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We present first-order models for tilt-to-length (TTL) coupling in Laser Interferometer Space Antenna
(LISA), both for the individual interferometers, as well as in the time-delay interferometry (TDI) Michelson
observables. These models include the noise contributions from angular and lateral jitter coupling of the six
test masses, six movable optical subassemblies, and three spacecraft. We briefly discuss which terms are
considered to be dominant and reduce the TTL model for the second-generation TDI Michelson X
observable to these primary noise contributions to estimate the resulting noise level. We show that the
expected TTL noise will initially violate the entire mission displacement noise budget, resulting in the
known necessity to fit and subtract TTL noise in data postprocessing. By comparing the noise levels
for different assumptions prior to subtraction, we show why noise mitigation by realignment prior to
subtraction is favorable. We then discuss that the TTL coupling in the individual interferometers will have
noise contributions that will not be present in the TDI observables. Models for TTL coupling noise in TDI
and in the individual interferometers are therefore different, and commonly made assumptions are valid as
such only for TDI, but not for the individual interferometers. Finally, we analyze what implications can be
drawn from the presented models for the subsequent fit-and-subtraction in postprocessing. We show that
noise contributions from the test mass and intersatellite interferometers are indistinguishable, such that only
the combined coefficients can be fit and used for subtraction. However, a distinction is considered not
necessary. Additionally, we show a correlation between coefficients for transmitter and receiver jitter
couplings in each individual TDI Michelson observable. This full correlation, however, can be resolved by
using all three Michelson observables for fitting the TTL coefficients.
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I. INTRODUCTION

The space-based gravitational wave detector Laser
Interferometer Space Antenna (LISA) [1] is an ESA-led
mission with contributions from NASA and the European
member states. It is planned for launch in the mid-2030s.
Once in its final orbit and switched to science mode, LISA
will measure gravitational waves in the 0.1 mHz to 1 Hz
frequency band. It, thereby, complements the very suc-
cessful ground-based gravitational wave detectors [2–5],
which address frequencies in the hertz to kilohertz range, as
well as pulsar timing arrays [6–9], which address gravita-
tional waves in the nanohertz regime. By measuring
gravitational waves originating from binary systems of

white dwarfs, neutron stars, and black holes of a wide range
of masses, LISA will address a rich and versatile set of
scientific questions [1].
LISA consists of three spacecraft (SC) in an (almost)

equilateral triangular configuration with a mean interspace-
craft separation of approximately 2.5 × 106 km. Each SC
will follow an individual heliocentric orbit such that the
triangular constellation is tilted by 60° out of the ecliptic
and trails the Earth by ∼20° at a distance of 50 × 106 to
60 × 106 km. Each LISA SC will house two effectively
identical optical benches (OBs) and two freely falling test
masses (TMs) [10,11].
Gravitational waves will induce variations of the proper

distance between the freely falling TMs aboard two differ-
ent SC. LISA’s requirements are set to measure such
distance variations down to the picometer level using its
heterodyne laser interferometry. For technical reasons, the
measurement of the distance variation between two test
masses is split up into three individual measurements.
A test mass interferometer (TMI) measures the distance
variation between a test mass and a reference point on the
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local satellite. The long arm interferometer (LAI, also
known as intersatellite interferometer or science interfero-
meter) measures the distance variation between the very
same reference point and a comparable reference point
on a remote satellite. Finally, another TMI measures the
distance variations between the remote reference point and
the freely falling test mass on that satellite. The motion of
the reference points on the corresponding optical benches
cancels when the three measurements are combined appro-
priately. The well-known basic working principle of LISA
is, therefore, as follows: Laser beams sent from one
spacecraft to another get phase shifted by the variations
in the proper distance caused by the gravitational waves.
Consequently, the gravitational wave signals are measured
as phase variations in the LAIs.
Celestial mechanics will influence the individual SC

orbits, resulting in arm length variations by up to ≈�1%,
which is ≈�25 000 km during a year. Since all three arm
lengths vary differently, the equilateral triangular form of
LISAwill be slightly deformed during the course of a year.
This variation of the arm lengths is unlike in the ground-
based detectors and causes a significant coupling of laser
frequency noise into the interferometric readout signals.
It makes laser frequency noise coupling a primary noise
source in LISA with an equivalent of millimeter-level
displacement noise, which is orders of magnitude larger
than the picometer level of proper distance variations
caused by gravitational waves, which LISA is designed
to measure. Fortunately, the coupling of laser frequency
noise into the longitudinal phase measurement as well as its
suppression in the final recombined signal with time-delay
interferometry (TDI) [12–16] techniques is well understood.
The so-called TDI observables are formed by linearly
combining the various interferometric readout signals with
suitable time delays, which suppresses the laser frequency
noise coupling below the LISA requirements.
After the suppression of laser frequency noise, a variety

of secondary noise sources remain. These include clock
phase noise [17], relative intensity noise [18], and others.
Among these secondary noises is the tilt-to-length (TTL)
coupling noise, i.e., the cross-coupling of angular or lateral
vibrations (also commonly known as “jitters”) into the
LISA interferometric phase readout. This noise type is a
crosstalk since the interferometric phase signal is intended
to only sense distance variations, while angular and lateral
motions are nominally orthogonal degrees of freedom
(d.o.f.) and should not be sensed. Nevertheless, motion
in all d.o.f. can—and usually does—couple into the
interferometric phase. TTL coupling noise was already
one of the major noise sources in the LISA Pathfinder
mission [10,11,19,20] and will be even more significant
in LISA.
For this reason, a threefold TTL suppression scheme is

planned for LISA. This means TTL coupling noise is
suppressed in LISA

(1) by design,
(2) by realignment, and
(3) by fit and subtraction in postprocessing.
The first suppression step consists of two parts: The first

part is the split-interferometry concept where the TMIs and
LAIs both measure the motion of the optical bench, ideally
along the same axis. When the signals from these inter-
ferometers are then combined in the TDI, the commonly
sensed longitudinal optical bench motion caused by angular
or lateral jitter (a strong contributor to TTL noise) cancels.
The second part of noise suppression by design is given by
the use of dedicated imaging optics, which are known and
proven to suppress TTL coupling noise [21–24].
A second stage of TTL noise mitigation is by fine-tuning

the alignment in the interferometer. This concept is theo-
retically understood (e.g., [25]) and experimentally proven
both in on-ground experiments, as well as by the LISA
Pathfinder mission [19,21]. It is, therefore, also planned for
LISA that the alignment can be adapted either prior to
launch, or in flight, or both, to reduce the TTL coupling
noise in LISA.
It is currently not expected that the required noise levels

can be achieved by the first two mitigation strategies alone.
Therefore, it is planned to fit a linear TTL model to the
obtained TDI observables and subtract the noise from the
measured data. Such a fit and subtraction was already
successfully performed in LISA Pathfinder [10] and was
successfully tested for LISA by simulations [26–28].
A number of articles have already been published on the

topic of TTL coupling in LISA. There are publications
focused on the validation of TTL noise suppression by
imaging optics (e.g., [21,22,24,29]). Others focus on specific
noise contributions, such as from the far-field wave front
distortions of light transmitted through the telescope
(e.g., [29–33]), or influences of alignment (e.g., [34]).
Particular focus is currently given on the noise reduction
by fit and subtraction (e.g., [26,35,36]) and calibration
maneuvers as an alternative option to estimate the coef-
ficients [37] prior to subtraction. Finally, the TTL noise in
the TDI Michelson combinations [36] and also in TDI
infinity were modeled and compared in [38].
This paper is focused on noise modeling prior to the fit-

and-subtraction step. For this purpose, we derive a linear
TTL model that has already been introduced in [36] and
which was partly used for the noise generation in [26].
Already in the derivation of the model, but also when the
model is reduced to the dominating contributions, a number
of important assumptions are made, which have not been
addressed in previous publications. We discuss these
assumptions and show that they are valid only for modeling
the noise in TDI observables, while we consider them
invalid for individual interferometers. The reason for this is
that there exist strong TTL effects, that is, TTL effects
involving optical bench longitudinal motion, which are
common in the individual interferometers of a single link.
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These cancel when the individual interferometer signals are
added to form the TDI single-link signals. Therefore, we
discuss in detail the difference between TTL in individual
interferometers vs in a single link or in TDI observables.
Additionally, we use the reduced linear model to

estimate the expected noise levels per single link (i.e.,
interferometric connection between two test masses). For
this, we need both estimates for the jitters, as well as for the
coupling factors. Yet, deriving these factors is a substantial
task in itself (see, e.g., [25,30,32,39]) and is, therefore,
beyond the scope of this paper. For this reason, we only
very shortly argue the expected magnitude of the total
coupling factors per degree of freedom, without going
much into detail.
Depending on whether the noise is previously sup-

pressed by realignment or not, we find median noise levels
in a single link on the order of 13 or 58 pm=

ffiffiffiffiffiffi
Hz

p
prior

to fit and subtraction. We confirmed these findings with
two nonstatistical simulation results in previous publica-
tions [26,38]. The worst case estimates for our two cases
are approximately 40 or 172 pm=

ffiffiffiffiffiffi
Hz

p
per single link prior

to fit and subtraction. The noise levels we find would
mostly exceed the entire mission noise budget and are the
reason why the third mitigation step of fitting and sub-
tracting the TTL noise from the data is indispensable and
planned for.
Finally, we analyze the derived TTL coupling models

and show that noise contributions from the LAIs and TMIs
become indistinguishable when studied in data analysis or
fitted to a model. Likewise, we highlight a correlation
between the TTL coupling from transmitter and receiver
jitters in the individual TDI-X, -Y, and -Z observables, but
this correlation can be broken if all three observables are
used for fitting the noise contributions.
The outline of this paper is as follows: We describe TTL

coupling as a generic interferometric noise source in Sec. II.
We then describe in Sec. III which of the LISA inter-
ferometers are subject to TTL coupling. We add generic
noise terms into the interferometric phase signals and
derive the resulting contributions to the TDI Michelson
observables. In Sec. IV, we then derive an explicit first-
order TTL model applicable for noise estimates in single
links or TDI. This substitutes the generic form used until
this point.
In Sec. V, we reduce the explicit model to its most

significant contributions, specify current assumptions for
jitters and coupling factors, and compute the resulting noise
in the second-generation TDI Michelson observables. In
order to validate the analytic model, we additionally tested
one set of data numerically with the simulation software
tools LISA INSTRUMENT [40] and PYTDI [41] and show a
perfect agreement between the resulting analytic and
numeric noise estimate. After this, we show the TTL
noise estimates for the second-generation TDI-X variable,
derived from two Monte Carlo simulations.

In Sec. VI, we show why the assumptions made in the
previous section do not hold for the individual interfer-
ometers and define another linear TTL model that should
be used instead when describing the noise in individual
interferometers. In Sec. VII, we discuss a delineation of the
shown model for noise estimation from the models used for
data analysis and show the mixing of different signals in
TDI, which causes correlations. Finally, we conclude in
Sec. VIII with the key findings.

II. BASIC PRINCIPLES OF TTL COUPLING

For any type of interferometer, we can define the axis
along which the interferometer measures distance varia-
tions as its “longitudinal” or x direction. The interfero-
metric longitudinal readout signal can then be written as

S ¼ cxxþ N; ð1Þ

which means the interferometer has a readout signal S
which is proportional to displacement x along its longi-
tudinal direction, and cx is the factor of proportionality,
while N denotes noise disturbing the measurement. In the
context of this paper,N denotes TTL noise originating from
any type of component jitter within the system along any
orthogonal degree of freedom.
There are numerous mechanisms for how angular jitter

can cause TTL coupling noise, one of which is depicted in
Fig. 1(a). Here, an angular jitter ϕðtÞ causes distance
variations between the indicated components, particularly

(a) (b)

(c)

FIG. 1. Examples for the different types of TTL coupling.
(a) Angular jitter ϕðtÞ affects the interferometric phase because
the jitter alters the distances between the components. (b) Space-
craft jitter along y affects the phase in the four indicated
interferometers because the x axes (red double arrows) of all
interferometers are not orthogonal to the jitter direction.
(c) Angular transmitter jitter coupling due to wave front errors
(left-hand side) and absence of this coupling (right-hand side
image) if the beam is rotating around the center of curvature of a
perfectly spherical wave front.
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between the test mass (orange square) and the optical
bench. This distance variation is measured along the beam
axes indicated by the red double arrows.
A second type of angular jitter coupling is depicted in

Fig. 1(c). Here, angular jitter causes the spread-out wave
front to be scanned over the receiver due to the rotation of
the transmitter. In the case of a perfectly spherical wave
front and a center of rotation that coincides with the wave
front’s center of curvature, no effect will be seen (right-
hand side image). However, deviations from the sphericity
(or if the centers of curvature and rotation do not coincide),
a coupling will occur (left-hand side image). For a general
3D case, angular TTL coupling can principally occur in all
three angular degrees of freedom η;ϕ; θ and can be written
in a linear form as

N ¼ cηηþ cϕϕþ cθθ: ð2Þ

We then define rotations around the x axis as “roll” θ,
around the y axis as “pitch” η, and around the z axis as
“yaw” ϕ. The terms cη; cϕ; cθ are the corresponding
coupling coefficients.
As described, for instance, in [25] and applied in the

LISA Pathfinder case [19,20,42], we also include lateral
jitter coupling into TTL, because it usually relates to a static
tilt. This is illustrated in Fig. 1(b) for the case of a laterally
jittering SC. Here, the SC jitters along its y direction, which
is not orthogonal to the interferometric longitudinal x
directions, indicated by the red double arrows. Here, every
red double arrow indicates the nominal axis of one inter-
ferometer. Consequently, the components move into or out
of the beam paths, resulting in phase changes in all four
interferometers. This is caused by the SC-y direction being
statically tilted against all four interferometric y directions.
A complete first-order generic TTL model, therefore,

includes also lateral jitter coupling and reads

N ¼ cyyþ czzþ cηηþ cϕϕþ cθθ ð3aÞ

≕
X
α

cαα; ð3bÞ

where by we introduce a short notation by a sum over all
degrees of freedom α∈ fy; z; η;ϕ; θg. Here, y, z are
referred to as lateral displacement degrees of freedom,
which are orthogonal to x.
Please note, it was argued in [26] that the TTL coupling

from lateral jitters (y, z) can be neglected, and, e.g.,
also [36,37] focus entirely on angular jitter coupling.
Yet, we define this general TTL model and also the detailed
models in the later sections for all five degrees of freedom,
which are orthogonal to the longitudinal direction x. We do
so not only for completeness but also to discuss assump-
tions, such as the mentioned statement that lateral jitter
TTL is negligible.

We then assume that the variables y; z; η;ϕ; θ represent
the angular and lateral jitters of an individual component,
such as the TM, the SC, or others. Such a jitter needs to be
defined relative to another component or with respect to a
reference frame. There are several possible reference
frames one could choose, not all of which are inertial
due to the motion of the LISA satellites on a heliocentric,
and thereby accelerated orbit. We consider here a coor-
dinate frame comoving with the satellite along a hypo-
thetical noise-free orbit within a short time frame of about
30 min. Within this time, the orbit can be linearized and
assumed to be nonaccelerated and therefore inertial. All
mentioned components are then jittering with respect
to this inertial reference system, which we refer to as free
space (FS).
Every coupling coefficient cα represents, in general, the

sum of many individual geometric and nongeometric TTL
effects [25,39]. However, it is not the aim of this paper to
derive the magnitude of these coefficients from the multi-
tude of underlying coupling mechanisms. Instead, we
mostly assume here the total magnitude of all coefficients
to be known from other studies and only roughly argue
their magnitude when needed.
In this paper, we will model TTL coupling only up to the

first order. That means we assume for this study that all
higher-order effects (i.e., cy2y

2; cz2z
2; cyzyz; cϕ2ϕ2;…) are

negligible. By this, we mean the following:
We know from fundamental theoretical TTL studies and

laboratory experiments (e.g., [21,22,24,25,39]) that par-
ticularly angular jitter TTL coupling is often nonlinear.
These observed higher-order curves are usually plotted
over large angular ranges of hundreds of microradians.
However, the angular and lateral jitters in LISAwill be very
small: on the order of a few nrad=

ffiffiffiffiffiffi
Hz

p
or nm=

ffiffiffiffiffiffi
Hz

p
. The

higher-order TTL coupling curves can therefore be linear-
ized around a certain operation point, for instance, an offset
angle of a few tens of microradians. This set point or
offset angle is usually defined by the system’s alignment.
Therefore, higher-order TTL noise terms are not as such
irrelevant but instead contribute to the linear TTL cou-
pling noise.
An exception might be TTL calibration maneuvers in

which larger motion is intentionally applied in order to
calibrate the TTL coupling coefficients (cf. [19,20]). In
such a case, second-order TTL coupling might become
observable, as was the case in LISA Pathfinder. However,
experience from LISA Pathfinder shows that, even in that
case, a linear TTL model would likely be sufficient for the
coefficient fit and subsequent noise subtraction [19].

III. GENERIC TTL N-TERMS IN LISA

Within this section, we define for each of LISA’s
interferometers a generic TTL model of the type of
Eq. (3), which we refer to as “N-term,” and derive how
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these generic N-terms contribute noise to the TDI
Michelson combinations. For this, we introduce in
Sec. III A the subsystems of LISA relevant to this paper,
the laser interferometers, and the corresponding generic
TTL N-terms. In Sec. III B, we show how the generic N-
terms are added into the model of interferometric readout
signals. In Sec. III C, finally, we propagate the signals
through TDI and derive how the genericN-terms contribute
noise to the second-generation Michelson observables.

A. LISA’s subsystems, interferometers,
and generic TTL N-terms

A schematic of LISA is depicted in Fig. 2, which shows
the three SC housing two movable optical subassemblies
(MOSAs) each. Each MOSA consists of a telescope (not
shown in the figure), an optical bench, and a gravitational
reference sensor (GRS) (again not shown in the image),
inside which a freely floating TM is located.
We are using here the indexing convention from

[17,43,44] established by the LISA Consortium. The three
SC, where each of the SC are labeled as i∈ f1; 2; 3g form a
clockwise triangular constellation as seen down into the
solar panels. The MOSA (and other subsystems fixed to it)
are labeled with two indices, ij with i representing the SC
hosting the MOSA and j representing the SC with which
the laser beam is exchanged. We then speak of left-hand
side MOSAs if ij∈ f12; 23; 31g and right-hand side ones
if ij∈ f13; 21; 32g.
LISA comprises three main interferometer types, whose

signals are combined on ground to form a synthetic equal

arm length interferometer. The three interferometer types
are as follows:

(i) The TMIs, which measure distance variations be-
tween a free-floating test mass and its adjacent
optical bench, with the corresponding signals εij
on each SCi.

(ii) The LAIs, which measure distance variations be-
tween two optical benches over the large separation
of about 2.5 × 106 km; with signals sij measuring
changes along the arm L⃗ij (see Fig. 2).

(iii) The reference interferometers, in which two local
laser beams interfere aboard one spacecraft in order
to measure common noise contributions; their main
signals are τij.

There are six instances of each type of interferometer
(cf. the six MOSAs in Fig. 2). We now assume that there are
no jittering components in the reference interferometers,
such that we will not consider any TTL noise in τij. We
therefore model TTL only in the six TMIs εij and the six
LAIs sij.
For the LAIs, we distinguish here two types of TTL

effects: first, noise originating from local effects, i.e., the
jitter is occurring on the same SC where the resulting
TTL effect is then measured; second, noise originating
from remote effects, i.e., the interferometer that is affected
by the TTL noise is not part of the jittering MOSA or
aboard the jittering SC. We therefore model six N-terms for
the TTL noise contributions in the TMI, but 12 for the LAI.
Each of these is of the form of Eq. (3), and we use the follow-
ing syntax to distinguish the individual TTL N-terms:

N
εij
ij : TMI TTL effects on OBij.

N
sij
ij : LAI receiver jitter coupling, also referred to as

local jitter coupling or RX-TTL coupling. Here,
the upper index denotes the interferometer af-
fected by the TTL contribution, while the lower
index describes the source of the jitter. The lower
index also indicates where the jitter itself is being
measured, for instance, via differential wave front
sensing (DWS) readout signals. In short, “the
lower index causes TTL, the upper index mea-
sures TTL.” Here, both indices are identical,
which implies that the jitter is originating from
the same SC on which the TTL is also being
measured.

N
sij
ji∶ij: LAI transmitter jitter coupling, also known as

remote jitter coupling or TX-TTL coupling.
Again, the upper index sij denotes the affected
interferometer, while the lower index ji describes
the source of the jitter, this time on the corre-
sponding remote MOSA, such that consequently
a delay of :ij along arm Lij needs to be
considered (see Fig. 2).

Here, we use a colon and two indices as short notation
for a time-delay operator Dij. This means, we define for

FIG. 2. Schematic of LISA, showing the various MOSAs, OBs,
TMs, laser links, and interferometers (Ifos). Reference interfer-
ometers are not shown since their TTL contributions are expected
to be negligible.
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any arbitrary variable A ¼ AðtÞ the following time-delay
notations:

A∶ij ≔ DijA ≔ Aðt − Lij=cÞ: ð4aÞ

Please note that we define the signals sij of the LAIs
to measure distance variations along the received beam
(RX-beam) direction L⃗ij ¼ Lijn⃗ij. Additionally, please
note the slightly different meaning of the indices for
L⃗ij; n⃗ij and also for delays Dij compared to the MOSAs,
OBs, and TMs. For the MOSAs, OBs, and TMs, the first
index defines aboard which SC they are located, while the
second index denotes toward which SC they are pointing.
However, for L⃗ij; n⃗ij and also for delays Dij that a beam

experiences when propagating along L⃗ij, the first index
denotes the receiving spacecraft and j the transmitting one.
This can be seen as an index inversion but has the
advantage of making the indices in TDI more harmonic,
which makes indexing errors more obvious and the
equations less prone to error.
We can now revisit the examples depicted in Fig. 1. The

angular jitter TTL depicted in Fig. 1(a) (caused by the jitter
of either the TM, the local MOSA, or the SC) affects the
TMI because the distance between the free-floating test
mass and the angularly jittering MOSA varies along the
axis sensed by the TMI. Additionally, the LAI is affected by
the angular jitter because the MOSA, together with the OB
and telescope (Tel), are pushed into the received beam
direction. This motion of the OB simultaneously pushes the
transmitted beam (TX beam) toward the remote spacecraft.
If we now assume that Fig. 1(a) illustrates jitter of
MOSAij, we can say that it illustrates angular jitter TTL
contributions to N

εij
ij ; N

sij
ij , and N

sji
ij∶ji.

The same argument also holds for Fig. 1(b), where SC
lateral jitter causes MOSA motion in the direction (or
opposing the direction) of the indicated laser beams.
Assuming that this image shows jitter of SCi, we would
therefore say that it illustrates lateral jitter noise contribu-
tions to N

εij
ij ; N

sij
ij , and N

sji
ij∶ji for the left-hand side MOSA

and Nεik
ik ; N

sik
ik , and Nski

ik∶ki for the right-hand side MOSA.
Finally, Fig. 1(c) shows how the angular jitter of the

transmitting MOSA or SC affects the receiving laser
interferometer. The angular jitter causes the imperfect wave
front to be scanned over the receiving spacecraft. If we
again assume angular jitter of SCi, then the image illus-
trates TTL noise contribution to either N

sji
ij∶ji or N

ski
ik∶ki.

These examples, however, are only contributions to the
TTL N-terms, and we will not go into further detail to
model the mechanisms forming the TTL coupling noise in
the individual interferometers. Yet, we can have a look at
the number of TTL terms we have defined by now. In total,
we consider 18 general TTL N-terms in the constellation-
wide TMIs and LAIs,

N
εij
ij ¼ �

Nε12
12 ; N

ε23
23 ; N

ε31
31 ; N

ε13
13 ; N

ε21
21 ; N

ε32
32

�
; ð5aÞ

N
sij
ij ¼ �

Ns12
12 ; N

s23
23 ; N

s31
31 ; N

s13
13 ; N

s21
21 ; N

s32
32

�
; ð5bÞ

N
sij
ji∶ij ¼

�
Ns12

21∶12; N
s13
31∶13; N

s23
32∶23; N

s21
12∶21; N

s31
13∶31; N

s32
23∶32

�
:

ð5cÞ
Each of these comprises five coupling coefficients [Eq. (3)]
per jittering component. These jittering components are
primarily the SC and MOSA, but additional components
like the telescopes, TMs, and the point ahead angle
mechanisms (PAAMs) could be considered as well. This
results in a significant number of TTL coupling coefficients
if all of these are considered, even though we model TTL
here only to first order. However, such a complete model is
usually not needed, because either the jitters or the coupling
coefficients are considered to be small. The model can then
be reduced to the most significant contributions.
Before we reduce the model here, we show in Sec. III B

how the generic TTL N-terms are added into the phase
meter equations and propagated through TDI in Sec. III C.
After that, we replace the generic model with an explicit
one in Sec. IV, which we then reduce to the most significant
contributions in Sec. V.

B. Phase meter equations with generic TTL

We can now add the generic TTL N-terms into the
models of the interferometric phase signals usually used
in TDI. These models are often referred to as phase meter
equations and are more detailed than our initial model
Eq. (1). For easy comparison with previous publications,
we use the notation of [14] except that we do not
distinguish between delays for constant or varying arm
lengths and use “:” in either case. Additionally, we adapted
to the more recent double-index notation. Consequently, we
define the phase meter equations in units of phase radian.
Therefore, the TTL N-terms need to be converted from
their units of meters to phase radian by multiplying with the
appropriate wave number k, when adding these terms in.
We find

š12ðtÞ ¼ H12 þ p21∶12 − p12 þ k21∶12
�
n⃗21 · Δ⃗21∶12 þ n⃗12 · Δ⃗12 þ Ns12

12 þ Ns12
21∶12

�
; ð6aÞ

ε̌12ðtÞ ¼ p12 − p13 − μ13 þ k12
�
−2n⃗12 · Δ⃗12 þ 2n⃗12 · δ⃗12 þ Nε12

12

�
; ð6bÞ

τ̌12ðtÞ ¼ p12 − p13 − μ13; ð6cÞ
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š13ðtÞ ¼ H13 þ p31∶13 − p13 þ k31∶13
�
n⃗31 · Δ⃗31∶13 þ n⃗13 · Δ⃗13 þ Ns13

13 þ Ns13
31∶13;

� ð6dÞ

ε̌13ðtÞ ¼ p13 − p12 − μ12 þ k13
�
−2n⃗13 · Δ⃗13 þ 2n⃗13 · δ⃗13 þ Nε13

13

�
; ð6eÞ

τ̌13ðtÞ ¼ p13 − p12 − μ12: ð6fÞ

Here, we denote gravitational wave signals by H, laser
frequency noise by p, fiber backlink noise by μ, all defined
in phase radian. Contrary to this, MOSA (or equivalently
OB) displacement Δ⃗ and test mass motion δ⃗, both defined
relative to free space and mapped along the beam direction
n⃗, are defined in units of meters. These terms (n⃗ Δ⃗ and n⃗ δ⃗)
are explicit substitutions of the longitudinal displacement x
in Eq. (1).
Please note that the projection directions n⃗ might not be

intuitive. They are chosen such that the received and
transmitted beam directions may be different, and yet
the cancellation of OB motion between LAI and TMI are
assured. Further information and a more precise description
allowing deviations of the beam directions in the LAI and
TMI are given in Appendix.
With Eq. (6), we have defined calibrated signals, i.e., we

have divided each signal by a specific signum function to
achieve a fixed sign convention that is independent of the
sign of the heterodyne beat note frequency. This calibration
and suppression of the signum function is indicated by
the check symbol (i.e., š; ε̌, rather than s, ε). A detailed
derivation of Eq. (6) including the suppression of signum
functions and all defined signs is given in the Appendix.
Please note that whether the N-terms are added into the
phase meter equations or placed with an explicit minus sign
is a choice. We choose all TTL effects to be added in and
care for intrinsic signs only once the generic N-terms
are replaced by explicit models (see particularly Secs. IV C
and VI C).
The phase meter equations of all other MOSAs can be

obtained by the usual cyclic permutation of the individual
indices, i.e., 1 → 2; 2 → 3; 3 → 1.

C. Propagating the generic TTL terms through TDI

To estimate the magnitude of TTL noise in the TDI
observables, we need to propagate the various TTL con-
tributions through TDI. We do this here on the example of
the second-generation Michelson combinations X2, from
which the Y2 and Z2 combinations can be derived as usual
via cyclic permutation of the indices [14,44]. When deriving
the TTL contributions in TDI, we neglect clock noise as well
as the clock noise suppression step. This is based on the
assumption that the clock noise suppression step does not
affect the TTL contributions to the TDI observables.
Following the process described in [14], but adapted

for the signal calibration defined in Eq. (A10), we first

construct the intermediate variable ξ̌radij in units of phase
radian,

ξ̌½rad�ij ¼ šij þ
kji∶ij
kij

ε̌ij − τ̌ij
2

þDij
ε̌ji − τ̌ji

2
; ð7Þ

which is free of noise that is caused by the OB longitudinal
jitter Δ⃗. This intermediate variable describes the various
single-link readouts and their noise. Denoting only the TTL
terms in ξij either in units of phase radian or meters, we find

ξ̌TTL;½rad�ij ¼ kji∶ij

�
N

sij
ij þ N

sij
ji∶ij þ

1

2
N

εij
ij þ 1

2
N

εji
ji∶ij

�
; ð8aÞ

ξ̌TTLij ¼ N
sij
ij þ N

sij
ji∶ij þ

1

2
N

εij
ij þ 1

2
N

εji
ji∶ij: ð8bÞ

In the next step, all laser frequency noises p of lasers
belonging to right-hand side MOSAs are removed by
forming the η̌ variables (not to be confused with pitch
angles ηij; ηik). This makes the definitions for the variable
η̌ij from left-hand side MOSAs different from correspond-
ing variable η̌ik from right-hand side MOSAs,

η̌½rad�ij ¼ ξ̌½rad�ij þDij
τ̌jk − τ̌ji

2
; ð9aÞ

η̌½rad�ik ¼ ξ̌½rad�ik þ τ̌ik − τ̌ij
2

: ð9bÞ

Since we assume there is no TTL coupling in the reference
interferometers, we recover the exact same TTL terms in
the η̌ variables as in the ξ̌ variables,

η̌TTLij ¼ ξ̌TTLij : ð10Þ

Please note that the signs in Eq. (9) differ from [14] as a
consequence of the notation introduced in the Appendix
and the chosen calibration which suppresses the signum
functions. However, the equation here and in [14] agree,
if the calibration is considered. Furthermore, this discrep-
ancy exists only in the calibrated intermediate vari-
ables η̌, while the signs in the final step of generating
the second-generation Michelson X combination, X2, are
unaffected [14]. Therefore, X2, in which the residual laser
frequency noise contributions are suppressed, has the same
form as usual (e.g., [14,44,45])
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X½rad�
2 ¼ ð1 −D121 −D12131 þD1312121Þ

	
η̌½rad�13 þD13η̌

½rad�
31



− ð1 −D131 −D13121 þD1213131Þ
×
	
η̌½rad�12 þD12η̌

½rad�
21



: ð11Þ

The TTL noise contributions are simply found by substi-
tuting η̌ → η̌TTL ¼ ξ̌TTLij and are in units of meters given by

XTTL
2 ¼ ð1−D121 −D12131 þD1312121Þ

�
ξ̌TTL13 þD13ξ̌

TTL
31

�
− ð1−D131 −D13121 þD1213131Þ

�
ξ̌TTL12 þD12ξ̌

TTL
21

�
:

ð12Þ

We use here another short notation contracting a sequence
of delay operators defined by

Dijk ≔ DijDjk; ð13aÞ

Dijkl ≔ DijDjkDkl; ð13bÞ

with i; j; k; l∈ f1; 2; 3g as previously introduced in [44].
This contraction definition can be extended to define an
arbitrary number of lower indices, as long as the shown
pairing of indices occurs. In the TDI Michelson combina-
tions, this is always the case if the index syntax used in this
paper is applied: for all variables, the first index describes
the transmitting SC, while the second index names the
receiving SC, except for arm lengths Lij and delays Dij,
where this is chosen vice versa (cf. Fig. 2). This ensures the
pairing of indices in the Michelson combinations.
As shown in [46], the power spectral density (PSD) of

XTTL
2 defined by Eq. (12) can be directly denoted as

PSDðX2ÞðfÞ≕SX2
ðfÞ

¼ C123
XX · PSD

�
ξ̌TTL13 þD13ξ̌

TTL
31

�
þ C132

XX · PSD
�
ξ̌TTL12 þD12ξ̌

TTL
21

� ð14Þ

using the transfer function

Cijk
XX ¼ 16sin2

�
2πfL̄ij

c

�
sin2

�
4πfL̄ijk

c

�
ð15Þ

and mean arm lengths

L̄ij ¼
Lij þ Lji

2
; ð16aÞ

L̄ijk ¼
Lij þ Lji þ Lik þ Lki

4
: ð16bÞ

Please note, the prefactors of 1=2 for the TMI TTL terms
in Eq. (8) are an artifact from the partial calibration we have
defined for these interferometers in order to allow easy

comparison with previous publications such as [14,36,45].
By partial calibration, we mean the following: while we
suppressed the signum functions by calibration, we have
not calibrated the TMI readout signal ε to read out the
longitudinal displacement of the optical bench relative to
the test mass with a prefactor of 1, despite the fact that this
measurement is the primary goal of each TMI. In other
words, n⃗ðΔ⃗ − δ⃗Þ corresponds to x in Eq. (1). If we assume S
in Eq. (1) to be in units of meters, we see a prefactor of
cx ¼ −2 in the phase meter equations (6b) and (6e). The
minus sign is of little or no relevance here. It depends on
whether we wish to measure OB motion relative to the test
mass or test mass motion relative to the OB (or spacecraft),
and it defines whether the TMI and LAI signals need to be
added or subtracted in TDI to cancel the OB motion Δ⃗. But
the factor of 2, which is of course present in the raw data,
could be suppressed by calibration, making cx ¼ �1
thereafter, which would remove the factors of 1=2 from
Eqs. (7)–(9) and all equations derived from these through-
out this paper.

IV. DERIVATION OF AN EXPLICIT
FIRST-ORDER TTL MODEL

So far, we have only given a very generic description of
how each noise term is modeled [Eq. (3)] and named the
various TTL noise contributions [Eq. (5)]. Each of these
generic N-terms can be written explicitly as a function of
the individual involved jitters. In order to do so, we first
discuss in Sec. IVAwhat jittering components we consider
throughout this paper to cause TTL coupling and define the
relevant coordinate frames. We then describe the necessary
mapping for SC jitter into theMOSA frame in Sec. IVB. This
enables the explicit modeling which is given in Sec. IVC.

A. Jitters and coordinate frames

Within this paper, we assume only three types of jittering
objects: the SC, MOSAs, and TMs. There are also other
jitters of relevance, such as the jitter of the PAAMs and,
particularly, the jitter of the telescopes relative to their OB.
However, these are not considered here and can be the
subject of future publications.
If we want to describe how the jitter of a test mass or

MOSA affects the interferometry, it is best to do so in a
coordinate system aligned with the primary beam axis. We
call such a reference frame a MOSA coordinate frame
(MF). There are two MOSAs aboard each SC, and hence
two MOSA coordinate frames. However, there is only one
SC, and when we want to describe its motion, it is easiest to
describe the motion in a dedicated spacecraft coordinate
frame (SF), before mapping it into either of the MOSA
frames.
We have depicted the two types of coordinate frames in

Fig. 3 for the example of SC1 and define them in detail in
the following.
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The origins of both coordinate frames, the SF and MF
move along a hypothetical perfectly noise-free orbit and
thus in synchrony with our definition of free space. They
are, therefore, inertial reference frames on short timescales
and not body fixed, which allows observing SC jitter in
either of the two frames while the nominal orbital motion of
the SC is not accessible.
The x axis X⃗SFi of the SCi frame is the bisector between

the local MOSA x axes in their nominal state, where
nominal is considered to be a full opening angle of 60°. The
SF xy plane is the plane in which both local MOSAs are
located, the SF z axis Z⃗SFi is pointing from the center of
mass through the solar panel. We use this reference frame to
describe SC motion relative to free space.
The axes of the MOSA frame are rotated in ϕ by

approximately �30° against the axes of the SF: The x
axes X⃗MFij; X⃗MFik of the MFs are defined via the tele-
scope axes, which are pointing toward the incident wave
front from the far SC. The MF x axis can, therefore, be
nominally aligned to the RX-beam axis (however, with
opposing direction). Contrary to this, the TX beam is tilted
against X⃗MFij with an angle defined by the PAAM. The

z axis Z⃗MFij is chosen to be identical to the SC frame

z axis Z⃗SFi.
In principle, we should indicate for every motion the

used coordinate frame. In order to reduce the notation, we
mostly suppress the reference frame information by defin-
ing that any jitter described in its natural coordinate frame
carries no indicator, i.e., test mass and MOSA motion in
MF and spacecraft jitter in SF do not carry an indicator.
Since we use MF as our primary reference frame, only

spacecraft jitter expressed in the MOSA frame carries an
explicit upper index MF to indicate the mapping.
Now, we can specify in detail the jitters affecting the

interferometric signals: For the LAI, the jitter of relevance
is MOSA jitter with respect to the RX beam: αMO=RX (given
in MF). We consider the RX wave front to be effectively
planar due to the long propagation distance. Angular
transmitter jitter causes no considerable beam tilt in the
far field and so the RX-beam axis is considered to be static
at the receiving SC. Consequently, the jitter affecting the
LAI is equivalent to the local MOSA jitter with respect to
free space: αMO=RX ¼ αMO=FS. Here, we have defined
αMO=RX to denote the relative motion between two geo-
metric components: the MOSA, and the line describing the
RX-beam axis, described in MF. With the notation αMO=FS,
we treat FS as if it was a geometric body. We do so because
it is not important which point in free space is chosen as a
reference for the MOSA motion, provided the point rests in
our definition of FS.
Since each MOSA is mounted to its SC, it jitters mostly

with the spacecraft. Yet, these mounts allow residual
individual jitter of the MOSAs relative to their spacecraft.
Therefore, for every degree of freedom, the total MOSA
jitter with respect to free space αMO=FS can be split into the
motion of the SC with respect to FS mapped along the MF
axes (αMF

SC ) plus the motion αMO of the MOSAwith respect
to the SC. The jitter affecting the LAI is, therefore, given by

αMO=RX ¼ αMO=FS ¼ αMO=SC þ αMF
SC=FS: ð17Þ

Splitting up the motion in this way has the advantage
that correlated and uncorrelated contributions to TTL noise
are separated. SC motion affects both LAIs aboard the SC
and causes, therefore, correlated TTL noise. Contrary,
MOSA jitter relative to the SC affects only the MOSA’s
own LAI.
The TMIs are affected by the jitter of the MOSAs relative

to their test masses. This motion is equivalent to the
difference in the motion of the MOSA with respect to
FS and the test mass motion with respect to FS. We can split
this jitter up like before,

αMO=TM ¼ αMO=FS − αTM=FS ð18aÞ

¼ αMO=SC þ αMF
SC=FS − αTM=FS: ð18bÞ

We now define default reference bodies. Within this
paper, the reference for MOSA jitter is by default the SC,
while the reference for TM and SC jitter is by default FS. If
no reference is given, the default references apply. This
allows us to shorten phrasings and reduce the indices by
suppressing the reference information for default cases, i.e.,
MO=SC → MO, SC=FS → SC, TM=FS → TM and can
shorten the notation of Eqs. (17) and (18),

FIG. 3. Illustration of LISA reference frames on the example of
SC1. The spacecraft coordinate frame is indicated in gray dashed
lines, while the MOSA coordinate frames are shown in dashed
black lines. Each MOSA is displayed via its elements: a test
mass, an optical bench, and a telescope (Tel). The opening
angles β12 ≈ 30°; β13 ≈ −30° are defined as angles between the
SF and MF x axes.
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αMO=RX ¼ αMO=FS ¼ αMO þ αMF
SC ; ð19aÞ

αMO=TM ¼ αMO=FS − αTM ð19bÞ

¼ αMO þ αMF
SC − αTM: ð19cÞ

In the next step, we need to define the mapping of SC
jitter into MF, i.e., αMF

SC as a function of all degrees of
freedom αSC in SF.

B. Mapping between SC and MOSA
coordinate frames

The MFs are our main coordinate frames. Therefore, we
describe their axes by

X⃗MF ¼ ð1; 0; 0ÞT; ð20aÞ

Y⃗MF ¼ ð0; 1; 0ÞT; ð20bÞ

Z⃗MF ¼ ð0; 0; 1ÞT; ð20cÞ

where the upper index T indicates a transpose. Please note,
as always in this paper, we use the lower index to describe
the origin or cause of the variable. So one can ask for the
lower index of a variable by “of what?”. In this case, we
describe the axes of the MOSA frame. Contrary to that, the
upper index describes in which coordinate frame we have
expressed the vector or variable. As usual, we suppress the
upper index MF because it is the default reference frame.
The directions of the axes of the SF (expressed in MF)

are then found by rotation (cf. Fig. 3),

X⃗SF ¼ Rð−β; Z⃗MFÞX⃗MF ¼ ðcosðβÞ;− sinðβÞ; 0ÞT; ð21aÞ

Y⃗SF ¼ Rð−β; Z⃗MFÞY⃗MF ¼ ðsinðβÞ; cosðβÞ; 0ÞT; ð21bÞ

Z⃗SF ¼ Rð−β; Z⃗MFÞZ⃗MF ¼ Z⃗MF; ð21cÞ

where RðZ⃗MF;−βÞ denotes a 3 × 3 rotation matrix describ-
ing a tilt around the axis Z⃗MF by an angle −β. SC
translational jitter is then described by xSCX⃗SF þ ySCY⃗SF þ
zSCZ⃗SF which will show in the MF by

xMF
SC ¼ cosðβÞxSC þ sinðβÞySC; ð22aÞ

yMF
SC ¼ − sinðβÞxSC þ cosðβÞySC; ð22bÞ

zMF
SC ¼ zSC: ð22cÞ

As shown in Fig. 3, this tilt angle β is about 30° if a left-
hand side MOSA is considered (case ij) and approximately
−30° if a right-hand side MOSA is considered (case ik).
The total opening angle of 60° may vary up to �1° during
the mission [47].
In the next step, we now derive the mapping of the angular

SC jitter into the MFs to see how SC jitter will appear in the
MOSAs. For this, we assume that the SC will jitter angularly
in all three angles: roll (θSC), pitch (ηSC), and yaw (ϕSC). All
jitters will have a specific but currently unknown spectral
density with a magnitude in the nrad=

ffiffiffiffiffiffi
Hz

p
regime. This

amplitude is sufficiently small to allow linearization, which
is an essential assumption for our mathematical description.
We would generally need to consider that rotations do not
commute. However, since all considered angular jitters are
small, we can successively apply all three transformations
and then linearize. Because of the linearization, the matrices
do commute, and the sequence of rotation transformations
becomes irrelevant. Consequently, the effect of SC jitter in
all three angular degrees of freedom will affect an arbitrary
vector x⃗ in MF by

RðθSC; X⃗SFÞRðηSC; Y⃗SFÞRðϕSC; Z⃗SFÞx⃗ ð23Þ

with

RðθSC; X⃗SFÞRðηSC; Y⃗SFÞRðϕSC; Z⃗SFÞ ¼

0
B@

1 −ϕSC cβηSC − sβθSC
ϕSC 1 −ðsβηSC þ cβθSCÞ

−ðcβηSC − sβθSCÞ cβθSC þ sβηSC 1

1
CA ð24Þ

using the short notation cβ, sβ for cosðβÞ, sinðβÞ, respectively. This complete rotation matrix can be directly compared with
the analogon for MOSA angular jitter around the origin of the MF,

RðθMO; X⃗MFÞRðηMO; Y⃗MFÞRðϕMO; Z⃗MFÞ ¼

0
B@

1 −ϕMO ηMO

ϕMO 1 −θMO

−ηMO θMO 1

1
CA: ð25Þ
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This shows that SC angular jitter will be observable as
angular jitter in the MOSA frames with the following
mapping:

ϕMF
SC ¼ ϕSC; ð26aÞ

ηMF
SC ¼ cosðβÞηSC − sinðβÞθSC; ð26bÞ

θMF
SC ¼ sinðβÞηSC þ cosðβÞθSC: ð26cÞ

The total angular jitter of the MOSA relative to FS is
therefore given by

ϕMO=FS ¼ ϕMO þ ϕSC; ð27aÞ

ηMO=FS ¼ ηMO þ cosðβÞηSC − sinðβÞθSC; ð27bÞ

θMO=FS ¼ θMO þ sinðβÞηSC þ cosðβÞθSC: ð27cÞ

C. TTL model as functions of component jitter

With the information from the previous sections, we can
now replace the generic TTL model from Eq. (3) with an
explicit one,

N
εij
ij ¼

X
α

c
εij
αij

�
αMOij þ αMFij

SCi − αTMij

�
; ð28aÞ

N
sij
ij ¼

X
α

c
sij
αij

�
αMOij þ αMFij

SCi

�
; ð28bÞ

N
sij
ji∶ij ¼

X
α

c
sij
αji

�
αMOji∶ij þ α

MFji
SCj∶ij

�
: ð28cÞ

This model was previously published in [26,36] for
α∈ η; θ;ϕ and the LAI and is extended here to include
the TMI TTL and TM jitter.
This model is strictly valid only if applied to estimate

TTL in a single link or in TDI, or if used to fit TTL noise in
TDI variables. It is based on several assumptions, out of
which the first two are not valid for the individual
interferometers. These assumptions are described in the
following.
1. One coefficient per total jitter d.o.f. Each total jitter

degree of freedom (i.e., αMO=RX; αMO=TM for the LAI and
TMI, respectively) is scaled with one coupling coefficient,
rather than an individual coefficient per contributing jitter
degree of freedom (αMOij; α

MFij
SCi ; αTMij). This is a major

assumption, which should only be made if the noise in a
single link or in TDI is being modeled. This will be
discussed further in Sec. VI.
2. Lateral jitter coupling is not modeled. The model is

usually applied only to angular jitter coupling, with the
assumption that lateral jitter coupling is negligible. We

follow this assumption for the moment and discuss it
further in Sec. VI, where we extend the model to include
lateral jitter coupling explicitly. Please note that the model
above [Eq. (28)] could, of course, be interpreted for lateral
jitter coupling by summing α additionally over y, z.
However, to evaluate the resulting model, the mapping
of SC lateral jitter into MF is needed, which we have not
defined yet and postpone to Sec. VI.
3. Coefficients are not delayed. In Eq. (28c) one could

indicate a delay in the coupling coefficient c
sij
αji . However, we

have not done so and we generally do not delay coupling
coefficients throughout this paper. This means we assume
that the coefficients are constant over the time period in
which the TDI observable is formed. It can be seen in
Eq. (12) that a maximum of seven delays are applied to an
individual term. Given that each delay represents a time
period of about 8.3s, this means that we assume that the
coefficients are constant over a period of about one minute.
4. Different interferometers have different coupling

factors. Additionally, the coupling of one specific degree
of freedom of one component but in different interferom-
eters is considered with different coefficients here. For
instance, assume the test mass to be in perfect rest, i.e.,
αTMij ¼ 0. In that case, the TMI and LAI are subject to the

very same jitter αMOij þ αMFij
SCi , and yet the interferometers

have different coupling coefficients: c
εij
αij ; c

sij
αij . We assume

this because coupling coefficients originate from the
precise alignment in an interferometer and from properties
of the interfering wavefronts. By assuming different cou-
pling coefficients, we account for different alignments as
well as different wave front properties in the different
interferometers. Likewise, the component jitter coupling
c
sji
ϕji

into the LAI of the local transmitting SC originates

from different mechanisms than the coupling of the very
same jitter into the receiving LAI c

sij
ϕji∶ij

and is therefore

considered with different coefficients.
Please note that there is an implicit swap for the ηSC jitter

contributions in Eq. (28b) in comparison to Eq. (28c). This is
caused by a different mapping sign. Both use Eq. (27b) for
the mapping of SC jitter, but with inversed order of the
indices: there is the mapping into MFij with βij in Eq. (28b),
but MFji with βji in Eq. (28c). This states that, in a left-hand
side MOSA (case ij∈ 12, 23, 31), the local SC jitter
coupling [Eq. (28b)] naturally uses the mapping into a
left-hand side MOSA (βij ≈ 30°). The remote SC jitter
coupling, however, originates from a right-hand side
MOSA (case ji∈ 21, 32, 13) and has therefore (βji ≈ −30°).

V. TTL NOISE IN TDI-X FOR THE MOST
SIGNIFICANT NOISE CONTRIBUTIONS

We derive in this section estimates of the TTL noise
levels expected in LISA. For this, suitable estimates for all
jitter noise levels and all coupling coefficients are needed.
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Jitter estimates for LISA have been published before.
However, most coupling coefficients have not been pub-
lished yet and cannot be derived here in the scope of this
paper due to the complexity of the coupling (compare, for
instance, [25,39]). We, therefore, reduce in Sec. VA the
equations to the most significant contributions and argue
only shortly why we consider these most relevant. In
Sec. V B, we roughly estimate the remaining coupling
coefficients of the reduced model. In Sec. V C, we then
show the resulting analytic PSD model of the TDI-X2

variable and validate this model in Sec. V D by comparing
with a numeric simulation. Finally, we perform a
Monte Carlo simulation and compute the expected TTL
noise magnitude in Sec. V E. We show that the noise is
expected to violate the mission displacement noise require-
ment, resulting in the known and planned-for need to fit and
subtract the noise in data postprocessing.

A. Model reduction

It is known and expected that the coupling factors listed
in Eq. (28) have considerably different magnitudes. In
order to estimate the expected noise levels, we can, there-
fore, significantly reduce the given model and consider
only dominant contributors. We do this in three steps
below. First, we argue why TMI angular jitter coupling can
be neglected. In the next step, we argue why we neglect all
coupling of roll in MF. Finally, we argue shortly why we
neglect lateral jitter coupling. Finally, we show the resulting
reduced model consisting of only yaw and pitch jitter
coupling in MF.

1. Neglecting angular jitter coupling in the TMIs

Let us compare the magnitude of the TMI TTL con-
tributions to those of the LAI contributions due to receiver
jitter. For this, we need to express the coupling in terms of
beam jitters rather than component jitters and then consider
the imaging performed in LISA. We, therefore, assume that
an angular component jitter in an arbitrary degree of
freedom γ (i.e., γ ∈ fϕ; η; θg) causes a beam jitter in a
certain degree of freedom α. The two degrees of freedom γ
and α can be identical (this is the case for all MOSA jitters
and for SC ϕ jitters, but they could also be different: e.g.,
SC jitter in θ partially maps into a beam jitter in η). The
magnitude of the resulting beam jitter depends on where it
is being measured.
For example, let us consider the LAI and jitter of the

MOSA relative to free space. For the case of receiver jitter
(in our notation the case where the upper and lower indices
agree), we can assume a static incoming large wave front,
relative to which the MOSA is jittering. As observer located
in the telescope’s large pupil, we experience instead a jitter
of the received beam relative to the MOSA. Thereby, any

jitter αFSMO=FS of the MOSA relative to FS results in a beam

jitter αFSbeam relative to the telescope measured in FS at the
telescope’s large pupil, but with an inverse sign.
The telescope images the beam to its small pupil on OB

level, thereby decreasing the spot size and likewise all
lateral beam jitters yOB ¼ yFS=mtel; zOB ¼ zFS=mtel while
magnifying the angular jitters in pitch and yaw ηOB ¼
mtelη

FS;ϕOB ¼ mtelϕ
FS and leaving the roll θ unaffected.

Here,mtel is the telescope’s angular magnification. We then
assume that additional imaging optics are used to image the
telescope’s small pupil onto the photodiodes. Thereby, the
beam jitters are scaled further with the angular magnifica-
tion mIO of the imaging optics. Consequently, the beam
jitters on the photodiode are given by

ϕs;PD
beam ¼ mtelmIOϕ

FS
beam ¼ −mtelmIOϕMO=FS; ð29aÞ

ηs;PDbeam ¼ mtelmIOη
FS
beam ¼ −mtelmIOηMO=FS; ð29bÞ

θs;PDbeam ¼ θFSbeam: ð29cÞ

The very same MOSA jitter relative to free space will result
in a jitter of the measurement beam in the test mass
interferometer, when the measurement beam leaves the
optical bench and reflects from the test mass. Thereby, the
relative jitter of the test mass with respect to the MOSA is
imprinted onto the measurement beam with an inverse sign
and an additional factor of 2 due to the reflection. We
expect that also the test mass interferometer comprises
imaging optics, which we assume to have nominally the
same magnification factor as in the LAI. Consequently, we
would expect the following beam angles in the test mass
interferometer on photodiode level:

ϕε;PD
beam ¼ −2mIOϕMO=FS; ð30aÞ

ηε;PDbeam ¼ −2mIOηMO=FS; ð30bÞ

θε;PDbeam ¼ −θFSMO=FS: ð30cÞ

Finally, we assume that the TTL coupling factors are
caused by unavoidable small misalignments on either OB
or photodiode (PD) level. The alignment tolerances achiev-
able during manufacturing on these levels are identical for
both types of interferometers. It is, therefore, to be expected
that the same level of coupling factors could occur,

cε;PDϕbeam
≈ cs;PDϕbeam

; ð31aÞ

cε;PDηbeam ≈ cs;PDηbeam ; ð31bÞ

which scale the beam angles, resulting in a TTL coupling of
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Nε
ϕMO=FS

¼ cε;PDϕbeam
ϕε;PD
beam; ð32aÞ

Ns
ϕMO=FS

¼ cs;PDϕbeam
ϕs;PD
beam; ð32bÞ

Nε
ηMO=FS

¼ cε;PDηbeamη
ε;PD
beam; ð32cÞ

Ns
ηMO=FS

¼ cs;PDηbeamη
s;PD
beam: ð32dÞ

We can now conclude that the angular jitter TTL
coupling in the LAIs is expected to be significantly larger
than in the TMIs. This originates from beam jitter coupling
coefficients on PD level of the same magnitude [Eq. (31)],
but significantly different levels of beam jitters on PD level
in the different types of interferometers. The jitters differ
by the telescope angular magnification factor mtel. If we
assume that the telescope and imaging optics jointly reduce
the beam size from 30 cm diameter to fit onto a 1 mm dia-
meter photodiode, and if we assume a factor of approx-
imately jmIOj ≈ 2, we find jmtelj ≈ 150. Combining the
equations above and considering that the TMI readout is
divided by 2 when added to the LAI-signal in TDI [see
Eqs. (7) and (8)), we find that MOSA pitch and yaw jitter
relative to FS are expected to couple on the order of 150
times stronger to TDI-X via the LAIs than via the TMIs.
Consequently, we can neglect the angular jitter coupling in
the TMI in the simplified model below.

2. Neglecting roll in MF

For rotationally symmetric beams and a roll around the
beam axis, no TTL effect would occur at all. Only if either
the beam is not rotationally symmetric, e.g., due to wave
front errors, or the center of rotation is not on the beam axis,
a small effect could occur. Roll is therefore neglected here,
by setting 0 ¼ c

εij
θij

¼ c
sij
θij

¼ c
sij
θji∶ij

in Eq. (28).

3. Neglecting lateral jitter coupling

Only jitter in yaw and pitch (ϕ; η) are magnified by the
telescope and imaging optics, while lateral beam jitter in
the MF is demagnified by the magnification factors.
Therefore, even misalignments on free-space level are
expected to contribute less than the magnified effects for
angular jitter coupling. We, therefore, assume here that
lateral jitter coupling contributes less strongly to TDI than
angular jitter coupling in the LAI. So, we neglect lateral
jitter coupling both in the LAI and TMI in the simplified
model below. This assumption is further discussed
in Sec. VI.

4. Relevance of transmitter angular jitter coupling

Angular jitter of a transmitting SC or MOSA contributes
significant TTL coupling (e.g., [31,32,48]). The exception-
ally long lever arm of 2.5 Gm translates any nanoradian of
angular jitter into a lateral (horizontal or vertical) displace-
ment of the beam axis of 2.5 Gm · 1 nrad ¼ 2.5 m at the
receiving end. Thereby, all angular transmitter jitter
strongly shifts the RX wave front over the receiving
telescope. This results in phase changes in the interferom-
eter due to the RX beam’s wave front errors, which need to
be considered.

5. Reduced N-terms

In summary, we consider angular jitter coupling in the
LAI to be the dominating TTL coupling terms. We,
therefore, neglect all contributions from lateral jitter in
the LAIs and all TTL noise contributions from angular and
lateral jitter from the TMIs. Consequently, the TTL model
reduces to

N
εij
ij ≈ 0; ð33aÞ

N
sij
ij ¼

h
c
sij
ϕij
ϕij þ c

sij
ηijηij

i
¼

h
c
sij
ϕij

�
ϕSC
i þ ϕMO

ij

�þ c
sij
ηij

�
ηMO
ij þ cosðβijÞηSCi þ sinðβijÞθSCi

�i
; ð33bÞ

N
sij
ji∶ij ¼ Dij

h
c
sij
ϕji
ϕji þ c

sij
ηjiηji

i
¼ Dij

h
c
sij
ϕji

�
ϕSC
j þ ϕMO

ji

�þ c
sij
ηji

�
ηMO
ji þ cosðβjiÞηSCj þ sinðβjiÞθSCj

�i
: ð33cÞ

B. Magnitudes of coefficients

Without going into much detail, we want to give now
estimates of the magnitude of the coupling coefficients that
we use below for estimating the resulting noise levels.
For the receiver jitter coupling, we stated in the previous

section that we assume alignment tolerances on either OB
or PD level to be the primary cause of the coupling
coefficients. Let us assume here that there is a misalignment
on OB level causing a lateral piston effect (see Ref. [25]
for more information on this geometric TTL effect). This

means we assume there is a lateral misalignment, causing
the OB to push into, or out of, the beam path during the
jitter. A typical estimate for such an alignment tolerance
would be 30 μm. The resulting beam jitter coupling
coefficient on OB level is then 30 μm=rad [25]. On OB
level, the beam jitter is mtel times larger than MOSA jitter
relative to FS. Using mtel ¼ 134 [31,49], we find that the
coupling of MOSA yaw or pitch jitter is given by
134 · 30 μm=rad ≈ 4 mm=rad. Considering that this would
be only one of the TTL coupling mechanisms out of many
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(cf. [25,39] for a general list of possible coupling mech-
anisms), we estimate that the magnitude of the total coup-
ling factor could likewise be on the order of 10 mm=rad.
For the magnitude of the coefficients describing the

transmitter jitter coupling, we can make the very same
argument as for the receiver jitter coupling. Additionally,
we know from simulations [31,32,48,50,51] that wave front
errors cause mm/rad-level coupling coefficient contribu-
tions. In total, we therefore estimate also for transmitter
jitter coupling coefficient levels on the order of 10 mm=rad.
These coupling coefficients refer to the case after

mitigation step 1: mitigation by design (cf. Sec. I). The
coupling coefficients after a realignment optimization
(mitigation step 2) were published previously in [26]
and stated to be on the order of 2.3 mm=rad for both
the receiver and transmitter jitter couplings coefficients.
We, therefore, use two different levels of coupling co-

efficients for the noise estimates in the subsections below:
10 mm=rad assuming noise levels prior to a realignment for
noise minimization and 2.3 mm=rad assuming a system
realignment was already performed.
In either case, a TTL model will be fitted to the mission

data and afterward subtracted from it. It is only after this
that the resulting noise levels have to meet the correspond-
ing requirements. For more information on this subtraction

in LISA, see Ref. [26], and see Ref. [10] for the successful
subtraction in LISA Pathfinder.

C. Analytic TDI-X noise model for the reduced
TTL model

To estimate the TTL noise contribution in X2 we evaluate
Eq. (12) using Eq. (8). The PSD of the resulting term XTTL

2

was evaluated using Eq. (33) and the simplifying
assumption that the jitters in ϕMO=FS are uncorrelated to
those in ηMO=FS and that ϕMO=FS21 ; ηMO=FS21 are uncorrelated
to ϕMO=FS31 ; ηMO=FS31 . Additionally, we set all arm lengths
to be equal (Lij ¼ Lik ¼ L for all ijk), and, consequently,
the constellation opening angles are equal (β ¼ βij ¼ −βik
with β > 0 where ij denotes a left-hand side MOSA and ik
a right-hand side MOSA). The resulting PSD SX2

ðfÞ of the
TTL noise in the TDI-X2 observable is then given by

STTLX2
ðfÞ ¼ SϕSC

X2
ðfÞ þ SηSCX2

ðfÞ þ SθSCX2
ðfÞ

þ SϕMO
X2

ðfÞ þ SηMO
X2

ðfÞ ð34aÞ

using the spectral densities of the individual jitter
contributions

SϕSC
X2

ðfÞ ¼ CXXðfÞ
h	�

cs13ϕ13
− cs12ϕ12

�
2 þ �

cs31ϕ13
− cs21ϕ12

�
2 þ 2

�
cs13ϕ13

− cs12ϕ12

��
cs31ϕ13

− cs21ϕ12

�
cosð4πfL=cÞ



SϕSC1

ðfÞ

þ �
cs12ϕ21

þ cs21ϕ21

�
2SϕSC2

ðfÞ þ �
cs13ϕ31

þ cs31ϕ31

�
2SϕSC3

ðfÞ
i
; ð35aÞ

SηSCX2
ðfÞ ¼ CXXðfÞ

h	�
cs13η13 − cs12η12

�
2 þ �

cs31η13 − cs21η12

�
2 þ 2

�
cs13η13 − cs12η12

��
cs31η13 − cs21η12

�
cosð4πfL=cÞ



SηSC1ðfÞ

þ �
cs12η21 þ cs21η21

�
2SηSC2ðfÞ þ

�
cs13η31 þ cs31η31

�
2SηSC3ðfÞ

i
cos2ðβÞ; ð35bÞ

SθSCX2
ðfÞ ¼ CXXðfÞ

h	�
cs13η13 þ cs12η12

�
2 þ �

cs31η13 þ cs21η12

�
2 þ 2

�
cs13η13 þ cs12η12

��
cs31η13 þ cs21η12

�
cosð4πfL=cÞ



SθSC1ðfÞ

þ �
cs12η21 þ cs21η21

�
2SθSC2ðfÞ þ

�
cs13η31 þ cs31η31

�
2SθSC3ðfÞ

i
sin2ðβÞ; ð35cÞ

SϕMO
X2

ðfÞ ¼ CXXðfÞ
h	

cs13ϕ13

2 þ cs31ϕ13

2 þ 2cs13ϕ13
cs31ϕ13

cosð4πfL=cÞ


SϕMO13

ðfÞ þ �
cs13ϕ31

þ cs31ϕ31

�
2SϕMO31

ðfÞ

þ
	
cs12ϕ12

2 þ cs21ϕ12

2 þ 2cs12ϕ12
cs21ϕ12

cosð4πfL=cÞ


SϕMO12

ðfÞ þ �
cs12ϕ21

þ cs21ϕ21

�
2SϕMO21

ðfÞ
i
; ð35dÞ

SηMO
X2

ðfÞ ¼ CXXðfÞ
h�
cs13η13

2 þ cs31η13
2 þ 2cs13η13c

s31
η13 cosð4πfL=cÞ

�
SηMO13

ðfÞ þ �
cs13η31 þ cs31η31

�
2SηMO31

ðfÞ

þ �
cs12η12

2 þ cs21η12
2 þ 2cs12η12c

s21
η12 cosð4πfL=cÞ

�
SηMO12

ðfÞ þ �
cs12η21 þ cs21η21

�
2SηMO21

ðfÞ
i
; ð35eÞ

and the equal arm length transfer function CXXðfÞ,

CXXðfÞ ¼ 16 sin2
�
2πfL
c

�
sin2

�
4πfL
c

�
: ð36Þ
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As usual, the corresponding equations for the Michelson Y2

and Z2 PSDs can be found by cyclic permutation of the
indices. It is important to note that the magnitude of TTL
noise does not only depend on the absolute value of the
coupling coefficients but also on their signs, since they
mostly appear as sums or differences.

D. Noise model validation

To validate the TTL noise model equations (34) and (35),
we directly compare the so-defined PSDs for one test case
with the results of a numerical simulation performed with
LISA INSTRUMENT [40] and PYTDI [41]. In these simula-
tions, LISA INSTRUMENT computed a time series of the
interferometric displacement readout signals. This corre-
sponds to a simulation of N

sij
ij and N

sij
ji∶ij since no other

noise was assumed than TTL originating from angular
jitters of the SCs and the MOSAs. PYTDI was used to
numerically propagate these signals through TDI. The
amplitude spectral density (ASD) of the resulting time
series was then computed in PYTHON. This resulted in a
numerical analogon of Eq. (34).
The simulation was run 6 times: once with all noise

contributions active [numerical equivalent of Eq. (34)] and
five simulations with each assuming only angular jitter of
one degree of freedom [numerical equivalent of Eq. (35)].
All simulations cover 50 000 s ≈ 14 h of data.
For both types of simulations, i.e., the evaluation of the

analytical noise model Eqs. (34) and (35) and the numerical
simulation with LISA INSTRUMENT and PYTDI, we made the
following assumptions:
For the jitters, we assume here values from the LISA

noise budget listed in Table I, which have been previously
published in [26]. We simplify the noise spectral shapes to
white noise because the pole-zero model defined in [26] is
effectively white in the frequency band of 3–300 mHz, and
TTL usually dominates at frequencies above approximately
3 mHz. Naturally, we do not assume the SC or the MOSA
to have a motion that is well described by a white noise
spectral density, particularly not up to 1 Hz. Instead, this
assumption should be understood as an upper limit repre-
senting preliminary requirements. We chose to draw the
TTL coupling coefficients randomly from a uniform dis-
tribution with limits �2.3 mm rad−1. The resulting coef-
ficients are listed in Table II. The numerical simulations

considered realistic SC orbits based on an orbit file
provided by ESA. For the evaluation of the analytical
noise model, we assumed constant and equal arm lengths,
and hence β ¼ 30°. For the value of the constant arm
length, we averaged all three arm lengths derived from the
orbit file over the duration of the simulation (i.e., 50 000 s),
which evaluated to L=c ¼ 8.28 s.
The resulting ASDs of the second-generation Michelson

variable X2 are shown in Fig. 4 in a direct comparison
of the analytical and numerical method. Please note that
we calculated the ASDs by taking the square root of the
logarithmically scaled PSD, which was computed using the

TABLE I. Properties of all angular jitters, used for the compu-
tation of Figs. 4 and 5. Assumed are white noise shapes and ASDs
with the listed amplitudes.ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSCϕi
ðfÞ

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSCηi ðfÞ

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSCθi ðfÞ

q
: 5 nrad=

ffiffiffiffiffiffi
Hz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SMO
ϕi

ðfÞ
q

: 2 nrad=
ffiffiffiffiffiffi
Hz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SMO
ηi ðfÞ

q
: 1 nrad=

ffiffiffiffiffiffi
Hz

p

TABLE II. Coefficients in mm=rad rounded to the fourth digit
used for generating Fig. 4.

cs12ϕ12
¼ þ0.3799 cs12η12 ¼ þ0.6261,

cs23ϕ23
¼ −1.2744 cs23η23 ¼ þ0.2130

cs31ϕ31
¼ þ0.8191 cs31η31 ¼ −0.6629

cs13ϕ13
¼ þ0.0504 cs13η13 ¼ −0.5469

cs32ϕ32
¼ −0.8243 cs32η32 ¼ þ0.950

cs21ϕ21
¼ −1.8077 cs21η21 ¼ −0.2721

cs21ϕ12
¼ þ1.2481 cs21η12 ¼ −1.8766

cs32ϕ23
¼ −0.7490 cs32η23 ¼ þ1.2681

cs13ϕ31
¼ þ0.0651 cs13η31 ¼ −0.8641

cs31ϕ13
¼ þ1.3336 cs31η13 ¼ þ0.4544

cs23ϕ32
¼ −0.6130 cs23η32 ¼ þ1.4640

cs12ϕ21
¼ þ0.2540 cs12η21 ¼ þ0.2069

FIG. 4. TTL noise in the second-generation Michelson X2

combination for the randomly drawn coefficients listed in Table II
and using white angular jitter noises with the amplitudes listed in
Table I. Shown is the resulting total TTL noise (gray), as well as
the individual noise contributions coming from jitters in SC yaw
(ϕSC, blue), SC pitch (ηSC, red), SC roll (θSC, green), MOSAyaw
(ϕMO, yellow), and MOSA pitch (ηMO, cyan). For each of the
curves, we show the ASD of the numerically computed time
series (solid) and the analytical results computed from Eq. (34)
and (35) (dashed). The results of both methods agree.
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method described in [52]. The numerical and analytical
curves match perfectly, which validates the analytical models
in Eqs. (34) and (35). Only at the low-frequency tail around
0.1 mHz small deviations are visible, which we attribute to
higher variances of the logarithmically scaled PSD estimate.
These higher variances originate from fewer possible aver-
ages than at high frequencies due to longer data stretches
required to resolve the ASD at low frequencies.
Analyzing the individual contributions in Fig. 4 is of little

meaning since the result of only one set of random TTL
coupling coefficients is shown. The figure is, therefore, a
proof of principle: the shown analytical models can be used
to estimate the TTL noise in LISA and the contributions
from individual degrees of freedom. Likewise, the shown
TTL N-terms and method for analytically computing a TDI
variable can be used to derive any of the other TDI variables
(cf. [15] for a list of TDI variables).

E. Noise estimates

In order to estimate the noise level expected for TDI-X2

we ran a Monte Carlo simulation by drawing 10000
random sets of coupling coefficients from a uniform
distribution with limits of �2.3 mmrad−1. These limits
correspond to the current estimate of the magnitude of the
in-flight coefficients, as described in Sec. V and [26] under
the assumption that a previous coefficient reduction by
realignment was performed. We assume it to hold for all
coupling coefficients, i.e., for angular jitter in η and ϕ, and
for contributions of receiver jitter coupling to the RX beams
(i.e., c

sij
η=ϕij

), as well as the transmitter jitter coupling via the

TX beams (i.e., c
sij
η=ϕji

). We then repeated the process and

drew a second set of 10000 random coefficients from a
uniform distribution with limits of �10 mm rad−1, roughly
representing the coefficient levels if no prior TTL noise
minimization by realignment was performed.
The coefficients were then used to evaluate the analytic

noise model. We then convert the noise estimates to
equivalent single-link contributions by dividing the PSD
by the TDI transfer function CXX and the number of
involved links, which is 4 for TDI-X2 [cf. Eq. (14)], and
finally taking the square root

S1=2;TTLSL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
STTLX2

=ð4CXXÞ
q

: ð37Þ

The resulting ASDs are nearly white, since we assume
white noise angular jitter, and can be directly compared

with requirements like the mission displacement noise
requirement

S1=2req LISA ≤ 13.5
pmffiffiffiffiffiffi
Hz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2 mHz

f

�
4

s
ð38Þ

taken from [53] and previously published in [26]. This
requirement is defined for single links and the sum of all
types of displacement noises in LISA. For every frequency,
we show in Fig. 5 the median and 95th percentile noise
level of the resulting ASD as solid and dotted blue lines for
coefficients within �2.3 mm rad−1 and as solid and dotted
red lines for coefficients within �10 mmrad−1, in direct
comparison with the mission requirement.
Additionally, we searched for the worst case outcome by

setting all absolute values of the coefficients to be equal to
cTTL and then searching for the sign combinations that
maximized Eq. (34). This maximal PSD, however, is
frequency dependent and, likewise, depends on the con-
tributing jitter spectra and their correlations. Assuming all
spectra to be uncorrelated and the spectra of the individual
MOSAs and the individual SC to be identical, i.e., SαSCi ¼
SαSC ; SαMOij

¼ SαMO
and additionally SθSC ¼ SηSC, we found a

maximal PSD of

Smax
X2

ðfÞ¼

8>>>>><
>>>>>:

2c2CXXðfÞ
�ð6−2cosð4πfL=cÞÞSϕMO

þð8−4cosð4πfL=cÞÞSϕSC

þ4cosð2βÞsin2ð2πfL=cÞSηSC þð6−2cosð4πfL=cÞÞðSηMO
þSηSCÞ

�
; if cosð4πfL=cÞ≤ 0

2c2CXXðfÞ
�ð6þ2cosð4πfL=cÞÞSϕMO

þð8þ4cosð4πfL=cÞÞSϕSC

þ4cosð2βÞcos2ð2πfL=cÞSηSC þð6þ2cosð4πfL=cÞÞðSηMO
þSηSCÞ

�
; else:

ð39Þ

FIG. 5. Range of TTL noise coupling in TDI-X2 converted to
single-link equivalents using Eq. (37). The solid and dotted lines
show the median and 95th percentile of a simulation where 10000
coupling coefficients were drawn from a uniform distribution
with limits of �2.3 mm rad−1 (blue lines) or �10 mm rad−1 (red
lines). The dashed line represents the worst case computed from
Eq. (39) (signs chosen individually for every frequency, see text
for more information).
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The sign choices resulting in this maximal PSD are listed
in Table III. Please note that this table contains only the 16
coefficients contributing to TDI-X2. However, the worst
cases for TDI-Y2 and Z2, as well as the sign combinations
for their coupling coefficients can, be found as usual via
cyclic permutation of the indices in the given equation
and table.
We then choose at each frequency the worst case

sign option and computed the resulting single-link ASD,

i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Smax
X2

=ð4CXXÞ
q

. The results for cTTL ¼ 2.3 and

10 mm rad−1 are shown as dashed blue and red lines in
Fig. 5, representing the worst case at every individual
frequency.
To quantify the comparison with the mission require-

ment, we list in Table IV the maximum value of each curve
in Fig. 5, which can be compared with the requirement
for frequencies above the corner frequency of 2 mHz
defined in Eq. (38). This shows, under the given assump-
tions, the median TTL noise level for coefficients within
�2.3 mm=rad just marginally fits into the mission dis-
placement noise budget, leaving no room for any other
displacement noise sources. All remaining results would
violate the entire mission displacement noise budget,
with factors of up to 2.9 or 12.7 for the lower and

higher coefficient levels, respectively, at frequencies higher
than 2 mHz.
These high noise levels have been known already since

2018 [54] and they are not a showstopper for LISA. They
hold prior to the final noise mitigation step of fitting and
subtracting. This step will reduce the noise levels to within
the requirements, as shown by [26–28].
Fitting and subtracting is considered a reliable mitigation

strategy. However, it has limitations if the initial noise level
and the involved coupling coefficients are too high. A
typical rule of thumb is that noise with factors of 10–20
above a requirement can be fitted and subtracted. This
factor, however, depends significantly on the noise in the
signals used for subtraction, so on DWS readout noise
provided that only angular jitter coupling needs to be
subtracted, as described here. The given rule of thumb
phrases, therefore, only in simple terms the known prob-
lems that the method can fail to achieve the wanted
suppression if the coupling coefficients (and thereby the
noise level prior to subtraction) are too high.
In that case, sensing noise is added to the displacement

readout during the subtraction process. This additional
sensing noise scales with the coupling coefficients, such
that the higher the coupling coefficients, the higher the
additional sensing noise added to the TDI variables
[cf. Eq. (25) in [26] ]. This will eventually limit the noise
subtraction quality. This was already observed in the early
times of the LISA Pathfinder mission (until March 2016),
where the coefficient of the horizontal lateral y-jitter was
particularly high and GRS-sensing noise was added in
during the subtraction process (yellow vs red curve in
Fig. 13 of [19]). In LISA Pathfinder, this was resolved by
the in-flight test mass realignment performed inMarch 2016.
Judging whether or not the presented noise levels could

be fully subtracted is beyond the scope of this paper.
However, the high levels presented for the coefficient
ranges of �10 mm=rad indicate a risk. They are the reason
why realignment for noise mitigation is currently planned,
and in-flight coupling coefficients within�2.3 mm=rad are
considered to be achievable. We know from [26–28] that
the noise originating from these coefficient levels can be
suppressed to the required noise levels by fitting and
subtracting in postprocessing.

F. Worst case vs equal coefficients and comparison
with other publications

It is not trivially visible from Eq. (35) for which
assumptions the noise is maximal. In the past, it was
therefore a simple work-around to assume all coefficients to
be equal to a maximal value. So rather than assigning
random values with limits of, e.g., �2.3 mmrad−1, one
set all to have the very same value of 2.3 mm=rad. This
was, e.g., done in [26], and we compare now how this
case relates to the worst case and the statistics we have
presented here.

TABLE III. Sign combinations resulting in the worst case TTL
coupling noise in the second-generation Michelson variable X2,
provided SθSC ¼ SηSC . Each column of the table shows a pair of
signs where the first one yields for frequencies where
cosð4πfL=cÞ ≤ 0 and the second sign holds else [cf. the cases
in Eq. (39)]. Please note that the table holds individually for
α ¼ η and α ¼ ϕ. Since, for each, there are four sign combina-
tions, there is a total of 16 sign combinations resulting in the
worst case coupling defined in Eq. (39).

cs12α12 þ=þ þ=þ þ=þ þ=þ
cs21α21 þ=þ þ=þ −=− −=−
cs13α13 −=− −=− −=− −=−
cs31α31 þ=þ −=− þ=þ −=−
cs12α21 þ=þ þ=þ −=− −=−
cs21α12 −=þ −=þ −=þ −=þ
cs13α31 þ=þ −=− þ=þ −=−
cs31α13 þ=− þ=− þ=− þ=−

TABLE IV. Summary of single-link displacement noise levels
in Fig. 5. Shown are the maximal values of each curve (i.e., of the
median and 95th percentile of the Monte Carlo simulation and of
the worst case) within the frequency range shown in Fig. 5.

Range
(mm rad−1)

Median
(pm=

ffiffiffiffiffiffi
Hz

p
)

95th perc.
(pm=

ffiffiffiffiffiffi
Hz

p
)

Worst
(pm=

ffiffiffiffiffiffi
Hz

p
)

�2.3 13.43 19.34 39.50
�10 58.22 83.78 171.8
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For this, we evaluate Eq. (35). This time, we assume that
all coefficients are equal to cTTL, unlike in the previous
section where only the absolute value was assumed to be
equal to cTTL. For this case of equal coefficients (ECs) with
equal signs, we find a PSD of

SECX2
ðfÞ ¼ CXXðfÞ2c2TTL

�
4SϕSC

ðfÞ þ 4cos2ðβÞSηSCðfÞ
þ ð8þ 4 cosð4πfL=cÞÞsin2ðβÞSθSCðfÞ
þ ð5þ 2 cosð4πfL=cÞÞSϕMO

ðfÞ
þ ð6þ 2 cosð4πfL=cÞÞSηMO

ðfÞ� ð40Þ

assuming again the constellation opening angles to be
equal (β ¼ βij ¼ −βik with β > 0). Figure 6 shows the
PSDs from Fig. 1 in [26], together with the result of the
corresponding analytic description Eq. (40), and compares
with the worst case estimate according to Eq. (39). The data
from Fig. 1 in [26] were generated using the open loop
simulator LISASim, under the assumptions of unequal
arm lengths and nearly white angular jitter noise in the
frequency range from 2 to 200 mHz. The LISASim data
likewise included a number of other secondary noise
sources. The included test mass force noise dominated at
low frequencies. This explains the deviation between the
analytic models and the simulated data at frequencies
below approximately 2 mHz.
We find that our results presented here for equal

coefficients match the data from [26] well at frequencies
where TTL is dominant (i.e., f ≳ 2 mHz). The match of
our model with the data is possible because the jitter spectra
used in [26] are nearly white at f ≳ 2 mHz and therefore
roughly match our simplified assumption of white jitter

spectra. The data and model where all coefficients were set
to 8.5 mm=rad match particularly well, while the match is
slightly less perfect for 2.3 mm=rad. This small deviation
originates from the other secondary noises included in the
LISASim data. Additionally, we see that the worst case
noise estimates are approximately a factor of

ffiffiffi
2

p
larger

than the corresponding curves for equal coefficients with
equal signs.
Additionally, we compared our analytic models with the

results presented in Fig. 8 in [38] assuming all coefficients
to be 2.0 mm=rad and found a qualitative agreement (the
blue curve shows maxima at approximately 2 mrad=

ffiffiffiffiffiffi
Hz

p
,

which matches the maxima in Fig. 8 in [38]). Please note
that, for this comparison, white jitter of not 1.6 nrad=

ffiffiffiffiffiffi
Hz

p
(as stated in the paper) but 10 nrad=

ffiffiffiffiffiffi
Hz

p
needs to be

assumed [55], except for the MOSA jitter in η, which is
neglected.

VI. DISCUSSION OF THE ASSUMPTIONS
AND THEIR IMPLICATIONS

Within Secs. IVand V, we have made strong assumptions
that are commonly made in the LISA community. We
highlight in Sec. VI A that these quickly result in contra-
dictions. We resolve these contradictions shortly in
Sec. VI B by highlighting that they hold only for TTL
modeled for TDI, but not for the TTL in the individual
interferometers. We then derive a more complete model for
the TTL coupling in the individual interferometers in
Sec. VI C. With this extended model and a new delineation
between OB motion Δ⃗ and TTL N, we conclude in
Sec. VI D the mathematical description for TTL in the
individual interferometers vs in TDI. Finally, we shortly
discuss in Sec. VI E how the phase meter equations can be
adapted to account for imperfect cancellation of OB
displacement.

A. Three contradicting assumptions

Let us revisit three assumptions we have made in
Secs. IV and V.

1. Neglection of the pivot location

First of all, we have neglected in Sec. IV that all SC
angular jitter will be occurring with a pivot located in the
SC’s center of mass. This pivot location should be
considered when mapping SC jitter into the MOSA frame.
Likewise, all MOSA angular jitter will have a certain pivot
point. This pivot will be defined by the MOSA hinges and
will not be located in the SC’s center of mass. The location
of the pivot is a key parameter affecting the magnitude of,
particularly, the geometric TTL coupling [25], such that
one can directly deduce: Different locations of the pivot
points imply that the coupling of MOSA and SC jitter will
have different coupling factors. This property is illustrated

FIG. 6. Comparison between the analytic results for the worst
case [Eq. (39), c

sij
αij ¼ c

sij
αji∶ij ¼ �c] and the case of equal coef-

ficients (c
sij
αij ¼ c

sij
αji∶ij ¼ c) generated either analytically [Eq. (40)]

or by the simulator LISASim (data reused from Fig. 1 in [26]).
The analytic model fits the data, while the worst case is
approximately a factor of

ffiffiffi
2

p
times larger than the case of equal

coefficients. The blue curve shows our analytic equation applied
to the settings of Fig. 8 in [38].
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in Fig. 7, agrees with the findings of [25], and will likewise
be mathematically shown in Sec. VI C.

b. Neglection of TMI TTL

The angular jitter around a remote pivot point described
in the previous paragraph affects the TMI in the same way
as it affects the LAI. Because of the shift of the pivot
location against the origin of the coordinate frame, the
MOSA is displaced both against the incoming beam in the
LAI, as well as against the test mass.
We know from [25] that a lateral displacement of d mm

of the pivot against the beam axis causes a TTL coupling of
magnitude d mm=rad [and we will show this again in
Eqs. (46) and (47) below]. Consequently, the TTL con-
tributions originating from lateral displacements of the
pivot points could be considerable, and the angular jitter
coupling in the TMI should not be neglected.

3. Neglection of lateral jitter coupling

We have stated in Sec. VA 3 that the TTL coupling
originating from lateral jitter can be neglected. In fact, this
is directly a contradiction to Eq. (22a), which states that
SC-y jitter couples with sinðβÞ ≈�0.5 for β ≈�30°.
According to our definition, this is a type of TTL coupling,
since it couples lateral jitter due to a tilt of the SC against
the MOSA frame. If we assume lateral SC-jitter levels on
the order of 5 nm=

ffiffiffiffiffiffi
Hz

p
, the resulting TTL noise contri-

butions would be about 2.5 nm=
ffiffiffiffiffiffi
Hz

p
and thereby not at all

negligible. On the contrary, this TTL contribution is very
high both in the LAIs and TMIs.

All three shown contradictions originate from the same
assumption and are resolved in the next subsection.

B. Resolving the contradiction: We neglected
contributions that cancel in TDI

The contradictions described above are resolved in the
following way: In each of the described cases, a longi-
tudinal motion of the OB is induced. Either by lateral SC
jitter in the spacecraft frame or by angular jitter of the
MOSA or SC around remote pivot points. However, OB
motion in the beam direction is suppressed in the single-
link readout and hence also in TDI [cf. Eq. (6) and the
removal of n⃗ Δ⃗ in ξ̌ Eq. (7)]. Rather than modeling these
elements and canceling them again in TDI, they were
suppressed already in the original model.
This means, for the case of SC jitter in y direction,

we find indeed considerable coupling to motion in x
direction, existent in the individual interferometers. Yet,
the resulting phase contribution is suppressed in TDI
when the signals of the LAI and TMI are added [see
Eqs. (7) and (8)].
Likewise, angular SC and MOSA jitters cause consid-

erable OB displacements, resulting in considerable levels
of TTL in the individual interferometers. Furthermore,
the different pivot points for MOSA and SC angular
jitters cause different magnitudes of longitudinal OB dis-
placements. This causes the coupling factors of MOSA
and SC angular jitter to be different in the individual
interferometers.
Yet, both the considerable TTL coupling magnitude as

well as the individual coupling factors for MOSA and SC
angular jitters originate from OB motion induced by the
jitters. Hence, when the phase changes originating from
longitudinal OB motion are suppressed in TDI, TTL in the
TMI becomes comparably small which allowed us to
neglect it in Sec. V. Likewise, the effect of the different
pivot points ideally cancels. This allowed us to assume only
one factor for the residual coupling of MOSA and SC
angular jitters in Secs. IV and V.
In summary, the TTL in the individual LAIs and TMIs is

considerably different than in a single link ξ̌ or in TDI.
When modeling the TTL in the individual interferometers,
the OB longitudinal motion originating from lateral and
angular jitters contributes significantly. The TTL in the
TMI is then non-negligible, and lateral SC-jitter coupling
cannot be neglected. Also, the couplings of the angular
MOSA and SC jitters need to be modeled with different
coupling factors. This is different for modeling the TTL in
TDI. For this, we can logically invert the previous senten-
ces: TMI-TTL and lateral SC-jitter coupling is negligible,
and MOSA and SC angular jitters may be modeled to
couple with the same coefficient.
In the next subsections, we shortly derive a mathematical

description for the statements made here.

FIG. 7. Relevance of different pivot points for the MOSA and
SC. This sketch illustrates how a rotation by the very same angle
around either the pivot PMO of the MOSA (left-hand side) or the
pivot PSC of the SC (right-hand side) causes different magnitudes
of TTL coupling. Despite the fact that the MOSA rotates by the
same amount in both images, it moves into the received beam
indicated by the red trace on the left-hand side, but out of the
received beam on the right-hand side. The received beam would,
therefore, have to propagate a shorter distance to the diode in the
rotation around the MOSA pivot, but a longer distance for the
rotation around the SC pivot point. Consequently, MOSA and SC
angular jitter need to be modeled with individual coupling
coefficients. See Sec. VI B for a description of why the models
in Secs. IV and V are still valid. Please note, the shown pivot
points are placed fairly arbitrarily with the sole purpose of
illustrating the described principle.
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C. An extended linear model for TTL
in individual interferometers

Extending the model defined in Eq. (28) to consider
individual coupling factors for MOSA and SC jitter
results in

N
εij
ij ¼

X
α

	
c
εij
αMOijαMOij þ c

εij
αSCiα

MFij
SCi − c

εij
αTMijαTMij



;

ð41aÞ

N
sij
ij ¼

X
α

	
c
sij
αMOijαMOij þ c

sij
αSCiα

MFij
SCi



; ð41bÞ

N
sij
ji∶ij ¼

X
α

	
c
sij
αMOjiαMOji∶ij þ c

sij
αSCjα

MFji
SCj∶ij



: ð41cÞ

As a next step, we now repeat the computation for the
mapping from SC jitter into MF but consider this time that
the SC jitters about its center of mass. We start with an
explicit definition of the location of the origins of the MF
and SF, which we omitted in Sec. IVA as it is usually done.
For the complete model, we now define the origin of the SF
to be located in the time-averaged location of the SC’s
center of mass. All SC angular jitter is then described by
rotation matrices around the coordinate system’s origin.
The origin of the MF is the point around which a MOSA

rotation would not cause a geometric TTL response in the
LAI. Assuming ideal imaging, the origin would be located in
the telescope’s large pupil. In Sec. IVAwe defined the MF to
be inertial on short timescales by placing its origin on a
hypothetical perfectly noise-free orbit. In order to achieve
this behavior of the MF origin, we assume its location to be
an average over a short time period of interest.

The origin of the SF, i.e., the spacecraft’s center of mass, is
now shifted by a vector P⃗SCC from the MF origin. SC
angular jitter is then described by rotation transformationsR,

RðθSC; X⃗SF; P⃗SCCÞ≕Rθ; ð42aÞ

RðηSC; Y⃗SF; P⃗SCCÞ≕Rη; ð42bÞ

RðϕSC; Z⃗SF; P⃗SCCÞ≕Rϕ; ð42cÞ

defined by

Rðα; X⃗; P⃗SCCÞ½x⃗�≔ Rðα; X⃗Þx⃗− ðRðα; X⃗Þ−EÞP⃗SCC ð43aÞ

¼ Rðα; X⃗Þðx⃗ − P⃗SCCÞ þ P⃗SCC; ð43bÞ

where X⃗ is the rotation axis, α is the angle through which it is
rotated, and E is the 3 × 3 identity matrix.
We assume again that the rotation matrices can be

linearized since the magnitude of the angular jitter is small.
Consequently, the effect of SC jitter in all three angular
degrees of freedom will affect an arbitrary vector x⃗ in MF by

Rθ½Rη½Rϕ½x⃗��� ¼ RðθSC; X⃗SFÞRðηSC; Y⃗SFÞRðϕSC; Z⃗SFÞx⃗
−
�
RðθSC; X⃗SFÞRðηSC; Y⃗SFÞ

× RðϕSC; Z⃗SFÞ −E
�
P⃗SCC: ð44Þ

The first summand has already been evaluated in
Eqs. (24)–(26). The second term describes the displacement
noise in the MOSAs and originates from the center of
rotation for the SC angular jitters to not coincide with the
origins of the two MFs. This displacement evaluates to

�
RðθSC; X⃗SFÞRðηSC; Y⃗SFÞRðϕSC; Z⃗SFÞ−E

�
P⃗SCC ¼

0
B@

0 −ϕSC cβηSC − sβθSC
ϕSC 0 −ðsβηSC þ cβθSCÞ

−ðcβηSC − sβθSCÞ sβηSC þ cβθSC 0

1
CAP⃗SCC: ð45Þ

If we define P⃗SCC≕ ðPSCCx; PSCCy; PSCCzÞT , SC jitter
will cause displacements in the MF given by

xMF
SC ¼ cosðβÞxSC þ sinðβÞySC − PSCCyϕSC

þ PSCCzðcβηSC − sβθSCÞ; ð46aÞ

yMF
SC ¼ − sinðβÞxSC þ cosðβÞySC þ PSCCxϕSC

− PSCCzðsβηSC þ cβθSCÞ; ð46bÞ

zMF
SC ¼ zSC − PSCCxðcβηSC − sβθSCÞ

þ PSCCyðsβηSC þ cβθSCÞ; ð46cÞ

which naturally depends on the pivot point P⃗SCC. Please
note that even though there is, of course, only one SC center

of mass, the P⃗SCC pointing to it will depend on the

coordinate frame, such that P⃗SCC will be different for left-
and right-hand side MOSAs.
We can now consider that also MOSA jitter occurs with

a center of rotation shifted by P⃗MOC ¼ ðPMOCx; PMOCy;
PMOCzÞT against the origin of the MF. The mathematical
description is the very same as for SC jitter, except that
there is no mapping with β into the frame. The coupling of
MOSA jitter is, therefore, easily derived from Eq. (46) by
adjusting the indices for MOSA jitter and setting β ¼ 0,
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xMO ¼ xPTMO − PMOCyϕMO þ PMOCzηMO; ð47aÞ

yMO ¼ yPTMO þ PMOCxϕMO − PMOCzθMO; ð47bÞ

zMO ¼ zPTMO − PMOCxηMO þ PMOCyθMO: ð47cÞ

Here, the upper index PT stands for purely translational
and indicates the part of ðxMO; yMO; zMOÞT that is not tilt
induced.
Comparing Eqs. (46a) and (47a) with Eqs. (3) and (41),

we have modeled explicitly several contributions to cou-
pling factors. Considering that MF x direction is defined to
be facing toward the received beam, we find that a MOSA
displacement in x-direction decreases the optical path
length in the LAI but increases it in the TMI. We then
use the sign conventions used for deriving the phase meter
equations (cf. the Appendix), i.e., the phase increases if the
optical path length of the interferometer’s measurement
beam increases. This gives the following contributions to
the LAI and TMI coupling factors:

sinðβÞ → f−csySC ; cεySCg; ð48aÞ

−PSCCy → f−csϕSC
; cεϕSC

g; ð48bÞ

−PMOCy → f−csϕMO
; cεϕMO

g; ð48cÞ

PSCCzcβ → f−csηSC ; cεηSCg; ð48dÞ

PMOCz → f−csηMO
; cεηMO

g; ð48eÞ

−PSCCzsβ → f−csθSC ; cεθSCg: ð48fÞ

Here, arrows indicate that these mappings are only one
particular kind of geometric contribution to the total
coupling factors and not necessarily the full coupling
coefficients that need to be considered.
Since the jittering MOSAs (or SCs) simultaneously send

out beams toward a remote SC and receive light from the
same remote SC, the shown jitters equally affect both
the transmitted and received light in the LAIs. This
means Eq. (48) holds both for receiver jitter coefficients
(i.e., LAI with matching upper and lower first index,
e.g., c

sij
ϕSCi

; c
sij
ϕMOij

) and transmitter jitter coefficients (i.e.,

LAI with upper and lower first index not matching,
e.g., c

sij
ϕMOji∶ij

; c
sij
ϕSCj∶ij

).

Equation (48) phrases mathematically several statements
we have previously made:

(i) Lateral jitter coupling is a high TTL contribution in
the individual interferometers.

(ii) Because of the different pivot locations, we expect
different coupling factors for MOSA and SC jitters
when modeling the TTL in individual interfer-
ometers.

(iii) For every millimeter of lateral displacement of the
pivot point against the beam axis, a 1 mm=rad
coupling coefficient is found, meaning that these
lateral displacements of the pivot point locations
cause strong TTL coupling and might deviate con-
siderably for the MOSA and SC jitters.

(iv) The LAI and TMI are subject to the very same
coupling but with inverse signs. This means that,
individually seen, the TMIs might have high mag-
nitudes of TTL coupling that should not be
neglected.

The result that the TTL coupling in the LAI and TMI have
identical magnitudes holds only under the given assump-
tions, particularly that the MOSA displacement is sensed
identically by the LAI and TMI beams which map along the
very same MOSA frame x axis. Given the naturally
occurring small levels of misalignments, we expect devia-
tions, which we will discuss further in Sec. VI E.

D. Delineation: TTL N-term vs OB motion Δ⃗
In the previous subsection, we have derived xMO and xMF

SC
which in sum represent the total MOSA-x displacement
caused by SC and MOSA jitter. We can interpret this sum
as the longitudinal displacement noise n⃗ijΔ⃗ij or for the

transmitter jitter case as n⃗jiΔ⃗ji∶ij. Yet, we have shown that it
contains several TTL contributions and could, therefore,
likewise be partly attributed to the N-terms modeled here.
This means it needs to be clearly defined which effects are
placed into n⃗ Δ⃗ and which into TTL noise N to avoid
double counting.
There are several possibilities on how to avoid double

counting. We resolve this here by defining

Δ⃗ n⃗ ¼ �
xPTMO; y

PT
MO; z

PT
MO

�
· ð1; 0; 0ÞT ð49Þ

to hold the pure translations of the MOSA, while placing
the contributions originating from angular and lateral jitters
into N, marking them explicitly as OB motion by an
underscore Δ⃗,

NΔ⃗ ¼

0
BB@

xMO þ xMF
SC − xPTMO

yMO þ yMF
SC − yPTMO

zMO þ zMF
SC − zPTMO

1
CCA

T

·

0
B@

1

0

0

1
CA ð50aÞ

¼ xMO þ xMF
SC − xPTMO: ð50bÞ

Now, NΔ⃗ contains significant TTL contributions that
exist in the individual interferometers but cancel in TDI.
This is best seen in Eq. (48), which shows that the
contributions to NΔ⃗ are equal but of opposite sign in the
LAI and TMI, so that
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N
sij
Δ⃗;ij

¼ −Nεij

Δ⃗;ij
; ð51aÞ

N
sij
Δ⃗;ji∶ij

¼ −Nεji

Δ⃗;ji∶ij
; ð51bÞ

and all four terms cancel in ξ̌TTLij in Eq. (8). Thereby, the
TTL contributions related to MOSA shifts in x direction
cancel. These are the terms listed in Sec. VI A and
discussed in Sec. VI B: the lateral SC-jitter contributions
as well as the pivot-dependent contributions [cf. Eq. (48)
which implies Eq. (51b)].
This concludes the mathematical description of the

statements made in Sec. VI B.

E. Completeness of the cancellation
of OB motion in TDI

The discussed suppression of OB jitter in TDI is based
on the phase meter equations defined in Eq. (6). In these
phase meter equations, it is assumed that OB jitter Δ⃗
couples with an identical magnitude but opposite sign in the
LAI and TMI. This is mathematically phrased by mapping
the vectorial OB motion along the very same direction n⃗
[e.g., n⃗12 is used to map Δ⃗ both in Eqs. (6a) and (6b)]. This
means the full cancellation of OB longitudinal motion in
TDI assumes a perfect angular alignment of the TMI and
LAI beam axes.
In reality, the two LAIs and TMIs beam axes will be

coaligned as well as experimentally possible, which allows
a small residual angle. The mapping in the phase meter
equations should, therefore, be done with the individual
beam directions n⃗s; n⃗ε. However, the small displacement
noise contributions from this angular beam misalignment
can easily be expressed by an additional term each in Nε,
Ns of the type δnsΔ⃗;−2δnεΔ⃗ with n⃗ε ¼ n⃗þ δnε and
n⃗s ¼ n⃗þ δns. The phase meter equations, therefore, do
not need to be adapted. Instead, the corresponding term is
simply one of the many contributions in modeling the TTL
N-term.

VII. TTL IN DATA ANALYSIS

Within this paper, we have derived TTL models that
allow the estimation of TTL noise. Within this section, we
will now discuss implications for data analysis, i.e., the fit
and noise subtraction which was tested for instance in [26].
In Sec. VII A, we discuss the differences between the
models presented here and those used for fitting and
subtracting in data postprocessing. In Sec. VII B, we show
that the models presented here imply that the TTL
coefficients of the LAI and TMI are inseparable in data
analysis—which, however, is not a problem. Finally, we
show in Sec. VII C that there are pairs of coefficients for
transmitter and receiver jitters which are inseparable in data
analysis if only one of the TDI Michelson combinations
is used. However, the correlation resolves when all three

TDI Michelson combinations are used for coefficient
estimation.

A. Noise estimation models vs data analysis models

The models presented within this paper can be under-
stood as a description of how angular and lateral jitters
couple in mother nature. There is a second type of TTL
model that slightly differs from the presented mother nature
type of model: the models for data analysis. Let us,
therefore, briefly describe how the two models differ.
The mother nature model takes angular and lateral

component jitters as well as coupling factors as input
and describes the resulting TTL noise. It is used for
modeling the magnitude of the TTL noise in an interfer-
ometer, a single link, or in TDI.
The data analysis model uses interferometric readout

signals instead of jitters. That means, all angular jitters are
typically replaced by DWS signals and all lateral jitters by
GRS signals. These signals are usually assumed to be
calibrated to best estimate the jitters, but they contain
readout noise.
While we can differ in a mother nature model between

SC jitter relative to FS and MOSA jitter relative to the SC,
we cannot directly make such a distinction in a data
analysis model. This is because the DWS signals sense
the beam tilt caused by the total MOSA motion relative to
free space. The same holds for the GRS signals that sense
only the total motion of the MOSA relative to the free-
falling test mass.
Given the just-discussed relation between a mother

nature model to a data analysis model, the data analysis
models corresponding to Eqs. (28) and (33) can be easily
derived. However, an equivalent data analysis model to our
extended model for the TTL in the individual interferom-
eters, Eq. (41), cannot be easily written down since the
application of individual coupling coefficients to MOSA
and SC jitters is not directly possible in a data analysis
model like the one used in [26].

B. Mixing of LAI and TMI TTL noise contributions
in ξ and TDI-X

We have stated in Sec. VA that the TTL noise con-
tributions in TDI originating from the TMI are expected to
be minor, and we neglected it for the noise estimates in
Sec. V E. However, even if the TMIs contribute signifi-
cantly less noise to the TDI observables, they will still
contribute to the total noise. This TTL noise of the TMI
mixes in TDI with the noise contributions from the LAI in a
way that the origin becomes inaccessible. This means it
cannot be distinguished in the TDI observable what part of
the noise originates from the LAI and what from TMI. This
can be seen with either the simplified TTL model, Eq. (28),
or the extended one for the contributions in individual
interferometers, Eq. (41). We show this here for the
extended model.
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We have shown in Eq. (12) that the TTL coupling noise in the TDI-X2 variable is a fairly simple combination of four
single-link TTL contributions ξ̌TTL. Each of these ξ̌TTL is defined by the linear combination of four N-terms shown in
Eq. (8). These noise terms can be paired into nondelayed contributions in MOSAij-jitter noise and delayed MOSAji-jitter
contributions, and thereby into pairs with identical lower indices,

ξ̌TTLij ¼ kji∶ij

��
N

sij
ij þ 1

2
N

εij
ij

�
þ
�
N

sij
ji∶ij þ

1

2
N

εji
ji∶ij

��
: ð52Þ

We can now use Eq. (41) to analyze the individual pairs for each degree of freedom α∈ fϕ; η; θ; y; zg,

N
sij
ij þ 1

2
N

εij
ij ¼

X
α


�
c
sij
αMOijαMOij þ c

sij
αSCiα

MFij
SCi

�
þ 1

2

�
c
εij
αMOijαMOij þ c

εij
αSCiα

MFij
SCi − c

εij
αTMijαTMij

��
ð53aÞ

≕
X
α



cijαMOijαMOij þ cijαSCiα

MFij
SCi − cijαTMijαTMij

�
; ð53bÞ

N
sij
ji∶ij þ

1

2
N

εji
ji∶ij ¼

X
α


�
c
sij
αMOjiαMOji∶ij

þ c
sij
αSCjα

MFij
SCj∶ij

�
þ 1

2

�
c
εji
αMOjiαMOji∶ij þ c

εji
αSCjα

MFji
SCj∶ij − c

εji
αTMjiαTMji∶ij

��
ð53cÞ

≕
X
α



cjiαMOjiαMOji∶ij þ cjiαSCjα

MFji
SCj∶ij − cjiαTMjiαTMji∶ij

�
: ð53dÞ

Here, we defined total coupling coefficients, which are the
observable coefficients during the mission,

cijαTMij ≔
1

2
c
εij
αTMij ; ð54aÞ

cijαMOij ≔ c
sij
αMOij þ

1

2
c
εij
αMOij ; ð54bÞ

cijαSCi ≔ c
sij
αSCi þ

1

2
c
εij
αSCi ; ð54cÞ

cjiαTMji∶ij ≔
1

2
c
εji
αTMji∶ij ; ð54dÞ

cjiαMOji∶ij ≔ c
sij
αMOji∶ij þ

1

2
c
εji
αMOji∶ij ; ð54eÞ

cjiαSCj∶ij ¼ c
sij
αSCj∶ij þ

1

2
c
εji
αSCj∶ij : ð54fÞ

This can be further simplified if we assume again that the
coefficients of MOSA and SC jitter match in TDI, i.e.,
cijαMOij ¼ cijαSCi and cjiαMOji∶ij ¼ cjiαSCj∶ij .
A distinction between the TMI and LAI coefficients

contributing to the total contributions is not expected to be
possible because they are multiplying the very same jitter.
This means that, for every degree of freedom, the TTL
coupling coefficients of the TMI and LAI add up in the TDI
observables, and only the combined effect will be mea-
sured. The only exception is the coefficient for TM jitter.
However, TM jitter is expected to be a very minor motion,

such that this coefficient is not expected to be measurable
and is written here rather for completeness.
If we neglect TM jitter, we can, therefore, simplify the

TTL in a single link ξ̌TTLij to

ξ̌TTLij ¼ kji∶ij
h
Nij

ij þ Nij
ji∶ij

i
: ð55Þ

Since this finding holds for every individual single link, it
means that it holds likewise for every TDI combination
built from linear combinations of these single links, so in
particular it holds for TDI-X, -Y, and -Z. A clear delin-
eation of the TTL contributions of the TMI from the LAI is,
therefore, expected to be not possible from LISA data.
However, this is not considered a problem.
There is no need to separate the effects, only the need to

suppress or minimize the total coupling coefficient. This
can be achieved either by minimizing each individual TTL
coefficient (cs ¼ cε ¼ 0) or by minimizing the sum
(cs ¼ −cε). In the latter case, it is a design choice whether
TTL mitigation strategies are implemented and applied to
tune the TMI coefficients or the LAI coefficients. As
described in [26], the current planning favors tuning the
LAI coupling coefficients.

C. Mixing of local and remote jitter terms
in TDI-X, -Y, and -Z

The TDI-X observable contains two combinations of
single-link TTL contributions ξ̌: ðξ̌TTL13 þD13ξ̌

TTL
31 Þ and

ðξ̌TTL12 þD12ξ̌
TTL
21 Þ. Each of these causes indistinguishability
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of receiver and transmitter jitter coefficients, i.e., cjiαji ; c
ij
αji ,

principally for α∈ y; z;ϕ; η; θ; following the assumptions
and description in Sec. VA, however, primarily for α∈ϕ; η.
We can quickly find this correlation for an arbitrary sum

of links ij and ji, under the assumption of approximately
equal kij; kji and negligible TM jitter relative to FS. For
this, we use the combined TTL N-terms of the LAI and
TMI from Eq. (55),

ξ̌TTLij þDijξ̌
TTL
ji ¼

h
Nij

ij þ Nij
ji∶ij

i
þDij

h
Nji

ji þ Nji
ij∶ji

i
ð56aÞ

¼ Nij
ij þDij

	
Nij

ji þ Nji
ji



þDijiN

ji
ij:

ð56bÞ

Here, DijðNij
ji þ Nji

jiÞ makes the involved coefficients
indistinguishable for data analysis because they multiply
the very same jitters with the same delays,

Nij
ji þ Nji

ji ¼
X
α

	
cijαMOjiαMOji

þ cijαSCjα
MFji
SCj




þ
X
α

	
cjiαMOjiαMOji þ cjiαSCjα

MFji
SCj



ð57Þ

resulting for every MOSA degree of freedom α in
cjiαMOji ; c

ij
αMOji to become indistinguishable in data analysis,

and likewise the SC jitter coefficients α in cjiαSCj ; c
ij
αSCj

become indistinguishable. If we assume again that the
coefficients for MOSA and SC jitter are identical in the
combined TTL N-term, we find the initially stated indis-
tinguishability of cjiαji ; c

ij
αji .

This indistinguishability, however, is different from the
one of LAI and TMI coefficients. In every Michelson
combination, it occurs for jitters of the MOSAs forming
the end mirrors of the virtual Michelson interferometer.
This means there is the following list of correlations and
degeneracies:

TDI-X∶ c31α31 ; c
13
α31 and c21α21 ; c

12
α21 ;

TDI-Y∶ c32α32 ; c
23
α32 and c12α12 ; c

21
α12 ;

TDI-Z∶ c23α23 ; c
32
α23 and c13α13 ; c

31
α13 :

Consequently, a correlation of the stated pairs of coef-
ficients will be found when estimating these from one TDI
variable, i.e., X, Y, or Z. However, since the pairs are
different in the different TDI Michelson observables, the
coefficients are distinguishable when all TDI-X, -Y, and -Z
are jointly used for fitting the coefficients in data post-
processing. Please note that the coefficients could likewise
be recovered from other sets of TDI variables, such as the
set A, E, T. This surely holds for any set of TDI variables

that can be expressed as a linear combination of TDI-X, -Y,
and -Z from which the TDI variables X, Y, Z can be
recovered by inversion.

VIII. SUMMARY AND CONCLUSIONS

Within this paper, we have rederived a TTL coupling
noise model for LISA’s second-generation TDI Michelson
observables, which was previously published in [36] and
discussed for the first time the various important assump-
tions made in this derivation. We have shown that this
model, as well as several assumptions made in the deriva-
tion, hold only if the model is applied to estimate the noise
in single-link readouts or TDI observables. This means the
assumptions and the model hold for cases where optical
bench translations that are commonly sensed by the LAIs
and their corresponding TMIs are either canceled out or
explicitly neglected.
For the individual interferometers, a different model

should be used, which contains the longitudinal motion of
the optical bench caused by angular or lateral jitters. We
have shown that the TTL coupling model for the individual
interferometers deviates from the one for TDI by having
individual coupling coefficients for every jittering compo-
nent in every degree of freedom. Likewise, we have shown
that several assumptions made in the derivation of the TDI
model or its simplification do not hold for the individual
interferometers. In particular, the TTL noise in the TMI
itself is non-negligible, and the coupling from lateral jitter
into the LAIs cannot be neglected if one cares for the
noise in the individual interferometers. The topic of TTL in
individual interferometers will likely be of no interest for
the LAIs. These interferometers will be dominated by laser
frequency noise, such that TTL becomes only observable
once the laser frequency noise is suppressed by TDI.
Contrary, for the TMIs, TTL might be directly visible in
the interferometric readout in case of stronger motion, for
instance, if TTL calibration maneuvers are performed
(cf. [19,20,37] for the TTL calibration maneuvers in
LISA Pathfinder and LISA). For interpreting this TTL in
the TMIs, one would need the equations for the TTL
coupling in the individual interferometers. It is expected
that the observable coupling would contain strong
contributions from longitudinal OB motion caused by
angular or lateral jitters. Since this longitudinal OB motion
is significantly suppressed in the TDI-TTL contributions,
the observable coupling coefficients in the TMIs would
deviate significantly from the coupling coefficients
found in TDI.
Using the model for the TDI Michelson X2 observable,

we have computed the expected TTL noise levels prior to
subtraction for two cases. We assumed coupling coeffi-
cients of 10 mm=rad which roughly matches the magnitude
of coefficients expected prior to performing TTLmitigation
by realignment of the optics. Additionally, we used
coupling coefficients 2.3 mm=rad, resembling coefficient
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magnitudes after a realignment. We have shown that it is
statistically expected that the noise in both cases would not
fit into the LISA noise budget, such that a final step of
fitting and subtracting the noise in postprocessing (as
shown in [26]) is inevitable.
Even though we have presented an analytic model for the

TTL coupling noise PSD for TDI-X2, one cannot easily see
from the equation for which case the noise is maximal.
Therefore, we have additionally derived an analytic equa-
tion for the worst case TTL coupling noise in TDI-X2

and all sign combinations that result in this maximal
coupling. The derived model holds under the assumption
that, for every degree of freedom, the jitter spectra of the
six MOSAs or the three SC are equal, i.e., SαSCi ¼ SηSC ;
SθMOij

¼ SθMO
for α∈ η; θ;ϕ, and that the spectra of SC jitter

in η and θ are identical, i.e., SθSC ¼ SηSC .
Furthermore, we analyzed the derived model for impli-

cations for the fit-and-subtraction process. We have shown
that the TTL contributions from the TMI and LAI will be
indistinguishable in the LISA data and their postprocessing.
However, this is not considered a problem because a
distinction of the contribution is neither needed for noise
suppression by realignment nor for fitting and subtracting
the noise in postprocessing. So this indistinguishability is
only a fact that should be considered, for example, for the
phrasing of requirements.
Additionally, we found that there exist two sets of

receiver and transmitter jitter coupling coefficients that
are indistinguishable (i.e., fully correlated) if only one TDI
Michelson observable is used for fitting the coefficients.
However, these sets are different for the three different
Michelson observables, such that the coefficients can be
individually resolved if all three Michelson observables are
used simultaneously for fitting the coupling coefficients in
postprocessing.
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APPENDIX: PHASE METER MODEL
WITH PRIMARY NOISES

We have specified the LISA phase meter equations
including generic TTL N-terms in Eq. (6). Here, we show
its derivation with a particular focus on the involved signs,
the mentioned calibration, and the mapping of MOSA and
test mass motions along the beam axis. Equation (6) is
based on [14], but updated to the double-index notation
lately used in the LISA Consortium and within this paper.
In order to allow better tracking of signs, we define the

equations below in a two-step process, starting with the
beat note B½Ej; Ek� of two individual laser beams with
electric fields Ej and Ek, respectively. For instance, the
phase signal s12ðtÞ of the LAI in OB12 is then given by

s12ðtÞ ¼ arg
�
B
�
Es12
21∶12; E

s12
12

��
: ðA1Þ

Here, we give the electric fields an additional upper index
to specify the location where they are being measured. We
now choose s12 and all other interferometric signals below
to have units of radian, to be consistent in our notation
with [14]. The phase of each electric field is influenced by
various effects, and we define what parameters these are in
the following simple list notation:

Es12
21∶12 ¼ Es12

21∶12
�
H12; p21∶12;−k21∶12n⃗12 · Δ⃗21∶12;

k21∶12n⃗12 · Δ⃗12

�
; ðA2aÞ

Es12
12 ¼ Es12

12 ðp12Þ: ðA2bÞ

In the LAI phase signal s12 we have therefore assumed that
the local reference beam described by the electric field Es12

12

carries only laser frequency noise p12 and no other noise.
Contrarily, the received beam from the far spacecraft
Es12
21∶12, in the role of the measurement beam, carries a

number of phase changes, which we will now discuss.
H12: Phase shift caused by one or several gravitational

waves. The phase shift is accumulated in the electric field
during its propagation from SC2 along arm L12 to SC1,
before it is detected in s12. We chose the index in H12 to
match the interferometer in which it is sensed. Since H12 is
a generic variable representing a phase contribution, it is
likewise a choice to place it with an implicit plus sign. The
actual sign needs to be modeled whenH12 is replaced by an
explicit expression, which is beyond the scope of this paper.
p21∶12: Laser frequency noise contribution. This, again,

is a generic term and therefore is simply added in.
−k21∶12n⃗12 · Δ⃗21∶12: Longitudinal transmitter displace-

ment noise contribution. This term describes the phase
shift caused by displacement noise of the MOSA21 (or its
optical bench) mapped along the beam’s own direction of
propagation and converted to phase radian, delayed by the
propagation time along arm length L12 (cf. Fig. 2). Here,
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Δ⃗21∶12 is the delayed displacement noise vector in units of
meters describing the motion of MOSA21 relative to free
space. This displacement noise causes phase shifts that are
described by mapping Δ⃗21∶12 along the beam’s direction.
Assuming that the beam direction at the time of trans-
mission and receival are identical (i.e., n⃗12∶12 ¼ n⃗12), we
can denote the phase shift by n⃗12Δ⃗21∶12.
Since the displacement noise is assumed to be given in its

natural units of meters, it needs to be converted to units of
radians before it can be added to other phase noise terms.
This is done by multiplication with the beam’s wave
number, which is k21∶12 for Es12

21∶12.

Unlike the previous terms, k21∶12n⃗12Δ⃗21∶12 is an explicit
model. Therefore, also the sign needs to be defined
explicitly. For this, we define a sign convention: the phase
of an electric field is stated to increase if the optical path
length of the beam’s axis increases. Since the optical path
length decreases, if the MOSA moves into the beam
direction n⃗12, we explicitly place a minus sign.
k21∶12n⃗12Δ⃗12: Like the previous term, but for receiver

jitter Δ⃗12. The motion is again projected along the beam’s
direction n⃗12 and converted from units of meters to phase
radian by the beam’s wave number k21∶12. Since the optical
path length increases for Es12

21∶12, if the jitter direction is
coaligned with the beam axis, the term is added in with an
explicit plus sign.
In the next step, we can now evaluate the beat note in

LAI12 by assuming linearity and simply subtracting the
phases of Es12

12 and Es12
21∶12. In this step, we assume that the

beat note phase is given by the phase of the measurement
beam minus the phase of the reference beam, provided the
frequency of the measurement beam is higher. Else, it is the
other way around,

s12 ¼


argðEs12

12 Þ − argðEs12
21∶12Þ if f12 > f21∶12

argðEs12
21∶12Þ − argðEs12

12 Þ if f21∶12 > f12:
ðA3Þ

With the given syntax we denote that f21∶12 is the frequency
of laser 21 which is doppler shifted when propagating
along arm length L12 if SC1 and SC2 move relative to each
other. Using a signum function, we can now evaluate the
beat note as

s12ðtÞ ¼ signðf21∶12 − f12Þ
�
H12 þ p21∶12

− k21∶12n⃗12Δ⃗21∶12 þ k21∶12n⃗12Δ⃗12 − p12

�
¼ signðf21∶12 − f12Þ

�
H12 þ p21∶12 − p12

þ k21∶12n⃗12ðΔ⃗12 − Δ⃗21∶12Þ
�
: ðA4Þ

Following the same logic, we find the beat notes for TMI12,
where Eε12

12 plays the role of the measurement beam, while
Eε12
13 describes the electric field of the reference beam,

ε12ðtÞ ¼ arg
�
B
�
Eε12
12

�
p12;−2k12n⃗ε12Δ⃗12;þ2k12n⃗ε12δ⃗12

�
;

Eε12
13 ðp13; μ13Þ

��
: ðA5Þ

The reference beam carries only phase noise p13 and fiber
backlink noise μ13. We assume that the beam is effectively
fixed to the optical bench, which moves with the SC, such
that its phase is unaffected by SC motion. Instead, the
measurement beam picks up phase changes by both test
mass displacement (δ⃗12) and MOSA displacement (Δ⃗12)
relative to free space, when it reflects from the test mass.
These are mapped along the beam’s own axis, which we
denote n⃗ε12 and which is nominally pointing from OB12

toward TM12 and is ideally identical to n⃗12. Since a TM
displacement along n⃗ε12 increases the distance between TM

and OB, we find a plus sign for the contribution of n⃗ε12δ⃗12.
Contrary to this, MOSA displacement along n⃗ε12 decreases
the optical path length, resulting in the explicit minus sign
for the term n⃗ε12Δ⃗12. Furthermore, the factor of 2 describes
that the wave front accumulates the corresponding phase
change once when propagating toward the test mass and a
second time after reflection when it propagates back toward
the optical bench. Consequently, the phase signal in TMI12
is given by

ε12ðtÞ ¼ signðf12 − f13Þ
�
p12 − p13 − μ13

− 2k12n⃗ε12ðΔ⃗12 − δ⃗12Þ
�
: ðA6Þ

Finally, the phase readout in the reference interferometer
can be described by

τ12ðtÞ ¼ arg
�
B
�
Eτ12
12 ðp12Þ; Eτ12

13 ðp13; μ13Þ
�� ðA7aÞ

¼ signðf12 − f13Þ½p12 − p13 − μ13�: ðA7bÞ

The phase meter equations for MOSA13 can be found by
substituting index 2 by 3, and vice versa, i.e.,

s13ðtÞ ¼ argfB½Es13
31∶13; E

s13
13 �g; ðA8aÞ

ε13ðtÞ ¼ argfB½Eε13
13 ; E

ε13
12 �g; ðA8bÞ

τ13ðtÞ ¼ argfB½Eτ13
13 ; E

τ13
12 �g; ðA8cÞ

such that the phase meter equations for MOSA13 read

s13ðtÞ ¼ signðf31∶13 − f13Þ
�
H13 þ p31∶13 − p13

þ k31∶13n⃗13ðΔ⃗13 − Δ⃗31∶13Þ
�
; ðA9aÞ

ε13ðtÞ ¼ signðf13 − f12Þ
�
p13 − p12 − μ12

− 2k13n⃗ε13ðΔ⃗13 − δ⃗13Þ
�
; ðA9bÞ

τ13ðtÞ ¼ signðf13 − f12Þ½p13 − p12 − μ12�: ðA9cÞ
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The phase meter equations of all remaining interferometers
are found by cyclic index permutation.
Finally, we reduce the complexity of the notation by

suppressing the signum functions by assuming calibrated
signals,

š12ðtÞ ≔ signðf21∶12 − f12Þs12ðtÞ; ðA10aÞ

ε̌12ðtÞ ≔ signðf12 − f13Þε12ðtÞ; ðA10bÞ

τ̌12ðtÞ ≔ signðf12 − f13Þτ12ðtÞ; ðA10cÞ

š13ðtÞ ≔ signðf31∶13 − f13Þs13ðtÞ; ðA10dÞ

ε̌13ðtÞ ≔ signðf13 − f12Þε13ðtÞ; ðA10eÞ

τ̌13ðtÞ ≔ signðf13 − f12Þτ13ðtÞ: ðA10fÞ

This means we assume that the frequencies are measured
during flight, the signum functions are evaluated and
multiplied to the raw signals (rhs of the equation), and
the resulting products are given to the users. An alternative
interpretation, which is equally valid for the signals used in
Eq. (6) and throughout the paper, is that they hold for an
uncalibrated case for the frequency relations that evaluate
all signum functions in Eq. (A10) to plus one. This means it
is assumed that, in every stated interferometer, the fre-
quency of the measurement beams would be higher than the
frequency of the corresponding reference beam.
The equations presented in this appendix still deviate

from the ones in Eq. (6) by the normal vectors used for the
projection of MOSA and test mass motions. The notation

used in this appendix is principally more precise because
it distinguishes the projection directions in the LAIs and
TMIs. Because of these different projection directions, the
OBmotion terms Δ⃗would no longer fully cancel from TDI.
Again, this is more realistic, yet, we can consider the
residuals as TTL coupling noise. After all, the residuals
originate from angular misalignments of the TMIij and
LAIij beam axes, which is a typical TTL coupling mecha-
nism for us.
Furthermore, we state in Sec. VI D that OB motion n⃗ Δ⃗

and TTL effects N need to be clearly delineated. Imperfect
OB motion cancellation due to misaligned beam axes can
be considered as TTL effect. We therefore decided to
assume all such effects to be modeled in N, rather than in
the original phase meter equations. Consequently, we can
simplify the mapping and assume perfect alignment
between the LAIij and the corresponding TMIij for the
phase meter equations in Eq. (6),

n⃗εij ¼ n⃗ij ¼ −n⃗ji: ðA11Þ

Here, the last equality states that we now assume the
received beam direction and transmit beam directions to be
equal except for opposite directions. This is needed to allow
perfect cancellation of the transmitter jitter in a single link
[cf. Eq. (7)]. For example, −n⃗12Δ⃗21∶12 in š12 cancels only
with the corresponding term −2n⃗21Δ⃗21∶12 in ε21∶12, if we
assume −n⃗12 ¼ n⃗21.
With this, we find the phase meter equations defined

in Eq. (6).
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