing. In the eL ⇌ eR channel,
this gives us the condition jHee

L −Hee
R j ¼ 0 used in [67],

which can be simplified by inserting the expressions for the
Hamiltonian components [Eqs. (8) and (12)] to obtain

Gfnbð3Ye − 1Þffiffiffi
2

p þ ½Hee
L �ν ¼ 0; ð17Þ

a necessary and sufficient condition for helicity resonance in
electron neutrinos in the flavor-diagonal case.
However, in the context of leptonic interactions, weak

magnetism effects, and the multitude of flavor transforma-
tion phenomena present in neutron star mergers, flavor
mixing will occur, and the applicability of Eq. (17) will
break down. The generalized resonance condition [Eq. (14)]

is more robust in that it applies even in the context of
substantial flavor mixing, and encompasses resonance
between all possible flavor states in a single equation.
This comes at the cost of being a necessary but not
sufficient condition, but as we will see in our results it is
an extremely strong constraint.

2. Adiabaticity

Resonance on its own does not guarantee that significant
neutrino spin oscillations will occur. If the neutrino
Hamiltonian evolves too nonadiabatically, then the reso-
nance condition may be satisfied so briefly that the resultant
spin oscillations are negligible.
If a neutrino is oscillating between a pure left-handed

state jνLi and a pure right-handed state jνRi, then the
angular velocity of helicity transformations is

ωosc ¼ jhνLjHjνRij ð18Þ

to first-order by the Schrodinger equation. Similar to the
case of MSW resonance [96], the angular velocity of the
angle between the Hamiltonian and the initial state, which
determines how long the state remains in resonance, is

ωres ¼
∇p⃗jhνRjHjνRi − hνLjHjνLij

2jhνLjHjνRij
; ð19Þ

where ∇p⃗ denotes a derivative along the neutrino world
line. We can therefore define the adiabatic index γ by

γ ¼ ωosc

ωres
¼ 2jhνLjHjνRij2

jhνRj∇p⃗HjνRi − hνLj∇p⃗HjνLij
; ð20Þ

and adiabatic oscillations can be expected when

γ ≫ 1; ð21Þ

in which case the timescale of the oscillations is short
compared to the period over which the resonance condition
is satisfied.
For spin oscillations between left- and right-handed

electron neutrinos, this reduces to the expression given
in [67], namely

γee ¼
2jHee

LRj2
∇p⃗Hee

LL
: ð22Þ

We arrive at this equation by simplifying Eq. (8), setting the
extremely small latter terms −ϵij∂iΣj

R; 4Σ
þ
RΣ−

R ≈ 0 and
using the fact that Σκ

R ¼ −½Σκ
L�T for Majorana neutrinos.

Note that Eq. (19) is a first-order approximation of
the timescales over which resonance is preserved. If the
Hamiltonian has a very small time derivative along the neu-
trino trajectory then Eq. (19) suggests resonance will be

PURCELL, RICHERS, PATWARDHAN, and FOUCART PHYS. REV. D 110, 023003 (2024)

023003-6



maintained for a long period, but a large second derivative
could still mean it will be lost quickly. We discuss this
further in our results.
In order to evaluate adiabaticity, we need derivatives of

the potential Σ defined in a local orthonormal tetrad.
Transforming the potential four-vector and the derivative
into the coordinate frame yields

∇αΣν ¼ eα̃ðαÞe
ðνÞ
β̃
∇α̃

�
eβ̃ðδÞΣ

δ
�
; ð23Þ

where indices with a tilde indicate coordinate frame
quantities, bare indices indicate tetrad frame quantities,
and e are the tetrad basis vectors. We evaluate the partial
derivatives within the covariant derivative using centered
finite differencing. This is important to account for poten-
tial rotations of the tetrad from one location to the next.
Note that when we evaluate derivatives on the snapshot, we
treat partial time derivatives as zero. This is certainly an
approximation, but we choose to do this in lieu of full
dynamical quantum kinetic simulations.
Due to the smallness of them†=jp⃗j factor in Eq. (8),HLR

(and therefore the energy gap at resonance and γ) tends to
be very small for supernova or merger neutrinos with
characteristic momentum jp⃗j ¼ 10 MeV. Indeed, [67] has
shown that only the lowest energy neutrinos satisfy γ ≫ 1,
limiting the feasibility of significant spin oscillations
occurring in neutron star mergers.
One objective of this paper, then, is to determine whether

the shifts in neutrino flux caused by the fast-flavor
instability can increase the magnitude of HLR enough to
make helicity oscillations important.

B. Neutron star merger background

The background matter, neutrino, and spacetime back-
ground are taken from a simulation snapshot 5 ms after
the merger of two 1.2M⊙ neutron stars [3]. The merger
simulation is performed with the SpEC code, which
evolves Einstein’s equations of general relativity, the
relativistic fluid dynamics equations. Neutrinos are evolved
using a two-moment transport scheme evolving the energy
integrated neutrino energy density, momentum flux density,
and number density for each species of neutrinos and
antineutrinos (with muon and tau neutrinos and antineu-
trinos assumed to all have the same distribution function).
From these quantities, we can also directly calculate for
each species the average energy of the neutrinos, which we
use to construct the number four-flux vectors. The dense
matter is described by the LS220 equation of state [98].
We use data only from a single refinement level with grid
spacing of 0.68 km that covers a domain of size
136 × 136 × 68 km.
The two-flavor neutron star merger simulation developed

in [3] carries a three-dimensional grid of data for the
(anti)neutrino number density nνi (n̄νi) and spatial number

flux F̃νiðxÞ ( ¯̃FνiðxÞ), where the subscript i ¼ e; x denotes
either the electron or heavy-lepton flavor. The neutrino
lepton current JαðxÞ of Eq. (4) can be expressed in terms of
these as

½Jα�aaðxÞ ¼ �
nνa − n̄νa ; F̃νaðxÞ − ¯̃FνaðxÞ

�
; ð24Þ

and all other flavor components are zero. We transform the
currents into an orthonormal tetrad comoving with the
background fluid. We set the tetrad’s ẑ axis to point along
net lepton number flux (

P
a½Ji�aa) to make the distributions

amenable to 1D simulation.
Using Jα, the electron fraction Ye, and the baryon

number density nb, we can compute the neutrino and back-
ground matter contributions to Σα [Eqs. (11) and (12)],
which in turn let us calculate components of the coherent
evolution operator HðxÞ [Eq. (8)] and the resonance
condition [Eq. (14)].

C. Simulating the fast-flavor instability

In addition to testing for the presence of the FFI, we also
directly simulate the evolution and saturation of the FFI at
select locations using the particle-in-cell code Emu in one
spatial dimension and two momentum direction dimen-
sions (i.e., energy-integrated, [99]), assuming all neutrinos
to be at the same arbitrary energy. Emu splits the neutrino
distribution into many computational particles, each of
which represents a number of physical neutrinos and anti-
neutrinos and that encodes their flavor-space density
matrices, four-position, and four-momentum. These com-
putational particles move at the speed of light in the
direction specified by their momentum, and their densities
evolve according to a Hamiltonian constructed from the
distribution moments accumulated onto a background grid.
We resolve the instability with 512 grid cells, 1506 particles
per grid cell, and periodic boundary conditions. Each cell is
initialized with a collection of computational particles with
uniformly distributed directions of motion, so the cells
and particles evenly partition the phase-space of the
ensemble, but the number of physical neutrinos each
particle represents is varied to create an anisotropic dis-
tribution corresponding to a specified number and flux
densities according to the maximum entropy closure [100].
Note that the maximum entropy angular distribution is
consistent with the assumption underlying the moment
closure employed in the radiation transport in the original
neutron star merger simulation. Since the system is rotated
such that the electron lepton number (ELN) is along the
dimension with spatial extent, the dominant unstable modes
are able to grow, allowing these 1D simulations to
accurately represent the full 3D dynamics [99,101].
It should be noted that this approach is approximate in a

few ways. First, the Hamiltonian used for the time-
evolution of the simulation is different from that of
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Eq. (8), since Emu excludes collision and spin-coherent
terms. The purpose of this approach is to probe whether
there is potential interplay between the FFI and helicity
coherence without directly simulating these additional
terms. Second, although the FFI can induce significant
flavor transformation, the ubiquity of the FFI (which tends
to erase crossings) would likely transform neutrino flavor
in a way that prevents crossings from being present in the
first place. By analyzing local simulations of the FFI we
probe the potential magnitude of the interplay between
flavor transformation and helicity transformation, but self-
consistent calculations are of course needed for a more
robust answer.
We also note that we can also use the maximum entropy

crossing condition of [102,103] to determine which regions
exhibit a crossing in the electron lepton number distribution
and therefore are unstable to the FFI. Specifically, the
maximum entropy condition for the FFI (considering only
electron neutrinos and antineutrinos) is

η2

α2 þ γ2
≤ 1; ð25Þ

where η¼ lnðnZ sinh Z̄=n̄ Z̄ sinhZÞ, γ¼ Z̄cosθF̄ −Z cosθF,
α ¼ Z̄ sin θF̄ − Z sin θF, and θF − θF̄ is the angle between
the directions of the antineutrino (barred) and neutrino
(unbarred) flux directions. Z and Z̄ are the parameters that
describe the anisotropy of each distribution according to the
maximum entropy distribution

fðΩÞ ∼ eZ cosðθÞ; ð26Þ

where cos θ ¼ Ω · F̂ is the angle between the propagation
direction Ω and the flux direction F̂. Specifically, Z is
related to the flux and density moments as

jFj
n

¼ cothðZÞ − 1

Z
: ð27Þ

IV. RESULTS

In Sec. IVA, we detail a full momentum-space analysis of
spin-flip resonance and adiabaticity for a specific example
point of the neutron star merger simulation of [3]. In
Sec. IVB, we use the data of this point as an initial condition
for the fast-flavor instability simulation described in
Sec. III C, and see how the resultant flavor mixing affects
the resonance and adiabaticity of spin oscillations. Lastly, in
Sec. IV C we generalize our discussion to the rest of the
merger snapshot. We find the regions in which resonant
helicity oscillations can be expected in some direction, and
determine that these regions are usually unstable to a fast-
flavor instability. Finally, we describe the extent to which our
analysis of resonance and adiabaticity in Secs. IVA and IVB
generalizes to other locations.

A. 3-dimensional treatment of spin oscillations

In this subsection we examine the resonance and
adiabaticity of spin oscillations for neutrinos at a single
example cell in the neutron star merger simulation of [3],
located at ð17.7;−21.1;−23.8Þ km. At this point the neu-
trino number densities are ð1.35; 1.98; 0.45Þ × 1033 cm−3

for electron neutrinos, electon antineutrinos, and each
flavor of heavy lepton neutrino, respectively. The distri-
butions of the three neutrino flavors have flux factors of
(0.26,0.51,0.62), and the flux directions yield conditions
that exhibit both helicity resonance and fast-flavor
instability.

1. Resonance

We begin with an analysis of the directional dependence
of resonance at the chosen cell. Recall that a necessary
condition for resonance is that Ω ≥ 1, where Ω is the
resonance parameter defined in Eq. (15). Ω depends only
on the structure of the Hamiltonian [Eq. (8)], and specifi-
cally on the difference in magnitude of the left- and right-
handed parts of the Hamiltonian’s eigenvectors. Since in an
anisotropic background the Hamiltonian is dependent on
the direction of the neutrino momentum, the generalized
resonance condition is also a function of direction.
Figure 2 shows a directional logarithmic heatmap of the

resonance parameter Ω for the neutrino distribution at our
example point. The polar axis is parallel to the electron
lepton number current ½JiL�ee. This plot presents a number
of remarkable features. Firstly, we see that the resonance
parameter is largely dependent only on the polar angle—
that is, on the angle between the neutrino momentum

FIG. 2. A Mollweide directional plot of the resonance param-
eterΩ [Eq. (15)] at the example location marked with a green × in
Fig. 11. We see three bands where oscillations are resonant, each
between a particular pair of flavors as labeled in the image (with x
representing a general heavy lepton flavor). Note the eL ⇌ xR is
much fainter than the other two. As explained in the text, these
three bands subdivide into a total of nine, grouped so closely that
they are not distinguishable. The polar axis is aligned with the
spatial part of the left-handed electron neutrino ELN flux
vector (½JiL�ee.).
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p⃗ and TrfðJiÞ. This is because the directional dependence
of the Hamiltonian is dominated by the Σκ

L;R terms in
Eq. (8), which is itself linear in the dot product between Jα

and the neutrino momentum direction [see Eq. (11)].
Initially the only non-negligible flavor component of Jα

is the ee part; hence ½Ji�ee defines the directional depend-
ence of H.
Far less intuitive features of Fig. 2 are the azimuthally

symmetric “bands” where Ω becomes large. We can
identify three of these resonance bands in the plots, the
central one far narrower than the other two. These are the
only regions for which Ω ≥ 1, so they represent all
directions exhibiting spin-flip resonance. Recall that
Eq. (14) is a necessary condition, so that not all points
within the bands are guaranteed to be resonant; however, a
direct inspection of directions within these bands shows
that in general they all present large-amplitude, if not full
amplitude oscillations.
Interestingly, each of the bands exhibits resonant spin

oscillations between a particular left-handed flavor super-
position and a particular right-handed flavor superposition.
For example, in Fig. 2 the bottom band labeled eL ⇌ eR
contains all directions exhibiting resonant spin oscillations
between electron neutrinos, and exclusively exhibits reso-
nance in this channel. Each of the other bands similarly
shows resonance between a unique pair of flavors, labeled
in Fig. 2. Note that since the fluxes of left- and right-handed
heavy lepton neutrinos are equal, the μ and τ flavors are
effectively degenerate, and we can focus on a two-flavor
ðe; xÞ subspace. In Sec. IV B we will see the flavor-mixed
case where this simplification cannot be made.
Figure 3 shows Ω plotted against the polar angle θ at

ϕ ¼ π, essentially displaying a vertical cross section of

Fig. 2 so that the bands can be seen more clearly. Here we
have plotted vertical dashed lines corresponding to loca-
tions satisfying the simplified resonance condition
[Eq. (16)] in the eL ⇌ eR and τL ⇌ τR channels. Recall
this means these are the only locations for which resonant
oscillations can occur between these flavors. These lines
overlap perfectly with locations where Ω > 1, exemplify-
ing that each resonance band corresponds to spin transi-
tions between particular flavors.
The central x ⇌ e band is unique: enlarging it reveals

this band actually resolves into four “subbands,” separated
by less than 10−5 radians. These are resonant in the
eL ⇌ x1;R, eL ⇌ x2;R, x1;L ⇌ eR, and x2;L ⇌ eR channels
respectively, where x1 and x2 are specific superpositions of
the heavy-lepton flavors that diagonalize the HL and HR
blocks. These are the only channels that are resonant on
these bands.
The minuscule but nonzero separation of these e ⇌ x

“subbands” is caused by a breakdown in our two-flavor
assumption: small differences in the heavy-lepton neutrino
masses lead to fine splitting in the energies of the eL ⇌
x1;R and eL ⇌ x2;R conversion channels, for example, so
that these are no longer entirely degenerate.
One might expect a similar splitting to occur for the

xL ⇌ xR resonance band, which should separate into four
bands corresponding to x1;L ⇌ x1;R, x1;L ⇌ x2;R,
x2;L ⇌ x1;R, and x2;L ⇌ x2;R. However, in this case the
width of each of these bands is greater than their separation,
so that they overlap entirely and combine into a single band
encompassing helicity transitions between all heavy-lepton
flavor superpositions, including τ ⇌ τ and μ ⇌ μ.
We can use the magnitude of the flavor-diagonal

components of the Hamiltonian to intuitively understand
why resonance occurs at specific directions in this band
structure. As suggested by the resonance condition in
Eq. (16), the resonant bands appear at angles where the
Σκ
L;R terms in HL and HR [Eq. (8)] cancel out vacuum and

matter contributions in such a way that HLR becomes the
dominant part of the Hamiltonian. If the spatial ELN
current Ji is sufficiently large, then for directions near
the poles in Fig. 2, Σκ

L and Σκ
R will be the most important

terms in Eq. (8) since these terms are linear in p⃗ · Ji. (Recall
the polar direction in Fig. 2 is defined to be ½JiL�ee, the
maximal flavor component of Ji, so that jp⃗ · Jij is maximal
for θ ≈ 0 or π.) Hence for directions near the poles we can
approximate HL ≈ Σκ

L and HR ≈ Σκ
R. Also, since

Σκ
R ¼ −Σκ

L
T , we have that HL and HR will in general have

opposite signs in these directions.
From here we see that the resonance bands must arise

due to the intermediate value theorem: as we move from
one pole to the other, Σκ

L and Σκ
R will switch their signs due

to the p⃗ · Ji dependence, so the same will happen to every
component of HL and HR. Since HL ≈ −HR near the two
poles, at some angle the components of the two matrices
will cross each other and be equal. If HL and HR are

FIG. 3. The resonance parameter Ω plotted against the polar
angle θ at ϕ ¼ π for the same point as in Fig. 2. Directions
satisfying the simplified resonance condition in the eL ⇌ eR
(cyan) and τL ⇌ τR (green) channels are indicated, and as
expected they are contained in the resonance bands where
Ω ≥ 1. The narrow central band is unique, as explained in the text.

THREE-FLAVOR, FULL MOMENTUM SPACE NEUTRINO SPIN … PHYS. REV. D 110, 023003 (2024)

023003-9



approximately diagonal (as they are when flavor mixing
is minimal), then resonance bands appear at every loca-
tion where a diagonal component of HL becomes equal
to one of HR, as in the simplified resonance condition
in Eq. (16).
Figure 4 illustrates this angular dependence of HL and

HR, showing how the bands arise at points where the
components of these matrices cross each other. All ele-
ments follow a cosinelike dependence and switch signs
as θ varies from 0 to π. Comparing to Fig. 3, it is clear
that resonance bands appear where the diagonals of HL
cross those of HR. For example, there is an angle where
Hee

L ¼ Hee
R , which as we know implies that helicity

oscillations will be resonant in the eL ⇌ eR channel.
The angle at which this happens is exactly the position
of the eL ⇌ eR resonance band, and similarly the other
bands correspond to crossings between the other pair’s
opposite-helicity diagonal elements. Note again that we
have two distinct crossings Hee

L ¼ Hxx
R and Hxx

L ¼ Hee
R that

are separated by less than 10−5 radians, so these appear as a
single band.
There is a constant offset to the cosinelike variation of

the diagonals, which moves the resonance band crossings
away from the equator. This comes from the J0 contribution
to Σκ

L;R, which adds a direction-independent shift to the
potential. For the example point analyzed in this section, Ji

is large enough relative to J0 that the diagonals of H have
opposite signs at the poles, so that resonance bands appear
by the intermediate value theorem, but if the shift from J0

were larger than the cosinelike variation from Ji there
would be no crossing and hence no resonance bands. This
is the situation for many points in the merger which do not
exhibit resonance in any direction (see Sec. IV C).
Although resonance is present in our example cell, its

significance is extremely limited by the narrowness of the
bands. The directions for which Ω ≥ 1 collectively span a
solid angle of 6.2 × 10−7 sr. Interestingly, the width of the
bands is determined purely by the factor of m†=jp⃗j in
Eq. (8), and is the same for all points in the merger (for
neutrinos of a given energy). To see why, note that the
width of the bands for the transition aL ⇌ bR is dependent
effectively on two parameters. On one hand, if the
simplified resonance condition applies, we can expect
resonance when jHab

LRj ≫ jHaa
L −Hbb

R j so that the larger
jHab

LRj for some pair of flavor states the broader the
resonance band. On the other hand the width of a resonance
band is inversely proportional to the rate of change with θ
of the difference in diagonal components Haa

L −Hbb
R at the

crossing where the band appears. If the derivative of this
difference has a small magnitude at the direction where
the components become equal, then there will be a greater
angular width over which the difference is close to 0. The
width of the bands can thus be approximated as

Δθresonant ≈
jHab

LRj
d
dθ ðjHaa

L −Hbb
R jÞ : ð28Þ

However, the factors of Σ�
LR in jHab

LRj cancel with the factors
of dðΣκÞ=dθ in djHaa

L −Hbb
R j=dθ, so that regardless of the

specific distribution of the neutrino flux at each point the
width of the band corresponding to any given flavor con-
version channel is the same, and is of order ½m†�ab=jp⃗j.
Unfortunately, this means we cannot expect the resonant
angle to get much broader in virtually any context (for
neutrinos of a given energy and mass).
Incidentally this is why the central e ⇌ x bands are

extremely narrow compared to the e ⇌ e and x ⇌ x
bands: jHex

LRj is far smaller than jHee
LRj and jHxx

LRj thanks
to the linear mass dependence of HLR.

2. Adiabaticity

As emphasized in previous work, for neutrino spin
oscillations to be important they must be not only be
resonant but also adiabatic in the sense that the oscillations
must evolve on a timescale that is shorter than the timescale
over which the Hamiltonian changes. Otherwise, reso-
nance can be lost before enough time has elapsed for
any helicity conversion to occur. This subsection is devoted
to a study of the adiabaticity of helicity oscillations at our
example cell.
Given that the Hamiltonian changes dynamically with

the neutrino distribution, a full nonlinear simulation of
flavor and helicity transformation is complicated and

FIG. 4. Plot of the diagonal components of the Hamiltonian
against the polar angle θ at azimuthal angle ϕ ¼ π, in the 2-flavor
approximation. Due to the angular dependence of Σκ

L and Σκ
R,

components of HL and HR have a cosinelike variation with θ and
tend to switch their signs as θ increases from 0 to π. Consequently
the diagonals of HL and HR become equal at four locations,
corresponding to the four pairs of opposite-helicity diagonals.
These crossings line up perfectly with the resonance bands we see
in Figs. 2 and 3. Note the middle two crossings betweenHee

L=R and
Hxx

R=L overlap almost exactly, so they appear as the single faint
band in Figs. 2 and 3.
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beyond the scope of this work. However, we can get a
handle on the adiabaticity of oscillations via the procedures
outlined in Sec. III A 2; namely we can compute the
approximate timescale over which resonance will be
preserved by taking gradients of the merger snapshot data,
and we can compute a timescale for spin oscillations via the
corresponding off diagonal component of the Hamiltonian.
We can then determine the adiabaticity of oscillations by
comparing these timescales [Eq. (21)].
The timescale for an oscillation varies widely across

different resonance bands. The eL ⇌ eR and xL ⇌ xR
bands exhibit oscillations with periods of 1.4 ms and
0.7 ms, respectively, whereas the four narrow eL ⇌ xR
bands all have oscillation periods of over 31 ms. These
timescales are dependent on the size of the off diagonal
component jhνLjHjνRij correspondent to each pair of
opposite-helicity states. Indeed it is no coincidence that
the resonance bands with the least energetic oscillations are
also the narrowest; both of these are damped by a small off
diagonal component.
This is the main bottleneck in the significance of spin-

flip effects in mergers and supernovae. The off diagonal
blockHLR is inversely proportional to the magnitude of the
neutrino momentum, and it is linear in the mass matrix
[Eq. (8)], so that it is generally extremely small. Oscillation
timescales are therefore usually far too long to produce
substantial helicity conversions. Several studies have
searched for conditions under which electron neutrino
spin oscillations are sufficiently adiabatic with γee ≥ 1
[Eq. (22)], to no avail [67,68].
However, we have found that incorporating the direc-

tional dependence of γee actually gives rise to directions
that satisfy both the resonance and adiabaticity conditions,
largely due to the inverse dependence on the gradient
∇νHaa

L . If this gradient takes different signs at two opposite
directions, there will be a crossing for which it becomes
arbitrarily close to 0, so that γee ≥ 1.
Figure 5 shows how j∇νHee

L j and γee vary along the
eL ⇌ eR resonance band highlighted in Fig. 2, with the
position on the band parametrized by the azimuthal angle
ϕ. We see that there are two points where ∇νHee

L crosses 0
(kinks in the top panel), allowing the adiabaticity condition
to be satisfied (peaks in the bottom panel). In these
directions, significant helicity transformation is in theory
possible.
The width of these crossings, however, is extremely

narrow. In Fig. 5, the total azimuthal angle for which
γ > 1 is 1.0 × 10−9 rad, corresponding to a solid angle of
1.0 × 10−16 sr that is both resonant and adiabatic. Such a
small angle is unlikely to contribute significantly to helicity
conversion in the evolution of the merger. Nonetheless,
broader adiabatic regions could appear if the overall
gradient of Hee

L at this point had a smaller magnitude.
This would make the directional derivative ∇νHee

L cross 0
more gradually (top panel of Fig. 5), leading to a broader

adiabatic region where ∇νHee
L is sufficiently close to 0.

IncreasingHee
LR would also increase the size of the adiabatic

region.
Crucially, we are limited to computing derivatives using

finite-width grid cell data, so this analysis assumes gra-
dients in the background vary slowly on scales smaller than
the grid cell size. By the same token, for this analysis to be
valid we must demand that the timescale for a spin
oscillation in some resonant direction be comparable to
or smaller than the time it takes a neutrino to cross a grid
cell, since our first-order gradient analysis does not give us
information about changes in the background on scales
much longer than that.
Unfortunately, there are no cells in the merger that can

come close to satisfying this restriction. The point shown
here has an oscillation length scale about 600 times longer
than the grid cell size for resonant eL ⇌ eR conversions, so
that even along the particular direction where the adiaba-
ticity condition is satisfied (Fig. 5), significant helicity
transformation is still extremely unlikely to occur. Other
locations in the merger tend to have similar or even longer
oscillation length scales; see Sec. IV C for further details.
These results suggest that significant spin oscillations are

extremely unlikely at this example point, in line with
previous results. A full-momentum-space analysis of spin
oscillations shows that an extremely small range of
directions at any point can actually be resonant, spanning
a maximum of about 4.7 × 10−7 sr for our choices of
neutrino mass and energy. Our direction-dependent

FIG. 5. Gradient of the left-handed electron diagonal element of
the Hamiltonian (top) and the adiabaticity γ as defined in (22)
(bottom) for directions on the e ⇌ e resonance band shown in
Figs. 2 and 3, parametrized by the azimuthal angle ϕ. We see that
the gradient crosses 0 at two points, where γ consequently grows
to infinity. However, the width of directions for which γ > 1 is
very small.
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analysis does produce specific directions for which oscil-
lations satisfy the adiabaticity condition [Eq. (21)], but
these range about 10−16 sr, and neutrinos traveling along
these directions are still unlikely to experience significant
helicity transition due to the extremely long length scales
associated with this effect.

B. Effect of the fast flavor instability

In regions unstable to the FFI, the neutrino distributions
quickly evolve to erase any existing ELN crossings. The net
result on the total number of each flavor at our test point is
displayed in Fig. 6. After the FFI saturates, the total
numbers of electron neutrinos and antineutrinos decrease
while the number of heavy lepton neutrinos increases.
These transformations proceed in a way that preserves
nνa − nν̄a for each neutrino flavor a, since we only consider
the neutrino self-interaction Hamiltonian here. Even though
the net lepton number is conserved for each flavor, the net
flux is not, and the magnitude and direction of the flux
vectors change significantly.
The helicity–off diagonal components of the Hamiltonian

in Eq. (8) are sensitive to these changes. In Fig. 7, we
demonstrate the time evolution of all components of HLR
along a direction parallel to and a direction perpendicular to
the initial net neutrino current Trf ½Ji�. We see that the
instability leads to substantial and direction dependent
changes in the magnitude of different HLR components.
These changes are most pronounced for directions nearly
parallel or antiparallel to Trf ½Ji�. In any case these trans-
formations are crucial to the significance of spin oscillations

at a point since, as discussed in the previous section, the
magnitudes of the elements Hab

LR are factors in the angular
width of the directions that exhibit spin resonance.
The directions and conversion channels for which spin

oscillations are resonant are also affected by flavor mixing
in the FFI. The postinstability resonant directions for our
example point are shown in Fig. 8, at a timestep of 0.43 ns.
As in Fig. 2, resonance is indicated by a large value of Ω
[Eq. (14)]. We still have a band structure, but due to the
change in magnitude and direction of the net flux, the bands
have rotated and moved in such a way that they are no
longer symmetric around the polar axis.
Some of the bands have also separated from each other.

Recall that in general we should have nine resonance bands
spanning nine possible orthogonal flavor conversion chan-
nels, which in Fig. 2 were clumped together into three
closely spaced or overlapping groups of bands due to
degeneracy in the heavy-lepton flavors. This degeneracy is
slightly broken as a result of different heavy lepton flavors
evolving independently in the simulations of the FFI,
separating out different flavor conversion channels.
For example, in the preinstability case the heavy lepton

xL ⇌ xR band in Fig. 2 corresponded to four resonance
bands that overlapped entirely, so that any helicity con-
version between heavy lepton states was resonant there.

FIG. 6. Evolution of the number density of each neutrino flavor
due to the fast-flavor instability. There are initially more electron
neutrinos (solid blue) than electron antineutrinos (dashed blue)
and heavy lepton neutrinos (green and red). In this case, by the
end of the simulation there are similar numbers of all neutrino
types, although this is not always true. Not shown are the changes
in the magnitudes and directions of the flux of each neutrino
flavor.

FIG. 7. Change in jHab
LRj during the FFI at our sample point,

along a direction initially parallel (top) and perpendicular
(bottom) to jJij (polar direction in Fig. 2). The change in the
helicity-flip Hamiltonian depends on the component and the
neutrino direction. The legend labels components of HLR
according to the flavor channel they correspond to.
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After the instability, this band has split into four distinct
subbands as shown in Fig. 9. (note two of the subbands are
so close together they look like a single band in Fig. 9;
however they do not overlap completely.) Each of these is
resonant between two heavy-lepton flavor superpositions.
Hence, while prior to the instability resonant oscillations

were possible between any pair of heavy lepton states, after
the instability these are only possible in four distinct
channels at each of the four separated bands.
Flavor mixing also causes a breakdown in the simplified

resonance condition. To illustrate this, in Fig. 9 we plot the
locations satisfying the simplified resonance condition in
the τL ⇌ τR and μL ⇌ μR channels. Before the instability,
these lie inside the resonance band with Ω ≥ 1; after the
instability these locations lie between the split subbands;
hence resonant τL ⇌ τR and μL ⇌ μR conversions become
impossible. This demonstrates the relative advantage of
the generalized condition Ω ≥ 1, which applies even in the
flavor-mixed case and encompasses all flavor conversion
channels simultaneously.
The width of the resonance bands changes due to the

FFI, but marginally. Postinstability the resonant solid angle
decreases to 4.7 × 10−7 steradians. This change is caused
by the splitting in the heavy-lepton conversion band, which
was broadened in the preinstability case because of the
overlapping in the constituent subbands. In general, reso-
nance bands have a fixed width dependent purely on
½m†�ab=jp⃗j [Eq. (28)].
Just as before the instability, there are crossings in the

gradient that cause certain directions to become adiabatic.
The variation of the adiabatic index with the azimuthal
angle across the eL ⇌ eR resonance band is shown in
Fig. 10 (compare to Fig. 5). We see that the sinusoid

FIG. 9. An enlarged version of Fig. 3, showing the heavy lepton xL ⇌ xR resonance band before (left) and after (right) the fast-flavor
instability. We plot θ against the resonance parameter Ω at azimuthal angle ϕ ¼ π, as in Fig. 3. After the instability the heavy-lepton
bands, which were previously overlapping, separate into four subbands (the middle two are so close together that they look like one band
in the right panel, but they are in fact separate.) Directions satisfying the simplified resonance condition in the τ ⇌ τ and μ ⇌ μ
channels are indicated. Preinstability, both these directions line up perfectly with the overlapping bands so that oscillations are resonant
in these channels. However, flavor mixing causes the degeneracy in heavy lepton flavors to break down so that these directions no longer
match up with a resonant region as seen in the right panel; after the instability there is no resonance in the τ ⇌ τ and μ ⇌ μ channels,
and the simplified condition breaks down. The generalized conditions still finds the resonant directions.

FIG. 8. The same directional plot of the resonance parameter Ω
[Eq. (15)] as in Fig. 2, and at the same location in the merger, but
after the fast-flavor instability has transpired. The polar direction
has not changed—it is the preinstability direction of Trf ½Ji�. The
resonance bands seen initially in Fig. 2 have separated into
several more visible bands, and these no longer lie symmetrically
around the polar direction.
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dependence of the gradient ∇νHee
L has shifted upward, so

that the angles where it crosses 0 are closer together.
The total adiabatic and resonant solid angle is still about

10−16 sr, but this upward shift of the gradient suggests a
possible way of getting a broader angle: if the shift were
larger, so that the tip of the sinusoid just barely touched 0,
the crossing would be much broader as it would occur at a
shallower slope. Of course, if the shift were larger still,
there would be no crossing at all and therefore no adiabatic
direction. We will see in Sec. IV C that this happens at
several locations.
All in all, flavor transformation effects do not seem to

significantly change the total solid angle spanned by
directions that are resonant and adiabatic, although the
exact distribution of these directions—and the flavor
channels in which resonant oscillations occur—is changed.
This adds another barrier to helicity oscillations, since
neutrinos traveling along resonant directions will stop
being resonant if a fast-flavor instability shifts the reso-
nance bands, which can happen—as it did for this cell—in
less than half a nanosecond.

C. Spin oscillations throughout the neutron star merger

In this subsection we generalize the analysis of the single
point described in the previous subsections to the data
of the entire merger snapshot. First, we detail where the
conditions for resonant spin oscillations and for a fast-
flavor instability are satisfied. Then we generalize the
“resonant band” analysis from previous subsections,

showing how the shape and position of these bands vary
at different locations. Next we show the magnitude of the
resonant and adiabatic solid angle for a subsection of the
merger and show how this is affected by the fast-flavor
instability. Finally we demonstrate that there is only a
limited region where spin oscillation length scales are short
enough that the adiabaticity condition of Eq. (21) can be
faithfully employed.

1. Conditions for flavor instability
and helicity resonance

In Fig. 11 we highlight regions that have at least one
direction satisfying the simplified resonance condition in
the eL ⇌ eR channel [Eq. (17)], as well as regions
satisfying the ELN crossing condition for a fast-flavor
instability, for three cross sections of the neutron star
merger simulation. The left cross section is taken near
the center of the merger (which is at z ¼ 0); the center and
right cross sections are taken near the poles. Note we can
use the simplified resonance condition since the preinst-
ability Hamiltonian at all locations in the merger is
approximately flavor diagonal (up to mixing in the heavy
lepton flavors).
As reported in [104], the fast-flavor instability is

extremely pervasive (blue and red) especially near the
poles where it is expected to occur almost everywhere. The
prevalence of flavor instabilities exemplifies the importance
of considering spin oscillations in the mixed-flavor case.
Additionally, we see broad regions for which eL ⇌ eR

spin oscillations are resonant in some direction (orange and
red), and these resonant regions almost universally also
satisfy the condition for a fast-flavor instability (red) with
only a small region in the right panel satisfying helicity
resonance exclusively. Any location in these regions
presents an eL ⇌ eR resonance band similar to that of
Fig. 2. We see that resonant spin oscillations are common at
the poles but are rarely present closer to the center of the
merger. Note that points not in the red or orange regions
could still present resonance in other flavor channels.

2. Resonance bands

Figure 12 shows the preinstability and postinstability
resonant bands at three other locations in the merger for
comparison with the example point of Secs. IVA and IV B.
The locations of these three points, as well as the location of
our original example cell, are marked with green letters
in Fig. 11.
Figure 12 shows that the specific angular position of the

resonance bands is highly location dependent, as is the
effect of the fast-flavor instability. Points can have reso-
nance bands at any polar angle, and their separation can be
as small as 0.15 radians (point C) or they can span the entire
range of polar angles (point B). Close to the boundaries of
the red resonant areas seen in Fig. 11, the eL ⇌ eR band
tends to get closer to the poles, and ultimately vanishes for

FIG. 10. Gradient of Hee
L (top) and the adiabaticity γ as

(bottom) along the e ⇌ e resonance band after a fast-flavor
instability. Comparing with the preinstability case, Fig. 5, we see
that the entire distribution of Hee

L values has shifted upward so
that the crossings are closer together and wider as they occur at a
flatter part of the sinusoid.
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nonresonant (blue/white) locations. Other resonance bands
are almost never present far away from the red regions with
eL ⇌ eR resonance.
Interestingly, the fast-flavor instability can cause reso-

nance bands to get pushed off the spectrum entirely, as in
point B where resonance in the eL ⇌ eR channel is lost.
We expect the FFI could also cause resonance to appear at a
point where it was absent, though we could not find any
points that exemplified this.
Note thewidthof these resonance bands is almost the same

for each plot and only changes due to either one of the bands
being absent or overlapping bands separating out due to the
FFI as in Fig. 9. A band encompassing resonance between
flavors a and b has a width around ½m†�ab=jp⃗j regardless of
the backgroundmatter and neutrino distribution. In any case,
we never see a total resonant angle greater than 10−6 sr for
neutrinos of our selected mass and momentum.

3. Resonant and adiabatic directions

We saw in Sec. IVA that for our example point there were
specific directions that were resonant and also satisfied the
adiabaticity condition of Eq. (21). We now determine if other
points in the merger present such directions and what range
of resonant and adiabatic solid angles we can expect, before
and after a fast-flavor instability.
Due to the computational intensity of finding the span of

these resonant and adiabatic directions we limit our
analysis to the cross sectional region highlighted in a
yellow dashed rectangle in Fig. 11. Figure 13 shows the
total resonant and adiabatic solid angle for cells within this

FIG. 11. Regions where the eL ⇌ eR spin-flip resonance condition [Eq. (17)] and the maximum entropy angular ELN condition for a
fast-flavor instability [103] are satisfied, shown for three cross sections of the neutron star merger simulation at different values of the z
coordinate. Blue points satisfy only the fast-flavor instability condition, orange points satisfy only the spin-flip resonance condition, and
red points satisfy both simultaneously, indicating the possibility for interactions between the two effects. We see most points that are
resonant satisfy the fast-flavor instability condition, so that orange points are relatively scarce: it is rare that spin oscillations can be
analyzed in the absence of flavor mixing. Green letters represent the points for which we show resonance bands in Fig. 12; the × marker
represents the example point we discussed in Secs. IVA and IV B. The yellow square indicates the area where we will run our
adiabaticity analysis later in this section.

FIG. 12. Resonance bands before the fast-flavor instability
(left) and after (right) for three other points in the merger at
locations marked by letters in Fig. 11. We see that the initial polar
angle at which the bands are located varies for different locations,
and the exact splitting and rotation of the bands due to the
instability varies as well. In general, points that have resonant
directions always have those directions distributed in this
azimuthally symmetric structure, with a maximum of nine
(possibly overlapping) bands.
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region, before and after a fast-flavor instability. We see that
almost all cells present solid angles between 10−15 and
10−17 sr, and that the values tend to decrease after the FFI.
Note that many points lose their resonant and adiabatic

directions entirely after the instability. This can either be
due to the resonant bands shifting past the poles or, more
usually, due to the∇νHee

L distribution shifting so far up that
it no longer crosses 0 at any point (compare Figs. 5 and 10).
It is not clear if the tendency for the solid angle to decrease
or disappear is unique to this small region or if it is a
general quality of the FFI. Note there are points that
increase their solid angle substantially.
Regardless, as we determine in the next subsection, this

analysis is overturned by the fact that the timescale for an
oscillation is so large that even directions satisfying the
adiabaticity condition are unlikely to present significant
oscillations.

4. Spin-oscillation length scale

The off diagonal components of the Hamiltonian HLR
determine the wavelength on which neutrinos change
helicity, and if these wavelengths are small compared to
the length scales over which the background changes then
the neutrinos can be expected to traverse the resonance
adiabatically, so that a large amount of helicity trans-
formation can be expected.
In Fig. 14 we show a logarithmic histogram of the

magnitude of Hee
LR for points in the merger presenting

resonance in the eL ⇌ eR channel (red and orange areas in
Fig. 11). The bin highlighted in green contains the example
point of Secs. IVA and IV B, which we picked to have a
particularly large Hee

LR. However, even this point has an

FIG. 13. Total resonant and adiabatic solid angle for the section of the merger highlighted in a dashed yellow square in Fig. 11, before
and after the fast-flavor instability. The example point of Secs. IVA and IV B is marked with a black x. We see that the fast-flavor
instability causes a decrease in the size of the resonant and adiabatic angle for most points in this region, and often makes this angle
disappear entirely.

FIG. 14. A logarithmic histogram plot of the magnitude ofHee
LR,

the helicity–off diagonal component channeling electron neutrino
spin oscillations, for the data of all cells in the merger presenting a
resonance band. The green band contains the cell we chose as our
example point in Secs. IVA and IV B. A wavelength twice the
size of a grid cell corresponds to an energy of 4.6 × 10−10 eV;
cells presenting energies much lower than that cannot be used in
our adiabaticity analysis.
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oscillation length scale of 415 km in the eL ⇌ eR channel,
an order of magnitude longer than the radius of the entire
merger, and almost all other locations will have even longer
scales.
The upshot is that even for directions satisfying both the

resonant and adiabatic conditions, significant oscillations
are virtually impossible as the oscillations will transpire on
far too long a distance. The standard adiabaticity condition
of (22) is not an accurate signaler of significant oscillations
in this case because it only accesses local, first-order
changes in the background.

V. CONCLUSIONS

We search for conditions conducive to Majorana neu-
trino helicity oscillations in a three-dimensional general-
relativistic snapshot of a neutron star merger that occur
purely due to anisotropy and inhomogeneity of the matter
and neutrino distributions. Assuming neutrino masses
within experimental bounds, we corroborate previous
studies based on simpler models by demonstrating that
very little helicity transformation is likely to take place. We
find spin oscillation length scales to be on the order of
several hundred kilometers, longer than the diameter of the
entire merger, even following the effects of the neutrino
fast-flavor instability.
We construct a metric for helicity transformation reso-

nance [Eq. (14)] that is applicable for a general mixture of
neutrino and antineutrino distributions of all three flavors,
and demonstrate that it simplifies to a previously proposed
resonance metric when heavy lepton neutrinos and anti-
neutrinos have identical distributions. We also estimate the
adiabaticity of neutrinos passing through such a resonance
for an arbitrary combination of left- and right-handed
states [Eq. (21)]. This treatment allows us to estimate
the prevalence of helicity transformation after the fast-
flavor instability mixes the neutrino distributions.
At each location in the merger we identify the neutrino

propagation directions along which neutrinos experience
helicity transformation resonance (e.g., Fig. 2) and identify
a series of directional bands that each correspond to a
particular helicity transformation mode. Although a sig-
nificant fraction of the volume in the polar regions of the
merger contains some direction along which there is
resonance (Fig. 11), the angular width of the resonant
regions, and therefore the amount of neutrinos capable of
experiencing resonance, is extremely slim at around
5 × 10−7 sr. This angular width is the same everywhere
in the merger, since it is only a function of the m=jp⃗j ratio.
This adds yet another barrier to the feasibility of significant
helicity oscillations in mergers without additional contri-
butions from other effects like extreme magnetic fields.
Previous work has demonstrated that even if neutrinos

experience resonance, they do so nonadiabatically such that
no significant helicity transformation occurs. We demon-
strate that along the resonant direction bands (e.g. in Fig. 2)

there is often some direction along which the adiabaticity
condition, Eq. (21), is satisfied (Fig. 5). However, the solid
angle of directions that are simultaneously adiabatic and
resonant is only on the order of 10−15 steradians. In
addition, even those directions that satisfy Eq. (21) have
oscillation length scales larger than relevant dynamical
scales in the neutron star merger (Fig. 14), indicating that
local adiabaticity would likely be destroyed by larger-scale
fluid motions before significant helicity conversions have
time to transpire.
While we only sample discrete locations within the

merger, what is a narrow pencil in resonant/adiabatic
directions for a specific location will sweep out arcs when
moving to nearby conditions. This could make it much
more likely that a given neutrino will pass through an
adiabatic helicity resonance somewhere, but the magnitude
of this effect is difficult to quantify, and we consider it
unlikely to make a significant number of neutrinos undergo
helicity transformation.
In agreement with previous studies, we show that a large

fraction of the volume is unstable to the neutrino fast-flavor
instability, and most of the locations exhibiting helicity
resonance are unstable (Fig. 11). We perform simulations
of the fast-flavor instability in a subset of the domain, and
demonstrate that the instability modifies the strength and
directional structure of the helicity-changing Hamiltonian
(e.g., Fig. 7). This results in a shift in the structure of the
directional resonance bands (Fig. 8), and breaks degener-
acies between helicity transformation modes (Fig. 9).
Although the fast-flavor instability erases helicity reso-
nance in some locations and creates resonance in others, the
magnitude of the effect is not large enough to significantly
increase the overall expected number of neutrinos that
change their helicity state.
Although this study corroborates the claim that no

significant helicity conversion occurs, we do not consider
effects from magnetic fields on the neutrino magnetic
moment, and do not consider implications for Dirac
neutrinos. Our analysis is limited to a single snapshot of
a single neutron star merger simulation, and different stages
of the merger could lead to different regions experiencing
helicity resonance (although the suppression from the
neutrino mass would make a departure from these con-
clusions unlikely). Finally, the actual amount of helicity
transformation for a given neutrino should ideally be
computed with calculations similar to those carried out
for simplified models (e.g., [67]), but this will be left to
future work.
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APPENDIX: PROOF OF GENERALIZED
RESONANCE CONDITION

Here we derive Eq. (14), a necessary condition for
resonant helicity oscillations that can be applied in the
multiflavor case.
First some notational definitions: given a state vector jvi

we define the subscript notation jviL, jviR to represent the
vector’s unnormalized projections onto the left- and right-
handed subspaces, respectively, with duals given by Lhvj,
Rhvj. For example, a 2-spin state vector jvi ¼ 1ffiffi

2
p ðjli þ jriÞ

would have jviL ¼ 1ffiffi
2

p jli (setting the right-handed part

to 0). With this notation in mind we can begin the proof.
Consider a spin-1=2 neutrino state vector jνðtÞi of NF

neutrino flavors that evolves under a Hamiltonian H with
eigenvectors jλji and eigenvalues Ej; the time evolution of
the state is then given by

jνðtÞi ¼
X2NF

j¼1

aje−iEjtjλji ðA1Þ

for some coefficients aj ¼ hλjjνi.
Assume that at t ¼ 0 the state is purely left-handed, and

that the state exhibits resonant helicity oscillations so that at
a later time t0 the state is purely right-handed. Using our
projection notation we can write

jjνð0ÞiRj ¼

X2NF

j¼1

ajjλjiR
 ¼ 0; ðA2Þ

jjνðt0ÞiRj ¼

X2NF

j¼1

aje−iEjt0 jλjiR
 ¼ 1: ðA3Þ

Without loss of generality, assume ja1jjjλ1ij ≥ jajjjjλjij
for all j.
Taking the inner product with jλ1iR in Eq. (A2), we get

X2NF

j¼1

ajRhλjjλ1iR ¼ 0 ðA4Þ

⇒ −a1Rhλ1jλ1iR ¼
X2NF

j¼2

ajRhλjjλ1iR ðA5Þ

⇒ ja1jjjλ1iRj2 ≤
X2NF

j¼2

jajjjRhλjjλ1iRj; ðA6Þ

where we have applied the triangle inequality in the last
line. We will now manipulate Eq. (A6) to arrive at an
inequality involving only jRhλ1jλ1iRj, which will give us a
restrictive condition on resonance.
We first use the Cauchy-Schwartz inequality on the rhs

of Eq. (A6), treating the jajj and jRhλjjλ1iRj as components
of 2n − 1 dimensional vectors:

X2NF

j¼2

jajjjRhλjjλ1iRj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2NF

j¼2

jajj2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2NF

j¼2

jRhλjjλ1iRj2
vuut : ðA7Þ

The first root on the rhs of Eq. (A7) can be simplified via
the normalization condition of the initial state:

X2NF

j¼2

jajj2 ¼ 1 − ja1j2: ðA8Þ

To simplify the other root, first note that hλjjλ1iR ¼
Rhλjjλ1iR þ Lhλjjλ1iR ¼ Rhλjjλ1iR, and hence that

X2NF

j¼2

jRhλjjλ1iRj2 ¼
X2NF

j¼2

jhλjjλ1iRj2 ðA9Þ

¼
X2NF

j¼1

jhλjjλ1iRj2 − jhλ1jλ1iRj2 ðA10Þ

¼ jjλ1iRj2 − jjλ1iRj4: ðA11Þ

Substituting Eqs. (A8) and (A11) into the rhs of
Eq. (A7), combining with Eq. (A6), and rearranging, we get

ja1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ja1j2

p ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jjλ1iRj2

p
jjλ1iRj

: ðA12Þ

We now seek to eliminate ja1j from the above inequality to
get an expression involving only jjλ1iRj.
Recalling Eq. (A3), we have that

1 ¼

X2NF

j¼1

aje−iEjt0 jλjiR
 ðA13Þ

≤
X2NF

j¼1

jaje−iEjt0 jλjiRj ¼
X2NF

j¼1

jajjjjλjiRj ðA14Þ

≤
X2NF

j¼1

ja1jjjλ1iRj ¼ 2NFja1jjjλ1iRj; ðA15Þ

using the triangle inequality and the fact that ja1jjjλ1ij ≥
jajjjjλjij for all j. It follows that
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ja1j ≥
1

2NFjjλ1iRj
≥
�

1

2NF

�
ðA16Þ

since jjλ1iRj ≤ 1, and thus

ja1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ja1j2

p ≤
ð 1
2NF

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1

2NF

�
2

q ; ðA17Þ

since this is an increasing function on 0 ≤ ja1j ≤ 1.
Inserting into Eq. (A12), we have

ð 1
2NF

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð 1

2NF
Þ2

q ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jjλ1iRj2

p
jjλ1iRj

: ðA18Þ

Solving for jjλ1iRj gives

jjλ1iRj2 ≤ 1 −
�

1

2NF

�
2

; ðA19Þ

and since jjλ1iRj2 þ jjλ1iLj2 ¼ 1 (as this is an orthogonal
decomposition of a unit vector) we can also infer that

jjλ1iLj2 ≥
�

1

2NF

�
2

: ðA20Þ

Since our argument applies equivalently if we invert the L
and R subspaces, we can equivalently infer that resonance
requires

jjλ1iRj2 ≥
�

1

2NF

�
2

; ðA21Þ

jjλ1iLj2 ≤ 1 −
�

1

2NF

�
2

: ðA22Þ

Combining these inequalities, we have that a necessary
condition for there to exist some state presenting resonance
is that at least one eigenvector jjλ1ij of the Hamiltonian
satisfies

jjjλ1iRj2 − jjλ1iLj2j ≤ 1 − 2

�
1

2NF

�
2

; ðA23Þ

or as expressed in this paper, the generalized resonance
condition is expressed in Eq. (14).

[1] D. Radice, S. Bernuzzi, and A. Perego, The dynamics of
binary neutron star mergers and GW170817, Annu. Rev.
Nucl. Part. Sci. 70, 95 (2020).

[2] S. Wanajo, Y. Sekiguchi, N. Nishimura, K. Kiuchi, K.
Kyutoku, and M. Shibata, Production of all the r-process
nuclides in the dynamical ejecta of neutron star mergers,
Astrophys. J. Lett. 789, L39 (2014).

[3] F. Foucart, M. D. Duez, L. E. Kidder, R. Nguyen, H. P.
Pfeiffer, and M. A. Scheel, Evaluating radiation transport
errors in merger simulations using a Monte Carlo algo-
rithm, Phys. Rev. D 98, 063007 (2018).

[4] D. Radice, S. Bernuzzi, A. Perego, and R. Haas, A new
moment-based general-relativistic neutrino-radiation trans-
port code: Methods and first applications to neutron star
mergers, Mon. Not. R. Astron. Soc. 512, 1499 (2022).

[5] F. Foucart, M. D. Duez, R. Haas, L. E. Kidder, H. P.
Pfeiffer, M. A. Scheel, and E. Spira-Savett, General rela-
tivistic simulations of collapsing binary neutron star
mergers with Monte-Carlo neutrino transport, Phys. Rev.
D 107, 103055 (2023).

[6] M. Cusinato, F. M. Guercilena, A. Perego, D. Logoteta, D.
Radice, S. Bernuzzi, and S. Ansoldi, Neutrino emission
from binary neutron star mergers: Characterising light
curves and mean energies, Eur. Phys. J. A 58, 99 (2022).

[7] Y.-Z. Qian, G. M. Fuller, G. J. Mathews, R. W. Mayle, J. R.
Wilson, and S. Woosley, Connection between flavor-
mixing of cosmologically significant neutrinos and heavy
element nucleosynthesis in supernovae, Phys. Rev. Lett.
71, 1965 (1993).

[8] H.-T. Janka, Explosion mechanisms of core-collapse
supernovae, Annu. Rev. Nucl. Part. Sci. 62, 407 (2012).

[9] A. Mezzacappa, Toward realistic models of core collapse
supernovae: A brief review, IAU Symp. 362, 215 (2020).

[10] F. Foucart, Neutrino transport in general relativistic
neutron star merger simulations, Living Rev Comput
Astrophys 9, 1 (2023).

[11] A. Mezzacappa, E. Endeve, O. E. B. Messer, and S. W.
Bruenn, Physical, numerical, and computational chal-
lenges of modeling neutrino transport in core-collapse
supernovae, Living Rev. Comput. Astrophys. 6, 4 (2020).

[12] H. Duan, G. M. Fuller, and Y.-Z. Qian, Collective neutrino
oscillations, Annu. Rev. Nucl. Part. Sci. 60, 569
(2010).

[13] S. Chakraborty, R. Hansen, I. Izaguirre, and G. Raffelt,
Collective neutrino flavor conversion: Recent develop-
ments, Nucl. Phys. B908, 366 (2016).

[14] I. Tamborra and S. Shalgar, New developments in flavor
evolution of a dense neutrino gas, Annu. Rev. Nucl. Part.
Sci. 71, 165 (2021).

[15] S. Richers and M. Sen, Fast flavor transformations, in
Handbook of Nuclear Physics (Springer Nature Singapore,
Singapore, 2022), pp. 1–17.

[16] F. Capozzi and N. Saviano, Neutrino flavor conversions in
high-density astrophysical and cosmological environ-
ments, Universe 8, 94 (2022).

[17] C. Volpe, Theoretical developments in supernova neutrino
physics: Mass corrections and pairing correlators, J. Phys.
Conf. Ser. 718, 062068 (2016).

THREE-FLAVOR, FULL MOMENTUM SPACE NEUTRINO SPIN … PHYS. REV. D 110, 023003 (2024)

023003-19

https://doi.org/10.1146/annurev-nucl-013120-114541
https://doi.org/10.1146/annurev-nucl-013120-114541
https://doi.org/10.1088/2041-8205/789/2/L39
https://doi.org/10.1103/PhysRevD.98.063007
https://doi.org/10.1093/mnras/stac589
https://doi.org/10.1103/PhysRevD.107.103055
https://doi.org/10.1103/PhysRevD.107.103055
https://doi.org/10.1140/epja/s10050-022-00743-5
https://doi.org/10.1103/PhysRevLett.71.1965
https://doi.org/10.1103/PhysRevLett.71.1965
https://doi.org/10.1146/annurev-nucl-102711-094901
https://doi.org/10.1017/S1743921322001831
https://doi.org/10.1007/s41115-023-00016-y
https://doi.org/10.1007/s41115-023-00016-y
https://doi.org/10.1007/s41115-020-00010-8
https://doi.org/10.1146/annurev.nucl.012809.104524
https://doi.org/10.1146/annurev.nucl.012809.104524
https://doi.org/10.1016/j.nuclphysb.2016.02.012
https://doi.org/10.1146/annurev-nucl-102920-050505
https://doi.org/10.1146/annurev-nucl-102920-050505
https://doi.org/10.3390/universe8020094
https://doi.org/10.1088/1742-6596/718/6/062068
https://doi.org/10.1088/1742-6596/718/6/062068


[18] A. Dobrynina, A. Kartavtsev, and G. Raffelt, Helicity
oscillations of Dirac and Majorana neutrinos, Phys. Rev. D
93, 125030 (2016).

[19] A. Studenikin, Electromagnetic properties of neutrinos:
Three new phenomena in neutrino spin oscillations, EPJ
Web Conf. 125, 04018 (2016).

[20] S. R. Elliott and M. Franz, Colloquium: Majorana fermions
in nuclear, particle, and solid-state physics, Rev. Mod.
Phys. 87, 137 (2015).

[21] B. Dasgupta and J. Kopp, Sterile neutrinos, Phys. Rep.
928, 1 (2021).

[22] A. de Gouvêa, Neutrino mass models, Annu. Rev. Nucl.
Part. Sci. 66, 197 (2016).

[23] A. Cisneros, Effect of neutrino magnetic moment on solar
neutrino observations, Astrophys. Space Sci. 10, 87 (1971).

[24] L. B. Okun, M. B. Voloshin, and M. I. Vysotsky, Electro-
magnetic properties of neutrino and possible semiannual
variation cycle of the solar neutrino flux, Sov. J. Nucl.
Phys. 44, 440 (1986).

[25] L. B. Okun, M. B. Voloshin, and M. I. Vysotsky, Neutrino
electrodynamics and possible effects for solar neutrinos,
Sov. Phys. JETP 64, 446 (1986).

[26] L. B. Okun, On the electric dipole moment of neutrino,
Sov. J. Nucl. Phys. 44, 546 (1986).

[27] M. B. Voloshin and M. I. Vysotsky, Neutrino magnetic
moment and time variation of solar neutrino flux, Sov. J.
Nucl. Phys. 44, 544 (1986).

[28] E. K. Akhmedov, Resonance enhancement of the neutrino
spin precession in matter and the solar neutrino problem,
Sov. J. Nucl. Phys. 48, 382 (1988).

[29] C.-S. Lim and W. J. Marciano, Resonant spin—flavor
precession of solar and supernova neutrinos, Phys. Rev.
D 37, 1368 (1988).

[30] K. Fujikawa and R. Shrock, The magnetic moment of a
massive neutrino and neutrino spin rotation, Phys. Rev.
Lett. 45, 963 (1980).

[31] J. Schechter and J. W. F. Valle, Majorana neutrinos and
magnetic fields, Phys. Rev. D 24, 1883 (1981); Phys. Rev.
D 25, 283(E) (1982).

[32] A. Studenikin, Overview on neutrino electromagnetic
properties, J. Phys. Conf. Ser. 1342, 012047 (2020).

[33] A. de Gouvea and S. Shalgar, Effect of transition magnetic
moments on collective supernova neutrino oscillations,
J. Cosmol. Astropart. Phys. 10 (2012) 027.

[34] A. de Gouvea and S. Shalgar, Transition magnetic mo-
ments and collective neutrino oscillations: Three-flavor
effects and detectability, J. Cosmol. Astropart. Phys. 04
(2013) 018.

[35] A. V. Chukhnova and A. E. Lobanov, Resonance enhance-
ment of neutrino oscillations due to transition magnetic
moments, Eur. Phys. J. C 81, 821 (2021).

[36] A. I. Ternov, Matter-induced magnetic moment and neu-
trino helicity rotation in external fields, Phys. Rev. D 94,
093008 (2016).

[37] T. Bulmus and Y. Pehlivan, Spin-flavor precession phase
effects in supernova, arXiv:2208.06926.

[38] A. E. Lobanov and A. V. Chukhnova, Asymmetry of the
propagation of left-handed neutrinos in an inhomogeneous
magnetic field, J. Exp. Theor. Phys. 133, 515 (2021).

[39] A. V. Chukhnova and A. E. Lobanov, Spin rotation of
neutrinos produced by compact magnetized astrophysical
objects, arXiv:2012.03901.

[40] A. Grigoriev, E. Kupcheva, and A. Ternov, Neutrino spin
oscillations in polarized matter, Phys. Lett. B 797, 134861
(2019).

[41] A. V. Chukhnova and A. E. Lobanov, Neutrino flavor
oscillations and spin rotation in matter and electromagnetic
field, Phys. Rev. D 101, 013003 (2020).

[42] H. Sasaki and T. Takiwaki, Neutrino-antineutrino oscil-
lations induced by strong magnetic fields in dense matter,
Phys. Rev. D 104, 023018 (2021).

[43] S. Abbar, Collective oscillations of Majorana neutrinos in
strong magnetic fields and self-induced flavor equilibrium,
Phys. Rev. D 101, 103032 (2020).

[44] N. Dash, R. Moharana, and G. Cao, Constraining neutrino
transition magnetic moments, Proc. Sci., NuFACT2018
(2018) 046.

[45] Z. Yuan, Y.-F. Li, and X. Zhou, Spin flavor spectral splits
of supernova neutrino flavor conversions, arXiv:2105
.07928.

[46] S. Jana, Y. P. Porto-Silva, and M. Sen, Exploiting a future
galactic supernova to probe neutrino magnetic moments,
J. Cosmol. Astropart. Phys. 09 (2022) 079.

[47] O. G. Kharlanov and P. I. Shustov, Effects of nonstandard
neutrino self-interactions and magnetic moment on col-
lective Majorana neutrino oscillations, Phys. Rev. D 103,
095004 (2021).

[48] H. Sasaki, T. Takiwaki, and A. B. Balantekin, Spin-flavor
precession of Dirac neutrinos in dense matter and its
potential in core-collapse supernovae, Phys. Rev. D 108,
103046 (2023).

[49] C. Giunti, K. A. Kouzakov, Y.-F. Li, A. V. Lokhov, A. I.
Studenikin, and S. Zhou, Electromagnetic interactions of
massive neutrinos and neutrino oscillations, J. Phys. Conf.
Ser. 1342, 012118 (2020).

[50] A. K. Alok, N. R. Singh Chundawat, A. Mandal, and T.
Sarkar, Can neutron star discriminate between Dirac and
Majorana neutrinos?, arXiv:2208.02239.

[51] L. Mastrototaro and G. Lambiase, Neutrino spin oscilla-
tions in conformally gravity coupling models and quintes-
sence surrounding a black hole, Phys. Rev. D 104, 024021
(2021).

[52] D. Píriz, M. Roy, and J. Wudka, Neutrino oscillations in
strong gravitational fields, Phys. Rev. D 54, 1587 (1996).

[53] F. Sorge and S. Zilio, Neutrino spin flip around a
Schwarzschild black hole, Classical Quantum Gravity
24, 2653 (2007).

[54] M. Dvornikov, Neutrino spin oscillations in gravitational
fields, Int. J. Mod. Phys. D 15, 1017–1033 (2006).

[55] L. Buoninfante, G. G. Luciano, L. Petruzziello, and L.
Smaldone, Neutrino oscillations in extended theories of
gravity, Phys. Rev. D 101, 024016 (2020).

[56] C. Y. Cardall and G. M. Fuller, Neutrino oscillations in
curved spacetime: A heuristic treatment, Phys. Rev. D 55,
7960 (1997).

[57] S. Chakraborty, Aspects of neutrino oscillation in alter-
native gravity theories, J. Cosmol. Astropart. Phys. 10
(2015) 019.

PURCELL, RICHERS, PATWARDHAN, and FOUCART PHYS. REV. D 110, 023003 (2024)

023003-20

https://doi.org/10.1103/PhysRevD.93.125030
https://doi.org/10.1103/PhysRevD.93.125030
https://doi.org/10.1051/epjconf/201612504018
https://doi.org/10.1051/epjconf/201612504018
https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.1016/j.physrep.2021.06.002
https://doi.org/10.1016/j.physrep.2021.06.002
https://doi.org/10.1146/annurev-nucl-102115-044600
https://doi.org/10.1146/annurev-nucl-102115-044600
https://doi.org/10.1007/BF00654607
https://doi.org/10.1103/PhysRevD.37.1368
https://doi.org/10.1103/PhysRevD.37.1368
https://doi.org/10.1103/PhysRevLett.45.963
https://doi.org/10.1103/PhysRevLett.45.963
https://doi.org/https://doi.org/10.1103/PhysRevD.24.1883
https://doi.org/10.1103/PhysRevD.25.283
https://doi.org/10.1103/PhysRevD.25.283
https://doi.org/10.1088/1742-6596/1342/1/012047
https://doi.org/10.1088/1475-7516/2012/10/027
https://doi.org/10.1088/1475-7516/2013/04/018
https://doi.org/10.1088/1475-7516/2013/04/018
https://doi.org/10.1140/epjc/s10052-021-09611-w
https://doi.org/10.1103/PhysRevD.94.093008
https://doi.org/10.1103/PhysRevD.94.093008
https://arXiv.org/abs/2208.06926
https://doi.org/10.1134/S1063776121100034
https://arXiv.org/abs/2012.03901
https://doi.org/10.1016/j.physletb.2019.134861
https://doi.org/10.1016/j.physletb.2019.134861
https://doi.org/10.1103/PhysRevD.101.013003
https://doi.org/10.1103/PhysRevD.104.023018
https://doi.org/10.1103/PhysRevD.101.103032
https://doi.org/10.22323/1.341.0046
https://doi.org/10.22323/1.341.0046
https://arXiv.org/abs/2105.07928
https://arXiv.org/abs/2105.07928
https://doi.org/10.1088/1475-7516/2022/09/079
https://doi.org/10.1103/PhysRevD.103.095004
https://doi.org/10.1103/PhysRevD.103.095004
https://doi.org/10.1103/PhysRevD.108.103046
https://doi.org/10.1103/PhysRevD.108.103046
https://doi.org/10.1088/1742-6596/1342/1/012118
https://doi.org/10.1088/1742-6596/1342/1/012118
https://arXiv.org/abs/2208.02239
https://doi.org/10.1103/PhysRevD.104.024021
https://doi.org/10.1103/PhysRevD.104.024021
https://doi.org/10.1103/PhysRevD.54.1587
https://doi.org/10.1088/0264-9381/24/10/011
https://doi.org/10.1088/0264-9381/24/10/011
https://doi.org/10.1142/S021827180600870X
https://doi.org/10.1103/PhysRevD.101.024016
https://doi.org/10.1103/PhysRevD.55.7960
https://doi.org/10.1103/PhysRevD.55.7960
https://doi.org/10.1088/1475-7516/2015/10/019
https://doi.org/10.1088/1475-7516/2015/10/019


[58] D. V. Ahluwalia and C. Burgard, Gravitationally induced
neutrino-oscillation phases, Gen. Relativ. Gravit. 28,
1161–1170 (1996).

[59] G. Lambiase, G. Papini, R. Punzi, and G. Scarpetta,
Neutrino optics and oscillations in gravitational fields,
Phys. Rev. D 71, 073011 (2005).

[60] A. Vlasenko, G. M. Fuller, and V. Cirigliano, Neutrino
quantum kinetics, Phys. Rev. D 89, 105004 (2014).

[61] V. Cirigliano, G. M. Fuller, and A. Vlasenko, A new spin
on neutrino quantum kinetics, Phys. Lett. B 747, 27
(2015).

[62] A. Vlasenko, G. M. Fuller, and V. Cirigliano, Prospects for
neutrino-antineutrino transformation in astrophysical envi-
ronments, arXiv:1406.6724.

[63] C. Volpe, D. Väänänen, and C. Espinoza, Extended
evolution equations for neutrino propagation in astrophysi-
cal and cosmological environments, Phys. Rev. D 87,
113010 (2013).

[64] J. Serreau and C. Volpe, Neutrino-antineutrino correlations
in dense anisotropic media, Phys. Rev. D 90, 125040
(2014).

[65] D. Väänänen and C. Volpe, Linearizing neutrino evolution
equations including neutrino-antineutrino pairing correla-
tions, Phys. Rev. D 88, 065003 (2013).

[66] A. Kartavtsev, G. Raffelt, and H. Vogel, Neutrino propa-
gation in media: Flavor-, helicity-, and pair correlations,
Phys. Rev. D 91, 125020 (2015).

[67] J. Y. Tian, A. V. Patwardhan, and G.M. Fuller, Prospects
for neutrino spin coherence in supernovae, Phys. Rev. D
95, 063004 (2017).

[68] A. Chatelain and C. Volpe, Helicity coherence in binary
neutron star mergers and non-linear feedback, Phys. Rev.
D 95, 043005 (2017).

[69] A. Malkus, J. P. Kneller, G. C. McLaughlin, and R.
Surman, Neutrino oscillations above black hole accretion
disks: Disks with electron-flavor emission, Phys. Rev. D
86, 085015 (2012).

[70] A. Malkus, A. Friedland, and G. C. McLaughlin, Matter-
neutrino resonance above merging compact objects,
arXiv:1403.5797.

[71] A. Malkus, G. C. McLaughlin, and R. Surman, Symmetric
and standard matter-neutrino resonances above merging
compact objects, Phys. Rev. D 93, 045021 (2016).

[72] M.-R. Wu, H. Duan, and Y.-Z. Qian, Physics of neutrino
flavor transformation through matter–neutrino resonances,
Phys. Lett. B 752, 89 (2016).

[73] D. Vaananen and G. C. McLaughlin, Uncovering the matter-
neutrino resonance, Phys. Rev. D 93, 105044 (2016).

[74] Y.-L. Zhu, A. Perego, and G. C. McLaughlin, Matter
neutrino resonance transitions above a neutron star merger
remnant, Phys. Rev. D 94, 105006 (2016).

[75] M. Frensel, M.-R. Wu, C. Volpe, and A. Perego, Neutrino
flavor evolution in binary neutron star merger remnants,
Phys. Rev. D 95, 023011 (2017).

[76] J. Y. Tian, A. V. Patwardhan, and G. M. Fuller, Neutrino
flavor evolution in neutron star mergers, Phys. Rev. D 96,
043001 (2017).

[77] S. Shalgar, Multi-angle calculation of the matter-neutrino
resonance near an accretion disk, J. Cosmol. Astropart.
Phys. 02 (2017) 010.

[78] A. Vlasenko and G. C. McLaughlin, Matter-neutrino
resonance in a multiangle neutrino bulb model, Phys.
Rev. D 97, 083011 (2018).

[79] T. Morinaga, Fast neutrino flavor instability and neutrino
flavor lepton number crossings, Phys. Rev. D 105,
L101301 (2022).

[80] B. Dasgupta, Collective neutrino flavor instability requires
a crossing, Phys. Rev. Lett. 128, 081102 (2022).

[81] M.-R. Wu and I. Tamborra, Fast neutrino conversions:
Ubiquitous in compact binary merger remnants, Phys. Rev.
D 95, 103007 (2017).

[82] X. Li and D.M. Siegel, Neutrino fast flavor conversions in
neutron-star postmerger accretion disks, Phys. Rev. Lett.
126, 251101 (2021).

[83] O. Just, S. Abbar, M.-R. Wu, I. Tamborra, H.-T. Janka, and
F. Capozzi, Fast neutrino conversion in hydrodynamic
simulations of neutrino-cooled accretion disks, Phys. Rev.
D 105, 083024 (2022).

[84] S. A. Richers, G. C. McLaughlin, J. P. Kneller, and A.
Vlasenko, Neutrino quantum kinetics in compact objects,
Phys. Rev. D 99, 123014 (2019).

[85] L. Johns, Collisional flavor instabilities of supernova
neutrinos, Phys. Rev. Lett. 130, 191001 (2023).

[86] C. Kato, H. Nagakura, and M. Zaizen, Flavor conversions
with energy-dependent neutrino emission and absorption,
Phys. Rev. D 108, 023006 (2023).

[87] H. Nagakura, Global features of fast neutrino-flavor
conversion in binary neutron star merger, Phys. Rev. D
108, 103014 (2023).

[88] C. Volpe, Neutrino quantum kinetic equations, Int. J. Mod.
Phys. E 24, 1541009 (2015).

[89] A. V. Patwardhan, M. J. Cervia, E. Rrapaj, P. Siwach, and
A. B. Balantekin, Many-body collective neutrino oscilla-
tions: Recent developments, in Handbook of Nuclear
Physics, edited by I. Tanihata, H. Toki, and T. Kajino
(Springer Nature Singapore, Singapore, 2020), pp. 1–16.

[90] A. B. Balantekin, M. J. Cervia, A. V. Patwardhan, E.
Rrapaj, and P. Siwach, Quantum information and quantum
simulation of neutrino physics, Eur. Phys. J. A 59, 186
(2023).

[91] M. C. Volpe, Neutrinos from dense environments: Flavor
mechanisms, theoretical approaches, observations, and
new directions, arXiv:2301.11814.

[92] P. Strack and A. Burrows, Generalized Boltzmann formal-
ism for oscillating neutrinos, Phys. Rev. D 71, 093004
(2005).

[93] F. Capozzi, B. Dasgupta, A. Mirizzi, M. Sen, and G. Sigl,
Collisional triggering of fast flavor conversions of super-
nova neutrinos, Phys. Rev. Lett. 122, 091101 (2019).

[94] I. Esteban, M. Gonzalez-Garcia, M. Maltoni, T. Schwetz,
and A. Zhou, The fate of hints: Updated global analysis of
three-flavor neutrino oscillations, J. High Energy Phys. 09
(2020) 178.

[95] A. Loureiro et al., On the upper bound of neutrino
masses from combined cosmological observations and
particle physics experiments, Phys. Rev. Lett. 123,
081301 (2019).

[96] S. P. Mikheyev and A. Y. Smirnov, Resonance enhance-
ment of oscillations in matter and solar neutrino spectros-
copy, Yad. Fiz. 42, 1441 (1985).

THREE-FLAVOR, FULL MOMENTUM SPACE NEUTRINO SPIN … PHYS. REV. D 110, 023003 (2024)

023003-21

https://doi.org/10.1007/BF03218936
https://doi.org/10.1007/BF03218936
https://doi.org/10.1103/PhysRevD.71.073011
https://doi.org/10.1103/PhysRevD.89.105004
https://doi.org/10.1016/j.physletb.2015.04.066
https://doi.org/10.1016/j.physletb.2015.04.066
https://arXiv.org/abs/1406.6724
https://doi.org/10.1103/PhysRevD.87.113010
https://doi.org/10.1103/PhysRevD.87.113010
https://doi.org/10.1103/PhysRevD.90.125040
https://doi.org/10.1103/PhysRevD.90.125040
https://doi.org/10.1103/PhysRevD.88.065003
https://doi.org/10.1103/PhysRevD.91.125020
https://doi.org/10.1103/PhysRevD.95.063004
https://doi.org/10.1103/PhysRevD.95.063004
https://doi.org/10.1103/PhysRevD.95.043005
https://doi.org/10.1103/PhysRevD.95.043005
https://doi.org/10.1103/PhysRevD.86.085015
https://doi.org/10.1103/PhysRevD.86.085015
https://arXiv.org/abs/1403.5797
https://doi.org/10.1103/PhysRevD.93.045021
https://doi.org/10.1016/j.physletb.2015.11.027
https://doi.org/10.1103/PhysRevD.93.105044
https://doi.org/10.1103/PhysRevD.94.105006
https://doi.org/10.1103/PhysRevD.95.023011
https://doi.org/10.1103/PhysRevD.96.043001
https://doi.org/10.1103/PhysRevD.96.043001
https://doi.org/10.1088/1475-7516/2017/02/010
https://doi.org/10.1088/1475-7516/2017/02/010
https://doi.org/10.1103/PhysRevD.97.083011
https://doi.org/10.1103/PhysRevD.97.083011
https://doi.org/10.1103/PhysRevD.105.L101301
https://doi.org/10.1103/PhysRevD.105.L101301
https://doi.org/10.1103/PhysRevLett.128.081102
https://doi.org/10.1103/PhysRevD.95.103007
https://doi.org/10.1103/PhysRevD.95.103007
https://doi.org/10.1103/PhysRevLett.126.251101
https://doi.org/10.1103/PhysRevLett.126.251101
https://doi.org/10.1103/PhysRevD.105.083024
https://doi.org/10.1103/PhysRevD.105.083024
https://doi.org/10.1103/PhysRevD.99.123014
https://doi.org/10.1103/PhysRevLett.130.191001
https://doi.org/10.1103/PhysRevD.108.023006
https://doi.org/10.1103/PhysRevD.108.103014
https://doi.org/10.1103/PhysRevD.108.103014
https://doi.org/10.1142/S0218301315410098
https://doi.org/10.1142/S0218301315410098
https://doi.org/10.1140/epja/s10050-023-01092-7
https://doi.org/10.1140/epja/s10050-023-01092-7
https://arXiv.org/abs/2301.11814
https://doi.org/10.1103/PhysRevD.71.093004
https://doi.org/10.1103/PhysRevD.71.093004
https://doi.org/10.1103/PhysRevLett.122.091101
https://doi.org/10.1007/JHEP09(2020)178
https://doi.org/10.1007/JHEP09(2020)178
https://doi.org/10.1103/PhysRevLett.123.081301
https://doi.org/10.1103/PhysRevLett.123.081301


[97] L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev.
D 17, 2369 (1978).

[98] J. M. Lattimer and F. D. Swesty, A generalized equation
of state for hot, dense matter, Nucl. Phys. A535, 331
(1991).

[99] S. Richers, D. Willcox, and N. Ford, Neutrino fast flavor
instability in three dimensions, Phys. Rev. D 104, 103023
(2021).

[100] J. Cernohorsky and S. A. Bludman, Maximum entropy
distribution and closure for Bose-Einstein and Fermi-Dirac
radiation transport, Astrophys. J. 433, 250 (1994).

[101] J. Froustey, S. Richers, E. Grohs, S. Flynn, F. Foucart, J. P.
Kneller, and G. C. McLaughlin, Neutrino fast flavor

oscillations with moments: Linear stability analysis and
application to neutron star mergers, Phys. Rev. D 109,
043046 (2024).

[102] L. Johns and H. Nagakura, Fast flavor instabilities and the
search for neutrino angular crossings, Phys. Rev. D 103,
123012 (2021).

[103] S. Richers, Evaluating approximate flavor instability met-
rics in neutron star mergers, Phys. Rev. D 106, 083005
(2022).

[104] E. Grohs, S. Richers, S. M. Couch, F. Foucart, J. P. Kneller,
and G. McLaughlin, Neutrino fast flavor instability in three
dimensions for a neutron star merger, Phys. Lett. B 846,
138210 (2023).

PURCELL, RICHERS, PATWARDHAN, and FOUCART PHYS. REV. D 110, 023003 (2024)

023003-22

https://doi.org/10.1103/PhysRevD.17.2369
https://doi.org/10.1103/PhysRevD.17.2369
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1103/PhysRevD.104.103023
https://doi.org/10.1103/PhysRevD.104.103023
https://doi.org/10.1086/174640
https://doi.org/10.1103/PhysRevD.109.043046
https://doi.org/10.1103/PhysRevD.109.043046
https://doi.org/10.1103/PhysRevD.103.123012
https://doi.org/10.1103/PhysRevD.103.123012
https://doi.org/10.1103/PhysRevD.106.083005
https://doi.org/10.1103/PhysRevD.106.083005
https://doi.org/10.1016/j.physletb.2023.138210
https://doi.org/10.1016/j.physletb.2023.138210

