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The study of next-to-leading-power (NLP) corrections in soft emissions continues to attract interest both
in quantum chromodynamics (QCD) and in quantum electrodynamics (QED). Soft-photon spectra in
particular provide a clean case-study for the experimental verification of the Low-Burnett-Kroll (LBK)
theorem. In this paper we study the consistency of the LBK theorem in the context of an ambiguity arising
from momentum-conservation constraints in the computation of nonradiative amplitudes. We clarify that
this ambiguity leads to various possible formulations of the LBK theorem, which are all equivalent up to
power-suppressed effects (i.e., beyond the formal accuracy of the LBK theorem). We also propose a new
formulation of the LBK theorem with a modified shifted kinematics which facilitates the numerical
computation of nonradiative amplitudes with publicly available tools. Furthermore, we present numerical
results for soft-photon spectra in the associated production of a muon pair with a photon, both in eþe−

annihilation and proton-proton collisions.
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I. INTRODUCTION

Perturbative calculations are the cornerstone of theo-
retical predictions for high energy physics experiments.
The expansion in the coupling constant is arguably the
most important example, with the expansion terms denoted
as leading order (LO), next-to-leading order (NLO), and so
forth. For processes involving several scales, a larger
number of dimensionless parameters can be small in
particular kinematic limits, hence other expansions are
possible. A case that has received substantial attention is
the study of power corrections to the strict soft and/or
collinear limit, whose expansion terms are conventionally
denoted as leading power (LP), next-to-leading power
(NLP), etc.
The theoretical foundations of NLP emissions date back

to the theorems of Low, Burnett and Kroll (LBK) [1,2] (see
also [3,4]), which continue to be reformulated and gen-
eralized also in the recent years1 [12–37]. In particle

phenomenology, these subleading effects have mainly
attracted attention due to their potential relevance for
QCD resummation.2 Indeed, it is well known that infrared
divergences due to unresolved soft and collinear radiation
yield logarithms in the cross section that become large
when approaching some kinematic threshold, thus spoiling
the predictive power of finite-order perturbation theory.
The goal of the traditional (i.e., LP) resummation program
is to reorganize the towers of these logarithms at a given
logarithmic accuracy to all-orders in perturbation theory.
In this context, subleading corrections due to emissions of
gluons (and quarks) give rise to NLP logarithms which,
although power-suppressed in the threshold limit, could
give significant contribution to the cross section. In the last
decade, a considerable effort has been invested in this
direction [42–50].
The soft limit in the photon bremsstrahlung [51–55]

provides another probe of NLP effects. In this case, the
study of the photon spectrum gives direct access to the
individual terms of NLP soft theorems, unlike the QCD
resummation case, where one is blind to the energy of the
undetected gluon since its momentum is integrated over the
whole phase space. In fact, although the LBK theorem is
very old and the conditions that ensure the soft limit for a
given process are known in terms of a well-defined
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1Soft theorems are an active field of research also at LP, see,
e.g., [5–11].

2NLP effects are also relevant for the numerical stability
of differential NNLO calculations, both in QCD [38,39] and
in QED [40,41].
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hierarchy of scales, to the best of our knowledge, no study in
the literature has studied numerically what is the resolution
in energy and momentum of a soft photon that one has to
reach in order for NLP effects to be measurable.
This question is not a mere theoretical exercise.

Soft-photon spectra in hadronic decays have been puz-
zling physicists for years. The discrepancy between the
LP prediction and the observed yields of photons pro-
duced together with hadrons is outstanding and the
results of the measurements remain not understood at
present [56–64]. Moreover, there are plans for an upgrade
of the ALICE detector at the Large Hadron Collider that
would enable the possibility of scrutinizing photons at
ultrasoft energies [65,66]. In order to shed light on these
discrepancies and correctly interpret data from future
measurements, it is therefore of the utmost importance
to have reliable theoretical predictions, including also
NLP corrections as first proposed in this context in [28].
With this long-term goal in mind, in this paper we study
the tree-level form of the LBK theorem for the production
of a photon in association with a μþμ− pair in eþe− and pp
collisions.
To analyze the soft-photon spectrum, one has to evaluate

the expressions given by the LBK theorem. In fact, several
issues must be addressed, both analytically and numerically.
Most notably, as it has been already pointed out in [28], the
traditional form of the theorem expressed through deriva-
tives of the nonradiative amplitude is not optimal. Indeed,
the nonradiative amplitude depends on a set of unphysical
momenta that violates momentum conservation when the
soft-photon momentum k ≠ 0. This is problematic since,
by definition, photon spectra are calculated for a non-
vanishing momentum k. To overcome this issue, the strategy
proposed first for two massless legs in [27]3 and then
generalized in [28] for an arbitrary number of (massless or
massive) legs, appears promising. The strategy relies on
removing the derivatives of the nonradiative amplitude by
computing such amplitude on momenta which are slightly
shifted in value. Remarkably, the sum of these momenta
shifts is equal to the soft-photon momentum, so that
momentum conservation is restored. The price to pay for
this trick is that the shifted momenta do not fulfill the on-
shell conditions. This issue prevents the calculation of the
nonradiative amplitude with most of the available public
tools which can be used for the numerical evaluation of
matrix elements. It is one of the goals of this paper to
explicitly show how the momenta of the external particle
can be kept on-shell by proposing a modified version of the
shifts that are equivalent to the ones discussed in [28] up to
NNLP corrections.
The observation of the dependence of the amplitude on

nonphysical momenta at NLP is an old one, and it was first
discussed by Burnett and Kroll [2]. More recent and

detailed discussions on this aspect can be found in [24]
(see also [31]). Despite the long history and the large body
of papers which studied, reformulated and generalized the
LBK theorem, the issue of having nonphysical momenta in
the nonradiative amplitude led some authors [35–37] to
question the validity of all known formulations of the
theorem and to propose a modified version. In this paper,
we argue that such criticism has no valid foundation by
explicitly showing that the formulation in [35] is equivalent
at NLP to the ones previously derived in the literature.
More generally, we prove the invariance of the LBK
theorem at NLP under a specific transformation of the
nonradiative amplitude, which leads to many equivalent
formulations that differ by NNLP corrections. As a con-
sequence, the ambiguities contained in the LBK theorem
due to violation of momentum conservation in the non-
radiative amplitude are power-suppressed beyond the
formal validity of the theorem.
Besides the issue of evaluating the nonradiative processes

using physical on-shell momenta, other technical aspects
must be addressed in a numerical implementation. In fact,
the integration over phase space becomes unstable in the
soft limit. To overcome these instabilities, the numerical
results of this work have been generated with a program
specifically targeted to treat these extreme phase-space
configurations. In addition, to obtain NLP predictions for
an arbitrary process that can be compared with experimental
data, one wishes to calculate the nonradiative amplitude
using general-purpose event generators. Thus, in this work,
we demonstrate that with our modified shifted momenta it is
possible to obtain predictions for the radiative amplitude in
the soft-photon limit, using nonradiative amplitudes that are
automatically generated.
The structure of this paper is as follows. In Sec. II we

discuss the LBK theorem in all formulations that will be
relevant for the numerical implementation: the one with
derivatives, the one with unmodified shifts and the one with
modified shifts. In doing so, we thoroughly analyze the
ambiguities in the computation of the nonradiative process
when the theorem is expressed through derivatives of the
nonradiative amplitude. Section III contains numerical
results for the eþe− → μþμ−γ and pp → μþμ−γ processes.
Specifically, after comparing numerical results based on the
aforementioned three versions of the LBK theorem, we
study the predictive power of the soft approximation at LP
and NLP in various kinematic ranges. We conclude in
Sec. IV with a brief discussion.

II. LBK THEOREM AND SHIFTED KINEMATICS

We begin this section with a compact review of known
results on the LBK theorem. More specifically, in Sec. II A
we recall the traditional form of the theorem in terms of
derivatives of the nonradiative amplitude, while in
Section II C we recall the equivalent form of the theorem
with shifted kinematics, recently introduced in [27,28].3See also [67] and the recent [68,69].

R. BALSACH, D. BONOCORE, and A. KULESZA PHYS. REV. D 110, 016029 (2024)

016029-2



The reason for reviewing these known forms of the theorem
(apart from the sake of comprehensibility and the need to
fix the notation) is twofold. On the one hand, we discuss
how an intrinsic ambiguity in the computation of non-
radiative processes does not invalidate the traditional
formulation of the theorem, which has been recently
questioned [35–37]. On the other hand, we want to stress
the virtue of shifting the kinematics, which removes such
ambiguity by restoring momentum conservation. We then
present a new formulation of the theorem in Sec. II D,
where the shifts are modified in order to keep the external
lines on the mass shell.

A. Traditional LBK formulation

We consider a generic scattering amplitude
Hðp1;…; pnÞ where N particles of hard momenta
p1;…; pN scatter into M particles of hard momenta
pNþ1;…; pNþM, with n ¼ N þM. The particles interact
via an unspecified hard dynamics which can be represented
diagrammatically by the dashed blob Hðp1;…; pnÞ, as in
Fig. 1. For spinning particles H is equal to the full
scattering amplitude H stripped off of the external-state
wave functions, while for scalars one trivially has H ¼ H.

In the radiative process N → M þ γ, the bremsstrahlung
amplitude Aðp1;…; pn; kÞ includes a photon of momen-
tum k in the final state. For reasons that will become clearer
in the next sections, it is convenient to introduce a
parameter η ¼ 1 for initial particles (1 ≤ i ≤ N) and
η ¼ −1 for final particles (N < i ≤ n), so that momentum
conservation reads

XN
i¼1

pi −
XNþM

i¼Nþ1

pi ¼
Xn
i¼1

ηipi ¼ k: ð2:1Þ

In this way, momenta are incoming for particles in the
initial states and outgoing for particles in the final states.
We also denote with Qi the charge of the ith particle. In the
following, we assume that the momenta pi appearing both
in the nonradiative (i.e., elastic) amplitude Hðp1;…; pnÞ
and in the radiative (i.e., inelastic) Aðp1;…; pn; kÞ fulfill
momentum conservation in the radiative configuration, as
in Eq. (2.1). We will discuss this aspect in detail in
Sec. II B.
The radiative process can be represented diagrammati-

cally by two classes of diagrams, as depicted in Fig. 1. In
the first one, the emitted photon is attached to one of the
external lines. In the second one, the photon couples
directly to some internal line of the unspecified hard
subdiagram H. We denote the two corresponding radiative
amplitudes [stripped off of the photon polarization vector
ϵμðkÞ] as Aμ

ext and Aμ
int, respectively. We begin with the

former.
Without loss of generality, we restrict the analysis to the

case of an external emission from an initial-state fermion-
antifermion pair of charge Q1 ¼ −Q2 ≡Q and momenta
p1 and p2, respectively, satisfying p1 þ p2 ¼ k. The sum
of the diagrams corresponding to the two emissions reads

Aμ
extðp1; p2; kÞ ¼ v̄ðp2ÞHðp1 − k; p2Þ

ið=p1 − =kþmÞ
ðp1 − kÞ2 −m2

ð−iQγμÞuðp1Þ

þ v̄ðp2Þð−iQγμÞ ið−=p2 þ =kþmÞ
ðp2 − kÞ2 −m2

Hðp1; p2 − kÞuðp1Þ: ð2:2Þ

In the limit where the photon momentum k is small compared to the hard momenta p1 and p2, we can expand
4 in k both the

fermion propagators and the hard subdiagram H. After using the Dirac equation, enforcing the on-shell condition k2 ¼ 0
and neglecting terms proportional to kμ that vanish by gauge invariance, we get

Aμ
extðp1; p2; kÞ ¼ Qv̄ðp2ÞHðp1; p2Þ

�
−

pμ
1

p1 · k
þ pμ

2

p2 · k
þ ikνSμν

p1 · k

�
uðp1Þ

þQv̄ðp2Þ
ikνSμν

p2 · k
Hðp1; p2Þuðp1Þ þQ

pμ
1

p1 · k
kνv̄ðp2Þ

∂Hðp1; p2Þ
∂pν

1

uðp1Þ

−Q
pμ
2

p2 · k
kνv̄ðp2Þ

∂Hðp1; p2Þ
∂pν

2

uðp1Þ þOðkÞ; ð2:3Þ

FIG. 1. Diagram (a) corresponds to the nonradiative amplitude
H, where the hard blobH represent an unknown hard interaction.
Diagrams (b) and (c) represent respectively the external and
internal contribution to the radiative amplitude A.

4The expansion in the four-momentum k is equivalent to the expansion in the photon energy ωγ since all components of k scale
homogeneously in the soft limit.
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where we defined Sμν ¼ i
4
½γμ; γν� and we exploited the

functional dependence of H by setting

∂Hðp1 − k; p2Þ
∂kν

����
k¼0

¼ −
∂Hðp1; p2Þ

∂pν
1

: ð2:4Þ

At this point we should note that in order to derive
Eq. (2.3) we have expanded Eq. (2.2) in k while keeping all
the other momenta fixed, in analogy with Low’s derivation
in [1]. Mathematically, one can regard the right-hand side of
Eq. (2.2) as a function defined on the entire space spanned
by the vectors fp1; p2; kg, where the vectors p1 and p2 are
not restricted to the surface p1 þ p2 ¼ k. Although the
result of such expansion is then defined for arbitrary
momenta p1 and p2, eventually we are of course only
interested in the physical value of the expanded function on
the momentum-conservation surface. An alternative
approach, followed, e.g., by Burnett and Kroll [2] and
more recently by5 [35–37], consists of expanding Eq. (2.2)
on the momentum-conservation surface by inserting a
dependence over k in the momenta p1ðkÞ and p2ðkÞ. The
parametrization of the momenta p1ðkÞ and p2ðkÞ, which are
not fixed, is then only constrained by p1ðkÞ þ p2ðkÞ ¼ k.
The two approaches yield equivalent expressions on the
momentum-conservation constraint up to power-corrections
in the expansion.
To proceed further, one has to compute the internal

emission contribution Aint. However, since in general one
cannot know how the photon couples to the internal hard
subdiagrams, one is seemingly prevented from an explicit
calculation ofAint. However, gauge invariance comes to the
rescue, since

kμðAμ
ext þAμ

intÞ ¼ 0: ð2:5Þ

From this, we deduce that

Aμ
int ¼ −

X2
i¼1

Qiv̄ðp2Þ
∂Hðp1; p2Þ

∂piμ
uðp1Þ þ Kμ; ð2:6Þ

where Kμ is a gauge invariant term (k · K ¼ 0). A power
counting analysis reveals that at the tree level Kμ is power-
suppressed at NLP and can be set to zero.6

Therefore, combining Eqs. (2.3) and (2.6) we get the
final form for the LBK theorem for the radiative amplitude
Aðp1; p2; kÞ, which reads

Aðp1; p2; kÞ ¼ −ϵμðkÞ
X2
i¼1

Qi
pμ
i

pi · k
Hðp1; p2Þ

− ϵμðkÞ
X2
i¼1

Qiv̄ðp2ÞGμν
i
∂Hðp1; p2Þ

∂pν
i

uðp1Þ

þ ϵμðkÞQv̄ðp2Þ
�
Hðp1; p2Þ

ikνSμν

p1 · k

þ ikνSμν

p2 · k
Hðp1; p2Þ

�
uðp1Þ; ð2:7Þ

where we have introduced the following tensor

Gμν
i ¼ gμν −

ð2pi − kÞμkν
2pi · k

¼ gμν −
pμ
i k

ν

pi · k
þOðkÞ: ð2:8Þ

The first term in Eq. (2.7) represents the well-known LP
factorization in terms of the eikonal factor p · ϵ=ðp · kÞ. The
remaining terms correspond to NLP corrections.
A generalization of the calculation above to an arbitrary

number of initial or final state particles is straightforward,
although the final result is not quite compact since one has
to distinguish the four cases where the (anti)fermion is in
the initial or final state. A short-hand notation that is quite
common in the literature on scattering amplitudes [15–21]
consists of factoring out the spin generator and the
derivatives from the nonradiative amplitude, yielding

Aðp1;…; pn; kÞ ¼ ðSLP þ SNLPÞHðp1;…; pnÞ; ð2:9Þ

where

SLP¼−
Xn
i¼1

ηiQi
pi ·ϵðkÞ
pi ·k

; SNLP¼−
Xn
i¼1

ηiQi
ikνJ

μν
i ϵμðkÞ
pi ·k

:

ð2:10Þ

Here, Jμνi ¼ Sμνi þ Lμν
i is the total angular momentum,

while Lμν
i ¼ iðpμ

i
∂

∂piν
− pν

i
∂

∂piμ
Þ is the orbital angular

momentum which is related to the tensor Gμν via
Gμν

i
∂

∂pν
i
¼ i kν

pi·k
Lμν
i . However, one should not be fooled

by the simplicity of Eq. (2.9), since Jμν is not a simple
multiplicative factor but rather an operator that contains
derivatives and gamma matrices. The derivatives act on the
hard coefficient H only (not the full amplitude H), while
the spin generator must be inserted in the correct order
within the spinors, as shown in Eq. (2.7) or the simple case
of an initial state fermion-antifermion pair.
Things become much simpler for the squared unpolar-

ized amplitude jAj2, since all NLP corrections can be recast
in terms of derivatives of the squared nonradiative ampli-
tude, as first shown in [2]. This can be seen again by

5We thank O. Nachtmann for clarifying that in [35–37] this is
how the expansion is performed.

6See [24] for a more detailed analysis.
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considering the simple case of two charged incoming
particles as in Eq. (2.7), where NLP corrections correspond
to a derivative contribution (second term) and a spin
contribution (third and fourth term). When squaring and
averaging over the polarizations, the nonradiative ampli-
tude reads simply

jHðp1;p2Þj2¼Tr½ð=p2−mÞHðp1;p2Þð=p1þmÞH̄ðp1;p2ÞÞ�;
ð2:11Þ

where we defined H̄ ¼ γ0H†γ0. For the radiative amplitude
instead one has the following schematic structure at NLP

jAðp1; p2; kÞj2 ¼ jSLPj2jHðp1; p2Þj2
þ 2ReðSLPHðp1; p2ÞS†

NLPH
†ðp1; p2ÞÞ;

ð2:12Þ

where SLP and SNLP have been defined in Eq. (2.9). The
second term in Eq. (2.12) corresponds to the interference
between the LP factor and either the derivative or the spin
contribution as in Eq. (2.7). For an emission from the leg
with momentum p1, the spin term becomes

Tr

�
ð=p2 −mÞHðp1;p2Þ

 
=kγμ

2p1 · k
ð=p1 þmÞ

þ ð=p1 þmÞ γμ=k

2p1 · k

!
H̄ðp1; p2ÞÞ

�X
i

ηiQi
pμ
i

pi · k
: ð2:13Þ

Up to terms proportional to kμ one then has

=kγμ

2p1 · k
ð=p1 þmÞ þ ð=p1 þmÞ γμ=k

2p1 · k

¼ −γμ þ pμ
1

p1 · k
=k ¼ −Gμν

1

∂

∂pν
1

ð=p1 þmÞ: ð2:14Þ

Recalling that derivatives in Eq. (2.7) act on the hard
function only, we conclude that both the spin and the orbital
contribution combine into derivatives of the full squared
nonradiative amplitude jHðp1; p2Þj2. Hence we obtain

jAðp1; p2; kÞj2 ¼ Q2
X2
ij¼1

pi · pj

ðpi · kÞðpj · kÞ
jHðp1; p2Þj2

þQ2
X2
ij¼1

piμ

pi · k
Gμν

j
∂

∂pν
j
jHðp1; p2Þj2:

ð2:15Þ

Although so far we have considered fermions, the
result above holds also in the case of spin 0 and spin 1
charged particles. In the former case, the spin generator
vanishes, hence it is obvious that NLP terms include
only the derivative contribution. For spin 1 one can
exploit the gauge invariance of the amplitude to setP

λ ϵ
ðλÞ
μ ðkÞϵðλÞν ðkÞ ¼ −gμν, which does not depend on any

momenta and therefore ∂

∂p jHj ¼ ∂

∂p jHj, leaving again only
a derivative contribution.
Finally, we note that Eq. (2.15) can be trivially gener-

alized to an arbitrary number n of external (charged or
neutral) particles. One simply has to repeat the derivation
above for each particle-antiparicle pair, paying special care
to whether the particles are in the initial or final states.
Thus, the general form for the LBK theorem in the
traditional formulation reads

jAðp1;…; pn; kÞj2 ¼ −
Xn
ij¼1

ηiηjQiQj
pi · pj

ðpi · kÞðpj · kÞ
jHðp1;…; pnÞj2

−
Xn
ij¼1

ηiQiQj
piμ

pi · k
Gμν

j
∂

∂pν
j
jHðp1;…; pnÞj2; ð2:16Þ

where we used η2j ¼ 1. In Secs. II C and II D we will
discuss two alternative forms of the theorem that do not
involve derivatives. Before doing so, in the next section we
analyze an important property of Eq. (2.16).

B. Nonradiative amplitude and unphysical momenta

In the traditional form of the theorem of Eq. (2.16), the
nonradiative amplitude Hðp1;…; pnÞ is affected by an
ambiguity related to the fact that it must be evaluated

outside the physical region. Indeed, in order for
Hðp1;…; pnÞ to represent a physical process with no
photon radiation, the momenta pi should fulfillP

i ηipi ¼ 0. However, the momenta pi that have been
introduced in Eq. (2.1) fulfill momentum conservation in
the radiative amplitude Aðp1;…; pn; kÞ, i.e.,

P
i ηipi ¼ k.

Therefore, in Eq. (2.16) we are in fact evaluating H using
radiative momenta, which for k ≠ 0 are unphysical for the
nonradiative process and thus induce an unphysical
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ambiguity in the final result. It is the aim of this section to
demonstrate that the use of unphysical momenta in the
nonradiative amplitude does not invalidate the consistency
of Eq. (2.16) at LP and NLP.
We start with the observation that every amplitude, and

in particular the nonradiative amplitude of the LBK
theorem Hðp1;…; pnÞ, is intrinsically ambiguous if
momentum conservation is not imposed. In fact, one can
always find a function Δ such that the transformation

Hðp1;…; pnÞ → Hðp1;…; pnÞ þ Δðp1;…; pnÞ ð2:17Þ

leads to the exact same physics, as long as Δ fulfills

Δðp1;…; pnÞδ
�X

i

ηipi

�
¼ 0: ð2:18Þ

We would like to exploit this property to show that
Eq. (2.16) does not depend on Δ, up to NNLP corrections.
To do so, we have to assign a scaling in k toΔ in Eq. (2.17).
In this regard, we note that momentum conservation for the
radiative amplitude must be fulfilled in order for Eq. (2.16)
to give physical results. Therefore, what matters for the
invariance of Eq. (2.16) under Eq. (2.17) is the value of Δ
on the momentum-conservation surface

P
i ηipi ¼ k. By

imposing this constraint, the momenta pi can be effectively
interpreted as functions piðkÞ, with an arbitrary functional
dependence over k, constrained only by total momentum
conservation. This induces an implicit dependence of
Δðp1;…; pnÞ over k through the momenta piðkÞ, such
that Δ can be expanded in k. Therefore, we can now check
whether the right-hand side (rhs) of Eq. (2.16) is invariant at
NLP under the transformation of Eq. (2.17) on the
momentum-conserving surface

P
i ηipi ¼ k. Let us con-

sider the LP and NLP cases separately. To simplify the
discussion, we will first consider the form of the LBK
theorem at the amplitude level as in Eq. (2.9) and Eq. (2.10)
in the scalar case only. We will then discuss how the
generalization for the squared amplitude (which is valid
also in the spinning case) follows analogously.
To check whether the LBK theorem in the form of

Eqs. (2.9) and (2.10) is invariant under Eq. (2.17) at LP, one
has to verify that�X

i

ηiQi
pμ
i ðkÞ

piðkÞ · k
�
Δðp1ðkÞ;…; pnðkÞÞ ¼ Oð1Þ; ð2:19Þ

or alternatively

Δðp1ðkÞ;…; pnðkÞÞ ¼ OðkÞ: ð2:20Þ

The key point here is to notice that the limit k → 0 implies
the expression

P
i ηipi ¼ 0. Then, from Eq. (2.18) one

concludes that Δ → 0 for k → 0. Since in this paper we
are restricting the scope of our analysis to a tree-level

calculation, where the absence of nonanalytic terms allows
a Laurent expansion in k, we conclude that Δ is at worst of
OðkÞ and hence Eq. (2.20) is fulfilled, thus validating the
theorem at LP.
At NLP we have to modify the consistency condition of

Eq. (2.19) as follows

X
i

ηiQi

�
pμ
i ðkÞ

k · piðkÞ
Δðp1ðkÞ;…; pnðkÞÞ

þ ηiG
μν
i
∂Δðp1ðkÞ;…; pnðkÞÞ

∂pν
i

�
¼ OðkÞ; ð2:21Þ

whereOðkÞ in the rhs represent NNLP corrections. In order
to verify this condition, once again we introduce a k
dependence in Δðp1;…; pnÞ via piðkÞ. Given that we have
to deal with derivatives, it is convenient to make the
dependence on k explicit by defining a new function
Δ̃μðp1;…; pn; kÞ which is constrained on the momen-
tum-conservation surface by

kμΔ̃μðp1;…; pn; kÞδ
�X

i

ηipi − k

�

¼ Δðp1ðkÞ;…; pnðkÞÞδ
�X

i

ηipi − k

�
: ð2:22Þ

By enforcing the delta constraints of Eq. (2.22), one can
effectively substitute k ¼ kðpÞ ¼Pi ηipi in kμΔ̃μ.
Therefore, the following relation between the derivatives
of Δ and Δ̃μ can be found

∂Δðp1;…; pnÞ
∂pμ

j
¼ d

dpμ
j
ðkνðpÞΔ̃νðp1;…; pn; kðpÞÞÞ

¼ ηjΔ̃μðp1;…; pn; kðpÞÞ þ kνðpÞ

×
∂Δ̃νðp1;…; pn; kðpÞÞ

∂pμ
j

þ ηjkνðpÞ
∂Δ̃νðp1;…; pn; kðpÞÞ

∂kμ

¼ ηjΔ̃μðp1;…; pn; kðpÞÞ þOðkÞ; ð2:23Þ

where in the last equality we dropped terms of order OðkÞ,
using the fact that Δ̃μ ¼ Oð1Þ. At this point Eq. (2.21)
follows straightforwardly. Indeed, the left-hand side of
Eq. (2.21) becomes

X
i

ηiQi

�
pμ
i

k ·pi
kνΔ̃νðp1;…; pn; kÞ

þ ηi

�
gμν −

pμ
i k

ν

pi · k

�
ηiΔ̃νðp1;…; pn; kÞ

�
þOðkÞ: ð2:24Þ
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For a given i, thanks to Eqs. (2.19) and (2.22), all terms in
Eq. (2.24) are NLP. However, because η2i ¼ 1, there is a
cancellation between the terms in Eq. (2.24), yielding�X

i

ηiQi

�
Δ̃μðp1;…; pn; kÞ þOðkÞ: ð2:25Þ

Finally, given that
P

i ηiQi ¼ 0 by charge conservation,
only a residualOðkÞ (i.e., NNLP) term remains, as required
by Eq. (2.21). We then conclude that the NLP theorem at
the amplitude level as in Eqs. (2.9) and (2.10) is invariant
under Eq. (2.17) on the surface

P
i ηipi ¼ k and thus it is

consistent also when the corresponding nonradiative ampli-
tude is evaluated with unphysical momenta.
A crucial step in the derivation above is the cancellation

of NLP ambiguities between the LP term and the derivative
term. To make the general arguments discussed above more
concrete and see this cancellation explicitly, in Appendix A
we consider the soft bremsstrahlung in a simple case of a
2 → 2 nonradiative process involving only scalar particles.
This discussion is also meant to clarify the relation with the
work of [35–37] where the validity of the traditional form
of the LBK theorem has been questioned.
The generalization of the previous arguments to the

squared-matrix elements of Eq. (2.16) straightforwardly
carries over, by simply adjusting the correct power count-
ing in k. More specifically, one has to check that Eq. (2.16)
remains invariant under7 jHj2 → jHj2 þ Δ. At LP this is
equivalent to showing that X

ij

ηiηjQiQj
piðkÞ · pjðkÞ

piðkÞ · kpjðkÞ · k

!
Δðp1ðkÞ;…; pnðkÞÞ

¼ Oðk−1Þ; ð2:26Þ

while at NLP the consistency condition reads

X
ij

ηiηjQiQj

�
piðkÞ ·pjðkÞ

piðkÞ · kpjðkÞ · k
Δðp1ðkÞ;…;pnðkÞÞ

þ pjμðkÞ
pjðkÞ · k

ηiG
μν
i
∂Δðp1ðkÞ;…;pnðkÞÞ

∂pν
i

�
¼Oð1Þ: ð2:27Þ

Both conditions can be verified with the same arguments as
outlined above, thus showing that the rhs of Eq. (2.16) does
not depend onΔ at LP and NLP. Therefore, even though the
nonradiative amplitude is evaluated with unphysical
momenta, the formulation of the theorem as in Eq. (2.16)
is consistent at NLP.
Finally, we note that the arbitrariness in the evaluation

of the nonradiative function with nonphysical momenta
was already observed by Burnett and Kroll in their original

work [2]. In fact, Burnett and Kroll proposed a prescription
to evaluate the nonradiative ampitude by shifting the
unphysical momenta by an arbitrary quantity that restore
momentum conservation in the elastic amplitude. The
argument we have presented here, instead, is more general.
By exploiting the invariance at NLP of the nonradiative
amplitude under Eq. (2.17) we have proven that Eq. (2.16) is
consistent without the need to restore momentum conser-
vation. In fact, one could restrict the transformations of
Eq. (2.17) to the special case of linear shifts on the external
momenta. Then, the proposal of Burnett and Kroll would
correspond to the specific case of shifts that fulfill momen-
tum conservation in the elastic configuration. In order to
shed light on the relation between the general argument of
this section and the strategy of Burnett and Kroll, in
Appendix B we discuss the invariance of Eq. (2.16) in
the special case where Eq. (2.17) can be represented by
linear transformations of the momenta.

C. From derivatives to shifts

In the previous section we have verified that the tradi-
tional form of the LBK theorem with derivatives of the
nonradiative process is consistent at NLP, since nonphysi-
cal ambiguities arising in the computation of the non-
radiative process are NNLP. Still, the dependence of
Eq. (2.16) on an unphysical nonradiative amplitude seems
unsatisfactory. In particular, if one intends to automatically
generate the amplitude of the nonradiative process using
publicly available tools, having a form of the theorem that
is defined from scratch for physical amplitudes with
momenta that fulfill momentum conservation is desirable.
The nonradiative process is then computed for physical
momenta and is thus unambiguous. Hence, it is natural to
ask whether it is possible to find a simpler formulation of
the theorem which is particularly suitable for numerical
implementations.
The answer is yes, as proposed in [28], building on

previous work in QCD [27]. It stems from the fact that since
derivatives are the generators of translations, one can
convert the term with derivatives in the LBK theorem into
momentum shifts in the nonradiative amplitude. In fact, one
can write Eq. (2.16) as

jAðp1;…; pn; kÞj2

¼ jSLPj2
�
1þ

X
j

δpν
j

∂

∂pν
j

�
jHðp1;…; pnÞj2; ð2:28Þ

where the shifts δpi are to be determined, while from
Eq. (2.10)

jSLPj2 ¼ −
Xn
ij¼1

ηiηjQiQj
pi · pj

ðpi · kÞðpj · kÞ
: ð2:29Þ

By comparison with Eq. (2.16), we deduce
7Note that although the definition of Δ here is different from

the one in Eq. (2.17), it obeys Eq. (2.18).
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δpν
j ¼ Qj

�X
k;l
ηkηlQkQl

pk · pl

ðpk · kÞðpl · kÞ
�

−1

×
X
i

�
ηiQipiμ

k · pi

�
Gμν

j : ð2:30Þ

Thus, one obtains

jAðp1;…; pn; kÞj2 ¼ jSLPj2jHðp1 þ δp1;…;pn þ δpnÞj2;
ð2:31Þ

i.e., a form of the LBK theorem without derivatives and
with a single LP soft factor.
We note immediately that δpν

j ¼ OðkÞ, hence the shifts
vanish at LP, as expected. Another crucial property that can
be readily verified is thatX

j

ηjδp
μ
j ¼ −kμ: ð2:32Þ

Therefore, recalling that
P

j ηjp
μ
j ¼ kμ, we deduce that

momentum conservation is restored in the nonradiative
amplitude of Eq. (2.31), which can be then computed
without the ambiguities discussed in the previous section.
Note also that by getting rid of the derivatives, we

obtained a form of the theorem with just a single positive-
defined term. Naturally, as long as the soft expansion is
meaningful, we expect the derivative term in Eq. (2.16) to
be small w.r.t. the LP term. Thus, for soft-photon momenta,
also Eq. (2.16) remains positive, as expected for a cross
section. Still, for a theorem whose scope is to extend the
range of validity of the soft approximation to larger soft
momenta, the formulation in Eq. (2.31) seems more
elegant, since it ensures that the cross section remains
positive. We will come back to this point in Sec. III.
Finally, one can easily verify that the momenta shifts are

orthogonal to each momentum, i.e.,

δpj · pj ¼ 0: ð2:33Þ

This implies that

ðpj þ δpjÞ2 ¼ m2
j þOðk2Þ; ð2:34Þ

thus fulfilling the on-shell condition up NLP. We notice
however that the condition is violated already at NNLP.
More precisely, one can verify that

ðδpjÞ2 ¼ Q2
j

�X
k;l
ηkηlQkQl

pk · pl

ðpk · kÞðpl · kÞ
�

−1
≠ 0;

ð2:35Þ

hence masses do get shifted by a nonzero NNLP amount for
nonvanishing k. This feature might be problematic when

using automatically generated amplitudes, since most of the
public tools typically require momenta to be exactly on-
shell. In the next section we discuss how to overcome this
problem.

D. Modified shifted kinematics

We seek another expression for δpi that ensures that
masses are not shifted, without spoiling the NLP terms of
the LBK theorem. Hence we require the new definition for
δpi to fulfill the following conditions:

(i) it conserves momentum to all orders in k, i.e.,X
i

ηiδpi þ k ¼ 0; ð2:36Þ

(ii) it fulfills the on-shell condition to all orders in k, i.e.,

ðpi þ δpiÞ2 ¼ m2
i ; ð2:37Þ

(iii) it reduces to Eq. (2.30) up to NNLP corrections, i.e.,

δpν
j ¼ −QjðjSLPj2Þ−1

X
i

�
ηiQi

k ·pi

��
pν
i −

pi ·pj

pj · k
kν
�

þOðk2Þ: ð2:38Þ

We can find such definition by considering the following
ansatz,

δpμ
i ¼

X
j

Aijp
μ
j þ Bikμ; ð2:39Þ

and, by imposing the constraints (i)–(iii), subsequently
determine the unknown coefficients Aij and Bi. It turns out
that these conditions are not too restrictive and one is free to
select a single solution. Details of this calculation can be
found in Appendix C. The final result reads

δpμ
i ¼ AQi

X
j

ηjQj

k · pj
pjνG

νμ
i þ 1

2

A2Q2
i jSLPj2

pi · k
kμ; ð2:40Þ

with

A ¼ 1

χ

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2χ

jSLPj2
s

− 1

1
A; χ ¼

X
i

ηiQ2
i

pi · k
; ð2:41Þ

and jSLPj2 defined in Eq. (2.29). It is straightforward to
check that the conditions of Eqs. (2.36), (2.37) and (2.38)
are satisfied by this solution. Indeed, Eq. (2.40) reduces to
Eq. (2.30) up to NNLP corrections and therefore it still
correctly reproduces the LBK theorem at NLP. Moreover,
both momentum conservation and the on-shell condition
hold to all-orders in the soft expansion.
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The price to pay is that we need to introduce spurious
NNLP terms in the hard momenta, which unavoidably affect
the numerical evaluation of the nonradiative amplitude H,
hence the prediction for the photon spectra. However, one
should bear in mind that the sensitivity ofH to NNLP effects
is not a feature that belongs only to the modified kinematics.
We encountered it also in the other two versions of the LBK
theorem. Specifically, in the traditional form with deriva-
tives,H is not uniquely defined. Thus, even though the NLP
ambiguities cancel, as we showed in Sec. II B, NNLP
spurious terms do survive. In the formulation with unmodi-
fied shifted kinematics, although there are no unphysical
ambiguities due to violation of momentum conservation,
when going from Eqs. (2.28) to (2.31) we are implicitly
adding spurious NNLP terms. Hence Eq. (2.31) is also valid
only up to NLP.
More generally, we note that a residual arbitrariness in

the final result due to missing higher-order terms is a
feature common to all perturbative expansions. In fact,
choosing a specific definition for the modified shifts in
Eq. (2.31) corresponds to the choice of a “scheme,” which
is specified by the inclusion of power-suppressed (i.e.,
beyond NLP) terms. In this regard, we note that the
modified shifts make this scheme-dependence transparent,
since the choice is process-independent. Instead, in the
traditional formulation of the LBK theorem of Eq. (2.16),
H is not univocally determined and thus the (hidden)
scheme-dependence corresponds to the choice of a specific
functional form for the amplitude. This choice is obviously
process-dependent.
The question that remains is what is the role of these

NNLP effects in a numerical computation of photon
spectra, i.e., what is the version of the LBK theorem that
gives the best approximation of the exact radiative process.
Among other things, we investigate these aspects in the
next section.

III. NUMERICAL PREDICTIONS FOR e + e− →
μ+ μ− γ AND pp → μ+ μ− γ

In the following, we present a numerical study of the
spectra of soft photons produced in association with a muon
pair in eþe− and pp collisions. The cross sections for the
ij → μþμ−ðþγÞ processes (ij ¼ eþe−; qq̄) are calculated at
the tree level, including both Z and γ exchange. We consider
the eþe− collisions at the center-of-mass (c.m.) energy of
91 GeV, i.e., the LEP1 collision energy, at which the
measurements of photon spectra were carried out by the
DELPHI collaboration [57]. The pp collisions are con-
sidered at 14 TeV c.m. energy. To ensure that we are not
sensitive to any infrared effects other than that related to
the soft photon, we impose kinematical cuts on the
transverse momentum of the muons, pT;μ > 10 GeV,
pseudorapidity of all final state particles, jηij < 2.5, as
well as the photon-muon separation, ΔR > 0.4. The
photon distributions are computed with an in-house code

using the VEGASþ algorithm [70] for performing the
phase-space integration. In the case of pp collisions, we
make use of LHAPDF6 [71] and choose to evaluate the
cross sections with NNPDF4.0 [72] LO set of parton
distribution functions. The tree-level amplitudes for the
nonradiative and (exact) radiative amplitudes are either
generated by MadGraph5@NLO [73] or calculated ana-
lytically.8 All exact (i.e., obtained without imposing the
soft-photon approximation) results have been cross-
checked against numerical results generated using the
SHERPA event generator.9

The exact predictions and the predictions to which we
refer to as NLP are obtained by integrating the exact matrix
elements or their particular NLP approximation over the
full 3-particle phase space. At this point, we note that one
could also consider the expansion of the phase-space factor
in powers of the soft momentum and truncate it at LP or
NLP depending on whether the matrix elements are
evaluated at NLP or LP, respectively. However, as dis-
cussed in the last section, the soft approximation of the
matrix elements based on the LBK theorem in all its forms
receives NNLP contributions. Therefore, integrating over
the full phase space leads to the same level of accuracy. On
the other hand, our LP predictions are obtained by impos-
ing momentum conservation on all external particles other
than the photon, which effectively corresponds to truncat-
ing the expansion of the phase-space factor at LP and
calculating the LP term of the nonradiative amplitude on
such external momenta.
We begin with a comparison of numerical predictions for

the eþe− → μþμ−γ process obtained using the NLP approx-
imations of the amplitude derived in the previous chapter,
i.e., the traditional form with derivatives of Eq. (2.16), the
form of Eq. (2.31) with the off-shell momenta shifts defined
in Eq. (2.30), and the form of Eq. (2.31) with on-shell shifts
defined in Eq. (2.40). To this aim, we use the analytic result
for the nonradiative amplitude to calculate the derivatives in
Eq. (2.16) analytically, as well as to compute Eq. (2.31)
involving the off-shell momenta shifts. We also compare the
NLP predictions to the full result where no soft approxi-
mation has been applied. The corresponding differential
distributions in photon energy ωγ are shown in Fig. 2, in the
range of 1–500 MeV (left plot) and 0.1–10 GeV (right plot).
As expected, we observe that all three approaches converge
to the exact result in the limit of small ωγ , and depart from it
with growing photon energy. However, the approximation
of the exact result provided by the formulation of the LBK

8The analytical expression for the nonradiative amplitude
used in this section is specified by Hðp1; p2; p3; p4Þ ¼
Hðsðp1; p2Þ; tðp1; p3ÞÞÞ.

9Numerical checks with MadGraph5 were also performed. The
results of MadGraph5 for the eþe− → μþμ−γ process appear to
depend on the chosen integration strategy and the way of
grouping the Feynman diagrams for calculations. We thank the
MadGraph team for clarifying that point.
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FIG. 2. Comparison of the soft-photon energy spectra calculated using three formulations of the LBK theorem discussed in this paper
with the exact (i.e., no soft expansion) result for the process e−eþ → μ−μþγ at

ffiffiffi
s

p ¼ 91 GeV. The error bands in this figure (as well as
in Figs. 3–6) show the statistical uncertainties of the Monte Carlo integration.

FIG. 3. The LP and NLP approximations and the exact result for the energy spectrum of the photon in the e−eþ → μ−μþγ process atffiffiffi
s

p ¼ 91 GeV. Error bands as in Fig. 2.
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theorem involving derivatives, Eq. (2.16), is distinctively
worse than those based on formulations involving shifting
of momenta. While the latter agree with the exact result
within 1%–2% for ωγ ≲ 500 MeV, where one naively
expects the soft approximation to work, the former differs
from the exact predictions within the same range by up to
6%. Besides, its behavior is qualitatively different: at
ωγ ≳ 6 GeV, the derivative approach gives a nonphysical
negative result, in contrast to the other predictions which
stay positive. This can be understood from Eq. (2.16) which
is a sum of two not-positive-defined terms and as such can
get negative when the expansion breaks down. As the
difference between various NLP approximations is due to
the NNLP terms, these results clearly show the relevance of
the subleading terms beyond the formal accuracy of the
LBK theorem.
We also see that the NLP approximations of the photon

spectrum calculated using the nonradiative amplitude with
momenta shifted on-shell or off-shell perform equally well
for the photon energies considered here, indicating that the

NNLP effects introduced in the on-shell shifts are not
significant. Since the formulation with momenta shifted on-
shell enables sourcing the amplitude subroutines from a
wide range of public tools, we employ this formulation in
further studies.
The NLP distributions in photon energy ωγ and trans-

verse momentum pT;γ, obtained using the radiative ampli-
tude with on-shell momenta Eq. (2.40), are then compared
to the LP and exact predictions in Figs. 3 and 4, respec-
tively. In particular, we show distributions for very soft
photons with 1 MeV < ωγ; pT;γ < 100 MeV. As discussed
above, the NLP formula relying on shifting momenta on-
shell returns predictions which provide a very good
approximation of the exact result. Up to the scale of
100 MeV, the difference between the two predictions is
at a few per mille level and grows to a 1%–2% level for ωγ

or pT;γ of up to ca. 1 GeV. In contrast, the LP approxi-
mation differs from the exact result by up to ca. 2% (6%)
and up to ca. 40% (70%) in these two ranges of ωγ (pT;γ),
correspondingly.

FIG. 4. The LP and NLP approximations and the exact result for the transverse momentum spectrum of the photon in the e−eþ →
μ−μþγ process at

ffiffiffi
s

p ¼ 91 GeV. Error bands as in Fig. 2.

SOFT-PHOTON SPECTRA AND THE LOW-BURNETT-KROLL … PHYS. REV. D 110, 016029 (2024)

016029-11



Next, we study the soft-photon spectra in the process
pp → μþμ−γ. The differential distributions in photon
energy and transverse momentum are shown in Figs. 5
and 6, respectively. The photon energy spectrum in Fig. 5 is
presented in both the partonic c.m. frame and the laboratory
frame. No perceptible difference is observed between the
results in the two frames for our choice of kinematical cuts.
Perhaps not surprisingly, the behavior of the LP and NLP
approximations is very similar to the one found for the
eþe− collisions. Quantitatively, however, in the ranges of
ωγ and pT;γ studied here, the LP and NLP predictions
appear to be relatively closer to the exact results than in the
eþe− case. To be more precise, within an accuracy of
roughly 10%, the LP spectrum deviates from the exact
result for ωγ ≳ 400 MeV, pT;γ ≳ 150 MeV (eþe−) and
ωγ ≳ 1 GeV, pT;γ ≳ 500 MeV (pp). The NLP predictions
reach this level of deviation only at pT;γ ≳ 1 GeV in the
eþe− case, and at pT;γ ≳ 10 GeV in the pp case, i.e.,
outside of the soft regime.

As a final remark, we note that the photon spectra of this
section have been generated with tree-level calculations.
Therefore, one could wonder towhat extent these theoretical
predictions can be compared with data and what is the role
of radiative corrections in QED and QCD, respectively. In
this regard, we note that the observables we considered are
the transverse momentum pT;γ and the energy ωγ of the
emitted photon, and not of the muon pair. In the latter case,
the (assumed undetected) soft photon emission would lead
to the appearance of logarithmic QED corrections, gener-
ated by integrating the same LP and NLP factors studied in
this paper over the full phase space of the photon. In this
work, however, we only study the spectra of bremsstrahlung
photons, whose momenta by definition are not fully
integrated. The evaluation of the impact of multiple (unde-
tected) photon emissions on the pT of the muon pair would
further require resummation of the corresponding QED
logarithms [74–82]. In the case of proton-proton collisions,
a full description of the pT spectra of the muon pair at small

FIG. 5. The LP and NLP approximations and the exact result for the energy spectrum of the photon in the partonic c.m. frame (top row)
and the laboratory frame (bottom row) in the pp → μ−μþγ process at

ffiffiffi
s

p ¼ 14 TeV. Error bands as in Fig. 2.
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pT would additionally need to take into account QCD
effects, most notably resummation of soft gluon emission
corrections (see, e.g., [83,84] and references therein).
Similarly, one could study the impact of multiple soft-
photon emissions (and soft-gluon emissions in the case of
pp collisions) on the spectra of the photon produced in
association with the μþμ− pair. Such studies are, however,
beyond the scope of the current work.
Finally, it is worth stressing that, on top of the higher-

order corrections to the nonradiative amplitude, also the
soft factors at LP and NLP multiplying the nonradiative
cross section can be modified by real and virtual effects. In
this regard we note that the absence of collinear singu-
larities in massive QED makes the LP factor of Eq. (2.10)
tree-level exact, while in QCD (and in QED with para-
metrically small masses) the LP factor receives corrections
at higher loops [11]. The NLP factor in Eq. (2.10) on the
other hand is modified already at one-loop, both in the
massive case due to a nonvanishing soft-region [31] and in
the massless case due to collinear effects [28]. In these
cases the NLP factorization is modified with logarithmic
corrections, that can be large and thus would invalidate the
predictive power of finite-order results. The impact of
these effects is left for future studies.

IV. CONCLUSIONS

In this paper, we have presented an extensive study of the
LBK theorem and its implications on numerical predictions
for the soft-photon spectra.
First, motivated by recent discussions in the literature

[35–37], we have addressed the consistency of the LBK
theorem. As known for a long time, in the original
formulation of the theorem [1] the nonradiative amplitude
is calculated on a set of unphysical momenta. Seen in
the most general way, this violation of momentum

conservation leads to an ambiguity in the functional form
of the nonradiative amplitude. We have provided a proof
that the aforementioned ambiguity can only affect the
expansion of the radiative amplitude starting from NNLP
in soft-photon energy, i.e., beyond the formal accuracy of
the LBK theorem, thus proving the validity of the LBK
theorem at NLP. In doing so, we have generalized the
remark by Burnett and Kroll by observing an invariance of
the theorem at NLP under a specific transformation of the
nonradiative amplitude. The consequence of this invari-
ance is the presence of many equivalent forms of the LBK
theorem, which include the original formulation by Low
as one possibility.
Among the different versions of the theorem, for

practical reasons, it is particularly attractive to consider
those that restore momentum conservation in the calcu-
lation of the nonradiative amplitude. Such restoration can
be achieved by reformulating the LBK theorem in terms of
the nonradiative amplitude calculated on momenta which
values are modified with respect to the momenta of the
radiative amplitude. The modification that has been put
forward in the literature [27,28,67] relies on adding small
shifts of the order of the soft-photon momentum k. Apart
from reviewing the derivation of the reformulated LBK
theorem in terms of shifted momenta, we have proposed
expressions for the momenta shifts which not only restore
momentum conservation, but also ensure that each of the
shifted momenta is on-shell. In this way, we facilitate the
generation and numerical calculation of the nonradiative
amplitude with a wide range of publicly available tools.
We have also studied the quality of the soft approxi-

mation provided by the LBK theorem in its various
formulations on the example of the eþe− → μþμ−γ proc-
ess, analyzed at LEP1 energies. We have found a remark-
able improvement in the quality of the approximation for

FIG. 6. The LP and NLP approximations and the exact result for the transverse momentum spectrum of the photon in the pp → μ−μþγ
process at

ffiffiffi
s

p ¼ 14 TeV. Error bands as in Fig. 2.

SOFT-PHOTON SPECTRA AND THE LOW-BURNETT-KROLL … PHYS. REV. D 110, 016029 (2024)

016029-13



the formulations involving shifts with respect to the
formulation of the theorem with derivatives, although
we have considered the latter only for a specific form
of the nonradiative amplitude. Depending on the required
quality of the approximation, NNLP effects can be thus
numerically relevant and the form of the LBK theorem
used to calculate the NLP approximation of the soft-
photon spectra needs to be chosen carefully. In this regard,
our studies indicate that the formulations involving shifts
should be preferred. Notably, for the implementation
involving on-shell shifts, we have used the amplitudes
generated by the MADGRAPH5 code, in this way demon-
strating the feasibility of the calculations for a wide range
of processes, given a corresponding phase-space integrat-
ing code is available.
Despite the long history of the LBK theorem, to the best

of our knowledge, no study in the literature has explicitly
identified when power-suppressed effects become visible
in the soft-photon spectra. In order to address this question,
we compared the exact, LP and NLP results for the
eþe− → μþμ−γ process at the LEP1 energy of 91 GeV
and the pp → μþμ−γ process at the LHC energy of 14 TeV.
We have studied various ranges of photon energy and
transverse momentum. For the cases studied here, the
quality of the NLP approximation in a reasonably soft
regime is of the order of, or better than, one percent, even
though the specific results depend on the process, observ-
able and the analysis set-up. The quality of the LP
approximation is significantly worse, meaning that for
measurements where a precision of a few percent can be
reached in the soft regime, the LP might not provide a good
enough approximation. Correspondingly, our results sug-
gest that in order to access the power-suppressed terms, a
percent-level precision is needed, especially in the case of
the pp → μþμ−γ process at the LHC. Obviously, this is
only a crude estimate. A more precise statement would
require a careful analysis of all theoretical and experi-
mental uncertainties.
The results of this work open up the possibility of many

follow-up analyses. The two processes we studied here
involve simple leptonic final states and central rapidity
photons. Given that the excess in the soft-photon spectrum
was observed for eþe− collisions in hadronic final states, it
would be interesting to investigate the impact of NLP
corrections on the predictions for the associated photon
production with jets. In this regard, it would also be
interesting to extend the analysis by including QCD
corrections at 1-loop [28], which will be relevant for both
initial and final state hadrons. In the long run, the studies
need to be extended to pp collisions resulting in various
hadronic final states with photons at forward rapidities, as
planned to be investigated with the ALICE 3 detector [66].
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APPENDIX A: CASE STUDY: 2 → 2 SCATTERING

In this section we apply the general arguments of
Sec. II B concerning the traditional form of the LBK
theorem with derivatives to the simple case of photon
bremsstrahlung in pion scattering. In doing so, we
compare with the analysis of Lebiedowicz, Nachtmann,
Szczurek (LNS) [35], showing that their result is equiv-
alent to the traditional form of the LBK theorem and with
previous studies in the literature.

1. LBK theorem for π −π0 → π −π0γ

Following [1,35], and using the notation established
in [35], we consider the following process:

π−ðpaÞπ0ðpbÞ → π−ðp0
1Þπ0ðp0

2ÞγðkÞ;

with

pa þ pb ¼ p0
1 þ p0

2 þ k:

For this process, the LBK theorem in the form of Eq. (2.7),
adapted to the case of scalar particles, reads
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Aμðpa; pb; p0
1; p

0
2; kÞ ¼ e

�
pμ
a

k · pa
Hðpa; pb; p0

1; p
0
2Þ þGμν

a
∂Hðpa; pb; p0

1; p
0
2Þ

∂pν
a

�

− e
�

p0μ
1

k · p0
1

Hðpa; pb; p0
1; p

0
2Þ −Gμν

1

∂Hðpa; pb; p0
1; p

0
2Þ

∂p0ν
1

�
þOðkÞ

¼ e

�
pμ
a

k · pa
−

p0μ
1

k · p0
1

þGμν
a

∂

∂pν
a
þGμν

1

∂

∂p0ν
1

�
Hðpa; pb; p0

1; p
0
2Þ þOðkÞ: ðA1Þ

To show the ambiguity in the calculation of the nonradiative amplitude with radiative kinematics, we consider the following
two choices for H:

H1 ¼ Hðs0L; t1Þ; H2 ¼ Hðs0L; t2Þ; ðA2Þ

where we defined

s0L ¼ pa · pb þ p0
1 · p

0
2; t1 ¼ ðpa − p0

1Þ2; t2 ¼ ðpb − p0
2Þ2: ðA3Þ

Here, HðsL; tÞ is the amplitude for the nonradiative process π−ðpaÞπ0ðpbÞ → π−ðp1Þπ0ðp2Þ. Obviously,
pa þ pb ¼ p1 þ p2, so in the elastic limit t1 ¼ ðpa − p1Þ2 and t2 ¼ ðpb − p2Þ2, hence we have t1 ¼ t2, and thusH1 ¼ H2.
Now we consider

∂Hi

∂pν
a
¼ ∂Hi

∂s0L

∂s0L
∂pν

a
þ ∂Hi

∂ti

∂ti
∂pν

a
;

∂Hi

∂p0ν
1

¼ ∂Hi

∂s0L

∂s0L
∂p0ν

1

þ ∂Hi

∂ti

∂ti
∂p0ν

1

; ðA4Þ

where no sum over the index i ¼ 1; 2 has been assumed. The derivatives of s0L in Eq. (A4) read

∂s0L
∂pν

a
¼ pbν;

∂s0L
∂p0ν

1

¼ p0
2ν:

The terms with derivatives of ti are different for i ¼ 1; 2, and are given by

∂t1
∂pν

a
¼ 2ðpa − p0

1Þν;
∂t1
∂p0ν

1

¼ −2ðpa − p0
1Þν;

∂t2
∂pν

a
¼ ∂t2

∂p0ν
1

¼ 0: ðA5Þ

Putting the above equations together we obtain two seemingly distinct forms for the LBK theorem, depending on whether
we take H ¼ H1 or H ¼ H2 in Eq. (A1). They read

Aμðpa; pb; p0
1; p

0
2; kÞ ¼ e

��
pμ
a

k · pa
−

p0μ
1

k · p0
1

�
þ
�
pμ
b −

pb · k
pa · k

pμ
a þ p0μ

2 −
p0
2 · k

p0
1 · k

p0μ
1

�
∂

∂s0L

− 2ðpa − p0
1Þ · k

�
pμ
a

k · pa
−

p0μ
1

k · p0
1

�
∂

∂t1

�
H1 þOðkÞ;

Aμðpa; pb; p0
1; p

0
2; kÞ ¼ e

��
pμ
a

k · pa
−

p0μ
1

k · p0
1

�
þ
�
pμ
b −

pb · k
pa · k

pμ
a þ p0μ

2 −
p0
2 · k

p0
1 · k

p0μ
1

�
∂

∂s0L

�
H2 þOðkÞ: ðA6Þ

If one ignores the fact that H1 and H2 are not the same, the two expressions indeed yield different results, thus seemingly
invalidating the LBK theorem. However, by relating H1 and H2, the difference disappears at NLP. In fact, one has

H2 ¼ Hðs0L; t2Þ ¼ Hðs0L; t1Þ þ ðt2 − t1Þ
∂Hðs0L; t1Þ

∂t1
þOðk2Þ: ðA7Þ
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Using then the expression

t2 − t1 ¼ ðpb − p0
2Þ2 − ðpa − p0

1Þ2
¼ ðpa − p0

1 − kÞ2 − ðpa − p0
1Þ2

¼ −2k · ðpa − p0
1Þ þOðk2Þ; ðA8Þ

we get

H2 ¼ H1 − 2k · ðpa − p0
1Þ
∂H1

∂t1
þOðk2Þ; ðA9Þ

which accounts for the difference between the two previous
expressions. This is the cancellation we saw in Sec. II B,
where we proved it in the general case.

2. Comparison between LNS and the original
work of Low

The soft bremsstrahlung in pion scattering has been
computed also by the authors of Ref. [35]. Their final
result, which is given by Eq. (3.27) of their paper, reads

Aμ ¼ eHðsL; tÞ
�

pμ
a

pa · k
−

p0μ
1

p0
1 · k

�

þ 2e
∂HðsL; tÞ

∂sL

�
pμ
b −

pb · k
pa · k

pμ
a

�

− 2e
∂HðsL; tÞ

∂t
½ðpa − p1Þ · k − pa · l1�

×

�
pμ
a

pa · k
−

pμ
1

p1 · k

�
þOðkÞ; ðA10Þ

where the nonradiative amplitudeH is written as a function
of the two variables sL and t

sL ¼ pa ·pb þp1 ·p2; t¼ ðpa −p1Þ2 ¼ ðpb −p2Þ2:
ðA11Þ

The momenta fulfill the relations

pa þ pb ¼ p1 þ p2 ¼ p0
1 þ p0

2 þ k ðA12Þ

and li are defined as a shift between p and p0 as follows:

li ¼ pi − p0
i: ðA13Þ

As done in [1], here we set k2 ¼ 0 and drop all terms
proportional to kμ since we assume all final states to be
on-shell.

The authors of [35] compare then Eq. (A10) to the one
derived by Low in Ref. [1], which they report in Eq. (3.29)
of their paper. It reads

Ãμ ¼ eHðsL; tÞ
�

pμ
a

pa · k
−

pμ
1

p1 · k

�
þ e

∂HðsL; tÞ
∂sL

×

�
pμ
b −

pb · k
pa · k

pμ
a þpμ

2 −
p2 · k
p1 · k

pμ
1

�
þOðkÞ: ðA14Þ

They conclude that, while the LP terms agree, there is a
discrepancy in the NLP terms. We first point out that (A14)
does not precisely coincide with the result given by Low in
equation (2.16) of [1]. In fact, by looking at Eqs. (2.1) and
(2.16) in [1], one concludes that the correct expression
should be10

Aμ ¼ eHðs0L; t2Þ
�

pμ
a

pa · k
−

p0μ
1

p0
1 · k

�
þ e

∂Hðs0L; t2Þ
∂s0L

×

�
pμ
b −

pb · k
pa · k

pμ
a þp0μ

2 −
p0
2 · k

p0
1 · k

p0μ
1

�
þOðkÞ; ðA15Þ

with s0L and t2 defined as in Eq. (A3). This form of the LBK
theorem is indeed what we obtained in Eq. (A6).
A careful comparison of expressions Eqs. (A10) and

(A15) shows that they are in perfect agreement with each
other, up to OðkÞ. To simplify the comparison, it is worth
noticing that p and p0 are equal up to OðkÞ corrections.
Therefore, to orderOðkÞ, the difference between p and p0 is
only relevant for the first term, and Eq. (A15) can be
rewritten as

Aμ ¼ eHðs0L; t2Þ
�

pμ
a

pa · k
−

p0μ
1

p0
1 · k

�
þ e

∂HðsL; tÞ
∂sL

×

�
pμ
b −

pb · k
pa · k

pμ
a þpμ

2 −
p2 · k
p1 · k

pμ
1

�
þOðkÞ: ðA16Þ

To compare Eqs. (A10) with (A16) it is necessary to use the
formula

Hðs0L; t2Þ ¼ HðsL; tÞ þ δs0L
∂H
∂sL

þ δt2
∂H
∂t

; ðA17Þ

where we defined

10In the final stages of writing this paper, we have been
informed that the authors are aware of this mistake.
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δs0L ¼ s0L − sL ¼ p0
1 · p

0
2 − p1 · p2 ¼ ðp1 − l1Þ · ðp2 − l2Þ − p1 · p2

¼ −ðl1 · p2 þ l2 · p1Þ þOðk2Þ ¼ −ðp1 þ p2Þ · kþOðk2Þ
¼ −ðpa þ pbÞ · kþOðk2Þ;

δt2 ¼ t2 − t ¼ ðpb − p0
2Þ2 − ðpb − p2Þ2 ¼ ðpb − p2 þ l2Þ2 − ðpb − p2Þ2

¼ 2l2 · ðpb − p2Þ þOðk2Þ ¼ −2ðk − l1Þ · ðpa − p1Þ þOðk2Þ
¼ −2½ðpa − p1Þ · k − pa · l1� þOðk2Þ: ðA18Þ

Here we used the relations p1 · l2 ¼ p1 · k and p2 · l1 ¼
p2 · k, which can be derived from the two relations
l1 þ l2 ¼ k and pi · li ¼ 0 (i.e., Eqs. (3.17) and (3.22)
in [35]).
Inserting now Eq. (A17) into Eq. (A16), we see that the

term proportional to H is identical to the one in Eq. (A10).
Additionally, the term proportional to ∂H

∂t is given by

eδt2
∂H
∂t

�
pμ
a

pa · k
−

p0μ
1

p0
1 · k

�
¼ −2e

∂H
∂t

½ðpa − p1Þ · k− pa · l1�

×

�
pμ
a

pa · k
−

p0μ
1

p0
1 · k

�
: ðA19Þ

The rhs of Eq. (A19) coincides with the third term in
Eq. (A10) after dropping the prime in the last parenthesis
(this is possible because this term is already a NLP term,
and thus the difference due to replacing p with p0 is a
NNLP effect). Finally, the term proportional to ∂H

∂sL
has now

the following expression

eδs0L
∂H
∂sL

�
pμ
a

pa · k
−

pμ
1

p1 · k

�

þ e
∂H
∂sL

�
pμ
b −

pb · k
pa · k

pμ
a þ pμ

2 −
p2 · k
p1 · k

pμ
1

�
; ðA20Þ

where again the prime in the first term can dropped because
δs0L is already of order OðkÞ. After some algebra, it is easy
to show that this term reads

2e
∂H
∂sL

�
pμ
b − k · pb

pμ
a

pa · k

�
; ðA21Þ

in perfect agreement with the second term in Eq. (A10).
Therefore, the LNS result [Eq. (A10)] and Low’s original
result [Eq. (A15)] are completely equivalent at NLP.
We note also that although here we focused on pion

scattering, we expect analogous arguments to hold for the
proton scattering discussed in [36,37].

3. Comparison between LNS and other literature

A comparison between the result of LNS, i.e., Eq. (A10),
and the previous literature has been carried out in the
appendix of [35]. It is claimed there that all previous known
forms of the LBK theorem are problematic. In particular,
LNS claim that the result of Ref. [24] is not consistent,
since it depends on an arbitrary quantity, as discussed
below. However, a careful analysis shows that this claim
has no valid foundation, since the dependence on such
quantity vanishes.
The argument in [35] is the following. In [24] Low’s

theorem is written in a form that depends on the following
four quantities:

I1 ¼
�
−l1 ·

∂

∂p1

− l2 ·
∂

∂p2

− k ·
∂

∂pa

�
Hðpa; pb; p1; p2Þ;

I2 ¼
�
−l1 ·

∂

∂p1

− l2 ·
∂

∂p2

þ k ·
∂

∂p1

�
Hðpa; pb; p1; p2Þ;

Iμ3 ¼
∂Hðpa; pb; p1; p2Þ

∂paμ
; Iμ4 ¼

∂Hðpa; pb; p1; p2Þ
∂p1μ

:

ðA22Þ

If one then restricts the analysis to an amplitude H that
depends solely on the quantity p2

a þ p2
1 − p2

b − p2
2, as done

in [35], the elastic amplitude is given by a constant, since11

Hðpa;pb;p1; p2Þ ¼ fðp2
a þp2

1 −p2
b −p2

2Þ
¼ fðm2

a þm2
1 −m2

b −m2
2Þ≡ f0: ðA23Þ

Thus, the derivatives of the elastic amplitude vanish and the
final result only depends on the value of f0. However, if one
considers the corresponding expressions in Eq. (A22), they
become

I1 ¼ −2ðk · paÞf00; I2 ¼ 2ðk · p1Þf00;
Iμ3 ¼ 2pμ

af00; Iμ4 ¼ 2pμ
1f

0
0: ðA24Þ

11Note that the definition of η and ξ given by Eq. (14) in [24]
implies that the elastic momenta are not on-shell. However, this
detail is irrelevant for our discussion in this section.
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Therefore, in Eq. (A24) there is a dependence on f00 (the
derivative of f evaluated on nonradiative momenta). f00 is
an arbitrary quantity, which seems to invalidate the con-
sistency of the result in [24].
To see why this argument does not imply an incon-

sistency of the LBK theorem in the form given in Ref. [24],
a more detailed analysis of the complete expressions is
needed. A direct comparison between [24,35] is unfortu-
nately not possible, since the processes under consideration
are different (e−π0 → e−π0 for ref. [24], and π−π0 → π−π0

for LNS). The comparison thus requires a dictionary to
relate the theorems with fermions and scalar fields, respec-
tively, which is summarized in Table I. After carefully
taking this translation into account, Low’s theorem in the
notation of Ref. [24] [see Eq. (20) there] reads

Aμ ¼ e

�
p0μ
1

p0
1 · k

−
pμ
a

pa · k

�
Hðpa; pb; p1; p2Þ

− e

�
pμ
a

pa · k
I1 −

pμ
1

p1 · k
I2 þ Iμ3 þ Iμ4

�
: ðA25Þ

In particular, it is worth noting that the expression for Ii in
Eq. (A25) enter via the following combinations

pμ
aI1 þ ðpa · kÞIμ3; pμ

1I2 − ðp1 · kÞIμ4: ðA26Þ

Therefore, after inserting the expressions of Eq. (A24) in
Eq. (A25), the dependence on f00 vanishes. Hence, for the
case of Eq. (A23) studied in this section, Eq. (A25) is
consistent with other formulations of the LBK theorem,
such as LNS [Eq. (A10)] and Low’s [Eq. (A15)].

APPENDIX B: LBK INVARIANCE UNDER
MOMENTA TRANSFORMATION

We consider here the invariance under Eq. (2.17) in the
case where Δ arises from linear transformations of the
momenta in H. Specifically, we prove that, at NLP,
Eq. (2.16) is invariant under the following transformation,

Hðp1;…; pnÞ → Hðp̃1;…; p̃nÞ; ðB1Þ

with

p̃iðkÞ ¼ pi þ cikþOðk2Þ; ðB2Þ

where the coefficients ci are arbitrary. To verify the
invariance, let us apply Eq. (B1) to Eq. (2.16). We get

jAðp1;…; pn; kÞj2 ¼
Xn
ij¼1

ð−ηiηjQiQjÞ
pi · pj

pi · kpj · k
jHðp̃1;…; p̃nÞj2

þ
Xn
ij¼1

ð−ηiηjQiQjÞ
piμ

pi · k
ηj

�
gμν −

pμ
j k

ν

pj · k

�
d

dpν
j
jHðp̃1;…; p̃nÞj2; ðB3Þ

where partial derivatives have been replaced with total derivatives due to the nontrivial functional dependence inside the
nonradiative amplitude. The function jHj2 can be simply expanded in k by using the functional dependence of Eq. (B2), to get

jHðp̃1;…; p̃nÞj2 ¼ jHðp1;…; pnÞj2 þ kμ
X
i

ci
∂

∂pμ
i
jHðp1;…; pnÞj2 þOðk2Þ: ðB4Þ

To proceed further, we note that so far momentum conservation has not been imposed. We can do so by making the
dependence over the momenta pi explicit in the soft momentum, i.e., by enforcing kμ → kμðp1;…; pnÞ ¼

P
i ηip

μ
i .

Subsequently, by differentiating Eq. (B4) we get

d
dpν

j
jHðp̃1;…; p̃nÞj2 ¼

∂

∂pν
j
jHðp1;…; pnÞj2 þ δμνηj

X
i

ci
∂

∂pμ
i
jHðp1;…; pnÞj2 þOðkÞ: ðB5Þ

TABLE I. Relation between the notations used in [24,35].

Gervais
Lebiedowicz, Nachtmann,

Szczurek

1

=p−m
1

p2−m2

γμ pμ þ p0
μ

u; v; ū; v̄ 1
p1, p0

1 pa

k1, k01 pb
p2 p0

1

k2 p0
2

p0
2 p1

k02 p2

q k
η1, ξ1 0
ξ2 −l1
η2 −l2
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Note that since Eq. (B4) is expanded up toOðk2Þ, we have to truncate Eq. (B5) toOðkÞ because differentiating k with respect
to the momenta pi reduces the order of the expansion. In particular, dOðk2Þ

dpν
j

¼ OðkÞ. This is not a problem, since the lhs of

Eq. (B5) is multiplied by an expression which is suppressed w.r.t. the other term in Eq. (B3) by one power of k. Therefore,
plugging Eqs. (B4) and (B5) into Eq. (B3) we get

jAðp1;…; pn; kÞj2 ¼
Xn
ij¼1

ð−ηiηjQiQjÞ
pi · pj

pi · kpj · k
jHðp1;…; pnÞj2

þ
Xn
ij¼1

ð−ηiηjQiQjÞ
piμ

pi · k
ηj

�
gμν −

pμ
j k

ν

pj · k

�
∂

∂pν
j
jHðp1;…; pnÞj2 þ RðciÞ; ðB6Þ

where

RðciÞ ¼
Xn
ij¼1

ð−ηiηjQiQjÞ
pi · pj

pi · kpj · k
kμ
X
m

cm
∂

∂pμ
m
jHðp1;…; pnÞj2

þ
Xn
ij¼1

ð−ηiηjQiQjÞ
pi
μ

pi · k
ηj

�
gμν −

pμ
j k

ν

pj · k

�
ηj
X
m

cm
∂

∂pν
m
jHðp1;…; pnÞj2 þOð1Þ: ðB7Þ

To prove the invariance of Eq. (2.16) under Eq. (B1) at NLP,
we have to show that the remainder term RðciÞ, which
depends on the arbitrary coefficients ci, is Oð1Þ (i.e.,
NNLP). This follows straightforwardly by first noting that,
thanks to η2j ¼ 1, the term in the first line of Eq. (B7) cancels
with the analogous term in the second line. The term
proportional to gμν then vanishes since

P
j ηjQj ¼ 0 by

charge conservation, thus leaving RðciÞ ¼ Oð1Þ, as desired.
Having established that the LBK theorem in the form of

Eq. (2.16) is invariant under Eq. (B1) at NLP, the
consistency of the theorem [i.e., the possibility to evaluate
H on a set of unphysical momenta as in Eq. (2.16)] follows
as a corollary. In fact, the invariance under Eq. (B1)
guarantees that at NLP there is an infinite number of
equivalent forms of the theorem, one for each choice of the
coefficients ci. In particular, the unphysical momenta of
Eq. (2.16) corresponds to the trivial transformation with
ci ¼ 0. On the other hand, we can choose ci so that
momentum conservation for nonradiative amplitude is
restored (as in the strategy of Burnett and Kroll), i.e.,

X
i

ηici ¼ −1;
X
i

ηip̃i ¼ 0: ðB8Þ

Therefore, the form of the theorem in Eq. (2.16) whereH is
evaluated on a set of unphysical momenta is equivalent, up
to NNLP corrections, to the form where momentum
conservation is restored (and thus no ambiguity is present).
Note that although the argument presented in this

Appendix is quite general, it fails when the invariance of
the amplitude cannot be represented by linear shifts. A
simple example is given by a constant amplitude that does
not depend on the external momenta. In that case, for the

consistency of Eq. (2.16) one has to rely on the more
general argument of Sec. II B.

APPENDIX C: CALCULATION
OF THE MODIFIED SHIFTS

We show here the calculation that leads to the expression
in Eq. (2.40). We consider the conditions (i)–(iii) of
Eqs. (2.36), (2.37) and (2.38). The most general form
for δpi reads

δpμ
i ¼

X
j

Aμν
ij pjν þ Bμν

i kν: ðC1Þ

However, it is enough for our purposes to consider

δpμ
i ¼

X
j

Aijp
μ
j þ Bikμ: ðC2Þ

We can further restrict our ansatz by assuming the set
fpμ

i ; k
μg to be linearly independent. Although clearly not

true in general, this is not a problem since we are only
interested in finding a single solution. With this assumption,
we can now insert Eq. (C2) into Eqs. (2.36), (2.37) and
(2.38) to determine the coefficients Aij and Bi. We get

(i)

X
i;j

ηiAijp
μ
j þ

�X
i

ηiBi þ 1

�
kμ ¼ 0; ðC3Þ
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which givesX
i

ηiAij ¼ 0;
X
i

ηiBi ¼ −1: ðC4Þ

(ii)

�X
j
ðδij þ AijÞpμ

j þ Bikμ
�

2

¼ m2; ðC5Þ

which gives

X
j;k

ð2δijAik þ AijAikÞðpj · pkÞ

þ 2
X
j

ðδijBi þ AijBiÞðpj · kÞ ¼ 0: ðC6Þ

(iii)

Aij ¼ −QiðjSLPj2Þ−1
ηjQj

k · pj
þOðk2Þ;

Bi ¼ QiðjSLPj2Þ−1
X
j

�
ηjQj

k · pj

�
pj · pi

pi · k
þOðkÞ

¼ −
X
j

Aij
pi · pj

pi · k
þOðkÞ: ðC7Þ

As we can see, the conditions given by Eqs. (C4), (C6)
and (C7) are not too restrictive. Thus, we still have the
freedom to select a single solution by introducing a scalar
coefficient A such that we have

Aij ¼ AQi
ηjQj

k · pj
: ðC8Þ

Then, the condition
P

i ηiAij ¼ 0 is immediately satisfied
by charge conservation. The remaining conditions now
yield

X
i

ηiBi ¼ −1; ðC9Þ

2AQi

X
j

ηjQj
pi · pj

k · pj
− A2Q2

i jSLPj2 þ 2Biðpi · kÞ ¼ 0;

ðC10Þ

A¼ −1
jSLPj2

þOðk3Þ Bi ¼
Qi

jSLPj2
X
j

ηjQj

k ·pj

pi ·pj

pi · k
þOðkÞ:

ðC11Þ

We can finally determine the coefficients A and Bi.
Specifically, for the coefficients Bi we can use Eq. (C10),
which yields

Bi¼−AQi

X
j

ηjQj
pi ·pj

ðpi ·kÞðpj ·kÞ
þ1

2

A2Q2
i jSLPj2
pi ·k

: ðC12Þ

Assuming the behavior of A given in Eq. (C11), the second
term in Eq. (C12) isOðkÞ, so Bi have the correct limit given
in Eq. (C11). To determine A, we can use Eq. (C9), which
yields

1 ¼ −
X
i

ηiBi ¼ A
X
i;j

ηiQiηjQj
pi · pj

ðpi · kÞðpj · kÞ

−
A2jSLPj2

2

X
i

ηiQ2
i

pi · k

¼ −AjSLPj2 −
A2jSLPj2

2

X
i

ηiQ2
i

pi · k
; ðC13Þ

which is a quadratic equation. Defining χ ¼Pi
ηiQ2

i
pi·k

, we
find that

A ¼ 1

χ

0
@−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2χ

jSLPj2
s 1

A: ðC14Þ

Only the þ solution has the correct behavior at low k.
Combining thus Eqs. (C2), (C8), (C12) and (C14), we find
the expression for the modified shifts as given by
Eq. (2.40).
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