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The gravitational-wave energy-density spectra from cosmological first-order phase transitions crucially
depend on the terminal wall velocity of asymptotic bubble expansion when the driving force from the
effective potential difference is gradually balanced by the backreaction force from the thermal plasma.
Much attention has previously focused on the backreaction force acting on the bubble wall alone but
overlooked the backreaction forces on the sound shell and shock-wave front, if any, which have been both
numerically and analytically accomplished in our previous studies but only for a bag equation of state. In
this paper, we will generalize the backreaction force on bubble expansion beyond the simple bag model.
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I. INTRODUCTION

For new physics beyond the standard model of particle
physics by breaking some continuous symmetry [1], our
early universe would experience a cosmological first-order
phase transition (FOPT) [2,3] if there is a potential barrier
separating the false and true vacua with decreasing temper-
ature [4]. This quantum phase transition proceeds domi-
nantly via stochastic nucleations of true vacuum bubbles as
a Poisson process [5], which also universally induces
curvature perturbations [6] or even primordial black
holes [7–9] due to the anisochronous nature of bubble
nucleations (see also Refs. [10–12] for recent improve-
ments). After bubble nucleations, the expansion of bubble
walls drags and/or pushes the thermal fluids of background
plasma to form surrounding sound shells, whose collisions
(and subsequent evolution into magnetohydrodynamic
turbulence) would generate sound waves as the dominant
stochastic gravitational wave background (SGWB) over
that from bubble-wall collisions [13]. The SGWB from
bubble-wall collisions can also dominate over that from
sound waves when the backreaction from thermal plasma

against expansion grows rather slowly or the initial average
separation of bubbles is quite close so that the accelerating
walls never had a chance to actually approach the terminal
velocity before they have already largely collided with
each other [14,15]. Future detection of these SGWBs from
FOPTs at different frequency bands [16,17] would reveal
new physics [18,19] beyond the standard model of particle
physics at different temperature scales.
However, the energy-density spectra of SGWBs from

FOPTs have not been fully determined yet. For exam-
ple, recent numerical simulation [20] and analytical estima-
tion [21] of sound waves seem to recognize a steep growth
with k9-scaling near the peak instead of previously thought
in the far infrared [22,23] since, and the infrared regime
should preserve the causal k3-scaling [24] as shown recently
in a hydrodynamic sound shell model [25]. Despite the
successes of characterizing the GW spectra from FOPTs by
a handful of phenomenological parameters, we highlight
here two aspects of complexities that make the model
predictions rather difficult to be precise in order to be tested
efficiently against future observational data. The first com-
plexity comes from the efficiency factor κv of converting
released vacuum energy into bulk fluid motions. Although it
can be well-fitted analytically for a bag equation of state
(EOS) [26] regardless of the details of underlying particle
physics, the ν-model predictions [27–30] beyond the simple
bag EOS become more involved with the particle physics,
which is even worse for the case beyond the ν-model when
further considering the varying sound velocity effect [31] in
the sound shell. The second complexity comes from the
terminal wall velocity that is closely related to the out-of-
equilibrium effect [32–37] in the vicinity of the bubble wall.
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The terminal wall velocity can be determined in
principle if the backreaction force can be known exactly
[14,15,38,39]. Therefore, much attention has previously
focused on calculating the pressure recoil1 from interact-
ing particles acting on the wall alone but usually in the
ultrarelativistic limit [42–48]. It was later realized in
Ref. [49] that the so-called friction force from the non-
equilibrium effect is not the whole story but the inhomo-
geneous temperature profile also contributes as a thermal
force to the total backreaction force [40,41].2 Without
assuming a bag EOS and without requiring an equilibrium
distribution function, we have proposed in Ref. [40] the
exact hydrodynamic formula for calculating the total back-
reaction force including the thermal force and friction force
for a nonrunaway steady-state bubble expansion, which is
verified numerically [40] and proved analytically [41] for
the simple case with a bag EOS. In particular, the hydro-
dynamic computation for full backreaction force can be
decomposed into the part that acts on the sound shell and the
part that acts on the discontinuous interface (such as the
bubble wall and shock-wave front, if any), the latter of
which is shown to be a highly nontrivial contribution in
order to balance the driving force from the effective-
potential difference. The take-home message from our
studies is that it is actually not enough to fully determine
the wall velocity simply from the pressure recoil on the wall
alone, and we must know all about the full backreaction
force acting on the bubble wall, sound shell, and shock-
wave front, if any.
In this paper, we will generalize our previous studies

[40,41] into the ν-model beyond the simple bag EOS when
the sound velocities are two different constants inside and
outside of the bubble wall. We will first set up our
conventions and review our previous results in Sec. II,
and then give rise to the general backreactioin force beyond
the bag EOS in Sec. III, which can be analytically proved in
Sec. IV from two consistency checks. We finally conclude
in Sec. V with a concise summary of our analytic results and
then discuss in Sec. VI several applications and general-
izations of our hydrodynamic approach in future works.

II. GENERAL BACKREACTION
OF BUBBLE EXPANSION

In this section, we will briefly review and slightly
improve our previous results in Refs. [40,41], including
the equation of motions from the scalar-plasma system, the
energy-momentum tensor of the approximated wall-fluid

system, and in particular the general form of the back-
reaction force from hydrodynamics.

A. The scalar-plasma system

The cosmological FOPT as a typical scalar-plasma
system admits its total energy-momentum tensor Tμν ¼
Tμν
ϕ þ Tμν

f by simply adding up the scalar field and thermal
plasma parts,

Tμν
ϕ ¼ ∇μϕ∇νϕþ gμν

�
−
1

2
ð∇ϕÞ2 − V0ðϕÞ

�
; ð1Þ

Tμν
f ¼

X
i¼B;F

gi

Z
d3k
ð2πÞ3

kμkν

k0

����
k0¼EiðkÞ

fiðx;kÞ; ð2Þ

where fiðx;kÞ is the distribution function counting the
average number of particles of species i with momentum k,
effective mass miðϕÞ, and energy EiðkÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p
in a

volume element ðx;xþ dxÞ × ðk;kþ dkÞ of the phase
space at the time t ¼ x0. These distribution functions are
governed by their own relativistic Boltzmann equations,

D
dλ

fiðxμ; kμÞ ¼
�
Dxμ

dλ
∇μ þ

Dkμ

dλ
∂

∂kμ

�
fi ¼ C½fi�; ð3Þ

where the affine parameter for a massive particle of massmi

takes λ ¼ τ=mi with dτ2 ¼ −ds2 ¼ −gμνdxμdxν, while for
a massless particle, the affine parameter takes the form that
exactly defines its momentum four-vector kμ ¼ dxμ=dλ
along its null geodesic xμðλÞ. C½fi� is the collision term to
species i. Here the two directional covariant derivative
terms simply define the four momentum and external force,

Dxμ

dλ
¼ dxμ

dλ
¼ kμ;

Dkμ

dλ
¼ dkμ

dλ
þΓμ

νσkνkσ ¼miF
μ
i : ð4Þ

For the worldline action S ¼ −
R
midτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνdẋμdẋν

p
with

ẋμ ≡ dxμ=dτ of a single particle moving with a field-
dependent mass miðϕÞ in the background scalar field
ϕðxμÞ, the external force can be determined from its
equation of motion (EOM) as Fμ

i ¼ −m0
iðϕÞ∇μϕ.

Therefore, the final relativistic Boltzmann equation for
each particle species i on shell reads

�
kμ∇μ−

1

2
∇μϕ

dm2
i

dϕ
∂

∂kμ

�
Θðk0Þδðk2þm2

i Þfiðx;kÞ¼C½fi�:

ð5Þ

The dynamics of the scalar-plasma system for the
cosmological FOPT is governed by the conservation of
the total energy-momentum tensor ∇μðTμν

ϕ þ Tμν
f Þ ¼ 0 but

with each term broken separately as

1This is what is usually called the friction force. However, in
our previous studies [40,41] and the current paper, we have a
more rigorous definition for the friction force as seen below.

2Recall that some earlier studies [26,50] have attributed this
inhomogeneous temperature contribution to a modification of the
driving force. Here we take a different but more physical
viewpoint as elaborated below.
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∇μT
μν
ϕ ≡ ½∇μ∇μϕ − V 0

0ðϕÞ�∇νϕ ¼ þfν; ð6Þ

∇μT
μν
f ≡ X

i¼B;F

gi

Z
d3k
ð2πÞ3

kμkν

EiðkÞ
∇μfi ¼ −fν ð7Þ

by the dubbed transfer flow fν [32,33] (see also [3]),

fν ¼ ∇νϕ
X
i¼B;F

gi
dm2

i

dϕ

Z
d3k
ð2πÞ3

fi
2Ei

: ð8Þ

In particular, for the thermal equilibrium distribution
functions of the Bose-Einstein/Fermi-Dirac distributions
with negligible chemical potentials,

feqi ðx;kÞ ¼
1

eEiðkÞ=T ∓ 1
; ð9Þ

the corresponding transfer flow reproduces exactly the field

derivative of the one-loop part ΔVð1Þ
T ðϕ; TÞ of the ther-

mal correction ΔVTðϕ; TÞ ¼ ΔVð1Þ
T ðϕ; TÞ þ ΔVð>1Þ

T ðϕ; TÞ
to the total effective potential Veffðϕ; TÞ ¼ V0ðϕÞþ
ΔVTðϕ; TÞ,

∂ΔVð1Þ
T

∂ϕ
¼ ∂

∂ϕ

X
i¼B;F

� giT
Z

d3k
ð2πÞ3 log

�
1 ∓ e−

EiðkÞ
T

	

¼
X
i¼B;F

gi
dm2

i

dϕ

Z
d3k
ð2πÞ3

feqi
2Ei

: ð10Þ

This similarity inspires us to parametrize the transfer
flow in such a way that there is a one-to-one correspon-
dence to each part of the effective potential,

fν ¼ ∇νϕ

�
∂ΔVð1Þ

T

∂ϕ
þ ∂ΔVð>1Þ

T

∂ϕ
−
∂pδf

∂ϕ

�
; ð11Þ

where the first, second, and third terms correspond to the
equilibrium distribution function feqi of free particles, the
equilibrium distribution function Δfeqi with interacting
particles, and the nonequilibrium part δfi of the total
distribution function fi ¼ feqi þ Δfeqi þ δfi, respectively.
With the above ansatz for the transfer flow, the conservation
equations of the scalar field and thermal plasma can now be
rearranged as

∇μ∇μϕ −
∂Veff

∂ϕ
¼ −

∂pδf

∂ϕ
; ð12Þ

∇μT
μν
f þ∇νϕ

∂ΔVT

∂ϕ
¼ ∇νϕ

∂pδf

∂ϕ
; ð13Þ

as also expected from the Kadanoff-Baym equations [34].
Note that our ansatz is different from the usual one

fν ¼ ∇νϕ

�
∂ΔVð1Þ

T

∂ϕ
−
∂pδf

∂ϕ

�
; ð14Þ

by just splitting the total distribution function fi ¼ feqi þ
δfi into the equilibrium and nonequilibrium parts, in which
case the conservation equations of the scalar field and
thermal plasma now read

∇μ∇μϕ −
∂Vð1Þ

eff

∂ϕ
¼ −

∂pδf

∂ϕ
; ð15Þ

∇μT
μν
f þ∇νϕ

∂ΔVð1Þ
T

∂ϕ
¼ ∇νϕ

∂pδf

∂ϕ
; ð16Þ

with the effective potential Vð1Þ
eff and thermal correction

ΔVð1Þ
T only up to the one-loop order. We will leave this

ambiguity for future study. Fortunately, this ambiguity
would not affect our hydrodynamic determination of the
general backreaction force.

B. The wall-fluid system

The general EOMs (12) and (13) of the scalar-plasma
system for the cosmological FOPT are difficult to solve as
the out-of-equilibrium term ∂pδf=∂ϕ cannot be known in
general due to the highly model-dependent collision term
C½fi�. To derive our general backreaction force, we further
assume two major simplifications to approximate the
scalar-plasma system into the dubbed wall-fluid system.
The first simplification is to consider a fast FOPT so that

it can be completed within one Hubble time and hence the
background spacetime can be approximated as a flat
spacetime, gμν ¼ ημν. In the flat spacetime, we can fix
the bubble nucleation site at the origin point, and then build
different coordinate systems depending on geometries of
the bubble wall. For bubble expansion of planar, cylindri-
cal, and spherical walls, we can choose corresponding
systems with xμ ¼ ðt; z; x ¼ 0; y ¼ 0Þ, xμ ¼ ðt; ρ;φ ¼
0; z ¼ 0Þ, and xμ ¼ ðt; r; θ ¼ 0;φ ¼ 0Þ, respectively.
After setting up the coordinate system, we can define
the plasma rest frame comoving with all particle species
(assuming moving coherently3) with four-velocity
uμ ¼ ð1; 0; 0; 0Þ. In this plasma rest frame, we can further
define the plasma energy density ef and pressure pf (only
along the radial x1 direction4) locally as

ef ¼
X
i¼B;F

gi

Z
d3k
ð2πÞ3 EiðkÞfi; ð17Þ

3Otherwise, it could be a two-fluid or even multifluid system,
which can be more difficult and is reserved for future study.

4Otherwise, the plasma species can move along x2 and x3
directions with shear and viscosity, which can be more difficult
and is reserved for future study.
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pf ¼
X
i¼B;F

gi

Z
d3k
ð2πÞ3

k2

EiðkÞ
fi; ð18Þ

with which the energy-momentum tensor (2) of the thermal
plasma can be rearranged into a perfect-fluid form,

Tμν
f ¼

X
i¼B;F

gi

Z
d3k
ð2πÞ3

��
Ei þ

k2

Ei

�
uμuν þ ημν

k2

Ei

�
fi

≡ ðef þ pfÞuμuν þ pfη
μν: ð19Þ

The second simplification is to consider the late stage of
the fast FOPT, which further leads to three natural conse-
quences: (1) self-similar expansion; (2) thin-wall expansion;
and (3) steady-state expansion. When considering the late
stage, the initial bubble size is negligible, and hence, there is
no more characteristic scale; thus, the bubble expansion is
self-similar and characterized by a single self-similar
coordinate ξ ¼ x1=x0. At the late stage of bubble expansion,
the bubble wall can be approximated as a thin wall since the
wall thickness actually decreases with the expanding wall
radius. For a nonrunaway expansion as expected from
recent debate [42,43,45,47], the late-stage expansion would
reach a steady state with a terminal wall velocity denoted as
ξw hereafter.
With all the above three approximations, the scalar field

profile along the x1 direction can be written as ϕðx0; x1Þ ¼
ϕþΘðx1=x0 − ξwÞ þ ϕ−Θðξw − x1=x0Þ ≡ ϕðx1=x0 ≡ ξÞ
interpolating the false vacuum ϕþ and true vacuum ϕ− with
a steplike function so that the derivative ϕ0ðξÞ ¼ ðϕþ −
ϕ−Þδðξ − ξwÞ exhibits a Dirac-delta singularity. As we will
see later, it is this Dirac-delta behavior of the scalar wall
and thermal plasma at the bubble wall and shock-wave
front (if any) that admits nontrivial contributions to the
backreaction force. With the above explicit scalar profile,
we can directly compute the energy-momentum tensor first
in the wall frame and then back to the plasma frame. In a
local frame comoving with the bubble wall, the local wall
geometry can be approximated as a planar wall, and hence,
a Lorentz transformation t̄≡ γwðt − ξwzÞ and z̄≡ γwðz −
ξwtÞ can be defined between the wall frame ðt̄; z̄Þ and
plasma frame ðt; zÞ with γw ¼ ð1 − ξwÞ−1=2 the Lorentz
factor of terminal wall velocity. The benefit of going to the
wall frame is that we can remove the time derivative term
∂t̄ϕ ¼ ðγw=tÞðξw − ξÞϕ0ðξÞ ¼ ðγw=tÞðξw − ξÞðϕþ − ϕ−Þ
δðξ − ξwÞ ¼ 0, and hence, the energy-momentum tensor
of the scalar wall contains nonvanishing components only
from Tt̄ t̄

ϕ ¼ V0 and Tz̄ z̄
ϕ ¼ −V0. When transformed back to

the background plasma frame with the Lorentz trans-
formations Tt̄ t̄

ϕ ¼ γ2wðTtt
ϕ þ Tzz

ϕ Þ − Tzz
ϕ and Tz̄z̄

ϕ ¼ðγ2w−1Þ×
ðTtt

ϕþTzz
ϕ ÞþTzz

ϕ , we can solve for Ttt
ϕ ¼ Tt̄ t̄

ϕ ¼ V0 ≡ eϕ
and Tzz

ϕ ¼ Tz̄ z̄
ϕ ¼ −V0 ≡ pϕ that can be easily rearranged

into a perfect-fluid Tμν
ϕ ¼ ðeϕ þ pϕÞuνuν þ pϕη

μν with
vanishing enthalpy wϕ ¼ eϕ þ pϕ ¼ 0.
In a short summary, both energy-momentum tensors

from the scalar wall and thermal plasma can be cast into a
perfect-fluid form; therefore, they can be naively combined
into a total energy-momentum tensor of the same form
Tμν ¼ ðeþ pÞuμuν þ pημν with e ¼ ef þ eϕ ¼ ef þ V0

and p ¼ pf þ pϕ ¼ pf − V0. An immediate observation
pf ¼ p − pϕ ¼ −Veff þ V0 ¼ −ΔVT can be made from
the definition −p ¼ F ¼ Veff ¼ V0 þ ΔVT . By introduc-
ing an abbreviation μðζ; vðξÞÞ≡ ðζ − vÞ=ð1 − ζvÞ for the
Lorentz transformation of the bulk fluid velocity vðξÞ in
the plasma frame into a local frame comoving with a
velocity ζ, we can define the wall-frame fluid velocity
v̄ðξÞ ¼ μðξw; vðξÞÞ with corresponding Lorentz factor
γ̄ ¼ ð1 − v̄Þ−1=2. Hence, the four-velocity reads uμ ¼
γ̄ð1;−v̄; 0; 0Þ in the local wall frame, where the minus
sign is introduced to ensure a positive v̄. Therefore, the
total energy-momentum tensor in a local wall frame reads

Tμν ¼

0
BBBB@
wγ̄2 −p −wγ̄2v̄ 0 0

−wγ̄2v̄ wγ̄2v̄2þp 0 0

0 0 p 0

0 0 0 p

1
CCCCA; μ;ν¼ t̄; z̄; x; y:

ð20Þ

A similar form can also be obtained for the total energy-
momentum tensor in a local shock-wave-front frame by
replacing all overbar symbols with overtilde symbols,
where the shock-frame fluid velocity is defined by ṽðξÞ ¼
μðξsh; vðξÞÞ with ξsh the velocity for the shock-wave front,
if any.
With the perfect-fluid ansatz for the total energy-momen-

tum tensor of the wall-fluid system, one can derive hydro-
dynamic EOMs from the projected conservation equations
uν∇μTμν ¼ 0 and ũν∇μTμν ¼ 0 parallel along and
perpendicular to the fluid flow directions defined by uμ ¼
γðvÞð1; v; 0; 0Þ and ũμ ¼ γðvÞðv; 1; 0; 0Þ with uμuμ ¼ −1,
ũμũμ ¼ 1, uν∇μuν ¼ 0, ũμuμ ¼ 0,

uμ∇μe ¼ −w∇μuμ; ð21Þ

ũμ∇μp ¼ −wũνuμ∇μuν: ð22Þ

For bubble expansion of planar, cylindrical, and spherical
wall geometries with D ¼ 0; 1; 2, respectively, we can
express ∇μuμ ¼ ðDv=ξÞðγ=tÞ þ ðγ3=tÞð1 − ξvÞ∂ξv explic-
itly in the plasma frame with the self-similar coordinate,
and the projected conservation equations become

ðξ − vÞ ∂ξe
w

¼ D
v
ξ
þ γ2ð1 − ξvÞ∂ξv; ð23Þ
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ð1 − ξvÞ ∂ξp
w

¼ γ2ðξ − vÞ∂ξv; ð24Þ

which can be rearranged by division and summation as

D
v
ξ
¼ γ2ð1 − ξvÞ

�
μðξ; vÞ2

c2s
− 1

�
dv
dξ

; ð25Þ

dw
dξ

¼ wγ2μðξ; vÞ
�
1

c2s
þ 1

�
dv
dξ

: ð26Þ

Here the abbreviation μðξ; vÞ≡ ðξ − vÞ=ð1 − ξvÞ is intro-
duced for the fluid velocity v seen in a local frame
comoving with the velocity ξ. The underlying microphysics
is encoded in the sound velocity c2s ¼ ∂ξp=∂ξe. In general,
sound velocities c2þ ¼ ∂ξpþ=∂ξeþ and c2− ¼ ∂ξp−=∂ξe− in
false and true vacua can be different constants from thd bag
model with c2s ¼ 1=3.
To further maintain the EOM ∇μTμν ¼ 0 also across a

discontinuous interface, one can impose the junction
conditions across the bubble wall,

∂μTμ0 ¼ ∂t̄Tt̄ t̄ þ ∂z̄Tz̄ t̄ ¼ ∂z̄Tz̄ t̄ ¼ 0

⇒ w−γ̄
2
−v̄− ¼ wþγ̄2þv̄þ; ð27Þ

∂μTμ1 ¼ ∂t̄Tt̄ z̄ þ ∂z̄Tz̄ z̄ ¼ ∂z̄Tz̄ z̄ ¼ 0

⇒ w−γ̄
2
−v̄2− þ p− ¼ wþγ̄2þv̄2þ þ pþ; ð28Þ

and the junction conditions across the shock-wave front
(if any),

∂μTμ0 ¼ ∂t̃Tt̃ t̃ þ ∂z̃Tz̃ t̃ ¼ ∂z̃Tz̃ t̃ ¼ 0

⇒ wLγ̃
2
LṽL ¼ wRγ̃

2
RṽR; ð29Þ

∂μTμ1 ¼ ∂t̃Tt̃ z̃ þ ∂z̃Tz̃ z̃ ¼ ∂z̃Tz̃ z̃ ¼ 0

⇒ wLγ̃
2
Lṽ

2
L þ pL ¼ wRγ̃

2
Rṽ

2
R þ pR; ð30Þ

where w�, v̄�, and γ̄� ≡ γðv̄�Þ are the enthalpy, wall-frame
fluid velocity, and corresponding Lorentz factors just in
front and back of the bubble wall, respectively, while wL=R,
ṽL=R, and γ̃L=R ≡ γðṽL=RÞ are the enthalpy, shock-frame
fluid velocity, and corresponding Lorentz factors just in
back and in front of the shock-wave front, respectively. The
fluid velocity and enthalpy profiles can be solved via
hydrodynamic equations (25) and (26) provided with
junction conditions (27) and (29) at the bubble wall and
shock-wave front (if any), respectively.

C. General backreaction force

After reducing the scalar-plasma system into a wall-fluid
system, both the EOMs (12) and (13) can be further
simplified by projecting them along the direction of

expansion, leading to a balance equation for the scalar-wall
expansion and a violation equation for the enthalpy-flow
conservation, respectively. As we will show shortly below,
combining these two equations of scalar-wall expansion and
enthalpy-flow violation, we can derive a general formula for
the backreaction force purely from the perfect-fluid hydro-
dynamics alone without reference to the underlying micro-
scopic particle physics necessary in solving the Boltzmann
equation. In the next section, we will apply our hydro-
dynamic backreaction force to a general EOS beyond the
simple bag model and then prove its balance to the driving
force analytically in the section after that.
We first turn to project the scalar EOM (12) along the

direction of bubble expansion by integrating it along with
the wall derivative over the self-similar coordinate as

Z
1

0

dξ
dϕ
dξ

�
∇2ϕ −

∂Veff

∂ϕ
þ ∂pδf

∂ϕ

�
¼ 0: ð31Þ

The first term as a total derivative of ϕ0ðξÞ2=2 can be fully
integrated out as ϕ0ðξ ¼ 1Þ=2 − ϕ0ðξ ¼ 0Þ=2 ¼ 0 in the
thin-wall limit. The second term belongs to a total deriva-
tive term subtracted by a temperature jumping part as
ð∂Veff=∂ϕÞðdϕ=dξÞ ¼ dVeff=dξ − ð∂Veff=∂TÞðdT=dξÞ.
Hence, we arrive at a balance equation [40],

pdr ≡ ΔVeff ¼
Z

1

0

dξ
dT
dξ

∂Veff

∂T
þ
Z

1

0

dξ
dϕ
dξ

∂pδf

∂ϕ

≡ pth þ pfr ≡ pbr; ð32Þ

between the driving force (per unit area) pdr ≡ ΔVeff and
the backreaction force (per unit area) pbr ¼ pth þ pfr

consisting of a thermal gradient force (per unit area) pth ¼R
dT∂TVeff and a nonequilibrium friction force (per unit

area) pfr ¼
R
dϕ∂ϕpδf. Note that the friction force defined

here is different from what is usually called “friction force”
in the literature by computing the particle momentum
recoils on the bubble wall, which is closer to our total
backreaction force pbr acting on the wall alone, pbrjwall.
Besides the wall contribution, the full backreaction force
also receives contributions from the sound shell, pbrjshell,
and shock-wave front (if any), pbrjshock. As we will see in
the next section, the backreaction force pbrjwall acting on
the wall alone is not sufficient to balance the driving force
pdr, and we need the full knowledge of the backreaction
force pbr ¼ pbrjwall þ pbrjshell þ pbrjshock. Remarkably, this
can be done purely from the perfect-fluid hydrodynamics
alone without going to the details of underlying particle
physics.
We next turn to project the plasma EOM (13) along the

direction of bubble expansion by contracting it with the
plasma fluid velocity as

GENERAL BACKREACTION FORCE OF COSMOLOGICAL BUBBLE … PHYS. REV. D 110, 016031 (2024)

016031-5



uν∇μðwuμuν þ pfη
μνÞ þ uν∇νϕ

∂ΔVT

∂ϕ
¼ uν∇νϕ

∂pδf

∂ϕ
;

ð33Þ

where we have used w ¼ wϕ þ wf ¼ wf ¼ ef þ pf

in the perfect-fluid energy-momentum tensor (19).
After using the contraction relations uνuν ¼ −1 and
uν∇μuν ¼ 0 as well as the total derivative ∇μpf ¼
−∇μΔVT ¼ −∇μTð∂ΔVT=∂TÞ − ∇μϕð∂ΔVT=∂ϕÞ ¼
−∇μTð∂Veff=∂TÞ − ∇μϕð∂ΔVT=∂ϕÞ, we finally arrive
at the violation equation for the enthalpy-flow conserva-
tion as

−∇μðwuμÞ ¼ uμ∇μT
∂Veff

∂T
þ uμ∇μϕ

∂pδf

∂ϕ
: ð34Þ

Note that for scalar functions FðξÞ ¼ TðξÞ;ϕðξÞ, we
can write uμ∇μF ¼ ðγ; γv; 0; 0Þ · ð−ξ=t; 1=t; 0; 0Þ∂ξF ¼
ðγ=tÞðv − ξÞF0ðξÞ explicitly in the self-similar coordinate,

t∇μðwuμÞ
γðξ − vÞ ¼ dT

dξ
∂Veff

∂T
þ dϕ

dξ

∂pδf

∂ϕ
: ð35Þ

Note also that the right-hand side of above expression
exactly reproduces the integrand of the backreaction
force (32), and thus, we can obtain a preliminary evalu-
ation of the total backreaction force as

pbr ¼
Z

1

0

dξ
t∇μðwuμÞ
γðξ − vÞ : ð36Þ

This expression is not ready for a hydrodynamic evaluation
yet. To actually evaluate the total backreaction force, we
can explicitly expand ∇μðwuμÞ in the plasma frame with
the self-similar coordinate as

∇μðwuμÞ ¼
γ

t
ðv− ξÞ∂ξwþD

ξ

γ

t
wvþ γ3

t
wð1− ξvÞ∂ξv; ð37Þ

where D ¼ 0; 1; 2 are for the bubble expansion of planar,
cylindrical, and spherical wall geometries, respectively.
Now we finally derive our hydrodynamic evaluation of the
total backreaction force (per unit area) [40] as

pbr ¼
Z

1

0

dξ

�
−
dw
dξ

þ Dwv
ξðξ − vÞ þ

wγ2

μðξ; vÞ
dv
dξ

�
: ð38Þ

The hydrodynamic evaluation of the total backreaction
force (38) can be further split into the sound-shell part,
bubble-wall part, and shock-wave-front part (if any) [40],

pbrjshell ¼ −
Z
shell

dξ
dw
dξ

c2s
1þ c2s

; ð39Þ

pbrjwall ¼ −Δ̄wþ
Z

vðξþw Þ

vðξ−wÞ
dv

wðvÞγðvÞ2
μðξw; vÞ

; ð40Þ

pbrjshock ¼ −Δ̃wþ
Z

vðξþshÞ

vðξ−shÞ
dv

wðvÞγðvÞ2
μðξsh; vÞ

; ð41Þ

where vðξ�w Þ≡ v� are fluid velocities in the background
plasma frame just in the front and the back of the bubble-
wall ξw, respectively, while vðξ�shÞ are fluid velocities in the
background plasma frame just in the front and the back of
the shock-wave-front ξsh, respectively. Here the sound-shell
contribution is obtained from (38) by replacing v=ξ and
dv=dξ terms with hydrodynamic EOMs (25) and (26), and
the integral is only implemented over the continuous parts
of the sound shell without crossing any discontinuous
interfaces. On the other hand, the discontinuous contribu-
tions from the bubble wall and shock-wave front (if any)
contain not only the enthalpy difference across the bubble
wall and shock-wave front,

Δ̄w≡ lim
δ→0þ

wðξw þ δÞ − lim
δ→0−

wðξw þ δÞ
≡ wðξþw Þ − wðξ−wÞ≡ wþ − w−; ð42Þ

Δ̃w≡ lim
δ→0þ

wðξsh þ δÞ − lim
δ→0−

wðξsh þ δÞ
≡ wðξþshÞ − wðξ−shÞ≡ wR − wL; ð43Þ

but also a nontrivial integral from the last term of (38),
which should be calculated using a mathematical trick
introduced in Ref. [40]. The difficulty of integrating the
last term in (38) is that both w and v are discontinuous
functions across the bubble wall/shock-wave front (if any).
To make a mathematically consistent integration, one would
require extra input from some continuous function wðvÞ that
could relate w and v across the discontinuous interfaces.
Obviously, this can be achieved from the junction con-
ditions (27) and (29). The validity of this mathematical trick
has been confirmed analytically when proving the exact
balance between the driving force and our hydrodynamic
evaluation on the backreaction force for the case with a bag
EOS [41]. In the next section, we will apply our hydro-
dynamic backreaction force (38) to a general EOS beyond
the bag model, and then prove its balance to the driving
force in the section after that.

D. Alternative proof of general backreaction force

It is worth noting that our expression (36) for the total
backreaction force does not rely on whether to include a
nonequilibrium pressure δp to the definitions of the total
pressure p by hand as p ¼ −Veff þ δp as usually done in
Refs. [49,51].
To see this, note that Eq. (36) can also be derived directly

from the conservation of the total energy-momentum tensor
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Tμν that is assumed to be described by a perfect-fluid
Tμν ¼ ðeþ pÞuμuν þ pημν, whose conservation equation
∇μTμν ¼ 0 after projected along uν leads to

0 ¼ uν∇μTμν ¼ uν∇μðwuμuν þ pημνÞ
¼ −∇μðwuμÞ þ uμ∇μp: ð44Þ

Since for any scalar functions FðξÞ, we can expand
uμ∇μF¼ðγ;γv;0;0Þ·ð−ξ=t;1=t;0;0Þ∂ξF¼ðγ=tÞðv−ξÞF0ðξÞ
explicitly in the self-similar coordinate, and then the
equation above can be rewritten as

−
dp
dξ

¼ t∇μðwuμÞ
γðξ − vÞ : ð45Þ

Integrating over ξ between the bubble center ξ ¼ 0 and
null infinity ξ ¼ 1, the left-hand side simply gives rise to
−pjξ¼1

ξ¼0 ¼ΔVeff ≡Veffðϕþ;Tðξ¼ 1ÞÞ−Veffðϕ−;Tðξ¼ 0ÞÞ
no matter which definitions (p¼−Veff or p ¼ −Veff þ δp)
are used since the out-of-equilibrium contribution δp to
the total pressure should necessarily vanish far away from
the bubble wall. Therefore, we always arrive at our
expression (36),

pbr ¼ pdr ≡ ΔVeff ¼
Z

1

0

dξ
t∇μðwuμÞ
γðξ − vÞ ; ð46Þ

when the total backreaction force eventually balances the
driving force pbr ¼ pdr for a nonrunaway steady-state self-
similar thin-wall expansion.
In fact, we need not bother to manually include non-

equilibrium pressures δp and δpf to the total pressure p
and fluid pressure pf by hand as p ¼ −Veff þ δp and
pf ¼ −ΔVT þ δpf, respectively, since the effective poten-
tial Veff already contains all the necessary coupling terms
that contribute to the collision terms on the right-hand side
of the Boltzmann equation for the total distribution func-
tion. The nonequilibrium effect automatically manifests
itself on the right-hand side of coupled EOMs (12) and
(13), which can be rewritten as

∇μ∇μϕ ¼ −
∂P
∂ϕ

; ð47Þ

∇μT
μν
f ¼ ∇νϕ

∂Pf

∂ϕ
; ð48Þ

if one really wants to define some kind of a total pressure
P ¼ −Veff þ pδf and its fluid contribution Pf ¼ −ΔVT þ
pδf when including the nonequilibrium effect. Hence, we
naturally reveal the nonequilibrium contribution to the
pressure δpf as the nonequilibrium contribution pδf to
the transfer flow fμ in Eq. (11). Note that this newly

defined P and Pf are not the ones that appear in the energy-
momentum tensors.
Even if we start from the traditional definitions p ¼

−Veff þ pδf and pf ¼ −ΔVT þ pδf with the nonequili-
brium pressure pδf induced by the nonequilibrium part of
the distribution function, we can still project the plasma
EOM (13) along the direction of the bubble expansion by
contracting it with the plasma fluid velocity as done for
Eq. (33), whose left-hand side reads

uν∇μðwuμuν þ pfη
μνÞ þ uν∇νϕ

∂ΔVT

∂ϕ

¼ −∇μðwuμÞ þ uμ∇μpf þ uν∇νϕ
∂ΔVT

∂ϕ

¼ −∇μðwuμÞ þ uν∇νð−ΔVT þ pδfÞ þ uν∇νϕ
∂ΔVT

∂ϕ

¼ −∇μðwuμÞ − uν

�
∇νT

∂ΔVT

∂T
þ∇νϕ

∂ΔVT

∂ϕ

�

þ uν∇νpδf þ uν∇νϕ
∂ΔVT

∂ϕ

¼ −∇μðwuμÞ − uν∇νT
∂ΔVT

∂T
þ uν∇νpδf: ð49Þ

Substituting this equation into Eq. (33) and then noting that

uν∇νpδf ¼ uνð∇νT ∂pδf

∂T þ∇νϕ
∂pδf

∂ϕ Þ, we have

−∇μðwuμÞ ¼ uν∇νT
∂ΔVT

∂T
− uν∇νT

∂pδf

∂T
; ð50Þ

which is exactly the enthalpy-flow equation (34) up to a
total derivative (also note that ∂ΔVT

∂T ¼ ∂Veff
∂T ),

−∇μðwuμÞ ¼ uν∇νT
∂Veff

∂T
þuν∇νϕ

∂pδf

∂ϕ
−uν∇νpδf: ð51Þ

After being expressed in the self-similar coordinate

t∇μðwuμÞ
γðξ − vÞ ¼ dT

dξ
∂Veff

∂T
þ dϕ

dξ

∂pδf

∂ϕ
−
dpδf

dξ
; ð52Þ

the right-hand side also reproduces the integrand of the
backreaction force (32) up to a total derivative, and hence,
the same expression for the total backreaction force (36)
can be derived,

pbr ¼
Z

1

0

dξ
t∇μðwuμÞ
γðξ − vÞ − pδf

����1
0

; ð53Þ

since the nonequilibrium contribution to the pressure
should vanish in the innermost and outermost ends of
the bubble profile, pδfðξ ¼ 0; 1Þ ¼ 0.
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III. BACKREACTION FORCE BEYOND BAG EOS

The fluid velocity profile vðξÞ can be solved from the
hydrodynamic EOM (25) for a particular expansion mode
with corresponding junction condition(s) (27) and/or (29)
given a specific EOS. In our previous studies [40,41], the
MIT bag EOS [52] is adopted by parametrizing the energy
density e� ¼ a�T4

� þ V�
0 and pressure p� ¼ 1

3
a�T4

� − V�
0

as simple collections of vacuum energy V�
0 ≡ V0ðϕ�Þ and

ideal gas with the effective number of relativistic degrees of
freedom a� ≡ ðπ2=30Þg�eff in the symmetric and broken
phases, respectively. Thus, the sound velocity c2s ¼
∂p=∂e ¼ 1=3 is a single constant throughout the bubble
for the bag EOS. In general, the sound velocity csðξÞ should
also vary with ξ [31], and if we neglect the changes inside

the sound shell, it can be approximated with two different
constants c− and cþ inside and outside of the bubble,
respectively, which can be achieved in the so-called ν-model
with the energy density and pressure parametrized via ν� ≡
1þ 1=c2� as [53]

e� ¼ a�T
ν�
� þ V�

0 ; ð54Þ

p� ¼ c2�a�T
ν�
� − V�

0 : ð55Þ

Inserting the above EOS into the junction conditions (27)
and (28) gives rise to a relation between the wall-frame fluid
velocities v̄� near the wall as [53]

v̄þ ¼ 1

1þ αþ

�
qXþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2X2

− þ α2þ þ ð1 − c2þÞαþ þ q2c2− − c2þ
q �

; ð56Þ

where q≡ ð1þ c2þÞ=ð1þ c2−Þ, X� ≡ v̄−=2� c2−=ð2v̄−Þ,
and αþ ≡ ΔV0=ðaþTνþþ Þ is the strength factor just in front
of the bubble wall, while αN ≡ ΔV0=ðaþTνþ

N Þ is the strength
factor in null infinity at ξ ¼ 1. It is easy to see that αþwþ ¼
αNwN ¼ ð1þ c2þÞΔV0 with ΔV0 ≡ Vþ

0 − V−
0 . Equipped

with the above ν-model EOS, the hydrodynamic EOMs
(25) and (26) can be solved with the junction condition(s)
(27) and/or (29) for four different expansion modes: weak
detonation, weak deflagration, Jouguet deflagration, and
Jouguet detonation. Now we apply our hydrodynamic
evaluation of backreaction force (38) to this ν-model EOS
along with explicit decomposition from (39)–(41).

A. Weak detonation

For the weak detonation mode, the continuous part of the
fluid velocity profile is the sound-shell regime between
c− < ξ < ξw where the sound velocity cs in (39) takes the
value c−; hence, the sound-shell part of the full back-
reaction force reads

pbrjshell ¼−
Z

ξ−w

c−

dξ
dw
dξ

c2−
1þ c2−

¼−
c2−

1þ c2−
ðw− −wsÞ; ð57Þ

where w− ≡ wðξ−w ≡ ξw þ 0−Þ is the enthalpy just behind
the wall, while the enthalpy ws ≡ wðξ ¼ c− þ 0�Þ is
continuous at ξ ¼ c− and equals the enthalpy ws ≡ wðξ ¼
c−Þ ¼ wðξ ¼ 0Þ≡ wO at the origin (namely bubble center).
On the other hand, the discontinuous part of the fluid
velocity profile is at the bubble wall ξ ¼ ξw for the weak
detonation, and hence, the discontinuous part of the full
backreaction force can be calculated from the bubble-wall
contribution (40) as

pbrjwall ¼ −ðwþ − w−Þ þ
Z

vþ

v−

dv
wðvÞγðvÞ2
μðξw; vÞ

¼ −ðwþ − w−Þ þ
v−

v− − ξw
wþ; ð58Þ

where v− ≡ vðξ ¼ ξw þ 0−Þ is the plasma-frame fluid
velocity just behind the wall, while the enthalpy just in
front of the wall wþ ≡ wðξ ¼ ξw þ 0þÞ ¼ wðξ ¼ 1Þ≡ wN
equals the enthalpy at null infinity. In calculating the integral
in the bubble-wall contribution, we have used the fact
that the fluid velocity in front of the wall vþ ¼ 0 is static
for the weak detonation, and the abbreviation γðvÞ reads
ð1 − v2Þ−1=2 hereafter, while wðvÞ is a continuous function
relating v� and w� across the bubble wall from the junction
condition (27),

wðvÞ ¼ wþ
γ̄2þv̄þ
γ̄2v̄

¼ wþ
ξw

1 − ξ2w

1 − μðξw; vÞ2
μðξw; vÞ

; ð59Þ

where we have used v̄þ ¼ ξw and v̄ ¼ μðξw; vÞ. Therefore,
the full backreaction force reads

pbr ¼−ðwN −w−Þþ
v−

v− − ξw
wN −

c2−
1þ c2−

ðw− −wOÞ: ð60Þ

B. Weak deflagration

For the weak deflagration, the continuous part of the
fluid velocity profile is the sound-shell regime between
ξw < ξ < ξsh where the sound velocity cs in (39) takes the
values cþ; hence, the sound-shell part of the full back-
reaction force reads

WANG, YUWEN, HAO, and WANG PHYS. REV. D 110, 016031 (2024)

016031-8



pbrjshell ¼−
Z

ξ−sh

ξþw
dξ

dw
dξ

c2þ
1þc2þ

¼−
c2þ

1þc2þ
ðwL−wþÞ; ð61Þ

where wL ≡ wðξ−sh ≡ ξsh þ 0−Þ is the enthalpy just behind
the shock-wave front, while wþ ≡ wðξþw ≡ ξw þ 0þÞ is the
enthalpy just in front of the wall. On the other hand,
the discontinuous parts of the fluid velocity profile are at
the bubble-wall ξw and shock-wave-front ξsh for the weak
deflagration, and hence, the corresponding bubble-wall
and shock-wave-front parts of the full backreaction force
can be calculated from (40) and (41) as

pbrjwall ¼ −ðwþ − w−Þ þ
Z

vþ

0

dv
wðvÞγðvÞ2
μðξw; vÞ

¼ −ðwþ − w−Þ −
vþ

vþ − ξw
w−; ð62Þ

pbrjshock ¼ −ðwR − wLÞ þ
Z

0

vsh

dv
wðvÞγðvÞ2
μðξsh; vÞ

¼ −ðwR − wLÞ þ
vsh

vsh − ξsh
wR; ð63Þ

respectively, where vþ ¼ vðξw þ 0þÞ and vsh ¼ vðξsh þ
0−Þ are plasma-frame fluid velocities just in front of the
bubble wall and just behind the shock-wave front, respec-
tively, and the enthalpy just behind the wall w− ≡ wðξw þ
0−Þ ¼ wðξ ¼ 0Þ≡ wO equals the enthalpy at the origin,
while the enthalpy just in front of the shock-wave-front
wR ≡ wðξsh þ 0þÞ ¼ wðξ ¼ 1Þ≡ wN equals the enthalpy
at null infinity. In calculating the integrals in the bubble-wall
and shock-wave-front contributions, we have used the facts
that both fluid velocities behind the bubble-wall v− ¼ 0 and
in front of the shock-wave-front vðξsh þ 0þÞ ¼ 0 are static
for the weak deflagration. Here wðvÞ in the integral of the
bubble-wall contribution is a continuous function relating
v� and w� across the bubble wall from the junction
condition (27), while wðvÞ in the integral of the shock-
wave-front contribution is also a continuous function
relating vðξsh þ 0�Þ and wR=L across the shock-wave front
from the junction condition (29), that is,

wðvÞjwall ¼ w−
γ̄2−v̄−
γ̄2v̄

¼ w−
ξw

1 − ξ2w

1 − μðξw; vÞ2
μðξw; vÞ

; ð64Þ

wðvÞjshock ¼ wR
γ̃2RṽR
γ̃2ṽ

¼ wR
ξsh

1 − ξ2sh

1 − μðξsh; vÞ2
μðξsh; vÞ

; ð65Þ

where we have used v̄− ¼ ξw, v̄ ¼ μðξw; vÞ, ṽR ¼ ξsh, and
ṽ ¼ μðξsh; vÞ. Therefore, the full backreaction force reads

pbr ¼ −
c2þ

1þ c2þ
ðwL − wþÞ − ðwþ − wOÞ

−
vþ

vþ − ξw
wO − ðwN − wLÞ þ

vsh
vsh − ξsh

wN: ð66Þ

C. Jouguet detonation and deflagration

For the Jouguet detonation and Jouguet deflagration, the
fluid velocity profile admits two continuous parts sepa-
rated by the bubble wall ξ ¼ ξw: the inner sound shell
between c− < ξ < ξw and the outer sound shell between
ξw < ξ < ξsh, where the corresponding sound velocities
in (39) take the values of c− and cþ, respectively. Hence,
the sound-shell contribution to the full backreaction force
reads

pbrjshell ¼ −
�Z

ξ−w

c−

þ
Z

ξ−sh

ξþw

�
dξ

dw
dξ

c2s
1þ c2s

¼ −
c2−

1þ c2−
ðw− − wsÞ −

c2þ
1þ c2þ

ðwL − wþÞ; ð67Þ

where ws ≡ wðc− þ 0�Þ ¼ wðξ ¼ 0Þ≡ wO, w− ≡ wðξ−w≡
ξw þ 0−Þ, wþ ≡ wðξþw ≡ ξw þ 0þÞ, and wL ≡ wðξ−sh≡
ξsh þ 0−Þ. On the other hand, the discontinuous parts of
the fluid velocity profile are at the bubble-wall ξw and
shock-wave-front ξsh for both Jouguet detonation and
Jouguet deflagration, and hence, the corresponding bub-
ble-wall and shock-wave-front contributions to the full
backreaction force can be calculated from (40) and (41) as

pbrjwall¼−ðwþ−w−Þþ
Z

vþ

v−

dv
wðvÞγðvÞ2
μðξw;vÞ

¼−ðwþ−w−Þþ
c−ð1−ξ2wÞðv−−vþÞw−

ð1−c2−Þðv−−ξwÞðξw−vþÞ
; ð68Þ

pbrjshock ¼ −ðwR − wLÞ þ
Z

0

vsh

dv
wðvÞγðvÞ2
μðξsh; vÞ

¼ −ðwR − wLÞ þ
vsh

vsh − ξsh
wR; ð69Þ

respectively, where vþ ≡ vðξw þ 0þÞ, v− ≡ vðξw þ 0−Þ,
vsh ≡ vðξsh þ 0−Þ, and wR ≡ wðξþsh ≡ ξsh þ 0þÞ ¼
wðξ ¼ 1Þ ≡ wN . In calculating the integrals in the bub-
ble-wall and shock-wave-front contributions, we have used
the fact that vðξsh þ 0þÞ ¼ 0, and wðvÞ in the integral of
the bubble-wall contribution is a continuous function
relating v� and w� across the bubble wall from the
junction condition (27), while wðvÞ in the integral of
the shock-wave-front contribution is also a continuous
function relating vðξsh þ 0�Þ and wR=L across the shock-
wave front from the junction condition (29), that is,

wðvÞjwall ¼ w−
γ̄2−v̄−
γ̄2v̄

¼ w−
c−

1 − c2−

1 − μðξw; vÞ2
μðξw; vÞ

; ð70Þ

wðvÞjshock ¼ wR
γ̃2RṽR
γ̃2ṽ

¼ wR
ξsh

1 − ξ2sh

1 − μðξsh; vÞ2
μðξsh; vÞ

; ð71Þ
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where we have used v̄− ¼ c−, v̄ ¼ μðξw; vÞ, ṽR ¼ ξsh, and
ṽ ¼ μðξsh; vÞ. Therefore, the full backreaction force con-
sisting of inner shell, bubble wall, outer shell, and shock
front reads

pbr ¼ −
c2−

1þ c2−
ðw− − wOÞ − ðwþ − w−Þ

þ c−ð1 − ξ2wÞðv− − vþÞw−

ð1 − c2−Þðv− − ξwÞðξw − vþÞ
−

c2þ
1þ c2þ

ðwL − wþÞ

− ðwN − wLÞ þ
vsh

vsh − ξsh
wN: ð72Þ

IV. ANALYTIC CONSISTENCY CHECKS
BEYOND BAG EOS

To analytically verify our hydrodynamic evaluation on
the backreaction force, we provide in this section two
consistency checks. The first one is to check if the bubble-
wall contribution to the hydrodynamic backreaction force
could reproduce the pressure difference near the bubble
wall from the junction condition (28),

pbrjwall ¼ wþγ̄2þv̄2þ − w−γ̄
2
−v̄2− ≡ Δ̄ðwγ̄2v̄2Þ: ð73Þ

A second check is to see if the full hydrodynamic back-
reaction force could exactly balance the driving force pdr ¼
ΔVeff ¼ −Δp ¼ pO − pN for the ν-model EOS (54)
and (55),

pdr ¼
c2−

1þ c2−
wO −

c2þ
1þ c2þ

wN þ 1

1þ c2þ
αþwþ; ð74Þ

where pO ≡ pðξ ¼ 0Þ ¼ c2−a−T
ν−
O − V−

0 and pN≡
pðξ ¼ 1Þ ¼ c2þaþT

νþ
N − Vþ

0 are the innermost and outer-
most pressures, respectively, while wO ≡ wðξ ¼ 0Þ ¼
ð1þ c2−Þa−Tν−

O and wN ≡ wðξ ¼ 1Þ ¼ ð1þ c2þÞaþTνþ
N are

the innermost and outermost enthalpies, respectively. αþ ≡
ð1þ c2þÞΔV0=wþ is the strength factor just in front of the
bubble wall and can be related to the strength factor αN ≡
ð1þ c2þÞΔV0=wN at the null infinity via αþwþ ¼ αNwN ¼
ð1þ c2þÞΔV0. As we will see shortly below, proving this
force balance is equivalent to pick the physical branch of the
hydrodynamic solutions (56), which is the plus-sign branch
for both weak and Jouguet detonation modes, and the minus-
sign branch for both weak and Jouguet deflagration modes.

A. Weak detonation

For the weak detonation mode, recall that our hydro-
dynamic evaluation of the full backreaction force pbr ¼
pbrjshell þ pbrjwall consists of the sound-shell contribution
(57) and bubble-wall contribution (58), which we repeat
here for your convenience,

pbrjshell ¼ −
c2−

1þ c2−
ðw− − wsÞ; ð75Þ

pbrjwall ¼ −ðwþ − w−Þ þ
v−

v− − ξw
wþ: ð76Þ

It is straightforward to check that, by inserting the junction
condition with v̄þ ¼ ξw and v̄− ¼ μðξw; v−Þ,

w− ¼ γ̄2þv̄þ
γ̄2−v̄−

wþ ¼ ξw
1 − ξ2w

1 − μðξw; v−Þ2
μðξw; v−Þ

wþ; ð77Þ

the bubble-wall contribution to our hydrodynamic back-
reaction force exactly reproduces the pressure difference
near the bubble wall,

pbrjwall ¼
v−ξw

1 − v−ξw
wþ ¼ Δ̄ðwγ̄2v̄2Þ: ð78Þ

As for proving the force balance, we can first rearrange the
driving force (74) as

pdr ¼ −
c2−

1þ c2−
ðw− − wOÞ þ

c2−
1þ c2−

w−

−
c2þ

1þ c2þ
wN þ 1

1þ c2þ
αþwþ ð79Þ

to separate out the sound-shell contribution in the first term
by noting wO ¼ wðξ ¼ c−Þ≡ ws, and then the force
balance would require the remaining terms to reproduce
the wall contribution,

c2−
1þ c2−

w− −
c2þ

1þ c2þ
wþ þ 1

1þ c2þ
αþwþ ¼ pbrjwall; ð80Þ

leading to a relation

αþ ¼ ð1þ c2þÞ½ξw þ v−ðv−ξwc2− − c2− − 1Þ�
ð1þ c2−Þðv− − ξwÞðv−ξw − 1Þ − 1; ð81Þ

which is nothing but the plus-sign branch of (56) with
v̄þ ¼ ξw.

B. Weak deflagration

For the weak deflagration mode, recall that our hydro-
dynamic evaluation of the full backreaction force pbr ¼
pbrjwall þ pbrjshell þ pbrjshock consists of the bubble-wall
contribution (62), sound-shell contribution (61), and shock-
wave-front contribution (63), which we repeat here for your
convenience,

pbrjwall ¼ −ðwþ − w−Þ −
vþ

vþ − ξw
w−; ð82Þ
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pbrjshell ¼ −
c2þ

1þ c2þ
ðwL − wþÞ; ð83Þ

pbrjshock ¼ −ðwR − wLÞ þ
vsh

vsh − ξsh
wR: ð84Þ

It is straightforward to check that, by inserting the junction
condition at the bubble wall with v̄þ ¼ μðξw; vþÞ and
v̄− ¼ ξw,

w− ¼ γ̄2þv̄þ
γ̄2−v̄−

wþ ¼ v̄þ
1 − v̄2þ

1 − ξ2w
ξw

wþ; ð85Þ

the bubble-wall contribution to our hydrodynamic back-
reaction force exactly reproduces the pressure difference
near the bubble wall,

pbrjwall ¼
v2þ − vþξw
1 − v2þ

wþ ¼ Δ̄ðwγ̄2v̄2Þ: ð86Þ

Similarly, inserting the junction condition at the
shock-wave front with ṽR ¼ ξsh, ṽL ¼ μðξsh; vshÞ, and
μðξsh; vshÞξsh ¼ c2þ,

wL ¼ γ̃2RṽR
γ̃2LṽL

wR ¼ ξsh
1 − ξ2sh

1 − μðξsh; vshÞ2
μðξsh; vshÞ

wR; ð87Þ

also allows us to rewrite the shock-wave-front contribution
as

pbrjshock ¼
c2þ − ξ2sh
ξ2sh − 1

wR ¼ −
c2þ

1þ c2þ
ðwR − wLÞ; ð88Þ

so that we can further rearrange the driving force (74) as

pdr ¼ −
c2þ

1þ c2þ
½ðwN − wLÞ þ ðwL − wþÞ� −

c2þ
1þ c2þ

wþ

þ c2−
1þ c2−

wO þ 1

1þ c2þ
αþwþ ð89Þ

to separate out both the shock-wave-front and sound-shell
contributions in the first term by noting wO ¼ w− and
wN ¼ wR; then the force balance would require the remain-
ing terms to reproduce the bubble-wall contribution,

−
c2þ

1þ c2þ
wþ þ c2−

1þ c2−
w−þ

1

1þ c2þ
αþwþ ¼ pbrjwall; ð90Þ

leading to a relation

αþ ¼ 1

ðc2− þ 1Þðv2þ − 1Þξw
½vþξwðξw − vþÞ

þ c2þξwðvþξw − 1Þ
þ c2−ðξw − vþ − vþc2þ þ v2þc2þξwÞ�; ð91Þ

which is nothing but the minus-sign branch of (56)
with v̄− ¼ ξw.

C. Jouguet detonation and deflagration

For both the Jouguet detonation and Jouguet deflagration
modes, recall that our hydrodynamic evaluation of the full
backreaction force pbr ¼ pbrjinnershell þ pbrjwall þ pbrjoutershell þ
pbrjshock consists of the bubble-wall contribution (68),
shock-wave-front contribution (69), and the inner and outer
sound-shell contributions (67) inside and outside of the
bubble wall, which we repeat here for your convenience,

pbrjwall¼−ðwþ−w−Þþ
c−ð1−ξ2wÞðv−−vþÞw−

ð1−c2−Þðv−−ξwÞðξw−vþÞ
; ð92Þ

pbrjshell ¼ −
c2−

1þ c2−
ðw− − wsÞ −

c2þ
1þ c2þ

ðwL − wþÞ; ð93Þ

pbrjshock ¼ −ðwR − wLÞ þ
vsh

vsh − ξsh
wR: ð94Þ

It is straightforward to check that, by inserting the junction
condition at the bubble wall with vþ ¼ μðξw; v̄þÞ and
v− ¼ μðξw; c−Þ,

w− ¼ γ̄2þv̄þ
γ̄2−v̄−

wþ ¼ v̄þ
1 − v̄2þ

1 − c2−
c−

wþ; ð95Þ

the bubble-wall contribution to our hydrodynamic back-
reaction force exactly reproduces the pressure difference
near the bubble wall,

pbrjwall ¼
ðv̄þ − c−Þv̄þ

1 − v̄2þ
wþ ¼ Δ̄ðwγ̄2v̄2Þ: ð96Þ

Similarly, inserting the junction condition at the
shock-wave front with ṽR ¼ ξsh, ṽL ¼ μðξsh; vshÞ, and
μðξsh; vshÞξsh ¼ c2þ,

wL ¼ γ̃2RṽR
γ̃2LṽL

wR ¼ ξsh
1 − ξ2sh

1 − μðξsh; vshÞ2
μðξsh; vshÞ

wR; ð97Þ

also allows us to rewrite the shock-wave-front contribution
as
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pbrjshock ¼
c2þ − ξ2sh
ξ2sh − 1

wR ¼ −
c2þ

1þ c2þ
ðwR − wLÞ; ð98Þ

so that we can further rearrange the driving force (74) as

pdr ¼ −
c2þ

1þ c2þ
ðwN − wLÞ −

c2þ
1þ c2þ

ðwL − wþÞ

−
c2−

1þ c2−
ðw− − wOÞ −

c2þ
1þ c2þ

wþ

þ c2−
1þ c2−

w− þ 1

1þ c2þ
αþwþ ð99Þ

to separate out the shock-wave-front contribution and the
outer and inner sound-shell contributions in the first three
terms by noting wO ¼ w− and wN ¼ wR, and then the force
balance would require the remaining terms to reproduce the
bubble-wall contribution,

−
c2þ

1þ c2þ
wþ þ c2−

1þ c2−
w−þ

1

1þ c2þ
αþwþ ¼ pbrjwall; ð100Þ

leading to a relation

αþ¼½c2þð1þc2−−2c−v̄þÞþ v̄þðv̄þ−2c−þ v̄þc2−Þ�
ð1þc2−Þð1− v̄2þÞ

; ð101Þ

which is nothing but the plus-sign and minus-sign branches
of (56) with v̄− ¼ c− for Jouguet detonation and Jouguet
deflagration modes, respectively.

V. CONCLUSIONS

The cosmological FOPT proceeds via stochastic bubble
nucleations followed by a rapidly accelerating expansion
until approaching an asymptotic expansion before bubble
percolations of colliding walls. The asymptotic expansion
stage can be well approximated as a nonrunaway steady-
state expansion of a thin wall in a thermal plasma that
can be well described as a perfect fluid along with the
expanding scalar wall. The nearly constant expansion of the
scalar wall is maintained via an exact balance between the
driving force and the backreaction force including not only
the friction force from the nonequilibrium effect but also
the thermal force from the inhomogeneous temperature
profile across the discontinuous interfaces.
Although both the thermal force and friction force cannot

be known exactly without extra inputs from the junction
conditions other than those from a conserved energy-
momentum tensor, their summation as the total backreac-
tion force can be explicitly computed purely from the
perfect-fluid hydrodynamics alone without assuming ther-
mal equilibrium across the discontinuous interfaces. This

hydrodynamic evaluation of the total backreaction force
has been confirmed in our previous study both numerically
and analytically but only for a bag EOS.
In this paper, we have successfully applied our hydro-

dynamic evaluation of the total backreaction force to the
case beyond the bag model with a ν-model EOS. The
hydrodynamic backreaction force in this case has also been
analytically checked to not only exactly balance the driving
force but also exactly reproduce the pressure difference
near the wall from the junction condition at the bubble wall.
The results are summarized in Fig. 1 for the bubble
expansion of weak detonation, weak deflagration, and
Jouguet deflagration types (the similar case with Jouguet
detonation is not shown here for clarity).
It is evident from Fig. 1 that the final expression for

calculating each contribution (wall, shell, and shock, if any)
to the total backreaction force boils down to evaluate the
corresponding difference of the enthalpy (up to a constant
factor from the sound velocity profile, which, however, is
not necessarily continuous across the wall as expected from
a general EOS),

−
c2sðξÞwðξÞ
1þ c2sðξÞ

; ð102Þ

except for an extra term αþwþ=ð1þ c2þÞ in the case of the
wall contribution to the total backreaction force. Apart from
the spatial decomposition into wall, shell, and shock con-
tributions, the total backreaction force can also be decom-
posed into the thermal and friction forces according to their
properties (32), where the out-of-equilibrium effect only
contributes to the friction force that can only be nonzero at
the discontinuous interface such as the bubble wall or shock
front, if any, as shown shortly below in Eq. (111).
It is worth noting that all conclusions obtained in this

paper rely on the thin-wall assumption as imposed in the
third paragraph of Sec. II B, resulting in the discontinuous
jumping for various quantities across the wall. It is this
discontinuous jumping that contributes nontrivially to the
backreaction force from integrating one discontinuous
quantity over another discontinuous quantity, which can
be rigorously evaluated using a mathematical trick intro-
duced in our previous paper [40] as also noted below
Eq. (43). When computing the thermal and friction forces,
the non-trivial contributions involve integrations such asR
sdT and

R
Tds, respectively, which would require some

continuous functions sðTÞ and TðsÞ relating the discon-
tinuous profiles of the temperature TðξÞ and entropy
density sðξÞ across the discontinuous interface that can
only be provided by some extra junction conditions other
than the one from the conserved energy-momentum tensor.
Fortunately, when computing the thermal and friction
forces combined, namely the total backreaction force, this
nontrivial contribution involves

R
wdv, which is fully
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determined by a continuous function wðvÞ that can be
simply obtained by the junction condition from the usual
conservation of the energy-momentum tensor. Therefore,
the local equilibrium assumption pδf ¼ 0 that eliminates
the friction force has never been used when computing the
total backreaction force.
In short summary, our hydrodynamic evaluation of the

total backreaction force does rely on the thin-wall approxi-
mation but not necessarily the local equilibrium assumption,
without which the enthalpy profile for computing the
backreaction force can still be determined by hydrodynam-
ics alone as long as the steady-state expansion is reached.
Future investigations should be implemented from going
beyond the thin-wall approximation (see, for example, a
recent study [54]) and the steady-state assumption (for
example, during the acceleration stage). All this progress
would be fully appreciated for the final goal to determine the
terminal wall velocity.

VI. DISCUSSIONS

Before we move to the discussion part, we would like to
clarify the significance of defining such a backreaction
force (32):
First of all, the traditional approach [42–48] to compute

the terminal wall velocity is to first calculate the pressure
recoil (usually some function of the wall velocity) from
interacting particles acting on the bubble wall alone in the
ultrarelativistic limit, and then simply solve the wall
velocity from balancing the driving force with this wall
pressure recoil. However, this traditional approach is
incomplete since it is actually the backreaction force pbr ¼
pth þ pfr ¼ pbrjwall þ pbrjshell þ pbrjshockðif anyÞ instead of
the wall pressure difference pbrjwall ¼ p− − pþ alone that
eventually balances the driving force pdr ¼ ΔVeff unless
the effective potential difference is not taken between the
innermost and outermost ends of the bubble profile but in

FIG. 1. A concise summary of our hydrodynamic backreaction force (along with all its contributions highlighted with corresponding
colors) beyond the bag EOS in the ν-model case for bubble expansions of (top) weak detonation, (middle) weak deflagration, and
(bottom) Jouguet deflagration modes (the Jouguet detonation case is similar to the Jouguet deflagration case and hence not shown here
for clarity). The sound velocity is defined by a steplike function as csðξÞ ¼ c−Θðξw − ξÞ þ cþΘðξ − ξwÞ.
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the vicinity near the wall.5 Even if we manage to acquire
full knowledge of the traditional wall pressure recoil, there
are still the contributions from the sound shell and shock
front (if any) parts to be determined so as to compute the
terminal wall velocity. In fact, even for the detonation
expansion of an ultrarelativistic wall, the pressure differ-
ence from the sound shell is not negligible as one might
naively anticipate when eventually balancing the driving
force together with the wall pressure difference. This
can easily be seen from our previous studies [40,41]
that the total backreaction force numerically approaches

pbr → − 1
4

ð4=5ÞαNwN
ð2=3ÞþαN

þ 3
4
αNwN , while the wall pressure dif-

ference analytically approaches pbrjwall → 3
2
αNwN , render-

ing the remaining shell contribution to the backreaction

force asymptotic to pbrjshell → − 1
4

ð4=5ÞαNwN
ð2=3ÞþαN

− 3
4
αNwN ,

whose absolute value is at least half of the wall pressure
difference, jpbrjshellj=pbrjwall → 1

2
þ 2

5ð2þ3αNÞ >
1
2
. Therefore,

the introduction of the backreaction force helps to complete
the traditional strategy to determine the terminal wall
velocity.
Next, the traditional approach by calculating the wall

pressure recoil from solving the Boltzmann equations only
accounts for the friction force pfr from the nonequilibrium
effects but overlooks the thermal force pth from the
inhomogeneous temperature profile across the bubble wall
and sound shell as well as shock front (if any). This thermal
force was previously absorbed into a redefinition of the
driving force in early studies [26,50] but with its wall
contribution pthjwall naively estimated by the averaged
value across the wall assuming a homogeneous temperature
profile. As we will show shortly below in Appendix VI B,
the wall contributions of both thermal force and friction
force require an extra input from a continuous function
TðsÞ relating the discontinuous temperature and entropy
density profiles across the bubble wall, and only the
combination of the thermal force and friction force into
the backreaction force can render their nontrivial wall
contributions into a form that can be exactly evaluated
from hydrodynamics with a given EOS.
Last but not least, the introduction of backreaction force

clarifies a previous misleading claim [44,55] that the
pressure difference Δ̄ðγ̄2v̄2wÞ ¼ ðγ2w − 1ÞΔ̄w against the
wall expansion might be proportional to the factor ðγ2w − 1Þ
involving the Lorentz factor γw ≡ ð1 − ξwÞ−1=2 of the
terminal wall velocity ξw. In fact, as shown in our previous

study [40] of the backreaction force, the difference
Δ̄ðγ̄2v̄2wÞ taken near the wall does not equal ðγ2w −
1ÞΔ̄w but exactly reproduces the wall contribution of
backreaction force, Δ̄ðγ̄2v̄2wÞ ¼ pbrjwall ¼ p− − pþ,
namely the opposite of wall pressure difference Δp≡
pþ − p− as expected from the junction condition (28).
Although taking the difference away from the wall for
Δðγ̄2v̄2wÞ ¼ ðγ2w − 1ÞΔw indeed produces the factor
ðγ2w − 1Þ, it is unfortunately not the pressure difference
−Δp≡ pO − pN ≠ Δðγ̄2v̄2wÞ that actually balances the
driving force since −Δ̄p ¼ Δ̄ðγ̄2v̄2wÞ is only valid when
the difference is taken near the wall instead of taking the
difference away from the wall, −Δp ≠ Δðγ̄2v̄2wÞ.
Therefore, one cannot conclude that the pressure difference
against the wall expansion is proportional to ðγ2w − 1Þ.
To eventually reveal the γw-scaling behavior for the

backreaction force pbrðξwÞ as a function of the terminal
wall velocity ξw, the current steady-state hydrodynamic
approximation is not enough since the steady-state expan-
sion is only reached when the backreaction force has
already balanced the driving force pdr ¼ ΔVeff , which
itself is a constant given by ΔVeff independent of ξw.
We will go beyond the steady-state hydrodynamic approxi-
mation to extract the function pbrðξwÞ during the accel-
erating stage of bubble expansion in a series of future works
step by step. Several discussions are given below regarding
this final goal.

A. Most general EOS with varying sound velocity

The sound velocity defined as c2s ¼ ∂ξp=∂ξe is a function
of the temperature, which itself is a function of the self-
similar coordinate ξ. Therefore, the most general EOS
beyond the ν model should also admit a varying profile for
the sound velocity csðξÞ beyond the simple steplike ansatz
csðξÞ ¼ c−Θðξw − ξÞ þ cþΘðξ − ξwÞ. One such example is
given in our previous study [31]. In general, all beyond-
bag-model EOS can be formally parametrized as

pðTÞ¼ 1

3
aðTÞT4− ϵðTÞ; eðTÞ¼ aðTÞT4þ ϵðTÞ ð103Þ

in terms of two baglike quantities

aðTÞ ¼ 3

4T3

∂p
∂T

¼ 3w
4T4

; ϵðTÞ ¼ eðTÞ− 3pðTÞ
4

ð104Þ

with a constraint relation

∂ϵ

∂T
¼ T4

3

∂a
∂T

: ð105Þ

Therefore, the sound velocity deviates from the bag model
by the temperature dependence in the derivative of aðTÞ or
ϵðTÞ as

5Note that the traditional approach of force balance is
equivalent to ours as one can explicitly prove that
pdrjwall ¼ pthjwall þ pfrjwall ¼ pbrjwall, where the difficulty of
computing pbrjshell þ pbrjshock has been moved to compute
pdrjwall ≡ Δ̄Veff ≡ Veffðϕþ; TþÞ − Veffðϕ−; T−Þ with the near-
wall temperatures Tþ ≡ Tðξþw Þ and T− ≡ Tðξ−wÞ separated from
the far-end temperatures TN ≡ Tðξ ¼ 1Þ and TO ≡ Tðξ ¼ 0Þ by
the sound-shell and shock-front (if any) parts of fluid motions.
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c2sðTðξÞÞ ¼
∂Tp
∂Te

¼ 1

3

aT3

aT3 þ ∂ϵ
∂T

¼ 1

3

1

1þ 1
3
∂ ln a
∂ lnT

: ð106Þ

Explicitly calculating the backreaction force in this case
along with its decompositions within the sound shell and
across discontinuous interfaces should be challenging.
Nevertheless, it is inspiring to look at the analytic results
from the ν-model EOS in Fig. 1 that the final results for the
most general EOS might just stay the same as long as the
varying profile of the sound velocity csðξÞ is used. We will
leave this hydrodynamic backreaction force in the most
general EOS for future works.

B. Hydrodynamic evaluation of thermal force
and friction force

As we have shown in Sec. II, the total backreaction
force can be decomposed in two ways: one is to decom-
pose it according to its components into the thermal force
and friction force, and the other is to decompose it
according to its contributions into the sound-shell and
discontinuous-interface parts. The total backreaction
force (32) admits a hydrodynamic expression (38), which
can be further evaluated using the perfect-fluid hydro-
dynamics alone with its discontinuous contribution evalu-
ated by the junction conditions from the conserved
energy-momentum tensor across the bubble wall and
shock-wave front (if any). It is tempting to ask whether
the thermal force and friction force could also exhibit
hydrodynamic expressions and can be further evaluated
individually using perfect-fluid hydrodynamics alone. A
short answer to the former one (hydrodynamic expression)
is yes but the latter one (hydrodynamic evaluation) is no,
which we will elaborate briefly below.
The hydrodynamic expression for the thermal force

is straightforward by adopting the most general EOS
prementioned,

pth ≡
Z

dξ
dT
dξ

∂Veff

∂T
¼ −

Z
dξ

dT
dξ

∂p
∂T

¼
Z

dξ
dT
dξ

�
∂ϵ

∂T
−
1

3

∂a
∂T

T4 −
4

3
aðTÞT4

�

¼
Z

dξ
dT
dξ

�
−
4

3
aðTÞT3

�
≡ −

Z
sðTÞdT; ð107Þ

where sðTÞ≡wðTÞ=T¼½eðTÞþpðTÞ�=T¼ð4=3ÞaðTÞT3

is the entropy density. Then, it is easy to evaluate the
sound-shell part of the thermal force using perfect-fluid
hydrodynamics alone. For example, for a bag EOS, we can
explicitly write it down as

pthjshell¼−
1

3

Z
shell

dðaT4Þ¼−
1

4
Δshellw

¼

8>><
>>:
−1

4
ðw−−wsÞ; detonation;

−1
4
ðwL−wþÞ; deflagration;

−1
4
ðwL−wþþw−−wsÞ; hybrid:

ð108Þ

However, the discontinuous part of the thermal force
involves integration over sdT in the vicinity of a discon-
tinuous interface, where both s and T experience a sudden
jump across the discontinuous interface. This kind of
integration can be rigorously evaluated using a math-
ematical trick we introduced in Ref. [40] as long as a
continuous function sðTÞ could be provided as an extra
junction condition across the discontinuous interface.
Unfortunately, the conserved energy-momentum tensor
only provides a continuous function wðvÞ from the
junction condition across the discontinuous interface.
Based on the same reason, the friction force also

admits a hydrodynamic expression but its discontinuous
part cannot be evaluated using hydrodynamics alone.
To see this, we first expand the left-hand side of (34)
with ∇μðwuμÞ ¼ T∇μðsuμÞ þ ðsuμÞ∇μT, and then rewrite
the first term of the right-hand side of (34) with
uμ∇μTð∂Veff=∂TÞ¼−uμ∇μTð∂p=∂TÞ¼−uμð∇μTÞs; thus,
we can convert the conservation violation equation of
enthalpy flow (34) into a conservation violation equation
of entropy flow as

T∇μðsuμÞ ¼ −uμ∇μϕ
∂pδf

∂ϕ
: ð109Þ

Therefore, we can similarly obtain the hydrodynamic
expression for the friction force,

pfr ¼
Z

dξ
dϕ
dξ

∂pδf

∂ϕ
¼

Z
dξ

Tt∇μðsuμÞ
γðξ − vÞ

¼
Z

1

0

dξ
�
−T

ds
dξ

þ 2wv
ξðξ − vÞ þ

wγ2

μðξ; vÞ
dv
dξ

�
: ð110Þ

It is straightforward to compute the sound-shell part of the
friction force using the hydrodynamic EOMs (25) and (26)
in replacement of v=ξ and dv=dξ terms as

pfrjshell ¼
Z

dw
1þ c2s

− Tds

¼
Z

dT

�
4aðTÞT3

3ð1þ c2sÞ
−
4c2saðTÞT3

1þ c2s
−
4c2sa0ðTÞT4

3ð1þ c2sÞ
�

¼ 0; ð111Þ

where the last two equalities are reached even for the most
general EOS (106). Therefore, the friction force receives
contribution only from the discontinuous-interface part.
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Once again, the integral over Tds across a discontinuous
interface would also require an extra input from a con-
tinuous function TðsÞ relating discontinuous profiles T and
s in the vicinity of the discontinuous interface, which
cannot be provided by the junction conditions from the
conserved energy-momentum tensor.
Nevertheless, when combing the thermal force and

friction force into the total backreaction force, the sdT
and Tds terms are added up to a total derivative dw, which
can now be computed by the hydrodynamics alone. This is
the main reason that we can contribute the thermal force to
the total backreaction force instead of a modification of the
driving force as previously thought [26,50]. We will
evaluate in a future study both the thermal force and
friction individually by proposing such a junction condition
relating the temperature and entropy density across the
discontinuous interface from microscopic particle physics.

C. General bubble expansion at strong coupling

One possible application of our hydrodynamic evalu-
ation of the total backreaction force is to estimate the phase
pressure difference pO − pN away from the wall in the
nonrelativistic limit of terminal wall velocity for a strongly
coupled FOPT with a bag EOS [41], reproducing an
intriguing linear correlation for a planar wall that was first
observed in holographic numerical simulations,

pO − pN ¼ αNwN

cs
ξw þOðξ2wÞ: ð112Þ

We also predict a quadratic-logarithmic relation for a
cylindrical wall, and in particular, a quadratic relation
for a spherical wall,

pO − pN ¼ αNwN

�
1

c2s
þ αN
c4s þ c6s

�
ξ2w þOðξ4wÞ; ð113Þ

reversing which allows us to estimate the terminal wall
velocity from hydrodynamics by

ξw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4sδ
αN þ c2s þ c4s

s
; ð114Þ

δ ¼ ΔVeff

ΔV0

¼
�
1 −

c2s
1þ c2s

∂ lnΔVeff

∂ lnT

�−1
: ð115Þ

On the other hand, the pressure difference near the wall is
found to behave universally as

pþ − p− ¼ αNwN

�
1

c2s
−
αN
c4s

�
ξ2w þOðξ3wÞ ð116Þ

regardless of the wall geometries. In a following paper [56],
we have generalized these nonrelativistic behaviors beyond
the bag EOS, which can be explicitly tested against future

holographic numerical simulations of strongly coupled
FOPTs.

D. Hydrodynamics during accelerating expansion stage

As the solely undetermined phenomenological parameter
in characterizing the energy-density spectra of stochastic
gravitational wave backgrounds from FOPTs, the terminal
wall velocity cannot be naively estimated from the friction
force alone since the thermal force also contributes to the
total backreaction force acting on the bubble wall, and more
importantly, it is the total backreaction force consisting of
both sound-shell and bubble-wall as well as shock front (if
any) parts that gradually balance the driving force to
eventually approach the terminal wall velocity. Therefore,
the final determination of the terminal wall velocity would
require a full understanding of the total backreaction force
for the bubble expansion during both accelerating expansion
and asymptotic expansion stages.
For the asymptotic expansion stage, it is the late stage of

FOPT that is under considered so that the approximation
for a thin-wall steady-state self-similar expansion can be
used, which naturally induces the perfect-fluid hydrody-
namics. However, for the accelerating expansion stage, no
such privileges can be made, and the integrated scalar
EOM,

Z
dr̄

dϕ
dr̄

�
∇2ϕ −

∂Veff

∂ϕ
þ ∂pδf

∂ϕ

�
¼ 0; ð117Þ

seems to induce an effective EOM for a scalar-wall
expansion (see Sec. 3 of Ref. [14]),

σγ3w ̈rw þ 2σγw
rw

¼ ΔVeff −
Z

dr̄
dT
dr̄

∂Veff

∂T
þ
Z

dr̄
dϕ
dr̄

∂pδf

∂ϕ
;

ð118Þ

where r̄ ¼ γwðtÞ½r − rwðtÞ� and t̄ ¼ γwðtÞ½t − vwðtÞr� are
coordinates after a Lorentz boost with the bubble-wall
velocity vwðtÞ ¼ ṙwðtÞ and corresponding Lorentz factor
γwðtÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2wðtÞ

p
, and σ ≡ Rþ∞

−∞ ϕ0ðr̄Þ2dr̄ is the bub-
ble tension. It is unclear how the hydrodynamics looks so as
to compute the last two integrals. It is also questionable to
arrive at the left-hand side since r̄ can only reach �∞ at a
late-time limit with rwðt → ∞Þ → ∞ for r ¼ 0. We will
derive an alternative effective EOM for the scalar wall in a
upcoming work.
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