
Adaptive algorithms for low-latency cancellation of seismic Newtonian-noise
at the Virgo gravitational-wave detector

Soumen Koley * and Jan Harms
Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy

and INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy

Annalisa Allocca, Enrico Calloni, Rosario De Rosa, Luciano Errico, and Marina Esposito
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A system was recently implemented in the Virgo detector to cancel noise in its data produced by seismic
waves directly coupling with the suspended test masses through gravitational interaction. The data from
seismometers are being filtered to produce a coherent estimate of the associated gravitational noise also
known as Newtonian noise. The first implementation of the system uses a time-invariant (static) Wiener
filter, which is the optimal filter for Newtonian-noise cancellation assuming that the noise is stationary.
However, time variations in the form of transients and slow changes in correlations between sensors are
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possible and while time-variant filters are expected to cope with these variations better than a static Wiener
filter, the question is what the limitations are of time-variant noise cancellation. In this study, we present a
framework to study the performance limitations of time-variant noise cancellation filters and carry out a
proof of concept with adaptive filters on seismic data at the Virgo site. We demonstrate that the adaptive
filters, at least those with superior architecture, indeed significantly outperform the static Wiener filter with
the residual noise remaining above the statistical error bound.

DOI: 10.1103/PhysRevD.110.022002

I. INTRODUCTION

Since the first detection of gravitational waves in
2015 [1], the Advanced Virgo and LIGO detectors [2,3]
have collectively detected about 90 gravitationalwave (GW)
signals across three distinct observing runs [4–7]. Between
each observing run, phases of technological upgrades are
interleaved, targeting enhancements in detector sensitivity
and duty cycle [8]. The detector’s ultimate sensitivity
depends on the intrinsic physics embeddedwithin its design,
such as laser shot noise at high frequencies [9] and
suspension-thermal noise at low frequencies [10].
Figure 1 shows the contribution of the different fundamental
sources of noise to the Advanced Virgo Plus (AdVþ)
sensitivity. Alongside suspension-thermal noise, Newtonian
noise (NN) is anticipated to be a significant obstacle in
achieving the desired design sensitivity for frequencies
below 20 Hz. Consequently, one of the planned upgrades
for AdVþ before the fourth observing run (O4) involved the
design and implementation of a low-latency system aimed at
canceling NN [11]. The requirement for low latency comes
from certain online analyses providing preliminary param-
eter estimates, e.g., for masses and sky location.
Newtonian noise arises from the gravitational coupling

of terrestrial density fluctuations to the suspended test-
masses of the detector [12], which can originate from
seismic waves propagating in the subsurface [13,14] or
variations in pressure and temperature within the atmos-
phere [15–17]. In this article, our focus centers on can-
cellation strategies specifically tailored for seismic NN.
Atmospheric NN produced by acoustic noise in the Virgo
buildings is predicted to be significantly lower than the
targeted AdVþ design sensitivity due to noise-mitigation
measures connected to Virgo’s air-handling system.
A technique to mitigate NN is through coherent noise

cancellation. The NN cancellation (NNC) design and
implementation phase follows three key steps: estimating
NN to obtain NNC requirements, designing an optimal
seismic array layout for cancellation, and implementing
algorithms to enable low-latency noise cancellation.
Estimation of NN relies on analytical or numerical methods
for computing the seismic displacement of the subsurface
[12,18–20]. Simulations necessitate a priori information
concerning the seismic properties of the site. This includes
the spatial distribution of noise sources near the test masses,
characteristics of the seismic wave field (whether surface or

body waves), and the finite element models representing
the infrastructure surrounding the test masses. Studies
utilizing seismic arrays for the decomposition of the wave
field into plane waves have been conducted at Virgo, both
inside and outside the end buildings [21,22]. These surveys
yield the frequency-dependent direction and velocity of
seismic noise propagation at the site. Building on these
studies, simulation results for NN estimates concerning
Virgo have been detailed in [23,24]. For simplicity, the
green curve in Fig. 1 shows the mode of the NN estimate
for AdVþ. In reality, the NN estimate is dependent on the
magnitude of seismic noise and is time varying.
The next phase involves designing the optimal seismic

array layout for NN cancellation. The concept of deploying
seismometers around the test masses to mitigate NN was
introduced in [25]. This approach makes use of the Wiener-
Hopf formulation [26], which establishes a connection
between observed seismic displacements and the measured
GW strain. Design of such a noise cancellation system have
been demonstrated for Advanced LIGO in [27–29].
Adopting a similar strategy, an optimal seismic array
designed for NN cancellation was developed for Virgo
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FIG. 1. Contribution of several fundamental sources of noise to
the AdVþ design sensitivity corresponding to a laser input power
of 40 W and 12 dB of frequency-dependent squeezing. New-
tonian noise is expected to be one of the major contributors to the
low-frequency sensitivity.
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[30] and subsequently installed at the Virgo central building
(CEB), as well as the north and west end buildings (NEB,
WEB). The method performs a global minimization of the
frequency domain Wiener residual corresponding to the
various array layouts under consideration.
The final step in NN cancellation and the focus of this

article involves implementation of algorithms that make use
of data from the optimal seismic array (witness channels) to
subtract coherent noise from the GW strain data (target
channel). In cases of wide-sense stationary inputs, the
Wiener filter is the optimal choice for eliminating the
contribution of witness channels from the target channel.
Standard implementations typically involve computing this
filter using extended data periods (lasting days). Long data
stretches are used to ensure that the filter coefficients are
sufficiently trained to reproduce the data from the target
channels. As has been observed for Virgo, static filter of this
kind provides suboptimal cancellation capabilities when
handling time-varying inputs [31]. Addressing this chal-
lenge involves recalculating the Wiener filter at designated
time intervals. However, implementing this solution in
low-latency applications proves impractical due to computa-
tional complexity and the ambiguity surrounding the selec-
tion of an appropriate time interval for recomputing the filter
coefficients. A straightforward approach to tackle this issue
is by exploring algorithms that address the Wiener problem
and continuously adjust the filter coefficients for incoming
samples from the witness channels. Adaptive filtering has
been widely used in acoustic echo cancellation, channel
equalization, speech processing, and problems related to
system identification [32]. Inspired by these applications,
in this article we explore two classes of algorithms that
adaptively solve the minimum-mean-square-error problem.
The first one is the least mean square (LMS), which employs
a stochastic gradient technique to minimize the mean square
of the error signal (Chapter 6 in [33]). The LMS class of

algorithms is popular for its computational simplicity. An
application of a variant of the LMS algorithm for feed-
forward vibration isolation in GW interferometers can be
found in [34]. However, its drawback lies in slow con-
vergence and its heavy reliance on the spectral character-
istics of witness signals [35]. The second class of algorithms
are the recursive least squares (RLS), which solves the
quadratic minimization problem exactly at each time step.
As demonstrated in [36], RLS algorithms exhibit superior
tracking behavior over LMS in medium to high signal-to-
noise ratio (SNR) environments and are independent of
spectral characteristics when it comes to convergence rates.
In this article we evaluate the performance and suitability of
these two classes of algorithms for implementation as a low-
latency NNC at the Virgo GW detector.
The rest of the article is organized as follows: Sec. II

presents a background to the cancellation problem and a
brief discussion on the seismic environment at Virgo.
Fundamental performance limitations of Wiener filters
are discussed in Sec. III. Section IV compares the noise
cancellation performance between static and time-variant
Wiener filters, and sets the stage for adaptive filters.
Sections V and VI present the adaptive schemes for the
LMS and the RLS filters, and make a quantitative assess-
ment of the subtraction performance of each of the
algorithms. Section VII addresses limitations in the current
methods and explores areas of improvement. Finally the
conclusions of the work are presented in Sec. VIII.

II. BACKGROUND

The seismic NN cancellation array in the Virgo GW
detector comprises 115 geophones distributed across the
CEB (55), NEB (30), and WEB (30). Their locations were
determined based on array optimization studies in [30].
Figures 2(a)–2(c) depict the seismic arrays at each Virgo

(a) (b) (c)

FIG. 2. (a) The blue and red solid circles show the positions of the geophones at level 1 and 2 of the CEB, respectively. (b) The blue
solid circles show the locations of the geophones and the red star shows the location of the tiltmeter in the NEB. (c) The blue solid circles
show the locations of the geophones in the WEB. Note that the origin of the coordinate system corresponds to the location of the beam
splitter at the CEB, and “north” corresponds to the direction of the north arm of the interferometer which is oriented 20° clockwise with
respect to the geographic north.
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building. These geophones have a resonance frequency of
5 Hz and continuously acquire vertical component of the
seismic noise at a sampling rate of 500 samples per second.
The ideal target channel to showcase the adaptive cancel-
lation of NN is the GW strain output of the interferometer.
However, Virgo is presently in its commissioning phase
and has yet to achieve its intended sensitivity, particularly
within the 10–30 Hz frequency band, where NN is
anticipated to be a major contributor to Virgo’s overall
noise budget. In Fig. 3(a), the AdVþ sensitivity is depicted,
derived by averaging the power spectral densities over
300 s long windows across a full day of data on September
19, 2023. The selection criteria encompassed all time
windows where the binary neutron star range exceeded
25 Mpc. As evident from the figure, Virgo’s sensitivity
exceeds the design sensitivity by approximately three
orders of magnitude. This is further supported in Fig. 3(b),
which shows that no significant cross-correlations are
detected between the NN witness channels and the GW
strain channel. The cross-correlations were estimated using
the same window lengths and selection criteria of 25 Mpc
as used for generating the power spectral densities.
The seismic wavefield inside the Virgo buildings is

mostly dominated by Rayleigh waves [24]. These include
both sharp-spectral and broadband sources of noise.
Vacuum pumps and motors operating within the Virgo
buildings are some of the examples of sharp-spectral

noise [37]. Broadband sources typically originate farther
away from the buildings and can be attributed to traffic and
farming activities [21]. In a scenario where the seismic
wave field is primarily dominated by Rayleigh waves, the
ground tilt along the direction of the detector is fully
coherent with NN from plane Rayleigh waves [38].
Therefore, a logical alternative to the GW strain channel
as the target channel is the tilt signal measured by a
tiltmeter. The NEB at Virgo hosts a tiltmeter—which is a
highly sensitive prototype balance and was originally
developed for the Archimedes experiment [39]. The device
is equipped with an interferometric readout and has a
resonance frequency of about 23 mHz which makes it
suitable for tilt measurements in the NN band [40].
The performance of the noise cancellation system when

using the tilt as the target signal strongly depends on the
reconstruction accuracy of the tilt signal with the witness
channels. An analysis of tilt reconstruction by using the
spatial derivative of the vertical component of seismic
noise, as measured by an array of geophones, was
conducted for Virgo in 2020. Further details can be found
in [24]. Another metric to demonstrate cancellation per-
formance using Wiener filters involves estimating cross-
correlations between the witness channels and the tilt
signal. Figure 4 shows a surface plot of the normalized
cross-correlations between the 30 witness channels and the
tilt signal. Strong correlations of about�0.8 are observed at
frequencies of 11.7, 12.4, 18.5, 23.4, 24.4, and 24.7 Hz.
These correspond to noise sources originating from the
heating and the ventilation system at the NEB.
Additionally, broadband noise exhibits absolute cross-
correlation magnitudes ranging between 0.2 and 0.4.
Consequently, strong cancellation is anticipated for the
several noise peaks, while the opposite is expected for
broadband noise.

FIG. 3. (a) Comparison between AdVþ sensitivity during its
commissioning phase before O4 and the design sensitivity. The
green curve represents the estimated NN, approximately three
orders of magnitude lower than the current sensitivity. (b) Nor-
malized cross-correlations between the 115 geophones and the
GW strain channel corresponding to a month of data. No
significant cross-correlations are observed.

FIG. 4. Surface plot showing the cross-correlation between the
witness channels and the tilt signal. The colorbar represents the
magnitude of the normalized cross-correlations.
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III. LIMITS OF COHERENT NOISE
CANCELLATION

In this section, we calculate two important limits of
coherent noise cancellation. We start by considering the
static Wiener filter and then discuss the case of adaptive
Wiener filters. Generally, the performance of a Wiener filter
depends on the following:
(1) Number and type of sensors (accelerometer, strain-

meter, tiltmeter), which determine the completeness
of information we have about the seismic field.

(2) Sensitivity of sensors, which determines the preci-
sion of the derived NN model.

(3) Amount of data/information to calculate the Wiener
filter, which determines a possible bias of the model.

The Wiener filter can be represented in frequency domain
or in time domain. Its coefficients can be assembled in a
vector hn, where n is a time index (also applicable in
frequency domain where the filter is applied to finite-length
data segments), which means that the filter can be time
variant. The filter coefficients are calculated according to

hn ¼ hynX†
ni · hXnX

†
ni−1; ð1Þ

where yn is a time-domain or frequency-domain sample of
the target channel, from which we want to subtract the
noise, and Xn are samples of input channels of the Wiener
filter, which provide the coherent information about the
noise in the target channel. The vectorXn can contain more
than one sample per channel, e.g., in time domain, it can
include multiple past samples of each input channel. The
brackets h·i indicate an average over many realizations of
the noise, and † is the hermitian conjugate, which involves
the transposition and a complex conjugate. The term

hynX†
ni is the correlation between the target channel and

the input channels (a vector of cross-spectral densities in
frequency domain) and hXnX

†
ni is the correlation matrix

between all input channels (the cross-spectral density
matrix in frequency domain).
The Wiener filter is the optimal noise-cancellation filter

in linear systems. This begs the question whether there are
any fundamental limitations to the performance of the
Wiener filter. In preparation of such an analysis, let us
assume that the estimates hynX†

ni; hXnX
†
ni of the true

correlations hynX†
ni0; hXnX

†
ni0 have errors,

hynX†
ni¼hynX†

ni0þϵn; hXnX
†
ni¼hXnX

†
ni0þEn; ð2Þ

in which case, the corresponding bias of the Wiener filter
up to second order in the correlation-estimation errors reads

hn ¼ h0
n þ ϵn · ðhXnX

†
ni0Þ−1 − h0

n · ðhXnX
†
ni0Þ−1 · En

þ h0
n · ðhXnX

†
ni0Þ−1 · En · ðhXnX

†
ni0Þ−1 · En

− ϵ⃗n · ðhXnX
†
ni0Þ−2 · En;

≡ h0
n þ ϵ0n − h0

n · E0
n þ h0

n · E0
n · E0

n − ϵ0n · E0
n; ð3Þ

where in the last line we have subsumed the inverse of the
correlation matrix hXnX

†
ni0 into the definition of the bias

terms ϵ0n; E0
n. The noise-cancellation procedure is now to

multiply the filter coefficients to the samples of the input
channels, and the scalar output is the best estimate of the
noise contained in the target channel. The procedure leaves
the residual yn − hn ·Xn. The average power of the
residual is given by

hjhn ·Xn − ynj2i ¼ hjh0
n ·Xn − ynj2i þ ð½h0

n · hXnX
†
ni − hynX†

ni� · ½ϵ0n − h0
n · E0

n�† þ c:c:Þ
þ ðϵ0n − h0

n · E0
nÞ · hXnX

†
ni · ðϵ0n − h0

n · E0
nÞ† þ ð½h0

n · hXnX
†
ni − hynX†

ni� · ½h0
n · E0

n · E0
n − ϵ0n · E0

n�†
þ c:c:Þ; ð4Þ

where þc:c: means to add the complex conjugate of the
previous term. The averages h·i that appear here are
calculated over a different set of noise realizations than
the averages that appear in Eqs. (2) and (3). To adopt
language from machine learning, one could think of the
data used to calculate the Wiener filter in Eq. (3) as a
training set, and the data used to calculate the average
power of the residual in Eq. (4) as the verification set. The
result in Eq. (4) has four contributions. The term
h0
n · hXnX

†
ni − hynX†

ni, which appears in the second and
fourth contribution, is small, i.e., linear in the errors of the
correlation estimates calculated from the verification
set. This means that the second contribution is really a

second-order term in correlation-estimation errors (one
error coming from the training set, one from the verifi-
cation set), and the last contribution is third order. For this
reason, we will neglect the contribution to the residual
power coming from the last contribution. Since the
error in the second contribution depends in an important
way on the duration of the verification set, e.g., how many
data we use to estimate the power spectral density of
residual noise, it is not suited to define a fundamental
performance limitation of the Wiener filter. In the follow-
ing, we will therefore focus on the third contribution,
which is quadratic in the errors ϵ0n; E0

n coming from the
training set.
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A. Lower bound on noise residuals from statistical
errors of the correlation estimates

Statistical errors of the correlation estimates used to
calculate the Wiener filter cause a filter bias. Let us revisit
the calculation of the effect of statistical errors on Wiener
filtering first presented in Harms et al. [41]. AWiener filter
was calculated to find correlations between ground motion
and LIGO Hanford GW data. Ground motion was observed
with an array of geophones and a tiltmeter. Since the
correlated noise in the GW data was expected to be very
weak, it was important to assess the statistical significance
of the correlation measurement with a Wiener filter.
Here, we consider the case of a single input channel X to

keep the calculation simple, and we assume a frequency-
domain Wiener filter and stationary noise so that correla-
tions between frequencies can be neglected, which greatly
simplifies the Wiener filter. Then, the statistical estimation
error of the cross-spectral density hyðfÞXðfÞ�i is

ϵðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjXðfÞj2i0hjyðfÞj2i0

ν

r
; ð5Þ

where ν is the number of data segments going into the
cross-spectral density estimate, and hjyðfÞj2i0 is the true
power spectral density of the target channel y. For time-
domain filters like the finite-impulse-response Wiener
filter, ν is the product of the duration of the training set
used to calculate the filter, and the frequency at which noise
is to be subtracted. Inserting this expression into the third
contribution on the right-hand side of Eq. (4), we obtain for
the term quadratic in ϵðfÞ

BstatðfÞ ¼ ϵ0ðfÞ2hjXðfÞj2i ≈ ϵðfÞ2
hjXðfÞj2i0 ¼

hjyðfÞj2i0
ν

: ð6Þ

This bound on subtraction residuals is very powerful since
it only depends on the power spectral density of the target
channel. It can therefore be easily evaluated for any noise-
cancellation scenario.
Similarly, we have for the error EðfÞ,

EðfÞ ¼ hjXðfÞj2i0ffiffiffi
ν

p ; ð7Þ

and calculating the quadratic term in EðfÞ of Eq. (4), we
find

jh0ðfÞE0ðfÞj2hjXðfÞj2i ≈ jh0ðfÞEðfÞj2
hjXðfÞj2i0 ¼ hjh0ðfÞXðfÞj2i0

ν
;

ð8Þ

where the numerator is the power spectral density of the
output of the Wiener filter. This bound therefore requires
knowledge of the Wiener filter and is less powerful.

These results can be extended to apply to the case when
the input Xn mapped by the Wiener filter contains N
samples per channel and P channels. The statistical error in
Eq. (6) increases by a factor N · P. In practice, N can be the
number of coefficients of a finite impulse response (FIR)
filter, which is a few hundred coefficients per channel for
Newtonian-noise cancellation, and there can be about 100
seismometers [31]. This means that the number of averages
ν in Eq. (6) needs to be larger than 106 to be able to achieve
noise reduction by a factor of 10 in amplitude, which means
105 s of data are required in the training set for noise
cancellation at 10 Hz. Let us imagine that someone wants to
use such a filter to reduce Newtonian noise at 0.1 Hz by a
factor of 100 in amplitude, then ν needs to be 108 and the
training set must have a length of at least 109 s, which is
30 years. While it is conceivable to have such long training
sets in some applications, we will see below that non-
stationarities of the seismic field set limits on the Wiener
filter performance. One needs to optimize a trade-off
between a reduction of the filter bias due to statistical
errors as described in this section by increasing the length
of the training set, or better tracking the nonstationarities of
the field by regularly or continuously updating the filter,
which means to reduce the length of the training set.

B. Lower bound on noise residuals due to sensor noise

We can use Eq. (4) to calculate the lower bound on noise
residuals from sensor noise. For simplicity, we assume
again the case of cancellation of stationary noise with a
frequency-domain Wiener filter, but this time using data
from P sensors with identical sensor noise with power
spectral density SðfÞ. The power spectral density of sensor
noise is contained in the diagonal of hXðfÞX†ðfÞi. We can
consider the contribution of the sensor noise as an error
EðfÞ of the correlation matrix hXðfÞX†ðfÞi,

EðfÞ ¼ SðfÞI; ð9Þ

where I is a unit matrix of the same size as the matrix
hXðfÞX†ðfÞi. Inserting this error term into Eqs. (2) and
(4), we get

hjhðfÞ ·XðfÞ − yðfÞj2i
¼ hjh0ðfÞ ·XðfÞ − yðfÞj2i0 þ SðfÞh0ðfÞ · ðh0ðfÞÞ†
þ SðfÞ2h0ðfÞ · ðhXðfÞX†ðfÞi0Þ−1 · ðh0ðfÞÞ†;

¼ hjyðfÞj2i0 − h0ðfÞ · hXðfÞX†ðfÞi0 · ðh0ðfÞÞ†
þ SðfÞh0ðfÞ · ðh0ðfÞÞ†
þ SðfÞ2h0ðfÞ · ðhXðfÞX†ðfÞi0Þ−1 · ðh0ðfÞÞ† ð10Þ

where superscripts 0 mean that the sensor noise SðfÞ is not
included in these terms. The result is what we would
expect, i.e., the Wiener filter hðfÞ maps the sensor noise
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into the output together with the signal, which leads to an
inevitable contribution to the noise residuals:

BsensðfÞ ¼ SðfÞh0ðfÞ · ðh0ðfÞÞ†: ð11Þ

As a simple example, let us assume that all P sensors whose
data go intoXðfÞ see the same signal. In this case, we have

h0ðfÞ ¼ aðfÞ
P

ð1;…; 1Þ; ð12Þ

where aðfÞ is the common transfer function from each
component of XðfÞ to yðfÞ. We then obtain h0ðfÞ ·
ðh0ðfÞÞ† ¼ jaðfÞj2=P and

BsensðfÞ ¼ SðfÞ jaðfÞj
2

P
: ð13Þ

In this example, the lower bound decreases inversely with
increasing number of sensors, which is as expected since
the sensor noise effectively averages out over the P sensors
forming a more sensitive supersensor of a common signal.

C. Cancellation limits in the case of nonstationary noise

Next, we analyze the impact of temporal variations in the
plant (e.g., changing correlations) on the statistical bound
Bstat. We assume that we have a noise-cancellation filter
trying to track the changes in the plant. Such a filter could
be an adaptive Wiener filter as described in the subsequent
sections or even a time-variant neural network described by
linear weights. The number of coefficients describing this
filter is L (equal toN · P in the case of a Wiener filter). Now
let us assume that the typical timescale of plant variations
that we intend to track is τ. Then the maximum number of
averages to calculate the filter coefficients for noise
cancellation at frequency f is ν ¼ fτ, and we find the
following statistical bound on noise residuals

BstatðfÞ ≥
hjxðfÞj2i0

fτ
L: ð14Þ

For example, if we want to be able to follow hour-scale
variations of the seismic field for NNC at 10 Hz with a filter
that has L ¼ 100 coefficients, then we can reduce NN at
10 Hz at most by a factor of 19 in amplitude. If we want to
follow minute-long variations with an L ¼ 100 filter, then
we can reduce NN at 10 Hz at most by a factor of 2.4 in
amplitude. At this point, BstatðfÞ could actually limit the
NNC performance, and one might achieve better noise
reduction by increasing the averaging time to reduce Bstat at
the cost of not being able to adapt to minute-scale variations
in correlations.
There is an important connection between Wiener filter-

ing using sensor data as input and matched filtering of
transient events, which is the common technique to model

and analyze GW signals. It was shown that in the case of a
likelihood analysis of a GW signal and after subtraction of
the best-fit ŷðfÞ from the GW data that includes the true
signal ỹðfÞ, a residual is left in the data whose SNR (in
power) is L, where L is the number of parameters of the
generally nonlinear signal model [42],

4

Z
∞

0

df
hjỹðfÞ − ŷðfÞj2i

SðfÞ ¼ L; ð15Þ

where the numerator under the integral contains the average
over many transients subtracted with this model. Hence, the
number of filter parameters appears equally as factor in the
statistical bound of linear Wiener filtering and of nonlinear
matched-filter-based transient subtraction. In fact, the
expressions in Eqs. (15) and (14) are analogous with
two important differences. The first difference is that
Wiener filters can be improved by averaging over many
realizations of the noise leading to a reduction of the bound
by a factor ν ¼ fτ. In matched-filter analyses, a model
needs to be matched to an observed transient under
variation of parameters with ad hoc unknown values,
and this must be done for every transient individually.
This is true for noise transients as for GW signals with the
additional burden that one must provide a faithful model of
a noise transient [43]. The second difference is that the
model used for the matched-filter transient subtraction can
accumulate information about the transient from different
frequencies, which means that for transients with broad
spectrum, the residual at each frequency might lie below
other instrument noise. The only way to further reduce the
residual left by a transient is if exactly the same transient
repeats and therefore the model of the transient can be
gradually improved. Also note that if there is uncertainty of
the occurrence time of a transient with known shape, then
L ¼ 1, and this is enough to enforce the SNR bound on the
residual after subtraction. In practice for NNC, the residuals
of such transients would be higher. It should be stressed that
other limiting factors like incomplete information about the
seismic field or systematic errors can become relevant
before the ultimate performance limitations described in
this section are reached.

IV. STATIC AND DYNAMIC WIENER FILTER

The Virgo NN cancellation problem is envisaged as a low-
latencymultiple input single output system.At any time index
n, the past N samples from P witness channels are used to
compute an estimate of a target sample yn. The Wiener filter
coefficients hn are obtained by minimizing the error

en ≜ yn − hnXn; ð16Þ

where Xn ¼ ½x†
n;x

†
n−1;…;x†

n−Nþ1�† is a ðNP × 1Þ column
vector of the data from the witness channels, and
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xn ¼ ½x1n; x2n;…; xPn �†. As stated previously in equation (1),
the optimal time domain filter h0

n is obtained by solving
∂Efe2ng
∂ĥn

¼ 0, which leads to the Wiener-Hopf solution

h0
n ¼ PR−1; ð17Þ

where for simplicity and future presentation we denote
hXnX

†
ni with R and hynX†

ni with P. In our application,
seismic noise measured by the different witness channels is
correlated. Consequently, the matrix R is rank deficient
within numerical precision. Hence, we seek a solution as

minfkhnk2jhnR ¼ Pg; ð18Þ

where k · k2 represents the Euclidean norm.
The NN cancellation system targets noise within the

10–25 Hz frequency band. Hence, prior to estimating the
noise-cancellation filters a series of preprocessing steps are
implemented. These include downsampling the witness and
target channel data to 100 Hz, followed by bandpass
filtering within the 10–25 Hz range. All the filters used
in preprocessing are finite impulse response filters. This
ensures causality of the noise subtraction process. Data
from each of the witness and the target channels are then
linearly detrended and scaled using the standard deviation
specific to each channel’s data. Other parameters that need
to be determined before estimating and applying the
Wiener filter to longer data stretches are the number of
witness channels P and the filter length N. Amongst the
30 channels at the NEB, we select 24 for our analyses.
Given the proximity of several channels within a meter of
each other, we excluded six channels from the analysis.
Ideally, all channels should be included, but special
frequency-dependent processing is required to deal with
high correlations between close seismometers, which we
avoid in our first analysis of adaptive-filter performances.
While correlations are very high between all close sensor
pairs below 15 Hz, architectural features of the Virgo NEB
andWEB cause the correlation to fall above 15 Hz between
some of the sensors even if they are only separated by one
meter [22].
The choice of the number of filter coefficients N per

witness channel is not trivial. Choosing a too low number
of filter coefficients introduces a bias in the estimate of the
target sample. This bias depends on the energy of the
omitted terms of the filter coefficients and the cross-
correlations between witness channels. For the latter, an
understanding of the physics of the system plays a key role.
In our particular case where the witness channels are
separated maximally by about 30 m with seismic-wave
propagation speeds between 100 and 150 m=s [24,31], we
do not expect significant cross-correlations between the
witness channels beyond half a second (≈50 samples at a
sampling frequency of 100 Hz). Although, it might be
possible that reflected seismic waves or their reverberations

are visible in the cross-correlations at a much later time.
Hence, we performed a test of the noise cancellation
performance corresponding to three different filter lengths
of N ¼ 51; 101; 201. Figure 5(a) shows the amplitude
spectrum of the target signal alongside the Wiener-
reconstructed signals for these three filter lengths. The
amplitude spectra of the reconstructed signals exhibit
similarity, with subtle differences observed in cancellation
performance. We define the cancellation performance in
decibels (dB) for the frequency band f1 − f2 as

rf1;f2 ¼ 10 × log10

�Pf2
f¼f1

e2ðfÞPf2
f¼f1

y2ðfÞ

�
; ð19Þ

where eðfÞ and yðfÞ represent the absolute values of the
Fourier transforms of the error and the target signals,
respectively. The Fourier transforms are evaluated every
10 s. In Figs. 5(b) and 5(c), the cancellation performance
over a 1000 s data duration is presented. As mentioned
previously, the cancellation performance remains within a
dB of each other and the cancellation performance
improves marginally for increasing filter lengths. It is also
worth noting that with increasing number of filter coef-
ficients, the complexity of the linear system in Eq. (17)
increases and the conditioning of the matrix R worsens.
Hence, adhering to both computational and physical con-
straints we chose N ¼ 101 for our analysis.
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FIG. 5. (a) Amplitude spectra of the target and Wiener-
reconstructed signals computed by averaging over 10 s windows
within a 1000 s data stretch. (b) Noise cancellation in the
10–15 Hz frequency band corresponding to three different
Wiener filter lengths. (c) same as (b), but corresponds to the
15–20 Hz band.
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The next parameters that need to be decided upon are the
length of the data stretches needed to calculate the Wiener
filter coefficients, and how often the filter coefficients need
to be reevaluated to adapt to potential changes in the
seismic field. In the case when the noise statistics are
stationary, reevaluation of the filter coefficients is not
necessary. The choice of these window lengths depends
on two factors. The first is the statistical limit as discussed
in Sec. III. This means that the noise cancellation perfor-
mance of the Wiener filter can potentially be limited by
statistical errors if the data stretch is not long enough. The
second one is the SNR-bound given in Eq. (11). If the
seismometers measure ground displacements with an SNR
of 20, the best cancellation performance that can be
achieved with respect to the SNR-bound is about 13 dB
(can be better or worse depending on the correlations
between seismometers). Therefore in such cases, even if the
longer stretches of data are used to calculate the Wiener
filters, the cancellation performance cannot be improved
beyond the SNR-bound. In order to understand the effect of
these parameters on the noise cancellation performance, we
define two cases of Wiener-filter evaluation. The first one
we refer to as the static Wiener filter (SWF). This
corresponds to the case, when a fixed length of data is
used to calculate the filter coefficients, and the coefficients
do not change with time. The same filter coefficients are
used to cancel noise for all subsequent data. The second
one we refer to as the updated Wiener filter (UWF). Unlike
the SWF, the filter coefficients of the UWF are reevaluated
after a given time interval. In the next few paragraphs, we
present a comparative analysis of the noise cancellation
performance of the SWF implementation and a Wiener
filter that is regularly updated.
We calculate the SWF and UWF for two different

scenarios. In the first scenario, we estimate the Wiener
filter using data from the witness and target channels for a
period of 1000 s starting at 00∶00∶00 UTC on August 01,
2023. The estimated SWF was applied to the full sub-
sequent data stretch of the same day. The UWF coefficients
were reevaluated every 1000 s. This last setup operates like
an offline cancellation scheme. Filter coefficients are
estimated every 1000 s of data and subsequently applied
to the same 1000 s of data from the witness channels to
cancel the target signal. The choice of the 1000 s interval
for evaluating filter coefficients was made to keep Bstat well
below the observed filter performance. Before applying the
filters to the data, we used the same detrending and scaling
coefficients used during the filter calculation process.
Figure 6 illustrates the noise cancellation performance of
the UWF reevaluated every 1000 s corresponding to the
frequency bands 10–15, 15–20, and 20–25 Hz. A cancel-
lation between 10–15 dB is observed for the frequency
band 10–20 Hz and between 5–10 dB in the 20–25 Hz
band. Following Eq. (6), the statistical limit to the noise
cancellation is between 15–20 dB. Therefore, making use

of more data like 2000 s to reevaluate the filter coefficients
will not improve the cancellation performance, which is
instead limited by something else. The limit is probably not
coming from the sensor SNR either since ground displace-
ment inside the Virgo buildings in the 10–25 Hz band is
strong leading to high SNR. It is possible that the
seismometers do not provide the full required information
about the seismic field to model the noise in the target
channel, or there are temporal variations of the seismic field
that the filter is not able to track by updating it every 1000 s.
Figures 7(a)–7(c) illustrate some of the disadvantages of
using the SWF. Both filters show comparable performance
up to a few thousand seconds post the SWF estimation.
However, a gradual degradation in performance of the SWF
is observed as time approaches mid-day. This is due to the
fact that the SWF was estimated using data from a quiet
time around midnight on August 01, 2023. Consequently,
the static filter performs worse compared to the UWF
during the day time. Several instances when r10;15 exceeds
0 dB are also observed. This implies that the SWF occa-
sionally adds noise instead of subtracting noise from the
target channel.
In the second scenario, we estimated the SWF by using a

day of data from the witness and target channels. This test
was done to verify if the cross-correlations estimated using
a day of data provide a better average performance over a
full day compared to using 1000 s of data from night time.
These filters were then applied to cancel the target signal
from the next days. The correlations between the data from
the witness channels were first computed every 1000 s and
then averaged across all such windows within a day of data.
The averaged cross-correlations were used to create the
matrix R. Similarly, the row vector P, which comprises the
cross-correlations between the witness and target channels,
was populated by estimating cross-correlations every
1000 s and averaging them over a full day. The steps for
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FIG. 6. Noise cancellation performance of the UWF reeval-
uated every 1000 s corresponding to a full day of data from
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cancellation performance for the frequency bands: 10–15, 15–20,
and 20–25 Hz, respectively.
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estimating the UWF were the same as stated under the first
scenario.
Similar to the comparison presented in Fig. 7, the

performance comparison for the daily-averaged SWF
and UWF are shown in Figs. 8(a)–8(c). For this particular
implementation, the SWF coefficients were estimated from
data on July 31, 2023 and applied to data from the
following day (August 01, 2023). Unlike the scenario
where the static Wiener filter was estimated using a
1000 s stretch of data (Fig. 7), the performance of the
daily averaged static Wiener filters does not exhibit diurnal
variation. A decrease in the percentage of time when the
SWF introduces noise to the target channels is also
observed. The stability in performance of the daily aver-
aged static Wiener filter can be attributed to it being
calculated using a day of data, as opposed to just a
1000 s duration. During the day time when the SNR of
the transients increase and a good cancellation is observed
with the UWF, the SWF shows approximately 5 dB lower
cancellation performance in the 10–15 and 15–20 Hz
bands.
Overall, for both scenarios presented above, the perfor-

mance of the SWF lags behind the UWF. This underscores
the necessity for adaptive filters, a topic to be discussed in
upcoming sections. In order to assess the noise-cancellation
performance of the adaptive filters, the UWF evaluated
every 1000 s will be used as a benchmark. This seems a
good choice, given the Wiener formulation of the sub-
traction scheme.

V. LEAST MEAN SQUARE ALGORITHM

The least mean square (LMS) algorithm [44] derives its
roots from the steepest descent algorithm. In the steepest
descent algorithm, the filter coefficients at time index n are
adapted as

hn ¼ hn−1 þ μðP − hn−1RÞ; ð20Þ

where μ > 0 is the step-size parameter. However, comput-
ing the matrix R and the row vector P at every new time
index is computationally inefficient and not suitable for
low-latency applications. Hence, the LMS method which is
a stochastic gradient algorithm uses the instantaneous
estimates of R and P. The filter coefficients are then
adapted as

hn ¼ hn−1 þ μX†
nðyn − hn−1XnÞ

⇒ hn ¼ hn−1 þ μX†
nEn; ð21Þ

where En ¼ yn − hn−1Xn. The condition for convergence
of hn to the optimal filter coefficients for a given system is
0 < μ < 2

λmax
, where λmax is the maximum eigenvalue of the

matrix R [Eq. (6.8) in [45] ]. With minor modifications to
Eq. (21), the normalized version of the LMS algorithm is
derived such that the step size can be expressed indepen-
dent of the eigenvalue spread of matrix R.
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FIG. 7. Comparison of noise cancellation performance using
the SWF (blue curve) computed from a 1000 s data starting at
00∶00∶00 UTC on August 01, 2023, applied to subsequent data
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every 1000 s on August 01, 2023, across frequency bands:
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A. Normalized least mean square

The normalized LMS (NLMS) adaptation can be
expressed as

hn ¼ hn−1 þ α
X†

nEn

X†
nXn þ δNLMS

; ð22Þ

where 0 < α < 2 is the normalized step size, and δNLMS is a
small positive constant to avoid division by zero in case
when the input signals are zero vectors. From Eq. (22), it is
evident that the selection of α is crucial for the filter
adaptation. The NLMS algorithm demonstrates the fastest
convergence when α ¼ 1 [46]. Consequently, we adopted
α ¼ 1, initializing the algorithm with h−1 ¼ 01×NP. Data
pre-processing for the witness and target channels were
similar to the ones during the UWF implementation.
Figure 9(a) depicts the NLMS algorithm’s convergence
to the noise cancellation performance of the UWF.
Typically, the NLMS algorithm converges at a rate of
about 20 dB per 5NP samples for white inputs [47].
However, in our correlated input scenario, convergence
might take longer. For instance, with N ¼ 101 and P ¼ 24,
we observed convergence to approximately 10 dB in about
5NP samples (at a sampling rate of 100 Hz). In Figure 9(b),
a comparison of the transient-tracking performance of the
NLMS algorithm is depicted. The arrow in the figure
highlights a transient lasting approximately 500 s. True to
the cause, we observe that the NLMS algorithm performs
noise cancellation which is comparable to the UWF
method.
In order to compare the performance of the NLMS

algorithm against the UWF over longer time scales, the
NLMS algorithm was run on seven days of continuous data
(August 01–07, 2023). Figures 10(a)–10(c) show the noise-

cancellation performance comparison between the NLMS
and UWF methods for a single day (August 01, 2023). The
NLMSmethod performs as well or slightly better compared
to the UWF in the 10–15 and 20–25 Hz bands. However, an
offset of about 2 dB is observed in the 15–20 Hz band. This
is a characteristic spectral bias often seen with stochastic
gradient methods [36]. Across the entire seven-day analysis
window, we calculated the performance difference between
the NLMS and UWF methods within the frequency band
f1 − f2 as

DNLMS
f1;f2

¼ rNLMS
f1;f2

− rUWF
f1;f2

: ð23Þ

Figure 11 displays the histograms of DNLMS
f1;f2

for three
distinct frequency bands: 10–15, 15–20, and 20–25 Hz.
Notably, the NLMS outperforms the UWF in the 10–15 Hz
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80–100 s after start. (b) Comparison of the transient noise
cancellation performance of the NLMS to the UWF in the
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band approximately 70% of the time. Conversely, in the
15–20 Hz band, the UWF surpasses the NLMS in perfor-
mance for about 90% of the time with a positive mean in the
distribution. For the 20–25 Hz band, the mean of the
distribution is close to zero with an almost equal percentage
of data on both sides. An observation to note is that
DNLMS

f1;f2
< 0 indicates the NLMS outperforms the UWF, and

vice versa for DNLMS
f1;f2

> 0. We also assess the percentage of
time when DNLMS

f1;f2
≤ 2. The latter implies that the NLMS

performance is at most 2 dB worse than the UWF. Another
crucial metric is the percentage of time when rNLMS

f1;f2
> 0.

This indicates instances where the NLMS adds noise rather
than subtracting it from the target signal. The first row in
Table I presents these statistics. The NLMS cancellation
performance points out two significant aspects. First, it
outperforms the UWF method in the 10–15 Hz band
approximately 70% of the time. This is typically due to
the stochastic nature of the algorithm, albeit at the cost of
performance in the 15–20 Hz band. Second, there are
instances when rNLMS

20;25 exceeds zero (about 8% of the time)
which is undesirable. This typically results from the fixed
step size in the NLMS algorithm. For this reason, several
variable step-size NLMS algorithms have been proposed
over the last few decades [48–51]. However, most of the
methods heavily rely on the input signals’ statistics and the
expected error signal variance. Consequently, our focus is
on a specific variant—a blend of the NLMS and the
proportionate NLMS algorithm [52]. This variant is less
dependent on input statistics, offering potential advantages
for our application.

B. Improved proportionate NLMS

The proportionate NLMS (PNLMS) algorithm was
developed in the early 2000s for addressing network echo
cancellation problems. In particular this method finds wide
usage in situations where the echo paths are sparse. Unlike
the NLMS algorithm which uses a fixed adaptation step
size, the PNLMS algorithm assigns the step size to each of
the filter coefficients based on their values in the previous
iteration. This can also be visualized as a strategy where
larger coefficients receive larger increments at each iter-
ation. It has been proven that the PNLMS algorithm shows
faster convergence compared to the NLMS algorithm in

problems where the filter coefficients are sparse [52].
However, in situations where the nature of the filter
coefficients are unknown, the PNLMS performs worse
compared to the NLMS algorithm [53]. Hence, the
improved PNLMS (IPNLMS) which is a mix of NLMS
and PNLMS was developed that would perform better than
the NLMS algorithm irrespective of the nature of the filter
coefficients. The filter coefficients are updated as

hn ¼ hn−1 þ α
X†

nGn−1En

X†
nGn−1Xn þ δIPNLMS

; ð24Þ

whereGn−1 is a diagonal matrix of size ðNP × NPÞ at time
index (n − 1). Each diagonal element gl corresponding to
the lth filter coefficient hl;n−1 is expressed as

gl;n−1 ¼
1 − β

2NP
þ ð1þ βÞ jhl;n−1j

2khn−1k1 þ ϵ
; ð25Þ

where j · j denotes the absolute value, k · k1 denotes the L1

norm, and ϵ is a small positive constant to avoid division by
zero. The quantity δIPNLMS in Eq. (24) is computed as

δIPNLMS ¼ ρσ2X
ð1 − βÞ
2NP

; ð26Þ

where ρ is a small positive constant and σ2X is the power of
the input signal Xn. Examining Eqs. (24), (25), and (26), it
becomes evident that the filter coefficient adaptation
simplifies to the NLMS algorithm when β ¼ −1 and the
PNLMS algorithm when β ¼ 1. Similar to the NLMS
algorithm, the IPNLMS algorithm is initialized with
h−1 ¼ 01×NP and α ¼ 1.0. The small positive constant ϵ
is set to 10−10 and ρ is set to 0.01. As previously mentioned,
the choice of β determines whether the filter adaptation
follows the NLMS or PNLMS approach. For most appli-
cations, β is commonly selected as −0.5 or 0.0, as indicated
in [54]. In our specific application, we opted for β ¼ 0.0 as
it demonstrated better convergence speed and steady-state
tracking compared to the NLMS algorithm.
Similar to the tests performed for theNLMS algorithm, the

IPNLMS algorithm was applied to continuous data between
August 01 and August 07, 2023. Figures 12(a)–12(c) show
the comparison of the subtraction performance between the

TABLE I. Performance statistics of the NLMS, IPNLMS, and FTF-RLS algorithms concerning the parametersDf1;f2 and rf1;f2 for the
frequency bands of 10–15, 15–20, and 20–25 Hz. The statistics were derived from 60,480 observations, covering the period from
August 01–07, 2023.

Percentage of population

Methods D10;15 ≤ 0 D10;15 ≤ 2 r10;15 > 0 D15;20 ≤ 0 D15;20 ≤ 2 r15;20 > 0 D20;25 ≤ 0 D20;25 ≤ 2 r20;25 > 0

NLMS 71.3 95.58 0.59 8.09 74.31 0.83 45.26 86.42 7.93
IPNLMS 89.67 98.91 0.24 12.86 78.98 0.20 69.83 95.92 3.00
FTF-RLS 54.56 99.55 0.36 41.38 99.56 0.37 27.76 99.26 0.68
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IPNLMS and UWF algorithms for a day of data (August 01,
2023) corresponding to the frequency bands of 10–15, 15–20,
and 20–25 Hz, respectively. The IPNLMS algorithm
outperforms the UWF method in the 10–15 Hz band for
approximately 90% of the time which is a substantial
improvement compared to the NLMS algorithm (about
70% of the time). Similarly, in the 20–25 Hz band a better
cancellation performance was observed over the UWF
method for about 70% of the time (about 45% for the
NLMS algorithm). Another noteworthy improvement lies
in the reduction of time when the algorithm introduces noise
to the target instead of subtraction. In the frequency band of
20–25 Hz, the NLMS algorithm added noise approximately
8% of the time which is reduced to about 3% with the
implementation of the IPNLMS algorithm. Table I lists
several of the aforementioned performance indicators.
In summary, the IPNLMS algorithm exhibits better

performance compared to the NLMS algorithm in both
the 10–15 and 20–25 Hz frequency bands. The histograms
of DIPNLMS

f1;f2
for these frequency bands are presented in

Fig. 13. However, similar to the NLMS algorithm, the
subtraction performance of the IPNLMS algorithm lags
behind the UWF method in the 15–20 Hz frequency band.
In order to improve the cancellation performance within the
15–20 Hz band and minimize the instances of noise
addition to the target channel, the next section explores
noise cancellation algorithms within the RLS class. Among
the various options, including the prewindowed approach
[55], the sliding window method [56], and the exponen-
tially windowed scheme [57], we opt for the latter as it

proves effective in tracking changes within a time-varying
system.

VI. RECURSIVE LEAST SQUARE ALGORITHM

In the RLS algorithm at time index n, the filter
coefficients hn are obtained by solving

min
hn

Xn
t¼0

λn−tene
†
n; ð27Þ

where λ is called the forgetting factor and en follows from
Eq. (16). The value of λ is set to a value very close to 1.0.
This is in contrast to the prewindowed scheme where
lambda is precisely set to 1.0. Following Eq. (27), this
implies that with growing number of iterations the impact
of the errors from the past in determining the current values
of the filter coefficients gradually diminish. For any time
index n > NP, the filter coefficients can be obtained by
using the following recursions [58]:

C̃n ¼ X†
nλ−1R−1

n−1; ð28Þ

γ−1n ¼ 1þ C̃nXn; ð29Þ

epn ¼ yn − hn−1Xn; ð30Þ

hn ¼ hn−1 þ γne
p
nC̃n; ð31Þ

R−1
n ¼ λ−1R−1

n−1 − C̃†
nγnC̃n: ð32Þ

The filter coefficients are updated using Eq. (31), where the
update involves the normalized Kalman gain C̃n and the
apriori error estimate epn . The scaling factor γn in Eq. (29)
can be expressed equivalently as C̃n ¼ γ−1n Cn, where Cn
represents the unnormalized Kalman gain. The Kalman
gain C̃n is estimated using Eq. (28) where

Rn ¼
Xn
t¼0

λn−tXnX
†
n ð33Þ
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FIG. 12. Comparison of noise cancellation performance be-
tween the IPNLMS algorithm (red curve) and the UWF method
(blue curve) for August 01, 2023 data, across frequency bands:
(a) 10–15, (b) 15–20, and (c) 20–25 Hz.
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represents the exponentially weighted input data covariance
matrix. Recursive estimation of the inverse of matrix Rn in
Eq. (32) follows from the “Sherman-Morrison-Woodbury
matrix inversion lemma” [59]. Similar to the LMS imple-
mentations, the filter coefficients at the start of the
algorithm are initialized as h−1 ¼ 01×NP, and the matrix
R−1

−1 is set to fμΛg−1, where μ is a positive scalar weighting
factor and Λ ¼ diagfλNP; λNP−1;…; λg. Following
Eq. (4.17) in [57], a reasonable choice for the value of μ

is Lσ2X
NP where L is the number of data points over which the

input signal power σ2X is estimated.
The matrix Rn and the Kalman gain vector C̃n in

Eqs. (28)–(32) have dimensions ðNP × NPÞ and
ð1 × NPÞ, respectively. Consequently, the computational
complexity per time update of the RLS algorithm amounts
to about 3N2P2 þ 5NP. In our specific implementation
with N ¼ 101 and P ¼ 24, this level of computational
complexity for low-latency implementation is impractical.
Moreover, future implementation of the NN cancellation
system at Virgo is expected to use more than 100 witness
channels. Hence, in order to address the computational
load, we aim to tackle the RLS problem using faster
algorithms without compromising on the performance.
Two main classes of fast algorithms address the RLS

problem: the fast lattice and the fast transversal filter (FTF)
algorithms. Early works on the development of the lattice
algorithms can be found in [55,60]. Although these
algorithms have a computational complexity of about
OðNP2Þ, they significantly outpace the standard RLS
algorithm. Subsequent improvements in speed over the
lattice algorithms were achieved with the development of
the FTF versions. Some examples of the early FTF versions
include the fast Kalman [61,62] and the FAEST algorithms
[63]. While these algorithms also exhibit a OðNP2Þ
complexity, the coefficient of NP2 is considerably smaller
compared to the lattice versions. Consequently, we chose to
proceed with the FTF version of the fast algorithms.
The time update of the filter coefficients in the FTF-RLS

algorithm follows the same as in Eq. (31). However, the
update of the Kalman gain C̃n does not follow the standard
implementation. Instead a different time-updating scheme
is used. These are commonly referred to as the order update
and down date procedures. The derivation of the FTF-RLS
algorithm is more tedious and complex as compared to the
standard RLS implementation. The FTF-RLS algorithm
used in our implementation can be found in [64]. One of the
problems identified within a few years of development
of the FTF algorithms was related to their numerical
stability. These algorithms were found to be exponentially
unstable [65,66], implying that the filter coefficients could
diverge after a certain number of iterations. While operating
with infinite precision would prevent this instability, the
algorithm used in this article [64] tackles numerical
instability by leveraging redundancies. During the

Kalman gain update, identical parameters are computed
through different formulations and convex combinations of
these estimates are fed back at various stages in the
algorithm. Detailed information regarding the optimal
feedback coefficients is provided in Sec. VI of [64]. In
our implementation of the algorithm, we have used the
same values of the coefficients as proposed in [64].
Considering the intricacies involved in implementing this
algorithm and to ensure brevity for readers, as well as
accommodate potential future upgrades to the technique,
the computer programs are available at [67]. For easier
comprehension, we have used the same variable notations
as outlined in Table II of [64].
An important parameter that we have not discussed so far

and which impacts the stability of the FTF-RLS algorithm
is the choice of the forgetting factor λ. Based on studies in
[58,68], the condition 1 > λ > 1 − 1

mNP, where m > 2must
be satisfied. Opting for a value of λ very close to 1.0 ensures
numerical stability. However, this occurs at the cost of
slower convergence given that the time constant of the FTF-
RLS algorithm can be expressed as 1

1−λ [36]. Hence, in order
to obtain a right balance between stability and speed of
convergence we chose λ ¼ 1 − 1

3NP, where the time con-
stant 3NP is expressed as number of samples.
Using the values of μ and λ as stated earlier and

following the same preprocessing steps implemented in
the UWF and LMS schemes, we applied the FTF-RLS
algorithm to continuous data measured between August
01–07, 2023. Figures 14(a)–14(c) present a performance
comparison between the FTF-RLS and the UWF method
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FIG. 14. The red curve shows the convergence of the FTF-RLS
algorithm to the UWF’s cancellation performance (blue curve)
within the first 80–100 s after start corresponding to the
frequency bands (a) 10–15, (b) 15–20, and (c) 20–25 Hz.
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for the initial 2000 s following the start of the FTF-RLS
algorithm. Convergence of the subtraction performance to
the UWF method occurs in about 100 s after the start.
Ideally for uncorrelated inputs, convergence should occur
in 3NP samples which corresponds to about 72 s after the
start (P ¼ 24, N ¼ 101, and sampling rate of 100 Hz).
However, in our application the inputs are correlated.
Hence, the convergence is delayed. Most of the analysis
on convergence and steady state performance of the FTF
algorithms have been performed for white Gaussian input
sequences [36]. As we note, for applications with correlated
inputs, the observed and the theoretical values of con-
vergence time differ. Nevertheless, the algorithm was
numerically stable and was found to run seamlessly
for days.
Figures 15(a) and 15(b) display the spectrograms illus-

trating the target data and the FTF-RLS cleaned data for the
period spanning August 01 to 06, 2023. The temporal
resolution of the spectrogram is 100 s. Power spectral
densities are computed at 100 s intervals, employing a
Hann window with a length of 10 s and an overlap of 5 s
between successive windows. A strong noise subtraction of
about 20–25 dB is observed for sharp spectral noise peaks
at frequencies such as 11.6, 12.3, 13.4, and 18.5 Hz. In the
case of broadband noise, a weaker subtraction of about
10 dB is observed. This performance aligns with the
observed correlations between the witness and the target
signals. Strong correlations exceeding 0.8 were observed
for sharp spectral peaks, while broadband noise had
correlations between 0.2 and 0.4 (Fig. 4).
In line with the noise-cancellation tests performed for the

UWF and LMS algorithms, we calculated rFTF-RLSf1;f2
for the

frequency bands of 10–15, 15–20, and 20–25 Hz.
Figures 16(a)–16(c) present the comparison of the noise
cancellation efficiency between the FTF-RLS and UWF
across these three frequency bands. The performance of the
FTF-RLS algorithm matches the UWF method across all
three frequency bands. This is in contrast to the LMS
method which exhibited bias in the 15–20 Hz range. Over a
continuous seven-day run, the FTF-RLS algorithm
achieves a performance within 2 dB of the cancellation
achieved by the UWF method for more than 99% of the
time. Another improvement is evident in the reduction of
the percentage of time the cancellation algorithm introdu-
ces noise instead of subtraction in the 20–25 Hz band. This
is reduced to below one percent of the time. The histograms
of DFTF-RLS

f1;f2
corresponding to the frequency bands 10–15,

15–20, and 20–25 Hz are shown in Fig. 17. Similar to the
LMS tests, the total number of observations are 60,480
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corresponding to the seven day analysis window between
August 01 and 07, 2023. Each of the three distributions are
centered around zero, which is an improvement over the
LMS performance. All the three distributions also have a
much smaller standard deviation compared to that observed
in the LMS implementations. The third column in Table I
details several of these performance statistics.
Based on the performance statistics presented in Table I

of the three different adaptive noise-cancellation methods,
we find that the FTF-RLS method performs the best.
Moreover, the time complexity is also suitable for low-
latency applications. However, there are certain avenues of
improvement that have not been addressed so far, and we
present these possibilities in the next section.

VII. FUTURE DEVELOPMENTS

All of the adaptive noise-cancellation methods that have
been implemented in this article perform the best when the
inputs are uncorrelated. In a Virgo-like seismic environ-
ment where all the input channels are located within tens of
meters of each other, strong correlations between the inputs
are observed at lower frequencies while correlations are
weaker at higher frequencies (the turning point between
these two regimes is around 15 Hz [12]). This necessitates
the exploration of decorrelation techniques for reducing the
correlation between nearby input channels. A simple non-
linear method is that of a half-wave rectifier [69] so that the
nonlinearly transformed signal becomes

x0ðnÞ ¼ xðnÞ þ κ
xðnÞ þ jxðnÞj

2
; ð34Þ

where κ is a parameter used to control the nonlinearity. An
improved version of the decorrelation technique that makes
use of alternating positive and negative half-wave rectifiers
have been discussed in Chapter 1 in [70]. A performance
analysis of several other methods like the “Hard Limiter,”
“Square-Sign,” and “Square-Law” for introducing non-
linearities between the input signals can be found in [71].
However, utmost care must be taken while introducing
these nonlinearities, which might as well degrade the
cancellation performance. As an alternative to the generic
decorrelation techniques, one might explore solutions
tailored to the NNC case. However, while a frequency-
dependent decorrelation is easy to design in frequency
domain, it is challenging to solve the problem in the context
of causal time-domain filters as needed for NNC.
An assumption under which the FTF-RLS algorithm was

developed was that the input signals are “persistently
exciting.” This condition again points to the problem
associated with the nonwhiteness of the input signals.
The algorithm used in this article is based on a soft-
constrained rescue mechanism, that handles the situation of
eventual instability. The instability can be attributed to the
condition number of some of the matrices becoming very

large. In the current reinitialization method, these matrices
are reset to the values as if the algorithm were started for the
first time. Although, the other variables like the filter
coefficients are retained, the reinitialization leads to sub-
optimal performance of the algorithm for a few seconds. In
our seven day continuous run, this was encountered four
times, and was not a huge problem. However, some
researchers have made use of a mix of NLMS and FTF-
RLS for handling such situations [72]. They switch to the
NLMS algorithm for filter updates at the time when the
FTF-RLS encounters instability. After a few hundred
seconds when the FTF-RLS has stabilized, the method
switches back to FTF-RLS instead of the NLMS algorithm.
We did not implement such a mixed scheme, but it is
something that could be explored.
Finally a detailed study of the impact of these adaptive

noise subtraction schemes on gravitational-wave searches
needs to be performed. Even if an adaptive NNC reduces
noise on average, its effect on the transient background
might be different. In addition, according to Eq. (21) and
similarly for all adaptive algorithms, the filter itself is
susceptible to transients in the data (in the target as well as
witness channels), which is most relevant to filters based on
the stochastic gradient descent. It will be important to
carefully characterize adaptive Wiener filters in terms of
their effect on the transient background of the target
channel.

VIII. CONCLUSION

In this paper, we analyzed algorithms for adaptive
Wiener filtering. We found that they all outperform the
static Wiener filter. The reason for the advantage of
adaptive filters is that the properties of the seismic field
at the Virgo site change with time. Most importantly, the
day-night cycle must be tracked by the filter for improved
performance. All adaptive algorithms perform similarly
even though the RLS algorithm had the most consistent
performance across the entire NN band from 10–25 Hz.
We discussed fundamental performance limitations of

noise cancellation with Wiener filters and derived a lower
limit on the residuals due to filter bias from statistical errors
in the correlation estimates. This lower limit becomes more
stringent with increasing number of filter coefficients,
which puts in question NNC strategies relying on an
increasing number of sensors and increasingly complex
noise-cancellation filters. Mathematics rewards economical
filter designs.
At this point, the adaptive algorithms are understood

well enough to implement them in NNC systems. However,
their effect on the detector data must be investigated. The
filters are designed to provide a noise reduction on average,
but their impact on the transient noise background is
unknown. The adaptive filter itself can be disturbed by
transients in the data.
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Finally, there are several efforts to introduce machine-
learning algorithms for noise cancellation. While these
methods obey the same limits on noise residuals and in
most cases increase the complexity of the training compared
to adaptive Wiener filters, there might be interesting appli-
cations when it comes to clever adaptation to more complex
time-variations of the seismic field. For example, a seismic
field might have different states that repeat, and one could
imagine switching between different filters adapted to the
different states. This can in principle be done with Wiener
filters as well, but it might be possible to realize it as a fully
automatic process with machine learning.

The data used in the manuscript is hosted by the
European Gravitational Observatory and is available from
the contact author upon reasonable request.
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Ciència i Societat Digital de la Generalitat Valenciana and
the CERCA ProgrammeGeneralitat de Catalunya, Spain, the
National Science Centre of Poland and the European Union-
European Regional Development Fund; Foundation for
Polish Science (FNP), the Hungarian Scientific Research
Fund (OTKA), the French Lyon Institute of Origins (LIO),
the Belgian Fonds de la Recherche Scientifique (FRS-
FNRS), Actions de Recherche Concertées (ARC) and
Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO),
Belgium, the European Commission. The authors gratefully
acknowledge the support of the NSF, STFC, INFN, CNRS,
and Nikhef for provision of computational resources. S. K.
acknowledges the support through a collaboration agreement
between Gran Sasso Science Institute and Nikhef and from
the European Gravitational Observatory through a collabo-
ration convention on Advanced Virgo þ. The authors also
gratefully acknowledge the support of the Italian Ministry of
Education, University and Research within the PRIN 2017
Research Program Framework, No. 2017SYRTCN.

[1] B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F.
Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso,
R. Adhikari et al., Phys. Rev. Lett. 116, 061102 (2016).

[2] F. Acernese, T. Adams, M. Agathos, K. Agatsuma, A.
Allocca, P. Astone, G. Ballardin, F. Barone, M. Barsuglia,
A. Basti et al., J. Phys. Conf. Ser. 610, 012014 (2015).

[3] J. Aasi, B. Abbott, R. Abbott, T. Abbott, M. Abernathy, K.
Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari et al.,
Classical Quantum Gravity 32, 074001 (2015).

[4] B. Abbott, R. Abbott, T. Abbott, S. Abraham, F. Acernese,
K. Ackley, C. Adams, R. Adhikari, V. Adya, C. Affeldt
et al., Phys. Rev. X 9, 031040 (2019).

[5] R. Abbott, T. Abbott, S. Abraham, F. Acernese, K. Ackley,
A. Adams, C. Adams, R. Adhikari, V. Adya, C. Affeldt
et al., Phys. Rev. X 11, 021053 (2021).

[6] R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, N.
Adhikari, R. Adhikari, V. Adya, C. Affeldt, D. Agarwal
et al., Phys. Rev. X 13, 011048 (2023).

[7] R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, N.
Adhikari, R. Adhikari, V. Adya, C. Affeldt, D. Agarwal
et al., Phys. Rev. X 13, 041039 (2023).

[8] F. Acernese, T. Adams, K. Agatsuma, L. Aiello, A. Allocca,
A. Amato, S. Antier, N. Arnaud, S. Ascenzi, P. Astone et al.,
J. Phys. Conf. Ser. 1342, 012010 (2020).

[9] V. Sequino, Phys. Scr. 96, 104014 (2021).
[10] G. Hammond, A. Cumming, J. Hough, R. Kumar, K.

Tokmakov, S. Reid, and S. Rowan, Classical Quantum
Gravity 29, 124009 (2012).

[11] R. Flaminio, in Ground-Based and Airborne Telescopes
VIII (SPIE, Washington, 2020), Vol. 11445, pp. 205–214.

[12] J. Harms, Living Rev. Relativity 22, 6 (2019).
[13] M. Beccaria, M. Bernardini, S. Braccini, C. Bradaschia, A.

Bozzi, C. Casciano, G. Cella, A. Ciampa, E. Cuoco, G.
Curci et al., Classical Quantum Gravity 15, 3339 (1998).

[14] S. A. Hughes and K. S. Thorne, Phys. Rev. D 58, 122002
(1998).

[15] T. Creighton, Classical Quantum Gravity 25, 125011
(2008).

[16] D. Fiorucci, J. Harms, M. Barsuglia, I. Fiori, and F. Paoletti,
Phys. Rev. D 97, 062003 (2018).

[17] D. Brundu, M. Cadoni, M. Oi, P. Olla, and A. P. Sanna,
Phys. Rev. D 106, 064040 (2022).

[18] M. Bader, Ph.D. thesis—research and graduation internal,
Vrije Universiteit Amsterdam, 2021.

[19] T. Andric and J. Harms, J. Geophys. Res. 125,
e2020JB020401 (2020).

[20] J. Harms, L. Naticchioni, E. Calloni, R. De Rosa, F. Ricci,
and D. D’Urso, Eur. Phys. J. Plus 137, 687 (2022).

[21] S. Koley, H. J. Bulten, J. v. d. Brand, M. Bader, X.
Campman, and M. Beker, in SEG Technical Program
Expanded Abstracts 2017 (Society of Exploration Geophys-
icists, Texas, 2017), pp. 2946–2950.

[22] M. C. Tringali, T. Bulik, J. Harms, I. Fiori, F. Paoletti, N.
Singh, B. Idzkowski, A. Kutynia, K. Nikliborc, M.
Suchiński et al., Classical Quantum Gravity 37, 025005
(2020).

ADAPTIVE ALGORITHMS FOR LOW-LATENCY CANCELLATION … PHYS. REV. D 110, 022002 (2024)

022002-17

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1088/1742-6596/610/1/012014
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevX.13.011048
https://doi.org/10.1103/PhysRevX.13.041039
https://doi.org/10.1088/1742-6596/1342/1/012010
https://doi.org/10.1088/1402-4896/ac0d30
https://doi.org/10.1088/0264-9381/29/12/124009
https://doi.org/10.1088/0264-9381/29/12/124009
https://doi.org/10.1007/s41114-019-0022-2
https://doi.org/10.1088/0264-9381/15/11/004
https://doi.org/10.1103/PhysRevD.58.122002
https://doi.org/10.1103/PhysRevD.58.122002
https://doi.org/10.1088/0264-9381/25/12/125011
https://doi.org/10.1088/0264-9381/25/12/125011
https://doi.org/10.1103/PhysRevD.97.062003
https://doi.org/10.1103/PhysRevD.106.064040
https://doi.org/10.1029/2020JB020401
https://doi.org/10.1029/2020JB020401
https://doi.org/10.1140/epjp/s13360-022-02851-z
https://doi.org/10.1088/1361-6382/ab5c43
https://doi.org/10.1088/1361-6382/ab5c43


[23] A. Singha, S. Hild, and J. Harms, Classical Quantum
Gravity 37, 105007 (2020).

[24] A. Singha, S. Hild, J. Harms, M. C. Tringali, I. Fiori, F.
Paoletti, T. Bulik, B. Idzkowski, A. Bertolini, E. Calloni
et al., Classical Quantum Gravity 38, 245007 (2021).

[25] G. Cella, in Recent Developments in General Relativity
(Springer, New York, 2000), pp. 495–503.

[26] S. Treitel, Geophysics 35, 785 (1970).
[27] J. C. Driggers, J. Harms, and R. X. Adhikari, Phys. Rev. D

86, 102001 (2012).
[28] M. Coughlin, N. Mukund, J. Harms, J. Driggers, R.

Adhikari, and S. Mitra, Classical Quantum Gravity 33,
244001 (2016).

[29] M.W. Coughlin, J. Harms, J. Driggers, D. J. McManus, N.
Mukund, M. P. Ross, B. J. J. Slagmolen, and K.
Venkateswara, Phys. Rev. Lett. 121, 221104 (2018),

[30] F. Badaracco, J. Harms, A. Bertolini, T. Bulik, I. Fiori, B.
Idzkowski, A. Kutynia, K. Nikliborc, F. Paoletti, A. Paoli
et al., Classical Quantum Gravity 37, 195016 (2020).

[31] S. Koley, J. Harms, A. Allocca, F. Badaracco, A. Bertolini,
T. Bulik, E. Calloni, M. Cieslar, R. De Rosa, L. Errico et al.,
Eur. Phys. J. Plus 139, 48 (2024).

[32] S. S. Haykin, Adaptive Filter Theory (Pearson Education
India, New Delhi, 2002).

[33] J. Benesty, M. M. Sondhi, Y. Huang et al., Springer
Handbook of Speech Processing (Springer, New York,
2008), Vol. 1.

[34] J. C. Driggers, M. Evans, K. Pepper, and R. Adhikari, Rev.
Sci. Instrum. 83 (2012).

[35] D. T. Slock, IEEE Trans. Signal Process. 41, 2811 (1993).
[36] E. Eleftheriou and D. Falconer, IEEE Trans. Acoust. Speech

Signal Process. 34, 1097 (1986).
[37] M. D’Andrea, R. De Rosa, I. Fiori, F. Paoletti, A. Paoli, R.

Passaquieti, P. Ruggi, D. Soldani, and M. C. Tringali,
Technical Report VIR-0181C-21, European Gravitational
Observatory, 2021, https://tds.virgo-gw.eu/?content=3&r=
18353.

[38] J. Harms and K. Venkateswara, Classical Quantum Gravity
33, 234001 (2016).

[39] E. Calloni, M. De Laurentis, R. De Rosa, F. Garufi, L. Rosa,
L. Di Fiore, G. Esposito, C. Rovelli, P. Ruggi, and F. Tafuri,
Phys. Rev. D 90, 022002 (2014).

[40] A. Allocca, S. Avino, E. Calloni, S. Caprara, M. Carpinelli,
D. D’urso, M. De Laurentis, R. De Rosa, L. Errico, G.
Gagliardi et al., Eur. Phys. J. Plus 136, 1069 (2021).

[41] J. Harms, E. L. Bonilla, M.W. Coughlin, J. Driggers, S. E.
Dwyer, D. J. McManus, M. P. Ross, B. J. J. Slagmolen, and
K. Venkateswara, Phys. Rev. D 101, 102002 (2020).

[42] C. Cutler and J. Harms, Phys. Rev. D 73, 042001 (2006).
[43] E. Payne, S. Hourihane, J. Golomb, R. Udall, D. Davis, and

K. Chatziioannou, Phys. Rev. D 106, 104017 (2022).
[44] B. Widrow, M. E. Hoff et al., in IRE WESCON Convention

Record (IRE, New York, 1960), Vol. 4, pp. 96–104.
[45] B. Widrow and S. D. Stearns, Adaptive Signal Processing

(Englewood Cliffs, New Jersey, 1985), p. 52.
[46] S. Makino, Y. Kaneda, and N. Koizumi, IEEE Trans. Speech

Audio Process. 1, 101 (1993).

[47] M. Rupp, IEEE Trans. Signal Process. 46, 771 (1998).
[48] R. Harris, D. Chabries, and F. Bishop, IEEE Trans. Acoust.

Speech Signal Process. 34, 309 (1986).
[49] R. H. Kwong and E. W. Johnston, IEEE Trans. Signal

Process. 40, 1633 (1992).
[50] V. J. Mathews and Z. Xie, IEEE Trans. Signal Process. 41,

2075 (1993).
[51] T. Aboulnasr and K. Mayyas, IEEE Trans. Signal Process.

45, 631 (1997).
[52] D. L. Duttweiler, IEEE Trans. Speech Audio Process. 8, 508

(2000).
[53] J. Benesty and S. L. Gay, in 2002 IEEE International

Conference on Acoustics, Speech, and Signal Processing
(IEEE, Piscataway, New Jersey, 2002), Vol. 2, pp. II–1881.

[54] P. Loganathan, E. A. Habets, and P. A. Naylor, in 2010 IEEE
International Conference on Acoustics, Speech and Signal
Processing (IEEE, Piscataway, New Jersey, 2010), pp. 317–
320.

[55] D. Lee, M. Morf, and B. Friedlander, IEEE Trans. Acoust.
Speech, Signal Process. 29, 627 (1981).

[56] B. Porat and T. Kailath, IEEE Trans. Acoust. Speech Signal
Process. 31, 122 (1983).

[57] J. Cioffi and T. Kailath, IEEE Trans. Acoust. Speech Signal
Process. 32, 304 (1984).

[58] D. T. Slock and T. Kailath, IEEE Trans. Acoust. Speech
Signal Process. 37, 346 (1989).

[59] M. A. Woodbury, Inverting Modified Matrices (Department
of Statistics, Princeton University, Princeton, NJ, 1950).

[60] B. Friedlander, Proc. IEEE 70, 829 (1982).
[61] L. Ljung, M. Morf, and D. Falconer, Int. J. Control 27, 1

(1978).
[62] D. Falconer and L. Ljung, IEEE Trans. Commun. 26, 1439

(1978).
[63] G. Carayannis, D. Manolakis, and N. Kalouptsidis, IEEE

Trans. Acoust. Speech Signal Process. 31, 1394 (1983).
[64] D. T. Slock and T. Kailath, in Numerical Linear Algebra,

Digital Signal Processing and Parallel Algorithms
(Springer, New York, 1991), pp. 605–615.

[65] S. Ljung and L. Ljung, Automatica 21, 157 (1985).
[66] S. Ardalan and S. Alexander, IEEE Trans. Acoust. Speech

Signal Process. 35, 770 (1987).
[67] S. Koley, Adaptive nnc, https://github.com/soumenkoley/

AdaptiveNNC.git (2024).
[68] A. Benallal and A. Gilloire, in International Conference on

Acoustics, Speech, and Signal Processing (IEEE, Piscat-
away, New Jersey, 1989), pp. 1031–1034.

[69] J. Benesty, D. R. Morgan, and M.M. Sondhi, IEEE Trans.
Speech Audio Process. 6, 156 (1998).

[70] J. Benesty, T. Gänsler, Y. Huang, and M. Rupp, Adaptive
Algorithms for MIMO Acoustic Echo Cancellation
(Springer, New York, 2004).

[71] D. R. Morgan, J. L. Hall, and J. Benesty, IEEE Trans.
Speech Audio Process. 9, 686 (2001).

[72] E. Eleftheriou and D. Falconer, Proceedings of the IEEE
Globecom (Atlanta, CA, 1984), pp. 1558–1562.

SOUMEN KOLEY et al. PHYS. REV. D 110, 022002 (2024)

022002-18

https://doi.org/10.1088/1361-6382/ab81cb
https://doi.org/10.1088/1361-6382/ab81cb
https://doi.org/10.1088/1361-6382/ac348a
https://doi.org/10.1190/1.1440130
https://doi.org/10.1103/PhysRevD.86.102001
https://doi.org/10.1103/PhysRevD.86.102001
https://doi.org/10.1088/0264-9381/33/24/244001
https://doi.org/10.1088/0264-9381/33/24/244001
https://doi.org/10.1103/PhysRevLett.121.221104
https://doi.org/10.1088/1361-6382/abab64
https://doi.org/10.1140/epjp/s13360-023-04834-0
https://doi.org/10.1063/1.3675891
https://doi.org/10.1063/1.3675891
https://doi.org/10.1109/78.236504
https://doi.org/10.1109/TASSP.1986.1164950
https://doi.org/10.1109/TASSP.1986.1164950
https://tds.virgo-gw.eu/?content=3&r=18353
https://tds.virgo-gw.eu/?content=3&r=18353
https://tds.virgo-gw.eu/?content=3&r=18353
https://tds.virgo-gw.eu/?content=3&r=18353
https://doi.org/10.1088/0264-9381/33/23/234001
https://doi.org/10.1088/0264-9381/33/23/234001
https://doi.org/10.1103/PhysRevD.90.022002
https://doi.org/10.1140/epjp/s13360-021-01993-w
https://doi.org/10.1103/PhysRevD.101.102002
https://doi.org/10.1103/PhysRevD.73.042001
https://doi.org/10.1103/PhysRevD.106.104017
https://doi.org/10.1109/89.221372
https://doi.org/10.1109/89.221372
https://doi.org/10.1109/78.661344
https://doi.org/10.1109/TASSP.1986.1164814
https://doi.org/10.1109/TASSP.1986.1164814
https://doi.org/10.1109/78.143435
https://doi.org/10.1109/78.143435
https://doi.org/10.1109/78.218137
https://doi.org/10.1109/78.218137
https://doi.org/10.1109/78.558478
https://doi.org/10.1109/78.558478
https://doi.org/10.1109/89.861368
https://doi.org/10.1109/89.861368
https://doi.org/10.1109/TASSP.1981.1163587
https://doi.org/10.1109/TASSP.1981.1163587
https://doi.org/10.1109/TASSP.1983.1164012
https://doi.org/10.1109/TASSP.1983.1164012
https://doi.org/10.1109/TASSP.1984.1164334
https://doi.org/10.1109/TASSP.1984.1164334
https://doi.org/10.1109/29.21703
https://doi.org/10.1109/29.21703
https://doi.org/10.1109/PROC.1982.12407
https://doi.org/10.1080/00207177808922343
https://doi.org/10.1080/00207177808922343
https://doi.org/10.1109/TCOM.1978.1093988
https://doi.org/10.1109/TCOM.1978.1093988
https://doi.org/10.1109/TASSP.1983.1164224
https://doi.org/10.1109/TASSP.1983.1164224
https://doi.org/10.1016/0005-1098(85)90110-4
https://doi.org/10.1109/TASSP.1987.1165207
https://doi.org/10.1109/TASSP.1987.1165207
https://github.com/soumenkoley/AdaptiveNNC.git
https://github.com/soumenkoley/AdaptiveNNC.git
https://github.com/soumenkoley/AdaptiveNNC.git
https://github.com/soumenkoley/AdaptiveNNC.git
https://doi.org/10.1109/89.661474
https://doi.org/10.1109/89.661474
https://doi.org/10.1109/89.943346
https://doi.org/10.1109/89.943346

