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Simulating realistic time-domain observations of gravitational waves (GWs) and other events of interest
in GW detectors, such as transient noise bursts called glitches, can help in advancing GW data analysis.
Simulated data can be used in downstream data analysis tasks by augmenting datasets for signal searches,
balancing datasets for machine learning applications, validating detection schemes, and constructing mock
data challenges. In this work, we present a conditional derivative GAN (cDVGAN), a novel conditional
model in the generative adversarial network framework for simulating multiple classes of time-domain
observations that represent gravitational waves (GWs) and detector glitches. cDVGAN can also generate
generalized hybrid samples that span the variation between classes through class interpolation in the
conditioned class vector. cDVGAN introduces an additional player into the typical 2-player adversarial
game of GANs, where an auxiliary discriminator analyzes the first-order derivative time series. Our results
show that this provides synthetic data that better capture the features of the original data. cDVGAN
conditions on three classes in the time domain, two denoized from LIGO blip and tomte glitch events from
its third observing run (O3), and the third representing binary black hole (BBH) mergers. Our proposed
cDVGAN outperforms four different baseline GAN models in replicating the features of the three classes.
Specifically, our experiments show that training convolutional neural networks (CNNs) with our
cDVGAN-generated data improves the detection of samples embedded in detector noise beyond the
synthetic data from other state-of-the-art GAN models. Our best synthetic dataset yields as much as a 4.2%
increase in area-under-the-curve (AUC) performance, maintaining the same CNN architecture, compared
to synthetic datasets from baseline GANs. Moreover, training the CNN with class-interpolated hybrid
samples from our cDVGAN outperforms CNNs trained only on the standard classes, when identifying real
samples embedded in LIGO detector background between signal-to-noise ratios ranging from 1 to 16 (4%
AUC improvement for cDVGAN). We also illustrate an application of cDVGAN in a data augmentation
example, showing that it is competitive with a traditional augmentation approach. Lastly, we test
cDVGAN’s BBH signals in a fitting-factor study, showing that the synthetic signals are generally consistent
with the semianalytical model used to generate the training signals and the corresponding parameter space.
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I. INTRODUCTION

The first detection of a gravitational wave (GW) from a
binary black hole (BBH) merger in 2015 ushered in a new
era of astronomy and cosmology [1]. Since then, over three
observing runs (O1, O2, O3), advanced LIGO [2], and
Virgo [3] detectors have made confident detections of 90
compact binary coalescence (CBC) events, as reported in the
gravitational wave transient catalogs GWTC-1, GWTC-2,
GWTC-3 [4–6]. With the introduction of KAGRA [7],
Japan’s underground detector, towards the end of O3 and
the O4 run currently underway, hundreds of more detec-
tions are expected from the enhanced sensitivity of GW
detectors [8].

Ongoing upgrades to advanced detector systems will give
rise to new challenges in gravitational wave (GW) data
analysis, particularly with the introduction of next-generation
GW detectors, such as the Einstein Telescope (ET) [9] and
Cosmic Explorer [10]. GW detection rates from all sources
are expected to significantly increase; i.e., it is estimated the
ETwill detect on the order of 8 × 104 y−1 BBHmergers [11]
and 7 × 104 y−1 binary neutron star (BNS) mergers [12].
This could lead to over 400 compact binary coalescence
(CBC) events daily. The enhanced detectors are also expected
to detect new astrophysical sources of GWs [13,14].
Aside from genuine astrophysical signals, the heightened

sensitivity of GW detectors is expected to exacerbate issues
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relating to “glitches” [8,15–17]. Glitches are non-Gaussian
transient noise artifacts that can resemble astrophysical
signals, hindering GW data analysis and increasing false
positives [18–27]. Glitches are unmodeled noise events,
stemming from environmental or instrumental factors, with
some sources remaining unidentified [28]. Unlike modeled
CBC events, which are detected through matched-filtering
[29–31], glitches are detected by model-free detection
algorithms that scrutinize excess power in the time-
frequency (spectrogram) representation to distinguish them
from the detector background [32].
To meet the challenges of advanced detector systems,

machine learning algorithms have become increasingly
popular in the GW physics community [33–36]. In the
case of glitches, studies have largely focused on spectro-
gram representations for identification due to their unmod-
eled nature. For example, Gravity Spy [37,38] have made
significant strides in characterizing spectrogram representa-
tions of glitches by combining machine learning and citizen
science. Multiple studies have employed machine learning
extensively to improve classification accuracy on Gravity
Spy spectrograms [39–41]. Others have leveraged the gen-
erative advsersarial network (GAN) [42] framework for
generating Gravity Spy spectrograms to augment glitch
datasets for further improvement [43,44]. However, relying
on computationally expensive spectrogram transformations
to identify and simulate unmodeled events like glitches may
not always be feasible as GWdetector technology improves.
In this study, we develop a generative modeling frame-

work for diverse classes of time-domain observations in
GW detectors. Generating time-domain representations of
GWs and glitches offers various advantages, such as their
flexibility for experimental purposes and low dimension-
ality requiring less computational expense. Simulated data
can be used in downstream applications such as data
augmentation and class balancing for machine learning
applications, validating detection schemes via software
injections [45–47], and constructing mock data challenges.
Furthermore, where unmodeled transients like glitches can
be isolated from the background, transforming time-series to
spectrograms is straightforward, while the reverse is chal-
lenging due to background noise captured in spectrograms.
An approach to simulating time-domain glitch events is

implemented using the gengli glitch generator [48]. The
authors implement a Wasserstein GAN (WGAN) [49] on
blip glitches extracted from detector backgrounds using
BayesWave [50]. They show that it is possible to isolate
blips from their surroundings and learn their underlying
distribution in the time-domain with WGANs. Another
study [51] implements a conditional GAN (cGAN) called
McGANn to simulate five waveform classes analogous to
GW bursts. Aside from generating five distinct classes,
their GAN can generate class-interpolated, hybrid samples.
In this work, we propose a novel conditional deriva-

tive GAN (cDVGAN) that simulates different classes of

time-domain observations of LIGO glitch classes and/or
astrophysical waveforms. We condition cDVGAN on three
classes; two Gravity Spy glitch classes called blip and
tomte, and a third represented by BBH signals. Aside from
learning realistic distributions of diverse classes in one
flexible model, cDVGAN can generate hybrid samples that
traverse the variation between the learned classes bymanipu-
lating the user-controlled class vector. After the training
phase, the models can generate hundreds of thousands of in-
class or hybrid samples in a matter of seconds, per the user’s
preference. cDVGAN is intended for use in a next-generation
glitch generator, once investigations intoBayesWave or other
denoising algorithms can provide reliable time-domain
representations of other glitch types.
To show the utility of our generated (synthetic) data,

we implement an experiment that uses it for training a
convolutional neural network (CNN) detection algorithm to
identify real data from the GAN training data distribution in
additive LIGO detector noise. Our results indicate that
cDVGAN can better capture the features of the data than
other state-of-the-art GAN models by incorporating adver-
sarial feedback on the first-order derivatives using an
auxiliary discriminator. Furthermore, we show that GAN-
generated hybrid samples can be useful for training
detection algorithms to identify real data in noise beyond
the standard GW and glitch classes.
Since cDVGAN is primarily intended for use as a glitch

generator, the astrophysical nature of the BBH signals is
considered arbitrary for most of the experiments. However,
we also confirm our cDVGAN data against a semianalytical
model used in GW searches, exploring cDVGAN’s appli-
cation as a BBH signal generator. To this end, we imple-
ment a fitting-factor study to evaluate the faithfulness of our
generated data against the templates of a template bank.
The results show that cDVGAN’s synthetic signals are
generally consistent with signals from the waveform
routine used to generate the original training signals.
This paper is structured as follows. In Sec. II, we discuss

concepts relating to GANs. In Sec. III, we present the
cDVGAN architecture and training schemes, the datasets
and preprocessing, and experimental details. In Sec. IV, we
present the experimental results involving a simple search
for real GWs and glitches in additive detector background
using synthetic data from five different GAN models.
Finally, Sec. V discusses the conclusions of this research.

II. GENERATIVE ADVERSARIAL NETWORKS

A. Wasserstein GANs

GANs are a class of machine learning algorithms that
generate realistic synthetic data. They consist of two neural
networks: a discriminator (also known as a critic) that
distinguishes between real and synthetic data, and a
generator that generates synthetic data that can fool the
discriminator. GAN approaches suffer from stability issues
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such as vanishing gradients stimulating numerous studies
centered around methods to stabilize the training process.
Wasserstein GAN [49] is a particular variant that addresses
these issues. It uses the Wasserstein-1 distance (W1) as
the loss function to measure the similarity between the real
and synthetic distributions. W1 is fully differentiable and
increases monotonically while never saturating, removing
the issue of vanishing gradients. Under this paradigm, the
optimization problem can be formulated as

θopt ¼ arg min
θ

max
ϕ∶kDðx;ϕÞkl≤1

Lðϕ; θÞ; ð1Þ

where the maximum is taken over all 1-Lipschitz functions
D and with L defined as

Lðϕ; θÞ ¼ Ex∼Px
½Dðx;ϕÞ� − Ex̂∼Px̂

½Dðx̂;ϕÞ�; ð2Þ

where x̂ ¼ Gðz; θÞ and z is a batch of the generator’s latent
vector. D and G refer to the discriminator and the generator
with parameters ϕ and θ, respectively. Ex∼Px

averages over
a batch of real samples x from the real distribution Px,
while Ex̂∼Px̂

averages over a batch of generated samples x̂
from the synthetic distribution Px̂. Equation (1) requires a
constraint of 1-Lipschitz continuity on D [49]. This can be
accomplished by adding a regularization penalty called the
gradient penalty (GP) to the discriminator loss [52–54].
The discriminator loss then becomes

LD ¼ −Lðϕ; θÞ þ λGPðϕÞ; ð3Þ

with

GPðϕÞ ¼ Ex̂∼Px̂
½ðk∇xDðx̂;ϕÞk2 − 1Þ2�; ð4Þ

and where λ represents the regularization hyperparameter,
k:k2 represents the L2-norm and x̂ is a randomly sampled
point between the real and synthetic data. When updating
the generator, errors are propagated through the entire
network, from D to G. Naturally, for the generator updates
are made only on generated samples from G. The generator
loss is written as

LGðϕ; θÞ ¼ −Ex̂∼Px̂
½Dðx̂;ϕÞ�: ð5Þ

B. Conditional GANs

Conditional GANs (cGANs) [55] allow finer control
over the generated data by providing extra information to
both the generator and discriminator. For example, we can
specify the class of the generated data by providing class
label, c. The training data and class labels are taken from a
joint distribution Pdataðx; cÞ. When generating synthetic
samples, the class vector ĉ and the GAN latent vector
distribution Pz, are sampled independently.

In the original cGAN paper [55], conditional information
was provided to the network by naively concatenating the
class information to the first layers of the GAN components.
In the case of time series, this corresponds to concatenating it
to the z vector before passing it to the generator, and the input
sample before passing it to the discriminator.
Miyato and Koyama [56] developed a more effective

conditioning method using a projection in the discriminator
between the conditional features and the features extracted
from the input before the discriminator output. The
projection output measures the similarity between the
condition and the discriminator’s feature vector and is
added to the discriminator output. The output of the
discriminator is modified from

Dðx; cÞ ¼ gðhðx; cÞÞ ð6Þ

to

Dðx; cÞ ¼ cTVhðxÞ þ gðhðxÞÞ; ð7Þ

where V is an embedding matrix, h is the discriminator’s
feature vector and g is the discriminator output layer (see
Fig. 2). This approach has been shown to improve the
quality of class conditional generation using GANs. Note
that the generator is still conditioned by concatenating the
class-embedded vector to the latent input, similar to the
original cGAN paper.

III. METHODS

A. Conditional derivative GAN (cDVGAN)

The adversarial training process for GANs is known to
be volatile. Models can suffer mode collapse, where only a
few realistic samples are learned, while they can also fail to
converge at all. These issues often occur when one model
component (generator/discriminator) begins to dominate
the other during the training phase. These problems are
exacerbated when conditioning on multimodal distribu-
tions of GW and glitch time series. In this section, we
introduce two new cGAN designs, cDVGAN and
cDVGAN2, that can help overcome these limitations.
In cDVGAN, two discriminators are applied to two

different representations of the data instead of the usual
single discriminator. The first discriminator is applied to the
original samples as in a conventional GAN,while the second
discriminator is applied to the corresponding derivative
samples. A high-level diagram of cDVGAN can be seen
in Fig. 1. We have shown in our previous work that the
derivative discriminator leads to increased training stability
of the model components and minimizes high-frequency
artefacts in the GAN output, generating smoother and more
faithful data [57]. Under this scheme, the generator loss is
calculated as a linear combination of the two discriminator
outputs. Equation (5) can be rewritten as
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LGðϕ1;ϕ2; θÞ ¼ −η1Ex̂1∼Px̂1
½D1ðx̂1;ϕ1; ĉÞ�

− η2Ex̂2∼Px̂2
½D2ðx̂2;ϕ2; ĉÞ�; ð8Þ

where D1 and D2, represent the first and second discrimi-
nator, respectively. Here, x̂1 represents synthetic samples
while x̂2 ¼ dx̂1=dt represents the corresponding derivatives
and ĉ represents the class vector for the synthetic samples.
Px̂1 and Px̂2 are the distributions of the two representations
of generated data, and η1 and η2 are hyperparameters that

control the relative strength of the discriminator losses.
The cDVGANmethod is not restricted to two discriminators.
We extend cDVGAN to cDVGAN2, which includes a third
discriminator that is applied to second-order derivatives.
The models are identical except for the addition of the
second-order derivative discriminator in cDVGAN2, while
the second-order derivative discriminator is identical to the
first-order discriminator except for the input size. Additional
representations of the data (e.g., time-frequency representa-
tions) can also be provided to additional discriminators,
depending on the problem. For k discriminators applied to k
representations of the data, the generator loss is written
generally as

LGðϕ1;…;ϕk; θÞ ¼ −
Xk
i¼1

ηiEx̂i∼Px̂i
½Diðx̂i;ϕi; ĉÞ�: ð9Þ

Our cDVGAN and cDVGAN2 models are conditioned
via projection, as described in Sec. II B. Since hyper-
parameter optimization is not the focus of this research,
the hyperparameters η1 ¼ η2 ¼ 0.5 in cDVGAN and η1 ¼
η2 ¼ η3 ¼ 0.33 in cDVGAN2, meaning all discriminators
contribute equally to the respective generator losses. The
discriminators are updated 5 times for each generator
update. The full model architecture can be viewed in the
Appendix.1

FIG. 1. Diagrams of a typical cGAN architecture (left), comprising one discriminator, and cDVGAN (right), comprising two
discriminators. Class vectors c (real) and ĉ (fake), are fed to all model components in both cases. An intermediate derivative calculation
is observed in the cDVGAN plot, where the derivative of the synthetic sample is calculated. cDVGAN2 includes yet another
discriminator applied to second-order derivatives. In cDVGAN and cDVGAN2, the total generator loss is calculated as a linear
combination of the discriminator losses applied to synthetic samples.

FIG. 2. A comparison of the discriminators from the original
cGAN paper (used for McGANn and McDVGANn) and the
projection discriminator (used for cWGAN, cDVGAN,
cDVGAN2).

1
PYTHON code can be found at https://git.ligo.org/tom.dooney/

cdvgan_paper.
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B. Training data and preprocessing

The GAN models in this study are conditioned on three
different classes: two classes that are derived from Gravity
Spy glitch classes called blip and tomte, and a third BBH
signal class. The astrophysical nature that the BBH signals
represent ismainly ignored during experimentation, and they
are generally treated as another class of transient, “glitchlike”
time series for experimental purposes. Examples of the three
classes can be observed in Fig. 3. Blip glitches have a
characteristic time-frequency morphology of a symmetric
teardrop shape in the range [30, 500] Hzwith short durations
(∼0.04 s). They appear in LIGO Livingston and LIGO
Hanford, Virgo and GEO 600 [58]. Due to their abundance
and form, they hinder both the unmodeled burst andmodeled
CBC searches, with particular emphasis on compact binaries
with large total mass, highly asymmetric component masses,
and spins antialigned with the orbital angular momentum
[18,27]. Tomteglitches are also short duration (∼0.25 s)with
characteristic triangular morphology. Since both blip and
tomte glitches have no clear correlation to the auxiliary
channels, they cannot be removed from astrophysical
searches. The BBH class represents the inspiral and merger
of a binary black hole system.All samples are of length 1,024
and have a sampling rate of 4,096Hz, corresponding to 0.25s
of data. The GANs are trained on 7,500 samples (2,500
samples from each class).
The blip and tomte datasets are constructed using

confidences from Gravity Spy applied to the glitch triggers
in LIGO’s third observing run (O3) [59]. Only blip and
tomte events with Gravity Spy confidences of c1GS ≥ 0.9 for
their respective class are used in this study and are extracted
using GWpy’s [60] fetch_open_data method, which pro-
vides an interface to the GWOSC2 [61] data archive. The
glitches are surrounded by stationary and uncorrelated
noise, which would hinder the learning of GAN models.

To avoid the computational expense of BayesWave, as
done in [48], the glitches are isolated from the background
using Savitsky-Golay [62] filters. This requires the follow-
ing preprocessing steps:
(1) Firstly, 20s of strain data is extracted, centred around

the glitch GPS time provided by Gravity Spy.
(2) The data are whitened, and a bandpass filter between

(20, 350) Hz is applied to the 20s of data.
(3) The data are cropped at 8,192 data points, centred

around the GPS time of the glitch, corresponding to
2s of data.

(4) A window of 100 data points is isolated around the
centre of the glitch, and two consecutive Savitsky-
Golay filters with a polynomial of order 3 are applied
to each side around the glitch center iteratively, with
window sizes of 501 and 301, respectively.

(5) The two smoothed sides and the unsmoothed central
peak are then concatenated, followed by applying
three additional Savitsky-Golay filters iteratively
with window sizes 41, 31, and 21 to the entire
concatenated sample. The entire sample is finally
cropped at 1,024 data points around the event GPS
time, centered around 0 and rescaled to ð−1; 1Þ.

The results of the above preprocessing steps are shown in
Fig. 4. The extensive use of Savitsky-Golay filters ensures
that high-frequency noise artifacts are removed while
preserving the overall shape. An analysis was made to
investigate whether the characteristics of blips and tomtes
are preserved after filtering (Appendix). Gravity Spy
generally classifies the preprocessed samples as their
correct class when embedded in detector background for
the signal-to-noise ratio (SNR) ranges considered in experi-
ments (see Sec. III C), indicating that their morphologies
are analogous to glitches.
All BBH signals are simulated with PyCBC [63] using

the IMRPhenomD waveform routine from LALSuite [64],
which generates the inspiral, merger, and ringdown of a
BBH waveform. The component masses are restricted to
the range of ½30; 160�M⊙ with a spin of zero and fixing
m1 > m2 and using only plus polarization.
We show the diversity of the three classes in Fig. 5,

where the dataset is represented by three separable clusters
in a reduced principal component space.

FIG. 3. Examples of blip (top), tomte (middle), and BBH
signals (bottom) used to train GAN models.

(a) (b) (c)

FIG. 4. Visualizations of the preprocessing steps applied to a
blip glitch event.2The Gravitational Wave Open Science Centre.
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C. Experimental procedure

1. GAN benchmarks

This work uses ablation studies to compare cDVGAN
and its cDVGAN2 extension with three other baseline
GAN models in their ability to generate data useful for
training detection algorithms (see Sec. III C 3). An ablation
study in machine learning is a systematic experimentation
technique used to understand the contribution of individual
components of a model to its overall performance. In this
case, it involves selectively disabling auxiliary first and
second-order derivative discriminators during the training
of GAN models to investigate if they are successful in
improving the features captured in synthetic GW signals
and glitches. To construct an appropriate ablation study,
the first benchmark is a conditional variant of a vanilla
Wasserstein GAN (cWGAN), which comprises the same
architecture as cDVGAN except for the derivative dis-
criminator. This allows us to investigate the effect of
including a first-order derivative discriminator during
GAN training. cDVGAN2 allows us to investigate the
effect of including a second-order derivative discriminator
on top of the first-order derivative discriminator.
The second benchmark is McGANn [51] since it success-

fully replicates the features of simulated GW bursts. As a
third benchmark,we developed amodifiedMcGANnmodel,
called McDVGANn, that uses a second auxiliary discrimi-
nator applied to first-order derivatives, similar to cDVGAN.
The architecture is identical to McGANn except for the
addition of a derivative discriminator. In McDVGANn, the
derivative discriminator is identical to the base discriminator
except for the input size. This benchmark investigates
whether the idea of derivative discriminators can generalize

to other GANmodels. For a more detailed description of the
baselines, see Appendix.
McGANn and McDVGANn are conditioned using

concatenation similar to their paper [51] and are trained
with an Adam optimizer, binary cross-entropy loss func-
tion, and learning rate of 2 × 10−4. Conversely, cWGAN
and cDVGAN2 are conditioned via projection similarly to
cDVGAN and are trained with RMSProp, a Wasserstein
loss function and a learning rate of 2 × 10−4. All models are
trained for 500 epochs with a batch size of 512. Unless
otherwise specified, all GANs are trained using the same
standard hyperparameters as prior works.

2. GAN-generated datasets

We construct three different datasets from each GAN by
sampling the respective generator’s class space, as sug-
gested by [51]. The three variants of GAN-generated
datasets are as follows:
(1) Vertex: The vertex class space corresponds to the

vertices of the three-dimensional class space. The
locations of the vertex class space are the same as
the training set class space locations used to train the
GAN models and are the closest representation to
the training set. The vertex class vector is one-hot
encoded corresponding to one of the three GAN
training classes, e.g., [1, 0, 0] corresponds to the
blip class.

(2) Simplex: The simplex class space corresponds to
points on a k ¼ 2 simplex (2D triangle) in the case of
three classes. Class vectors are constructed by
sampling points uniformly on this simplex. The
simplex can be considered the simplest surface that
intersects all three training classes, and all simplex
class vectors sum to 1. Variations are observed in the
samples, with some having characteristics that
strongly resemble the training classes, due to one
class dominating the others. The simplex dataset is a
superset of the vertex dataset and represents syn-
thetic data outside the training data distribution.

(3) Uniform: For the uniform dataset, each entry in the
class vector is uniformly sampled from U[0, 1],
corresponding to sampling uniformly within a cube
with dimensions 1x1x1. The uniform dataset is a
superset of the simplex and vertex datasets and, like
the simplex dataset, represents data from outside of
the training data distribution. The uniform dataset
exhibits the largest variety since it explores regions
of the class space further than the simplex dataset
relative to the training set vertices.

Figure 6 shows examples from each of the cDVGAN-
generated datasets (also in Appendix). Figure 7 shows plots
of the first three principal components (PCs) of real and
GAN-generated samples from cDVGAN. The vertex sam-
ples [Fig. 7(a)] generally match their corresponding classes
from the real data distribution. Figure 7(b) shows that the

FIG. 5. A plot of the first three principal components of the
original samples. The separability of the three classes in this
compressed representation indicates the diversity of the data.
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simplex and uniform hybrid datasets populate spaces
between the class clusters, while Fig. 7(c) shows that the
uniform dataset covers a larger part of the PC space than the
simplex dataset. This is intuitive since the simplex space is
a subset of the uniform space.

3. Downstream search with CNNs

The experiments followed in this study investigate the
effectiveness of GAN-generated data for training CNNs to
detect real data in additive Gaussian noise. CNNs are a
class of deep learning model commonly used in computer
vision. However, they can also be applied to other spatially
adjacent data types like time series [65] and have been
applied to GW detector strain data to detect merging black
holes [34].
The CNNs’ objective is to perform the binary classi-

fication of two classes: samples in additive detector noise
and detector noise only, examples of which are shown in

Fig. 8. It takes a time-series input of dimension 1,024,
representing 0.25 s of LIGO strain data. The CNN
architecture is kept constant for training with each dataset
and can be viewed in the Appendix.
Better synthetic data will result in CNNs with better

detection efficiency on a real data subset from the GAN
training data distribution. We also investigate if training
CNNs with GAN-generated hybrid datasets (simplex and
uniform) can improve the detection efficiency beyond
training solely with the standard three classes.
The training and testing samples are injected additively

into detector noise from Hanford (H1) or Livingston detec-
tors (L1) during O3 for each of the above datasets. The
detector noise is extracted fromGWOSC, using trigger times
forGravity Spy’s No_glitch class, extracing 14s around each
No_glitchGPS time. Although it is not investigated whether
other glitches are present in the noise, using Gravity Spy’s
No_glitch class should guarantee that most of the samples
contain stationary noise after whitening.
The background is sampled at 4,096 Hz, similar to the

GAN training data. The LIGO detector noise is first
whitened using PyCBC’s whitening function, with the first
and last 2.5 s removed due to artifacts at the noise

FIG. 6. Examples of vertex (top), simplex (middle) and uniform
samples (bottom) from cDVGAN. The corresponding class
vector is shown above each sample.

(a) Real and Vertex datasets (b) All datasets (c) Hybrid datasets

FIG. 7. The first three principal components (PCs) of real and GAN-generated samples from cDVGAN. The vertex samples from
cDVGAN generally match the real samples in the PC space while hybrid samples populate intermediate regions between the clusters for
the three classes. Figure 7(c) shows that the uniform dataset covers a larger space than the simplex dataset.

(a) (b)

FIG. 8. Examples of the two classes predicted by CNN models.
The injected sample on the right is scaled to an SNR of 8 before
injection (shown in orange for clarity).
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boundaries. The preprocessed detector noise is then split
into chunks of length 1,024, the same dimensionality as the
GAN input and output. Following this procedure, we
accumulate just over 250,000 background samples in total.
Since the GAN training data and output are scaled between
½−1; 1�, the samples are scaled to a signal-to-noise ratio
(SNR) ratio that is sampled uniformly on U[1, 16] before
injecting them into the preprocessed detector noise. This is
done by first computing ρopt for each generated sample
according to

ρ2opt ¼ 4

Z
fmax

fmin

jĥðfÞj2
SnðfÞ

df; ð10Þ

where ĥðfÞ and SnðfÞ are the Fourier transform of the input
sample (blip, tomte, BBH) and the detector noise power
spectral density (PSD), respectively [66] (which we set to
unity for convenience as we are working with whitened
data). The sample can then be scaled to the desired ρopt
on U[1, 16].
For each GAN, we train three separate CNNs on the

three generated datasets (vertex, simplex, uniform). For
the vertex dataset, the three different vertex locations in the
class space are sampled with equal probability. For the
uniform and simplex datasets, samples are drawn uniformly
from their respective spaces.
Each training dataset comprises 100,000 samples, with

50% glitch/signal plus Gaussian noise and 50% Gaussian
noise only. We test each CNN on a real data subset
comprising 7,500 samples (2,500 from each class),
sampled randomly from a distribution of 20,850 samples
(6,950 from each class). This results in a test dataset of
15,000 samples in total (50% LIGO noise only) in each
iteration of training/testing. We ensure that none of the
GAN training data appear in the test set, although they are
taken from the same distribution.
The results are presented using the area-under-the-curve

(AUC) metric. AUC is a metric commonly used in machine
learning to evaluate the performance of a classification
model, particularly in the context of binary classification
problems. It is associated with the receiver operating
characteristic (ROC) curve (see Fig. 9), which is a graphical
representation of the trade-off between true positive rate
(sensitivity) and false positive rate (1-specificity) across
different thresholds. It provides a single metric between

0 and 1 that summarizes the overall discriminatory power
of a model across different classification thresholds. We
repeat the experiment 5 times and report the mean results,
randomly generating the training data and randomly
sampling the backgrounds and test data in each iteration.
We keep the real test datasets constant for each GAN-
generated dataset in each iteration.

4. Fitting-factor study

We investigate the accuracy of cDVGAN’s BBH signals
under a fitting-factor study, showing that most of the
synthetic signals are consistent with the original signals
simulated with IMRPhenomD. The fitting-factor of a signal
is defined as the maximum match of that signal over the
templates of a template bank [67].
While cDVGAN’s signals are used as the signal injec-

tions in a matched-filter search, the template bank is created
using mbank [68], and the corresponding templates are
simulated using IMRPhenomD. We aim for good coverage
of the parameter space of cDVGAN’s training signals
(30 ≤ m2 ≤ m1 ≤ 160) beyond the 97% requirement for
matched-filter standards, using a holdout dataset from the
cDVGAN BBH distribution to validate the template bank.3

We sample mbank’s normalizing flow until the parameter
space is covered evenly with an average fitting factor of
over 99% (only approximately 5% of signals yield a fitting
factor of under 99%. This yields 1,500 templates, allowing
for a thorough exploration of the parameter space.
We calculate the fitting factor in the time domain on a

fixed time grid since the training signals and generated
signals are truncated at 0.25s around the merger time. We
compute the fitting-factor over the 2,500 GAN training
samples simulated using IMRPhenomD and compare it to
the fitting factor computed on 2,500 synthetic signals from
cDVGAN.
An important caveat to highlight is that the class-

conditional approach featured in cDVGAN is focused
towards a glitch generator application rather than a wave-
form generator for GW searches. To achieve better accu-
racy in the latter case, it would be better to modify the
cDVGAN architecture to learn BBH signals only. This
would simplify the training schedule to learn one

(a) (b) (c) (d) (e)

FIG. 9. ROC-curves for the different GAN-generated datasets from each GAN.

3We validate the bank using a flat PSD, required for time-
domain match calculations using mbank.
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distribution of signals rather than three distributions in one
model. Furthermore, the model could also be conditioned
on continuous source parameters rather than discrete class
information, giving the user control over the parameter
space they wish to generate signals in.

IV. RESULTS

A. Training with GAN data

The AUC values for each CNN model over the entire
SNR range (1–16) are shown in Table I. We also scale the
test sets between SNRs of 1–8 and 8–16 and record the
AUC of the same CNNs to investigate performance for
quieter and louder samples, which can be seen in Tables II
and III, respectively. Examples of ROC curves from one of
the testing iterations are shown in Fig. 9. All tables show
that the simplex and uniform datasets from cDVGAN yield
the highest AUC results for CNNs, with the simplex dataset
yielding the highest overall AUC.
Ablation studies. The ablation between cDVGAN and

cWGAN in Table I shows that the adversarial feedback
from the first-order derivative discriminator improves the
features of the synthetic data in all three datasets. This

suggests that the first-order derivative discriminator was
successful in improving the GAN output. cDVGAN2 was
unsuccessful in improving upon cDVGAN’s results, yield-
ing a slightly lower performance, but improves upon the
performance of cWGAN’s simplex and uniform datasets,
particularly for the higher SNR range (Table III).
The AUC performance yielded from McDVGANn’s

datasets is competitive among the GAN models. Both its
simplex and uniform datasets yield better AUC perfor-
mance than McGANn’s counterparts, with the simplex
dataset yielding the highest overall AUC performance
between the two models. The vertex datasets from
McGANn and McDVGANn yield comparable perfor-
mance. This suggests that the derivative discriminator
can be effective in a more traditional GAN architecture.
These results show that incorporating derivative discrim-

inators can improve the synthetic data in multiple GAN
architectures and indicate that analyzing first-order deriv-
atives in a separate auxiliary discriminator is superior to
using both first and second-order derivative discriminators
for modeling the dataset covered in this study (in the
cWGAN architecture). For all GAN models, hybrid data-
sets provide the best overall AUC performance for the

TABLE I. The area-under-curve (AUC) yielded on a real test set by CNNs trained on each synthetic dataset from
each GAN. The results represent the mean AUC over five iterations, where the bounds are calculated using the
standard deviations over the five iterations. The best result overall is shown in bold text.

Dataset cDVGAN (ours) cDVGAN2 (ours) cWGAN McGANn McDVGANn (ours)

Vertex trained 0.771� 0.012 0.758� 0.008 0.762� 0.018 0.768� 0.016 0.768� 0.022
Simplex trained 0.802� 0.019 0.789� 0.010 0.788� 0.009 0.759� 0.010 0.786� 0.012
Uniform trained 0.797� 0.022 0.791� 0.009 0.777� 0.014 0.770� 0.014 0.778� 0.012

TABLE II. The AUC for test samples under an SNR of 8. The results represent the mean AUC over five iterations,
where the bounds are calculated using the standard deviations over the five iterations. The best result overall is
shown in bold text.

Dataset cDVGAN (ours) cDVGAN2 (ours) cWGAN McGANn McDVGANn (ours)

Vertex trained 0.689� 0.009 0.680� 0.006 0.685� 0.017 0.687� 0.010 0.668� 0.020
Simplex trained 0.698� 0.013 0.686� 0.007 0.695� 0.010 0.673� 0.008 0.676� 0.010
Uniform trained 0.702� 0.014 0.693� 0.008 0.692� 0.009 0.680� 0.013 0.671� 0.006

TABLE III. The AUC for samples above an SNR of 8. The results represent the mean AUC over five iterations,
where the bounds are calculated using the standard deviations over the five iterations. The best result overall is
shown in bold text.

Dataset cDVGAN (ours) cDVGAN2 (ours) cWGAN McGANn McDVGANn (ours)

Vertex trained 0.844� 0.015 0.827� 0.010 0.830� 0.022 0.841� 0.021 0.856� 0.027
Simplex trained 0.893� 0.029 0.881� 0.013 0.867� 0.010 0.836� 0.012 0.885� 0.013
Uniform trained 0.883� 0.031 0.878� 0.011 0.851� 0.020 0.852� 0.020 0.873� 0.014

ONE FLEXIBLE MODEL FOR MULTICLASS GRAVITATIONAL … PHYS. REV. D 110, 022004 (2024)

022004-9



CNN. This suggests that GAN-generated hybrid samples
are useful for searching for multiple classes of real data
when obscured by the detector background. This might
offer interesting applications in glitch searches, particularly
for those with no clear correlation to auxiliary channels.
Such glitches could be conditioned into cDVGAN to
generate hybrid samples specific to a subset of LIGO
glitch classes for use in a glitch detection algorithm.
Combining all three GAN-generated datasets for training
CNNs may improve upon these results yet again, although
this is left to future work.

B. Combining real and cDVGAN
data for improved training

In this section, we augment real datasets with GAN-
generated data to improve upon the classification perfor-
mance in the previous section.We augment the real data with
the simplex dataset from cDVGAN since it yields the best
performance. We compare cDVGAN data with traditional
duplication of real training samples for data augmentation.
Maintaining a real hold-out test set of 7,500 samples

(2,500 from each class) as in Sec. IVA, we use all
remaining samples from the real distribution for training,
which amounts to 13,350 samples (4,450 from each class).
Fixing the training data size again at 100,000 (50,000
glitch/signal + noise samples, 50,000 noise-only samples),
we vary the proportion of real and GAN-generated samples.
Since there is no limit to generating cDVGAN data, we
duplicate the real training data before injection to reach the
required number of samples. This is done to control the
effects of the background noise on the training of CNNs,
since CNNs are sensitive to the number of different
backgrounds seen during training.
The results in Table IV show that the performance drops

only slightly with smaller proportions of real data. The
CNN performance remains competitive even with only
25% of real training samples with only a 1% drop in overall
AUC performance compared to only using real data. The
second and third rows of Table IV show that this decrease
in AUC performance occurs mostly for lower SNR (<8)
samples. The decrease in performance for louder samples is
minimal (<1% decrease). This indicates that the synthetic
data are competitive for augmenting the training data for
CNNs when including a relatively small amount of real data
in the training set. Although there is a more substantial
decrease in performance when using 100% synthetic

samples, this might be improved by including other
synthetic datasets from cDVGAN in the training schedule.

C. Fitting-factor results

The results indicate that cDVGAN’s BBH signals are
generally consistent with IMRPhenomD. The search cal-
culates an average fitting-factor of 0.994� 0.0423 for the
2,500 GAN training signals with fifth and tenth percentiles
at 0.972 and 0.994, respectively. Conversely, the experi-
ment yields an average fitting-factor of 0.976� 0.045 for
2,500 synthetic cDVGAN signals with fifth and tenth
percentiles at 0.893 and 0.951, respectively.
Figure 10 shows a histogram of the fitting-factors yielded

from the real and synthetic signals and the distribution of the
recovered parameters of both datasets. Figure 10(a) shows
the fitting-factor distribution of cDVGAN’s signals is similar
to that of the real training signals, although a minor decrease
in accuracy is observed. Figure 10(b) shows that cDVGAN’s
signals cover most of the parameter space well, although
there is a slight mismatch in the lower ends of both the M1
and M2 distributions.
Although the accuracy of cDVGAN’s signals is lower than

that of IMRPhenomD, the quality of cDVGAN’s signals
and coverage of the parameter space could be improved
with further training, or by considering a different modeling
approach as outlined in Sec. III C 4. Furthermore, cDVGAN
is competitivewith state-of-the-art surrogate models in terms
of inference speed on a CPU [69,70], and far surpasses them
with the use of a GPU. For example, cDVGAN can generate
2,500 signals of the learned BBH class in approximately 18 s
on a CPU, and only 0.04 s on a GPU.

TABLE IV. AUC values over three SNR ranges for different proportions of real:synthetic samples for a training set
fixed at 100,000 samples. The results are represented by the mean AUC and standard deviation over five iterations.

SNR 100:0 75:25 50:50 25:75 0:100

1–16 0.900� 0.001 0.898� 0.002 0.893� 0.002 0.887� 0.002 0.802� 0.019
1–8 0.799� 0.001 0.792� 0.005 0.787� 0.003 0.777� 0.003 0.698� 0.013
8–16 0.988� 0.001 0.987� 0.001 0.987� 0.001 0.985� 0.001 0.893� 0.029

(a) (b)

FIG. 10. Plots of fitting-factors and corresponding best-fit
template parameters for real GAN training signals and synthetic
cDVGAN signals.
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V. CONCLUSION

Time-domain generative modeling in the GAN frame-
work has shown potential to improve GW data analysis.
Using GANs to learn distributions of GWs and other events
of interest such as detector glitches can be useful for data
augmentation tasks, validating detection schemes for
unmodeled waveforms such as [32,71,72], or be used to
construct mock data challenges. This work presents a novel
conditional GAN, called cDVGAN, for generating distinct
time-domain classes, including two classes of unmodeled
glitches and one class of modeled BBH signals. cDVGAN
uses additional adversarial feedback on the first-order
derivatives of training samples in an auxiliary discriminator
and generates realistic samples that span the variation
within each class. It also allows for the explicit control
of the mixing of classes. Thus, it is capable of generating
generalized hybrid samples that are outside of the limited
training distribution and span the variation between classes
by sampling the continuous class space.
We use ablation studies to show the effectiveness of

using auxiliary discriminators to analyze sample derivatives
in an experiment that uses GAN-generated data to train
convolutional neural networks (CNNs) to detect real
samples in LIGO detector noise. An ablation study between
cDVGAN and its vanilla cWGAN counterpart shows that
the additional adversarial feedback from the first-order
derivative discriminator yields generated data that is more
useful for training a CNN detection algorithm.
The ablation study between cDVGAN2 and cDVGAN

reveals that second-order derivative discrimination did not
improve the performance under this problem scheme,
although the performance of cDVGAN2 is competitive
with other baseline GANs. Another ablation study between
our McDVGANn model and McGANn [51] indicates that
the method can be effective under a traditional cGAN
architecture. These results suggest that providing adversa-
rial feedback on derivatives on top of the original samples
can improve the learning of GANs on continuous time
series, and in particular, events of interest to the GW
physics community.
Furthermore, our experiments demonstrate the effective-

ness ofGAN-generated hybrid samples for training detection
algorithms. The best overall synthetic dataset for training
CNNs was cDVGAN’s simplex dataset, while hybrid data-
sets from other GANs yielded better training sets than the
standard vertex dataset. We also combine GAN-generated
data with real data to improve the performance of CNN
models for glitch and signal searches, showing cDVGANas a
viable approach for data augmentation. Lastly,we implement
a fitting-factor study that shows cDVGAN’s BBH signals are
consistent with the IMRPhenomDwaveform routine used to
generate the cDVGAN training signals. Although there are
some inconsistencies and a small decrease in accuracy, the
synthetic signals generally match well with a template bank

for the corresponding parameter range. The cDVGAN
signals have good coverage on most of the parameter range
and can be generated very efficiently, particularly with the
use of a GPU.
Since hyperparameter optimization was not the focus of

this research, investigations could be made into better
architectures for cDVGAN. For example, optimization of
the η [Eq. (8)] hyperparameters controlling the contribution
of each discriminator to the generator loss might yield
better generated data. Including a consistency term, as in
[73], may also improve the generated data from cDVGAN.
Expanding cDVGAN to other representations of the data,
might also improve the quality of the generated data.
Finally, research into better CNNs or other detection
algorithms that can make use of the GAN-generated data
might also result in efficient and scalable analysis solutions
towards the next-generation detectors.
Extending cDVGAN to other glitch types is vital to

significantly stimulate GW data analysis. This study takes a
step towards this goal, showing how arbitrary time-domain
glitches or signals can be conditioned into one generative
model. Constructing time-domain representations of
unmodeled glitches is challenging, but made possible using
algorithms such as BayesWave to isolate them from the
detector background. Once accurate glitch representations
of other LIGO glitch types are constructed, cDVGAN is
scheduled for further development in a next-generation
glitch generator. Covering the entire LIGO glitch space
with cDVGANwill result in a model more representative of
LIGO glitches and a useful tool for downstream analysis.
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APPENDIX

1. cDVGAN architecture

Table V below details cDVGAN’s architecture, compris-
ing a discriminator, derivative discriminator and a
generator.
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TABLE V. The architecture and hyperparameters describing cDVGAN, which consists of a base discriminator, a derivative (DV)
discriminator and a generator convolutional network. The additional discriminator of cDVGAN2 follows the same architecture as the
DV disciminator but with an input shape of 1022. The number of parameters (param.) in each model are shown in brackets beside the
name of each model component.

Discriminator (3.5M param.)

Operation Output shape Kernel size Stride Dropout Activation

Input (1024) � � � � � � 0 � � �
Reshape (64, 16) � � � � � � 0 � � �
Convolutional (64, 128) 14 2 0.5 Leaky ReLU
Convolutional (32, 128) 14 2 0.5 Leaky ReLU
Convolutional (16, 256) 14 2 0.5 Leaky ReLU
Convolutional (8, 256) 14 2 0.5 Leaky ReLU
Convolutional (4, 512) 14 2 0.5 Leaky ReLU
Global avg. pooling (512) � � � � � � 0.5 � � �
Avg. pooling dense (128) � � � � � � 0.2 Leaky ReLU
Dense (1) � � � � � � 0 Linear
Class input (3) � � � � � � � � � � � �
Class dense (128) � � � � � � 0 Linear
Scalar product (1) � � � � � � � � � � � �
Dense + scalar product (1) � � � � � � � � � � � �

DV Discriminator (1.1M param.)

Operation Output shape Kernel size Stride Dropout Activation

Input (1023) � � � � � � 0 � � �
Dense (512) � � � � � � 0 Leaky ReLU
Reshape (32, 16) � � � � � � 0 � � �
Convolutional (32, 64) 5 2 0.5 Leaky ReLU
Convolutional (16, 128) 5 2 0.5 Leaky ReLU
Convolutional (8, 256) 5 2 0.5 Leaky ReLU
Convolutional (4, 256) 5 2 0.5 Leaky ReLU
Global avg. pooling (256) � � � � � � 0.5 � � �
Avg. pooling dense (128) � � � � � � 0.2 Leaky ReLU
Dense (1) � � � � � � 0 Linear
Class input (3) � � � � � � � � � � � �
Class dense (128) � � � � � � 0 Linear
Scalar product (1) � � � � � � � � � � � �
Dense + scalar product (1) � � � � � � � � � � � �

Generator 3.5M param.

Operation Output shape Kernel size Stride BN Activation

Latent input (100) � � � � � � ✗ � � �
Class Input (3) � � � � � � ✗ � � �
Class Dense (32) � � � � � � ✗ � � �
Concatenate (132) � � � � � � ✗ -
Dense (1024) � � � � � � ✗ ReLU
Reshape (32, 32) � � � � � � ✗ � � �
Transposed conv. (64, 512) 18 2 ✓ ReLU
Transposed conv. (128, 256) 18 2 ✓ ReLU
Transposed conv. (256, 128) 18 2 ✓ ReLU
Transposed conv. (512, 64) 18 2 ✓ ReLU
Transposed conv. (1024, 1) 18 2 ✗ Linear
Flatten (1024) � � � � � � ✗ � � �
Optimizer RMSprop (α ¼ 0.0001)
Batch size 512
Epochs 500
Loss Wasserstein
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2. CNN architecture

Table VI details the architecture of the CNN used during
experimentation.

3. Vertex, simplex, and uniform datasets

Figures 11–13 show vertex, simplex and uniform sam-
ples generated using different sampling methods in
cDVGAN’s conditioned class vector.

4. Class interpolation

Figure 14 shows how cDVGAN’s class vector can be
sampled using a k=2 simplex to interpolate between the
three learned classes.

5. Gravity spy analysis of GAN training data

As we have discussed in Sec. III C 3, we have scaled some
examples of blip and tomte glitches gðtÞ, adding them to the
noise nðtÞ from the third observing (O3) run in the GPS time
range [1262540000, 1262540040]. Note that the glitches
have been extracted from their original noise following the
procedure previously presented in Sec. III B. Afterwards, the
time series sðtÞ ¼ gðtÞ þ nðtÞ was classified with Gravity
Spy, providing a class label and a class confidence cGS.
In Fig. 15, we present the results of classifying three

different denoized blips reinjected in O3 noise. In the top
panel, we plot the confidence cGS as a function of the
optimal SNR ρopt, defined in Eq. (10). In the middle panel,
we show the time-series of the blip as outputted by the

TABLE VI. The architecture of the CNN (1.2M parameters) used during experiments.

Operation Output shape Kernel size Stride Dropout Activation

Input (1024) � � � � � � 0 � � �
Reshape (1024, 1) � � � � � � 0 � � �
Convolutional (512, 256) 5 2 0.5 Leaky ReLU
Convolutional (256, 128) 5 2 0.5 Leaky ReLU
Convolutional (128, 64) 5 2 0.5 Leaky ReLU
Convolutional (64, 32) 5 2 0.5 Leaky ReLU
Flatten (2048) � � � � � � 0.5 � � �
Dense (512) � � � � � � 0 Leaky ReLU
Dense (1) � � � � � � 0 Sigmoid
Optimizer Adam (α ¼ 0.001)
Batch size 64
Epochs 20
Loss Binary cross entropy

FIG. 11. Standard 3-class vertex generations from cDVGAN.
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FIG. 12. Simplex generations from cDVGAN.

FIG. 13. Uniform generations from cDVGAN.
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FIG. 14. Interpolation between blip and BBH classes for cDVGAN (first row), cDVGAN2 (second row), cWGAN (third row),
McGANn (fourth row), and McDVGANn (fifth row). The class input is shown at the top of each column, while the latent input of the
generator is kept constant.

FIG. 15. Top panel: Three examples of blip glitches classified byGravity Spy, with the classification confidences as a function of SNR.
Middle panel: The time-series representation of the classified glitch. Bottom panel: The corresponding spectrogram representation of the
classified glitch after injecting into whitened detector noise.
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preprocessing, and in the bottom panel, we show the
spectrogram or time-frequency representation of the glitch
embedded in O3 real noise at ρopt ¼ 18.32.
We can observe in Fig. 15 that Gravity Spy classifies the

time series as No_Glitch for SNR≲ 7, which is expected as
this algorithm only learns glitches with an SNR ≤ 7.5.
While these examples are labeled as blips at SNR ∼ 10, as
the SNR increases they get misclassified as blip_low_
frequency or low_frequency_burst, which can be explained
by the use of bandpass filtering that attenuates the high-
frequency contribution of blips.
Similarly, in Fig. 16, we can also observe that the time

series gets classified as No_Glitch, but this time at an
SNR≲ 5. Then, for 5≲ SNR < 10, it gets briefly classified
as blip_low_frequency, to then be classified as tomte formost
of the SNR range, meaning that the features of tomtes are
better preserved than the blip class after data preprocessing.

6. McDVGANn additional analysis

Figure 17 shows that the optimum update schedule for
cDVGAN is to update the discriminator one time rather
than three times for every generator update.
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FIG. 17. A comparison of McDVGANn CNN performance
trained with a discriminator update schedule of 1 for
each generator update and a discriminator update schedule
of 3 times for each generator update, which is used for the
original McGANn model. These results suggest that
McDVGANn overfits the data with the original McGANn
update schedule and that using a discriminator update schedule
of 1 is superior.
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