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Increasingly precise astrophysical observations of the last decade in combination with intense theoretical
studies allow for drawing a conclusion about potential quark matter presence in neutron stars’ interiors.
Quark matter may form the neutron star inner core or be immersed in the form of bubbles, or droplets. We
consider the second scenario and demonstrate that even a small fraction of quark matter bubbles can lead to
a high nonlinearity of the sound wave. Below the bubble resonant frequency the sound speed is lower than
the ambient value. At the resonance it sharply grows. The peak is constrained by viscous dissipation. Above
the resonance the speed exceeds the pure neutron star matter value. The dispersion equation for the bubbly
neutron star compressibility is derived.
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I. INTRODUCTION

In the last years there has been breakthrough progress in
astrophysical observations on neutron stars (NSs) [1–8].
These advances encourage the studies of the NSs’ equation
of state (EOS). Construction of the EOS which accounts for
the growing amount of astrophysical multimessenger sig-
nals remains largely an open problem [9–12]. The relevant
EOS has to include both hadronic matter (HM) and quark
matter (QM) degrees of freedom. The presence of QM in
NSs is widely discussed and is plausible for maximum
mass NSs; see, e.g., [12–24].
In a hybrid NS (HNS) QM is expected to form the inner

core inside the dense HM crust. This is the most natural but
not a unique pattern of the HNS composition. It had been
suggested long ago and discussed by a number of authors
that the QM insertions of different geometrical structures
(drops, rods, slabs, tubes) may be formed inside the HNS
[15,16,22,24–35]. The mixed HM-QM state of this type is
called the pasta phase; see [35] and references therein. We
consider the spherical QM bubbles with an equilibrium
radius R0 and leave aside the problem of QM seeds

evolution in a process of nucleation or spinodal decom-
position [36–38].
Apart from NSs and HNSs the existence of quark stars

(QSs) is presently widely discussed. The basic idea which
goes back to [39–41] is that QM might be energetically
favored over the nuclear matter. Two types of QSs are
proposed—that made of u, d, and s, or u and d quarks; see
[42] and references therein for the first option and [43] for
the second. The core discussion concerns the nature of
heavy compact stars with masses M ≤ 2M⊙ [42,44,45].
According to a very recent analysis of multimessenger data
the maximum mass of a NS could be as high as 2.49 −
2.52M⊙ [45]. The strange QS picture allows us to avoid a
very stiff EOS and consequently to respect the conformal
limit of the speed of sound c2s ¼ 1

3
[42,46]. On the other

hand, according to inference of the multimessenger
observations the NS scenario is favored against the QS
scenario [44].
An inherent attribute of the EOS is the squared speed of

sound c2s ¼ dp
dε, where the derivative is considered at constant

specific entropy. It describes the stiffness of matter. In [47] it
was first clearly indicated that the existence of NSs with
masses around two solar masses is in tension with the c2s <

1
3

conformal barrier bound. This work started the flow of
publications on the nonmonotonic behavior of c2s as a
function of the density in NSs; see references above and
[48–50]. The aim of our work is to investigate the sound
propagation in HNS with QM droplets (bubbles) immersed
into it. It will be shown that the presence of QM bubbles in
HM causes a highly nonlinear behavior of the sound wave
propagation. The dispersion curves of the sound phase speed
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and of the rate of attenuation exhibit a dip-bump structure in
the neighborhood of the QM bubble resonance frequency.
Above the resonance the stiffness of the matter increases
and the sound speed becomes higher than in the pure HM.
The anomalous dispersion of the sound phase speed in a
bubbly liquid has been studied by several authors, see, e.g.,
[51,52], and will be investigated below using the Rayleigh-
Plesset equation (RPE) [53,54] as a starting point. To
describe the sound propagation in a bubbly HNS one needs
the EOS’s of HM and QM. To this end we shall rely on the
model-independent polytrope EOS proposed in [18]. It has
proved itself in successfully fitting the astrophysical data on
NSs [7,12,55].
Thework is organized as follows. In Sec. II we remind the

reader about the Rayleigh equation (RE) and present its
generalizations with the inclusion of the dissipation, driving
pressure, surface tension, and polytropic pressure-volume
relation. In Sec. III the equation for the bubble volume
response to the oscillatory driving pressure is derived. The
relationship between relativistic and the Newtonian (adia-
batic) polytropes is established. Section IV is the core of
the paper. The formula for the compressibility of the HM
containingQMbubbles is derived. Expressions for the sound
speed and attenuation coefficient in a bubbly HNS are
presented. The choice of parameters characterizing the
HNS is discussed in Sec. V. The results of the calculations
of the speed of sound and the attenuation coefficient are
presented inSec.VI. SectionVII contains the summaryof the
work. Throughout thework, we use natural units ℏ ¼ c ¼ 1.

II. RAYLEIGH AND RAYLEIGH-PLESSET
EQUATIONS

The theory of a bubble dynamics in an infinite body of
liquid dates back to the work of Lord Rayleigh [53]. In
1917 he investigated cavitation damage of the ship pro-
pellers and discovered that it was caused by the bubbles
collapse. The RE describing the bubble pulsation and
collapse (inertia cavitation) reads

RR̈þ 3

2
Ṙ2 ¼ 0; ð1Þ

where RðtÞ is the bubble radius. The solution of Eq. (1) is
the power law

RðtÞ ∼ ðtc − tÞ2=5; ð2Þ

which leads to a divergent wall velocity ṘðtÞ ∼ ðtc − tÞ−3=5
at t → tc. The RE (1) gives an oversimplified picture of
bubble phenomena with only inertia forces accounted for.
The simplest generalization of the RE is the celebrated RPE
[54,56,57] which reads

RR̈þ 3

2
Ṙ2 ¼ 1

ρh

�
pq − ph −

2σ

R
− 4η

Ṙ
R
− PðtÞ

�
; ð3Þ

where ρh is the density of the medium surrounding the
bubble (the HM density), pq is steady and unsteady
pressures in the QM bubble interior, ph is the undisturbed
ambient HM pressure, σ is the surface tension, η is the
surrounding HM shear viscosity, and PðtÞ is the driving
acoustic pressure. A pedagogical derivation of Eq. (3) may
be found in [58,59]. There are only a few studies of QM
bubble dynamics based on Eqs. (1) and (3) [59–61]. As it
applies to bubbly HNS both σ and η play an important role.
It will be shown that the oscillation regime around the
equilibrium radius is realized provided σ is below a certain
critical value. We note in passing that the critical value of σ
has been discussed in the literature [24,28,29,35] in relation
to the character of the QM-HM transition. The shear
viscosity possibly prevents the collapse of the QM bubble
[60] and puts the causal upper limit on the speed of sound;
see below. From what follows it will be clear that the values
of both parameters are poorly known, not to say at a level of
an educated guess.
One can notice that Eq. (3) contains the HM shear

viscosity η but bulk viscosity ζ is absent. Without going
into details we indicate the assumption which led to the
elimination of ζ. The RPE is based on the viscous Navier-
Stokes equation (NSE) and the boundary condition on the
bubble wall [58,59,62]. The NSE contains both η and ζ
[58,59]. The boundary condition is the matching equation
for the radial component of the stress tensor σrr at the
bubble interface [58,59,62]. The stress tensor σrr reads [63]

σrr ¼ −pL þ 2η
∂v
∂r

þ
�
ζ −

2η

3

�
∇v ð4Þ

where pL is the HM pressure at the outer interface of the

bubble and vðr; tÞ ¼ R2ðtÞ
r2ðtÞ ṘðtÞ [58,59].

To derive RPE in the form (3) one has to assume that the
motion of HM at the bubble wall is incompressible, that is,
∇v ¼ divv ¼ 0 in Eq. (4). Outside the wall HM compress-
ibility is responsible for the undisturbed speed of sound ch.
After this assumption is made the derivation of RPE
proceeds as described in [59]. The compressibility correc-
tions to RPE were considered in [64]. It was shown that
RPE has the error of the order of the bubble wall Mach
number c−1h dR=dt, where ch is the speed of sound in the
surrounding HM. The Mach number grows in the vicinity
of the bubble collapse. One may expect that bulk viscosity
will play an important role in this region as well. It is
known that ζ has a maximum close to the second-order
phase transition temperature and near the QCD critical end
point [65–67].
It is also enhanced in the presence of the slow relaxation

Mandelstam-Leontovich mode [66]. Calculations have
shown, see [68] and references therein, that bulk viscosity
of NSs depends on density, temperature, mechanisms
accounted for, etc. Very roughly speaking, the shear
viscosity η dominates over the bulk viscosity ζ [69].
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Strictly speaking, RPE (3) is correct for small deviations
of the ball radius and pressure from their equilibrium values
[64]. This opens the possibility to describe the acoustic
properties of bubbly HNSs using RPE and the polytropic
EOS.

III. OSCILLATIONS OF A QM BUBBLE WITH
A POLYTROPIC EOS

Consider Eq. (3) with small deviations of the bubble
radius and pressure from their equilibrium values R0 and
pq0: R ¼ R0½1þ xðtÞ�, pq ¼ pq0 þ r, where r is the
variable part of the pressure inside the bubble [not to be
confused with the range r from the bubble center in
Eq. (4)]. We insert the above expressions for R and pq

into Eq. (3) and perform linearization. One gets

ẍ ¼ 1

ρhR2
0

�
rþ 2σ

R0

x − 4ηẋ − PðtÞ
�
: ð5Þ

Linearization means neglecting terms proportional to xẍ,
ẋ2, x2. This is legitimate since we consider bubble
oscillations with small amplitude x ∼ aeiωt, a ≪ 1. Then
RR̈ ≃ R2

0ẍþ R2
0xẍ, ẍ ∼ a, xẍ ∼ a2, xẍ=ẍ ∼ a < 1. A similar

argument applies to other terms. An important point is that
small bubble oscillations result in highly nonlinear sound
propagation as we shall see below.
Next comes the polytropic EOS [7,18,55,70] which in a

model-independent way describes the HM and QM com-
ponents of HNS and allows us to relate r to x. The EOS [18]
and a family of piecewise EOSs generated from it meet the
multimessenger picture of NSs [7].
According to [18] the EOS is formulated in terms of the

polytropic index defined as

γ ¼ dðlnpÞ=dðln εÞ ¼ ε

p
dp
dε

¼ ε

p
c2s ; ð6Þ

where ε is the energy density. The index γ takes the value
γ ≈ 2.5 around the saturation density, γ ¼ 1.75 is the HM-
QM dividing line, γ → 1 in high density QM, and γ < 0.5
destabilizes the star [7,18,71,72]. In RPE one has to resort
to the polytropic EOS expressing pressure as a function of
density, p ¼ kρΓ with Γ usually called the adiabatic index.
In what follows we change the notation from Γ to γ̄ which is
more handy to use in formulas. Interconnection of the two
polytrophic forms is discussed at the end of this section. In
terms of the bubble radius R the last polytrope reads

pqR3γ̄ ¼ pq0R
3γ̄
0 : ð7Þ

Next we expand ð1þ xÞ3γ̄ ≈ 1þ 3γ̄x and obtain
r ¼ −3γ̄pq0x. Then Eq. (5) takes the form

ẍ ¼ 1

ρhR2
0

�
−
�
3γ̄qpq0 −

2σ

R0

�
x − 4ηẋ − PðtÞ

�
: ð8Þ

We assume the oscillatory driving excitation pressure
PðtÞ ¼ pseiωt. Then Eq. (8) may be rewritten as

ẍþ gẋþ ω2
0x ¼ −

ps

ρhR2
0

eiωt; ð9Þ

g ¼ 4η

ρhR2
0

; ω2
0 ¼

1

ρhR2
0

�
3γ̄qpq0 −

2σ

R0

�
: ð10Þ

We see that Eq. (9) is an equation of a damped forced
harmonic oscillator with frequency ω2

0 and viscous friction
damping g. It admits an analytical solution to be presented
below. The requirement of positive stiffness ω2

0 imposes the
upper bound on σ for given R0 and other parameters. The
stability condition reads

φ ¼ 2σ

R0

ð3γ̄qpq0Þ−1 < 1: ð11Þ

We shall return to the discussion of this relation later in
Sec. V. For future purposes we rewrite Eq. (9) in the volume
frame. In linear approximation the dynamical volume v is

v≡ V − V0 ≃
4

3
πR3

0ð1þ 3xÞ − 4

3
πR3

0 ¼ 3V0x: ð12Þ

We note that it does not make sense to go beyond the
approximation of Eq. (12) with poorly known values of
physical parameters. In terms of v Eq. (9) takes the form

v̈þ gv̇þ ω2
0v ¼ −dpseiωt; ð13Þ

with d ¼ 4πR0

ρh
. We note that the relativistic generalization of

RPE (3) and hence of Eq. (13) is straightforward [61,73]
but the sound propagation equations become less
transparent.
Now we return to the relationship between the two

polytropic indices γ and γ̄. One can recast the polytrope γ̄ to
meet with Eq. (6)

γ̄ ¼ dðlnpÞ=dðln ρÞ ¼ ρ

p
dp
dρ

¼ ρ

p
c̄2s : ð14Þ

The polytropes (6) and (14) are called relativistic and
Newtonian [74] correspondingly. Note that in a classical
textbook [75] c̄s defined in Eq. (14) is called the speed of
sound. The relation between Eqs. (6) and (14) has been
discussed by a number of authors [74,76–80]. Assuming
that the energy density ε and the pressure p are functions of
density ρ only, one can write the first law of thermody-
namics as dEþ pdV ¼ 0. Together with ε ¼ E=V,
ρ ¼ M=V, and dð1=ρÞ ¼ dV=M it leads to [74,79]
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d

�
ε

ρ

�
¼ −pd

�
1

ρ

�
: ð15Þ

Integration of Eq. (15) with respect to ρ and accounting for
the nonrelativistic limit ε ¼ ρ yields the desired equation

ε ¼ ρþ 1

γ̄ − 1
p: ð16Þ

From Eqs. (6), (14), and (16) one easily gets

γ̄ ¼ εþ p
ε

γ: ð17Þ

According to [76] the linear dependence of the type (16)
connecting ε to ρ is valid for a wide class of liquids.
However, the above relations are purely thermodynamic.
As an example of the ε=ρ connection based on dynamical
models we refer to Fig. 5 of [81].
To summarize, it does not make much difference whether

γ or γ̄ is implied in the set of parameters presented below. In
what follows we shall keep the notation γ̄ for the polytrope
(14) but omit the vertical bar from c̄s.

IV. SOUND IN A BUBBLY HYBRID
NEUTRON STAR

Assuming a spatially uniform distribution of N bubbles
with equal volume V we write the average density ρm of the
QM-HM mixture as

ρm ¼ ð1 − βÞρh þ βρq: ð18Þ

Here ρh and ρq are the densities of the HM and QM
components, β is the bubble volume fraction β ¼
NV=ðUh þ NVÞ, Uh is the HM volume, and the total
volume is U ¼ Uh þ NV. The QM volume fraction β is
assumed to be small, β ≪ 1. To find the speed of the
pressure wave in the mixture we differentiate Eq. (18) with
respect to the insonifying field pressure. This task turns out
to be far from trivial. The bubble volume V ¼ V0 þ v
“breathes” with small amplitudes according to Eq. (13).
The bubble volume fraction β becomes pressure dependent
as well. Differentiation of Eq. (18) yields

dρm
dp

¼ 1

c2m
¼ 1 − β

c2h
þ β

dρq
dp

− ρh
dβ
dp

þ ρq
dβ
dp

: ð19Þ

Here the sound velocity is c2s ¼ dp=dρ, where the
derivative is considered at constant specific entropy.
Comparison with c2s ¼ dp=dε is discussed in Sec. V.
With Uq ¼ NV being the total QM volume, Mq its mass,
we have

dρq
dp

¼ d
dp

Mq

Uq
¼−

�
Mq

Uq

��
N
Uq

�
dv
dp

¼ ρq

�
−
1

V
dv
dp

�
¼ ρqϰq:

ð20Þ

Here ϰq ¼ − 1
V
dv
dp is the compressibility of QM. In a

similar way dβ=dp is evaluated

dβ
dp

¼ d
dp

Uq

Uh þUq
¼ N

Uh þ Uq

dv
dp

−
UqN

ðUh þ UqÞ2
dv
dp

¼ −βϰq þ β2ϰq: ð21Þ

The term proportional to β2 can be dropped, the second
and the last terms in Eq. (19) cancel each other, and we
arrive at

1

c2m
≅
1 − β

c2h
þ βρhϰq: ð22Þ

In general, the speed of sound is expressed in terms of
compressibility as follows:

ϰ ¼ −
1

V
dV
dp

¼ −ρ
dð1=ρÞ
dp

¼ 1

ρ

dρ
dp

¼ 1

ρc2s
; ð17Þ ð23Þ

so that c2s ¼ 1=ρϰ. To find ϰq in Eq. (22) one has to solve
Eq. (13) for v. Taking v in the form v ¼ v0eiωt this is easily
done with the result

v0 ¼ −
3V0ps

ρhR2
0ðω2

0 − ω2 þ igωÞ : ð24Þ

The sound wave pressure has the oscillatory form
p ¼ pseiωt. Therefore

ϰq ¼ −
1

V0

dv
dp

¼ −
1

V0

dv
dt

�
dp
dt

�
−1

¼ −
1

V0

v0

ps
: ð25Þ

Insertion of Eq. (24) into Eq. (25) yields

ϰq ¼
3

ρhR2
0

ðω2
0 − ω2 þ igωÞ−1: ð26Þ

Returning to Eq. (22) we write

c2h
c2m

¼ 1þ 3βc2h
R2
0

ðω2
0 − ω2 þ igωÞ−1: ð27Þ

A comment on terminology is appropriate at this point.
Equations (3), (8), and (13) contain the shear viscosity η.
The QM bubble oscillates with friction which leads to the
sound attenuation. As a result, ϰq and cm are complex while
according to the classical textbook [75] the sound velocity
is real by its meaning. This contradiction is fictitious. The
sound phase speed to be obtained below is real. In a system
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with dissipation the sound wave number is complex.
However, it is quite common to call the speed of sound
the complex quantities like cm [71,82,83].
The relation (24) enables us to obtain the real phase

speed and the attenuation coefficient. The pressure wave
propagates in a bubbly medium with a complex wave
number km ¼ k1 þ ik2 and has the form

u ¼ Aeiðωt−kmxÞ ¼ Aeiω
�
t−k1

ωx
�
ek2x ¼ Ae

iω
�
t− x

cph

�
e−αx; ð28Þ

where cph is the phase speed and α is the absorption
coefficient

cph ¼
ω

Rekm
; α ¼ −Imkm: ð29Þ

To express cph and α in terms of HM-QM parameters
we set

ch
cm

¼ km
kh

¼ ν − iξ;
c2h
c2m

¼ G − iF: ð30Þ

Simple algebra leads to

cph ¼
ch
ν
; α ¼ ω

ch
ξ ¼ ω

F
2chν

; ð31Þ

ν2 ¼ 1

2

�
Gþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ F2

p 

: ð32Þ

We remind that c2h ¼ γhph
ρh

, γh > 1.75.
The ratio (30) was already evaluated and is given by

Eq. (27). From Eq. (27) we get

G ¼ 1þ 3βc2h
R2
0

ω2
0 − ω2

ðω2
0 − ω2Þ2 þ g2ω2

; ð33Þ

F ¼ 3βc2h
R2
0

gω
ðω2

0 − ω2Þ2 þ g2ω2
: ð34Þ

Equations (31)–(34) provide a complete solution for the
sound phase speed and the attenuation coefficient.
At this point the values of the physical parameters

entering into Eqs. (33) and (34) remain unfixed except
for the requirement β ≪ 1. The choice of parameters is
discussed below in Sec. V. It is instructive to separate in ω2

0

the surface tension contribution. We remind Eq. (10) for ω2
0

and present it in the following form:

ω2
0 ¼ ω̄2

0Φ2; ω̄2
0 ¼

3γ̄qpq0

ρhR2
0

; Φ2 ¼ 1 − φ;

φ ¼ 2σ

3γ̄qpqoR0

: ð35Þ

Then Eqs. (33) and (34) read

G ¼ 1þ β
γ̄hph

γ̄qpqo

Φ2 −Ω2

½ðΦ2 −Ω2Þ2 þ δ2Ω2� ; ð36Þ

F ¼ βω
γ̄hph

γ̄qpqo

g=ω̄2
0

½ðΦ2 −Ω2Þ2 þ δ2Ω2� ; ð37Þ

where Ω ¼ ω=ω̄0, δ ¼ g=ω̄0. From Eqs. (31), (32), (36),
and (37) one easily obtains the sound velocity and the
attenuation rate

cρh≃
chffiffiffiffi
G

p ¼ch

�
1þβ

γ̄hph

γ̄qpq0

Φ2−Ω2

½ðΦ2−Ω2Þ2þδ2Ω2�
�−1

2

; ð38Þ

α¼ ω

2chF
¼β

�
4

3
η

ω2

2ρqc3q

�
ρhch
ρqcq

1

½ðΦ2−Ω2Þ2þδ2Ω2�; ð39Þ

where cq ¼
ffiffiffiffiffiffiffiffi
γ̄qpq0

ρq

q
. It is interesting to note that α contains a

factor

α0 ¼ 4

3
η

ω2

2ρqc3q
; ð40Þ

which is a well-known sound attenuation coefficient at zero
bulk viscosity and zero thermal conductivity [75]. The
absence of the bulk viscosity ζ in Eq. (40) was explained
at the end of Sec. II. In the low frequency limit ω → 0
Eqs. (38) and (39) reduce to

cph ≃ ch

�
1þ β

Φ
c2hρh
c2qρq

�−1
2

≃ ch

�
1 −

1

2

β

Φ
c2hρh
c2qρq

�
; ð41Þ

α ≃ α0
β

Φ2

ρhch
ρqcq

: ð42Þ

The dependence of Eqs. (38), (39), (41), and (42) on
Φ2 ¼ 1 − φ exhibits two limiting regimes. The first one is
φ → 0, Φ2 → 1 which is realized for small values of σ and/
or for large bubble radius. In this case one simply replaces
Φ2 by 1 in the above equations. The opposite limitΦ2 → 0,
φ → 1 corresponds to vanishing resonance frequency ω0,
where ω2

0 ¼ ω̄2
0ð1 − φÞ. The neighborhood of the bubble

stability limit φ → 1, ω2
0 → 0 deserves a special consid-

eration. At ω2
0 → 0 the quantities G (36) and F (37) read

G ¼ 1 −
3βc2h
R2
0

1

ω2 þ g2
; ð43Þ

F ¼ 3βc2h
R2
0

g=ω
ω2 þ g2

: ð44Þ
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To get the sound speed and the attenuation coefficient
one has to return to Eqs. (31) and (32). The approximation
ν ≃

ffiffiffiffi
G

p
valid for F2=G2 ≪ 1 leading to Eqs. (38) and (39)

is broken for φ → 1, ω2
0 → 0 due to the factorω−1 in F. The

most interesting case is when G is negative. Then ν2 →
F2=4jGj and

cph ≃
2

ffiffiffiffiffiffiffijGjp
F

ch ¼
2ωgR0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3βðω2 þ g2Þ
p ; ð45Þ

α ≃
ω

ffiffiffiffiffiffiffijGjp
ch

¼ ω

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3β

ω2 þ g2

s
: ð46Þ

From Eqs. (38), (39), (45), and (46) we conclude that the
sound velocity and attenuation in a bubbly HNS depend on
the surface tension at the QM-HM interface and on the
shear viscosity of the HM.

V. THE CHOICE OF PARAMETERS

The values of physical parameters entering into Eqs. (38)
and (39) are highly uncertain. We take for granted the
polytropic EOS γ ¼ dðlnpÞ=dðln εÞ [18] with γ ¼ 1.75 the
dividing line between HM and QM. As explained in Sec. III
in RPE one uses the polytrope ρ ¼ kργ̄ where γ̄ is the so-
called adiabatic index. The linear relation between γ and γ̄
is given by Eq. (46). We identify γ̄c ¼ 1.75 as a value
dividing the two phases, γ̄q < 1.75 corresponds to the QM
phase and γ̄h > 1.75 to the HM one.
Irrespective of the attribution of the γ̄ values to different

HNS phases, the range of other parameters is wide, model
dependent, and loosely defined by observations. In addi-
tion, one should specify the NS under consideration and the
distance from the QM bubble to the NS center. Density and
pressure strongly depend upon this distance. Therefore we
take some tentative values of the parameters lying within
the interval accepted in most papers on the subject. Our aim
is to display the qualitative picture of the sound dispersion
and attenuation in a bubbly HNS.
Due to continuous progress in NS observations and

intense theoretical work the possible set of parameters
presented in the literature is rather diverse; see, e.g., the
recent review [84]. Apart from the γ̄ values the other three
key parameters are the sound velocity, density, and
pressure. We take for them the values within the bands
of the number of solutions without sticking to a particular
one. Our set of parameters is the following. For HM the
values are

γ̄h ¼ 2.5; c2sh ¼
1

3
; ρh ¼ 250

MeV
fm3

¼ 5

3
ρ0;

ph ¼ 33
MeV
fm3

: ð47Þ

For QM we choose

γ̄q ¼ 1.4; c2sq ¼
1

2
; ρq ¼ 600

MeV
fm3

¼ 4ρ0;

pq0 ¼ 214
MeV
fm3

: ð48Þ

Here ρ0 ¼ 150 MeV
fm3 is the saturation density correspond-

ing to n0 ¼ 0.16 fm−3. The above numbers were chosen in
the following way. First, in line with [18] we fix the values
of γ̄h and γ̄q on different sides of γ̄c ¼ 1.75. Then comes the
choice of the sound speed. For HM we take the conformal
limit value c2sh ¼ 1=3. From a number of publications it is
known that c2sh exhibits bumps and wiggles (see, e.g.,
[84,85]) but a monotonic solution around the conformal
value is not excluded [70]. One can take c2sh ¼ 1=3 as a
guide. As it was first pointed out in [47] and confirmed by
many authors the conformal limit is surpassed in QM
unless the density is asymptotically high. We choose for c2sq
the value c2sq ¼ 1=2. With the values of γ̄c, γ̄h, γ̄q, c2sh, c

2
sq at

hand we sample the density and the pressure values. The
density at which QM possibly appears in HNS is very
uncertain and depends on the star mass. According to [8] it
may occur at ð2–3Þn0, in [85] the importance of quark
degrees of freedom is expected at ð2–4Þn0, while [9]
attributes the HM-QM transition to densities ð5–7Þn0.
The density values in Eqs. (47) and (48) meet the

ð2–4Þn0 criterion. The corresponding pressure values
cannot be uniquely fixed. As an example we refer to
Fig. 1 of [84]. Our pressure values are within the intervals
depicted in this figure. Three more parameters are needed
to calculate the sound velocity (38) and damping (39). They
are the bubble radius R0, the surface tension σ, and the HM
viscosity η. The values of these quantities are almost
unrestricted. The bubble radius may be to some extent
considered as a free parameter though according to a recent
study the preferable value is R0 ∼ ð5–10Þ fm [35]. The
nucleation of QM drops with much larger R has been
discussed in [86,87]. The surface tension σ is a parameter
closely connected with the question of whether the QM-
HM phase transition is a sharp first order or a smooth one
[24,28–30,35,88–90]. The value of σ was recently dis-
cussed in [35] and according to this reference the value of σ
spans from 10 to 120 MeV=fm2. The determination of σ is
a complicated model-dependent task which is beyond our
subject. Shear viscosity η leads to the sound attenuation and
prevents the sound speed from becoming acausal. Shear
viscosity plays an important role in heavy-ion collisions.
However, direct measurements of η are not possible and
observables are expressed in terms of the ratio of η over
the entropy density, η=s. A theoretical lower bound
(KSS bound) is η=s ≥ 1

4π [91]. Calculations of η in NSs
[68,72,92,93] take into account the contributions from
leptons, neutrons, and effects from superfluidity. The results
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strongly depend on temperature and density and are pre-
sented in terms of log10η ½g cm−1s−1�. The results arewithin a
wide range from 10 to 20. All three parameters R0, σ, and η
are interrelated.
We present a list of relations linking the parameters

which determine the speed of sound and attenuation. Some
of these equations were already presented above,

2σ

R0

¼ pq0 − ph; ð49Þ

φ ¼ 2σ

R0

1

3γ̄qpq0
; ð50Þ

δ ¼ g=ω̄0 ¼
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3γ̄qρhρq0
p �

η

R0

�
: ð51Þ

Here Eq. (49) is the Young-Laplace pressure equation, R0 is
the bubble radius in equilibrium, and pq0 is the static inside
pressure at R ¼ R0 in the absence of any driving perturba-
tions. The set of Eqs. (49)–(51) may be supplemented by
the expression for the resonance sound wave frequency

fr ¼
1

2π
ω̄0

ffiffiffiffiffiffiffiffiffiffiffi
1 − φ

p
¼ 1

2πR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ρh

�
3γ̄qpq0 −

2σ

R0

�s
: ð52Þ

This equation is important in view of a rapid development
of the NSs seismology. The canonical NSs frequencies are
in the kHz range [94,95] but recently the MHz range signals
were discussed [96]. There might be different sources of
sound in NSs like, e.g., phase transition [66,97].
As explained above, the values of the parameters in

Eqs. (49)–(52) are known very loosely and may be shifted
remaining within the range of the multimessenger solu-
tions. Therefore the solution presented below has to be
considered as one of a great many others. Our aim is to
display the general character of the sound propagation. We
start from Eq. (49), insert the pressure values from Eq. (47),
and obtain σ=2R0 ¼ 90 MeV=fm3. To remain within the
interval 10 MeV=fm2 ≤ σ ≤ 120 MeV=fm2 [35] we
choose σ ¼ 90 MeV=fm2 and then R0 ¼ 1 fm which is
somewhat too low according to [35]. With this value of
σ=R0 (50) gives φ ¼ 0.2, Φ2 ¼ 0.8. To get δ from Eq. (51)
we have to specify the value of η from the extremely wide
interval discussed above. Taking log10η½g=cm · 1� ¼ 11, or
η ¼ 18.7 MeV=fm2 one obtains δ ¼ 0.16. The resonance
frequency (52) with the above values of parameters is fr ¼
0.8 × 1020 kHz (ω̄0 ¼ 380 MeV, φ ¼ 0.2).

VI. RESULTS FOR THE SOUND SPEED AND
ATTENUATION COEFFICIENT

Outside the region near the stability limit the sound
speed and the attenuation coefficient are given by Eqs. (38)

and (39). For the set of parameters, see Eqs. (47) and
(48), φ ¼ 0.2 ≪ 1.
In Fig. 1 we show the sound velocity defined by Eq. (38)

as a function of Ω ¼ ω=ω̄0 for the parameters (47) and (48)
and β ¼ 0.1, Φ2 ¼ 0.8ðφ ¼ 0.2Þ, δ ¼ 0.16 (see the text).
For comparison we present a similar curve with the same β
and δ but forΦ2 ¼ 1ðφ ¼ 0Þ. In Fig. 2 the same two curves
are shown for β ¼ 0.01, δ ¼ 0.01. Figures 1 and 2
demonstrate the oscillatory behavior of the sound speed.
This means that the sound propagation in a bubbly medium
is highly nonlinear. According to Eq. (41) at ω < ω̄0Φ2 the
sound velocity is reduced in comparison with the unper-
turbed HM value. This is because at low frequencies
bubbles oscillate in phase with the driving sound wave
and the compressibility increases. Above ω̄0Φ2 the bubble
oscillations fall behind the oscillations of the driving wave
and the medium becomes stiffer resulting in cph > ch.

FIG. 1. The speed of sound in bubbly HNS as a function ofΩ at
β ¼ 0.1, δ ¼ 0.16. The red line corresponds to Φ2 ¼ 0.8, and the
blue line to Φ2 ¼ 1. The green line is the sound speed with no
bubbles.

FIG. 2. The speed of sound in bubbly HNS as a function ofΩ at
β ¼ 0.01, δ ¼ 0.01. The red line corresponds for Φ2 ¼ 0.8, and
the blue line for Φ2 ¼ 1. The green line is the sound speed with
no bubbles.
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The sound attenuation given by Eq. (39) is presented in
Fig. 3 as a function of Ω for Φ2 ¼ 0.8, δ ¼ 0.16 and
Eqs. (47) and (48) for the values of the other parameters. It
has the ω2 dependence with an imposed resonancelike
factor. Attenuation grows at or near the resonance fre-
quency because the bubbles resonate thus causing the
scattering and absorption of the sound wave. Generally,
the ω2 dependence of α0 is not a universal law. The
Mandelstam-Leontovich slow relaxation mechanism
results either in linear ω dependence, or in frequency
independence [71,75,82,83]. Near the phase transition the
sound absorption may be anomalously high [98].

VII. SUMMARY AND DISCUSSION

In this paper we presented a new view on the HNS with
QM bubbles immersed into it. Such a star has very
interesting acoustic properties. The presence of bubbles
makes the sound speed highly dispersive and gives rise to
additional attenuation. Even a small fraction of QM
bubbles causes a high nonlinearity of the sound wave
propagation. Our approach is based on the Rayleigh-Plesset
hydrodynamical equation and on the polytropic EOS
proposed in [18].
Equations were derived for the bubbly HNS compress-

ibility (26), the speed of sound (38), the sound attenuation
(39), and the frequency of bubble pulsation at reso-
nance (52).
These equations include a set of NS parameters such that

some or even most of them are poorly known. In particular
this concerns the surface tension at the HM-QM interface
and the HM shear viscosity. The bubble radius may be to
some extent considered as a free parameter though accord-
ing to a recent study the preferable value is R0 ∼ ð5–10Þ fm

[35]. Being at first glance loosely determined the above
parameters are firmly interrelated by Eqs. (47)–(49) and
(52). Therefore the description of sound wave propagation
in a bubbly HNS requires a self-consistent set of param-
eters. One of the possible patterns was presented in this
work. Starting from the density and pressure values (47)
and (48) and imposing a restriction on the value of the
surface tension we obtained R0 ≃ 1 fm. According to
Eq. (52) the corresponding resonance frequency is
fr ∼ 1023 Hz. For R0 ≃ 100 m (52) yields fr ≃ 1 MHz.
All parameters are interrelated and one cannot change R0

keeping other quantities untouched. The search for a
multitude of possible sets of parameters is beyond the
scope of the present work.
A few words are needed concerning the assumptions and

limitations of our approach. These are
(a) All bubbles are spherical and have the same equilib-

rium radius.
(b) Bubbles occupy a small fraction of the total volume,

β ≪ 1.
(c) Bulk (dilatational) viscosity effects of HM are

negligible.
(d) The sound wavelength λ ≫ R0.
(e) The effects of bubble collapse, nucleation, and perco-

lation are beyond the scope of our study.
The increase of β would result in the interaction between

the bubbles which is impossible to describe within the
present approach. The requirement λ ≫ R0 allows us to
consider the driving sound wave as spatially homogeneous.
The complete time-dependent solution of RPE beyond the
linear approximation is possible only numerically [84]. One
may ask whether magnetic field of the order B ≃ 1014 G in
magnetars may substantially alter RPE. The answer is
negative and magnetic field plays a minor role as compared
with the shear viscosity [59].
Some interesting problems in HNSs acoustics remain for

future studies. Among them is the sound propagation in
QM-HM pasta with different geometrical configurations
like rods, slaps, and tubes. The problem of sound in layered
media has been studied in detail in [99]. The high scattering
cross section and sound wave reflection from the phase
boundary were not discussed in the present study. A recent
review of the nonlinear acoustics in matter with bubbles is
presented in [100].
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FIG. 3. The sound attenuation (39) as a function of Ω at
Φ2 ¼ 0.8, β ¼ 0.1, and δ ¼ 0.16.
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