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We analyze the vacuum structure of an eight-dimensional non-Abelian gauge theory with a compactified
four-dimensional torus as the extra dimensions. As a nontrivial background configuration of the gauge field
of an SU(n) gauge group, we suppose a magnetic flux in two extra dimensions, and continuous Wilson line
phases are also involved. We introduce matter fields and calculate the mass spectrum of low-energy modes
appearing in a four-dimensional effective theory in an SU(3) model as an explicit example. As expected,
potentially tachyonic states in four-dimensional modes appear from extra-dimensional gauge fields that
couple to the flux background since the gauge group is simply connected. The Wilson line phases give a
nonvanishing contribution to their masses, and we have a low-energy mass spectrum without tachyonic
states, given that these phases take an appropriate value. To verify the validity of the values of the Wilson
line phases, we examine the one-loop effective potential for these phases and explicitly show the
contribution from each type of field present in our model. It is clarified that, although there seems to be no
local minimum in the potential for the Wilson line phases in the pure Yang-Mills case, by including matter

fields, we could find a vacuum configuration where tachyonic states disappear.
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I. INTRODUCTION

The Standard Model (SM) has shown to be very
successful, but there still remain many mysteries to be
explored. The past decades have seen a significant increase
in research on higher-dimensional theories as a potential
framework for physics beyond the SM. For instance,
identifying the Higgs as a scalar originating from an
extra-dimensional gauge field, a model known as Gauge-
Higgs Unification (GHU) [1-4], gives a new perspective
on understanding its origin and solving the hierarchy
problem [5]. Thus, exploring extra-dimensional gauge
theories can provide insights into new physics beyond
the limitations of our usual four dimensions.

Nontrivial background configurations for extra-
dimensional gauge fields can lead to interesting phenom-
ena. A constant background value, which is the vacuum
expectation value (VEV) of the extra-dimensional gauge
fields, is closely related to the physical degrees of freedom
of Wilson line (WL) phases. Since these phases parametrize
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physical vacua along flat directions of tree-level potentials
for gauge fields, they are interesting candidates for the
Higgs in GHU models. Consequently, the Higgs obtains a
finite effective potential through quantum corrections and a
finite mass even at the higher-loop level [6,7], characterized
by the size of the extra dimensions, also clarifying the origin
of the electroweak symmetry breaking [5,8—17]. In the
context of Grand Unified Theories (GUTs) [18], WL phases
can contribute to the spontaneous breaking of a more
extensive gauge symmetry to the SM symmetry [19-34].
Moreover, introducing a constant magnetic flux in the
background configuration brings extra phenomenologically
desirable properties. First, having a flux background gives
rise to chiral fermions in the effective theory [35,36], which
is one fundamental feature of the SM. They exhibit a
generation structure that can be used to explain the existence
of multiple quark-lepton generations [37—45] and the flavor
structure [46-52], and the flux was shown to be a source for
breaking supersymmetry (SUSY) [53].

There have been some recent studies considering the
flux background in various setups. In models with more
than six dimensions, massless scalars arising in the four-
dimensional (4D) effective theory were identified as the
Nambu-Goldstone (NG) bosons associated with the trans-
lational symmetry that is broken by the magnetic flux. For
Abelian gauge theories, quantum corrections of these
scalars were shown to cancel in both SUSY and non-
SUSY cases [54-59]. There are also studies focused on
non-Abelian cases [60-63].
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Recently, we have investigated the mass spectra of a six-
dimensional (6D) SU(n) gauge theory with a magnetic
flux background in the extra-dimensional torus [64]. We
have also included WL phases in the background and
could verify that their values along the flux direction have
no physical contribution to the masses. In models with a
simply connected gauge group, mass spectrum and vac-
uum structure generally become complicated compared to
the Abelian case since tachyonic states appear in a simple
setup [64]. A few attempts have been made to stabilize this
type of system [65,66], and tachyonic condensation was
discussed in a SUSY model [67]. However, there is less
research on vacuum structure in non-Abelian cases,
including quantum corrections for potentials of the WL
phases, which could lead to the development of phenom-
enologically interesting models.

In this work, we expand our setup to eight dimensions to
address the above issue. The extra dimensions are com-
pactified on a 4D torus with magnetic flux in only two
directions. We examine dynamics of WL phases along the
remaining two directions, whose values can now affect the
masses of low-energy modes as a nonvanishing contribu-
tion. We can find a parameter region of the WL phases
where tachyonic states disappear for a given flux back-
ground. However, as previously mentioned, these phases
have no potential at tree level. Thus, it is essential to
calculate quantum corrections for the potential to analyze
the validity of the vacuum. By taking an SU(3) gauge
theory as a simple example, and also introducing matter
fields, we show the mass spectrum of 4D modes and the
one-loop effective potential for the WL phases. We find
local minima of the potential where no tachyonic states
appear in a low-energy mass spectrum in models with
matter fields, whereas the pure Yang-Mills case has no
local minimum. Using the flux and WL phases in the
background configuration, we can generate many sym-
metry-breaking patterns and diverse low-energy effective
theories. Further exploration in this field can lead to the
development of new theories beyond the SM, such as GUT
and GHU frameworks.

The structure of this paper is as follows. In Sec. II, we
introduce definitions and basic concepts of an SU(n) gauge
theory on an eight-dimensional spacetime. Subsequently,
we take the SU(3) case as a simple example for further
discussion. In Sec. III, we elucidate the gauge fields and
matter fields present in our model and show the masses of
4D modes appearing at low energy. As expected, some 4D
modes can be tachyonic, which obtain positive mass
squared with the help of nonvanishing WL phases. Thus,
we discuss the conditions for the WL phases to stabilize
potentially tachyonic states. In Sec. IV, we compute the one-
loop effective potential for the WL phases, indicating the
different contributions from each type of field. Finally, in
Sec. V, we explore the vacuum structure, searching for local
minima of the potential. We obtain qualitative insights from

an analytical discussion of the potential. Then, we find local
minima where tachyonic states disappear in the potential
using numerical analysis. Section VI concludes our work,
and the Appendixes contain details of derivations of the
mass spectrum and the effective potential.

II. SETUP AND NOTATIONS

We consider an eight-dimensional (8D) setup, which is
an extension of the one discussed in Ref. [64]. It consists
of M* x T*, where M* is the Minkowski spacetime, and
the extra dimensions are given by a 4D torus, T%. The
coordinates are denoted as usual, x¥ (M =0, 1, 2, 3, 5, 6,
7,8) with x* (u = 0, 1,2,3)on M*and x™ (m = 5,6,7,8)
on T As a simple case, we define that the torus
coordinates satisfy the identification

(x> + Lns, x5+ Lng,x” + L'ny, x® + L'ng),
(2.1)

(3,28, %7, x8) ~

where ns, ng, ny, ng € Z, and L and L' parametrize the size
of the torus. We set L =1 without loss of generality and
define L/L'=M,, which is a free parameter and
expresses the relative size of the torus in our theory.

For an SU(n) gauge theory, the gauge field A, € su(n)
is expanded as Ay = A%t, (A4 €R,a=1,...,n*—1),
where 7, €su(n) are the generators that span the Lie
algebra su(n). Given the identification in Eq. (2.1) above,
we have that the gauge fields A, (x#, x™) must be physi-
cally equivalent to A, (x*, X™), where X is x™ translated as
in Eq. (2.1). Therefore, it is sufficient that they are the same
up to a gauge transformation. Let us define

(x> + L, x5, x7,x%), forn=35,
5 8 _

+ L, , forn=26,
P R ! (2.2)

(3, x0,x7 + L', x8), forn=7,

(x>, x8,x7,x* + L"), forn=S3.

Then, we have

M(Tnxm) = TnAM(x ) + T aMTH’ (23)

which are the boundary conditions for the gauge fields in
the torus. The matrices T,, € SU(n) are called the twist
matrices, g is the gauge coupling constant, and x* was
suppressed to simplify the notation. From now on, we will
keep this notation for all functions of x*.

We start by discussing the pure Yang-Mills theory, which
has the following Lagrangian:

1
L= —ETI'[FMNFMN], (24)
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where we have used the definitions

i .
Fyy = 5 Dy, Dy] = 0yAy — OnAy — iglAy, Ay,
for the field strength tensor and covariant derivative. Later,
we introduce matter fields.

Since we are considering nontrivial background con-
figurations for the extra-dimensional gauge fields, we make
the following replacement:

Ay () = By (x™) + Ay (x), (2.6)
where B, denotes the background configuration and A,
on the right-hand side represents the fluctuations around
B,,. By imposing 4D Lorentz invariance at the vacuum, we
hereafter set B, =0. We define the background field
strength tensor and covariant derivative as

:an = amBn - aan - ig[Bman]’

D,, = 0,, —igad(B,,), (2.7)
where ad(X)Y = [X, Y]. Using these definitions, we per-
form the standard R gauge fixing by adding the term

Lop = —éTr[(aﬂA” + D, A (2.8)

to the Lagrangian given by Eq. (2.4). In the above, £ is a
real parameter called a gauge parameter.

This background has to satisfy the equation of motion for
consistency. Accordingly, we obtain the background equa-
tion of motion, which is given by

D"F o = 0. (2.9)
|

1 0 O 0 00 O

-1 0 0 0 0

H, = 0 O 01, H,=|0 0 -1

0 0 O 0 00 O

and the n(n — 1) step operators as
EY =5 ES) =6 l<i<j<n, (2.15)
ij ijs ij Jji» = = It, .

where we have defined the basis matrices ¢;; to have the
(i',J') element given by (&;;)y; = 8;78;, and &;y is the
Kronecker delta.

A solution is

Bs(x™) = vs — (1 4 7,)f1x%/2,

Bo(x™) = v + (1 =y )f1X°/2, (2.10)
B;(x™) = v; — (1 +12)f2x%/2,
Bg(x™) = vg + (1 = y2)f2x" /2, (2.11)
where
[vm’vn] = [vm’ 1] = [vmva] = [fl&fZ] =0. (212)

Here, v,,.f, €su(n) (p =1, 2) and y, €R are constants.
The constants v, are called continuous WL phases, and f,
parametrize the constant magnetic flux present in the
background of the extra dimensions. In the above, y,
has no effect on physical results and labels different choices
of gauge. For instance, y, = £1 and y, =0 are often
called the Landau and symmetric gauge, respectively.

Now, let us discuss our choice of basis of su(n). It is
convenient to choose the Cartan-Weyl basis, where we
write the su(n) generators {t,} (a=1,...,n*>—1) as
{t,} ={H;} U{E,}. The Cartan generators {H,} (k=
1,...,n—1) are Hermitian, and the step operators E,
associated to a root vector a satisfy E| = E_,. Their
commutation relations are given by

[Hk’Hf] = 0’ [Hk7Ea] = akEa’ (213)

where o, €R is the kth component of the root vector a.

We also choose the basis of the generators to be in the
fundamental representation space of su(n) for simplicity.
Consequently, we write the Cartan generators as

o O
o O
o O
oS O
o O

o
X
i

I

. (2.14)

[e]
o O
o O
[
=)
—

[

The magnetic flux f, and v,, can be simultaneously
diagonalized and therefore can be expanded by su(n)
Cartan generators:

v, =vhH,,  fhooheR, (2.16)
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where summations over k are taken. In addition, the flux
background was found to be quantized, such as

2

N 2 N
f]f:Ele:lelf, fézﬁNé(:szk,

Nk Nsez, (2.17)

where we have introduced the unit of flux f; = 27/(gL?)
and f, = 2x/(gL"?).

As already mentioned, it is known that there appear
tachyonic states in 6D non-Abelian gauge theories with
magnetic flux background [64]. For a 6D SU(n) gauge
theory, it was discussed that the WL phases have no
contribution to the mass spectra, implying that they cannot
stabilize the system. By this reasoning, we set vs = vg = 0
in the background. In addition, we focus on a case with
f> =0, leading to the following background:

Bs(z) = —(1+7)fx°/2,  Bg(z) = (1-7)fx’/2. (2.18)

B;(z) =v;,  Bg(z) = ws, (2.19)
where we have renamed f; and y;, to f and y. The
background B, (x™) in Egs. (2.10) and (2.11) and the
twist matrices in Eq. (2.3) must be related by gauge
transformations. In other words, the expressions of the
twist matrices can vary depending on the choice of back-
ground. According to our choice above, the twist matrices
can be taken as

Ts = e'9(1-7)fx°/2

Te=e 0HnW2/2 T, —Ty=],

(2.20)

where [ is the unit matrix.

We also introduce bulk matter fields. Let us take a field
@, to be a complex scalar field of the representation R of
SU(n). Weyl fermions in 8D theories may give bulk gauge
anomalies. To evade this, we introduce vectorlike (Dirac)
fermions. An 8D Dirac fermion of the representation R,
denoted by W, is a 16-component spinor having 16 real
degrees of freedom (d.o.f.) on the mass shell. We suppose
that they satisfy the following boundary conditions:

Dp(7T ,x™) = &> P0) (T, ) g g (x™),

We(T,x") = &> M) (T,,) g P (x™), (2.21)
where (T,)g is a matrix of T, in a representation R. We
have introduced real numbers 7, (®g) and 7, (¥Pg), which
are independently taken for each matter field. Depending
on a global symmetry of the full theory, allowed values of
n, are constrained. Hereafter, we consider 75, 7 = 0 and
nw €4{0,1/2} (m' =7,8). As discussed in the next sec-
tion, for 7,/ (¢p) = 1/2, the discrete momentum labeled by

n,y in masses of 4D modes appearing from a field ¢ is
shifted from n,, to n,, + 1/2.

With the background configuration in Egs. (2.18) and
(2.19), the WL phases v, and wvg can contribute to masses
of 4D modes. Thus, we expect that tachyonic states
disappear in a low-energy theory at a vacuum with non-
trivial values of flux and WL phases. Since the continuous
WL phases have no potential at tree level, quantum
corrections to their potential are crucial for examining
the validity of vacua. The following sections discuss the
vacuum structure in a concrete setup.

IIL. AN SU(3) MODEL

A. Background configuration

As a concrete example, we will explore our setup for the
gauge group SU(3). Therefore, there are only two Cartan
generators, and we choose N '—1 and N*=2 in
Eq. (2.17), corresponding to the flux background

10 0 ,
f=fH, =70 1 0o |, whee}="". (@3.1)
00 -2 I

While keeping this flux background, the continuous WL
phases can be diagonalized through a unitary transforma-
tion; hence, we write

L 0 0
v,n/ - 0 v, —v 0 5 ml = 7, 8 (3.2)
0 O —v

In the following discussions, we assume these choices of
backgrounds.

We are interested in the theory at an energy scale
sufficiently lower than the compactification scale 1/L
and 1/L’. In this case, we have a 4D effective theory
where infinitely many 4D fields appear, coming from the
mode expansions of 8D fields. Masses of 4D fields are
determined by their charges concerning the Cartan gener-
ators and the helicity operator [53]. Let ¢ be an 8D field
with definite charges associated with the generators H;, H,,
and Hy = H; + 2H,. We denote these charges of ¢ by
q1(#), q2(#), and g3(¢), respectively. Note that g3(¢) =
q1(¢) + 2g,(¢) holds. In addition, we denote the helicity of
¢ associated with the x>—x°® plane by Zs4(¢). For example,
linear combinations of A5 and A4 have X5 = 41, whereas
the other gauge fields, i.e., A, and A/, have X5 = 0. In the
following, we clarify field contents and their charges. Then,
we discuss the masses of 4D modes that appear in this setup.

B. Gauge fields

We first discuss gauge fields in this model. The masses of
4D modes arising from these fields are determined by
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TABLE I. Summary of independent 8D gauge fields, which are
written in the first column. The following columns detail the real
d.o.f., helicity, and charges ¢, ¢», and ¢3 of each field. The next
two columns indicate which fields couple with WL phases or with
the flux background. Finally, the last column shows which fields
contain tachyonic contributions in their masses.

$  dof Zsg(#) q1(#) (¢ g5(¢) WL Flux Tachyonic

A4 0 0o 0 o0

U

AD 4 0 0o 0 0

A02) 8 0 2 -1 0 v

U

A28 0o -1 2 3/

v

AGD 8 o -1 -1 =3 v Vv

U

A2 00

A 2 £ 0 0 0

21

A2 2 =2 -l v

A 2 EZL -1 2 3 v/ v
AGD 2 = -1 -1 3 v
A2 2 &1 2 -1 0

21

A 2 1 -1 2 3 v/ v
21

A2 # -1 -1 3 v
1

A2 0 0 0 o0

A9 2 0 0o 0 0

A2 2 0 2 -l v

AB 2 0o -1 2 3 vV
AGD 2 0 -1 -1 =3 v v

22

Al 2 0 2 -1 0 v

A 2 0o -1 2 o/

AGD 2 o -1 -1 =3 v Vv

quadratic terms of the gauge-fixed Lagrangian £§{fM as

Lo LY+ LY+ L2 (3.3)
£ = Trla# (9, 0+ 1, (D) - (1-¢7)9,0,)4°],  (3.4)
LY =TrlA" (8,0 + 6,,,(D?) - (1 - £)D,,D,

— 2ig(8,u5656 — SmeOns)ad(f))A"], (35)
£? = —2Trfe(0 + £D,, D™, (3.6)

where &, is the Kronecker delta function, (D?) = D,, D",
and ¢ € su(3) is a ghost field. Note that the last term of
Eq. (3.5) is only nonzero for the x’—x® directions where
there is magnetic flux. After it is diagonalized, it is
convenient to define

1 . 1 .
A, :E( s — iAg), A :E( s +idg),  (3.7)
1 . 1 .
A, = ) (A7 — iAy), Az = 5 (A7 +iAg).  (3.8)
In component form, they are written as
A,(,l) A;<¢12) Al(;l)
A, = AV A AP AP . (3.9)
A;(43l) A£23) —A,(lz)
AD AP A
A, = [ ALY —ab) 4 A AT |
Agw -g3) Ag)
~ ~ (3.10)
Ag,])) ;1172) Agl)
S T

where A; = (A, )" and p =1, 2.

We are interested in masses of 4D modes appearing from
8D fields in a low-energy theory. These masses depend on
quantum charges of 8D fields. In Table I, we have
summarized d.o.f. and quantum numbers of independent
8D gauge fields. In the table, we also show which fields
couple to WL phases or flux backgrounds. As shown in
Table 1, AZ, A%, A}!, and A2! receive tachyonic contri-
butions in masses of their 4D modes as will be discussed
later. We also have ghost fields that cancel unphysical
modes arising from gauge fields A,,.

C. Matter fields

In this section, we discuss matter fields. First, we
consider matter fields in 3, the fundamental representation

of SU(3). The scalar ®;3 has three components (,b;a) (a=1,
2, 3). Their charges are given by

G =1, @@ =0, a@)=1, (3.11)
H@)=-1. n@Y)=1.  ¢@)=1, (3.12)
7@ =0, @@P)=-1, ¢@))=-2. (3.13)

We also introduce fermion fields. The fermion W5 of the

fundamental representation has three components wg')’),

which have the same charges as ¢§a) . We note that fermion
fields have nontrivial helicities Xs5 = 4+1/2, while scalar
fields have 255 = 0. For the antifundamental representation
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3, although charges change their signs, the mass spectrum
of their 4D modes is the same as the one of 3.

One can introduce matter fields with representations
other than the fundamental. The charges of any represen-
tation can be given by linear combinations of the charges of
the fundamental representation. For example, a scalar field
belonging to the second rank symmetric tensor of SU(3)

has six components, which can be written as qﬁg”ﬂ)

(1 < a < f <3). Their charges are written by

qk<¢‘(5a,p)) = (]k(fﬁga)) + Qk(fﬁgﬁ))-

For the adjoint representation 8, there are eight compo-
nents, two of which are neutral with respect to the gauge
field background. The other components can be expressed

(3.14)

by qﬁéa’ﬁ ) (I £ a,p < 3), whose charges are given by

Qk(ﬁb:(;aﬁ)) = qk(rﬁg")) - qk(¢§ﬂ))-

As a final example, we consider the representation 10, the
totally symmetric tensor product of three 3. The compo-
nents of @y, are labeled by

(3.15)

(a,p,0)€(1,1,1), (2,2,2), (3,3,3), (1, 1,2),(1,1,3),
(2,2, 1), (2,2,3), (3,3, 1), (3,3,2), (1,2,3),
(3.16)

and their charges are given by

a(i6””) = au @y + au @) + au@y).  (3.17)

D. Masses of 4D modes

In this section, we discuss the mass spectra in a low-
energy effective theory of the SU(3) model. We perform
the Kaluza-Klein (KK) expansions of the fields and
calculate the eigenvalue of the mass operators in the
Lagrangian given by Eq. (3.5) acting on the corresponding
mode function. In a 4D effective theory, infinite 4D modes
appear from 8D fields discussed in the previous subsec-
tions. In the following discussions, the mass of a given 4D
field ¢ will be expressed as M?(¢), and we present the final
expressions for the mass spectrum of the fields.

1. q5(¢p) =0 case

First, let us discuss the masses of 4D modes appearing
from an 8D field ¢ having g3(¢) = 0. They do not couple

to the flux background. For example, ASVI,), A;,l,z), and ¢§l'2)
belong to this case. To obtain masses of 4D modes from an
8D field ¢, the discussion in Ref. [64] is straightforwardly
generalized. Their 4D modes are labeled by four integers
n,€Z (m=>5,6,7,8). We use it = (iis, i, fi7, iig) and

denote a 4D mode from ¢ by ¢;). It is convenient to
introduce

A

Nm’ (¢) = ﬁm' + ’7m'(¢) —q (d))a,ln’ - Q2(¢>a%{’

where we have used the parametrization of the WL phases
as a*, = gL'v*, /2. The parameter 7,,(¢) appears in the
boundary condition of matter fields in Eq. (2.21). We
imply 7, (¢) = 0if ¢ is a gauge field. In the following, we
also use

(3.18)

M3g(h) = (27)*[A5 + i),
Mig(¢) = (221, ) [N7($) + N3(4)].

For a matter field ¢, the tree-level mass spectrum of the
4D modes ¢ is given by

M* (i) = M3e(9) + Mg (),

for an arbitrary & For a gauge field ¢ with £ = 1, masses of
the 4D modes ¢ ;) are the same as in Eq. (3.20). For a
gauge field ¢ with an arbitrary &, in addition to the above,
there appear masses as

M2 (i) = EM2(¢) + M3g()).

Note that the 4D modes that have masses M é (@) are
would-be Goldstone modes. They are eaten by massive 4D
modes from A,,.

Furthermore, the masses of the 4D modes from the ghost
fields also depend on &. It is observed that the masses of the

4D modes from the ghost fields My, (d)) are equal to

the masses of A, as in Eq. (3.20), multiplied by & Thus, we
have Méhost(¢(ﬁ)) = M?((ﬁ(ﬁ))

One sees that ¢o,0,0) is a massless zero mode if ¢ has
N () = qi(¢) = 0 (k = 1, 2). For example, A,(,]) and Af,z)
have massless zero modes for any values of the WL
phases. On the other hand, if ¢ has g,(¢) # 0, then ¢

couples to the WL phases, and their masses depend on the

values of the WL phases. For example, Af}z) have massless

zero modes only if the combination 2“;]11/ —ai, is an

. . 12
integer. Otherwise, A,(l ) has no massless mode. As seen

below, 4D gauge fields coupled to the flux background
have no massless zero mode. Thus, in this case, the flux
background in Eq. (3.1) induces the spontaneous breaking
SU(3) - SU(2) x U(1), and the WL phases can further
break the gauge symmetry as SU(2) x U(1) - U(1)?
depending on their values.

(3.19)

(3.20)

(3.21)

2. Matter fields in the q;(¢p) # 0 case

Next, we discuss the masses of 4D modes appearing
from an 8D matter field ¢ having g3(¢) # 0. In this case, ¢
couples to the flux background. Then, their 4D modes
receive mass contributions associated with Landau-level
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excitations, which we will call Landau-level contributions.
Again, the discussion in Ref. [64] is straightforwardly
generalized to obtain masses of 4D modes in the
q3(¢p) # 0 case. Scalar and fermion fields have Xs5 =0
and X5 = +1/2, respectively. Their 4D modes are labeled
by four integers, #>0, de{l,....|q;(¢)]}, and
ny,ng € Z. Hence, we denote the 4D mode as ¢(;ﬁ, i )"

Their masses are summarized as follows:

M (B3 43, ) = Al g3 (P)I[Z + 1/2 + Zs6(h)] + M3s().
£>0, (3.22)

where we have used f = 27/g from Eq. (3.1). Note that
these masses are consistent with the known mass for-
mula [53].

From Eq. (3.22), one sees that scalar fields have no
massless modes at low energy. On the other hand, for
fermions with 55 = —1/2, the Z = 0 mode can be mass-
less if M2¢(¢p) = 0 is satisfied. Such a massless mode has a
degeneracy labeled by d = 1, ..., |g3(¢)|.

3. Gauge fields in the q3(¢p) # 0 case

Finally, we discuss the masses of 4D modes appearing
from 8D gauge fields ¢ having ¢3(¢) # 0, where ¢ couples
to the flux background. As in the matter case, the 4D modes
are labeled by four integers, and we denote the 4D mode
S D7 ay i)

The mass spectrum depends on the helicity Xs¢(¢) of the
gauge fields. One sees that Zsc(A,) = Zs6(A,y) =0,
whereas As and Ag has the helicity £1. In addition, there
appears to be a dependence on the gauge parameter £ in the
mass spectrum of 4D modes in this case. The mass
spectrum of 4D modes from A, is determined independ-
ently to £ and is the same as in Eq. (3.22). On the other
hand, the mass spectrum of 4D modes from A,, depends
on ¢.

We first discuss masses of 4D modes from A,, in the
& = 1 case. From A5 and A4, we obtain 4D modes that have
masses as

M2( (a0 ) = 47la3(9)|(Z +1/2 £ 1) + M (),
Z>0. (3.23)

On the other hand, from A,,/, we obtain 4D modes that have
masses as

M (b ainig) = 4x|q3()(2 + 1/2) + M (9),

£ > 0. (3.24)

FIG. 1. Tachyonic region. This illustration depicts the param-
eter space (d, dg) where tachyonic states appear, represented by
the white circle. The dark gray square delimits the region where
no such modes are present.

One sees that Eqs. (3.23) and (3.24) are summarized as in
Eq. (3.22). We note that 4D modes from ghost fields have
the same mass as in Eq. (3.24).

For arbitrary & 4D modes from A,, mix. As shown in
Appendix A, the mass spectrum of 4D modes from A,, is
given by Egs. (3.23) and (3.24), and

M2 g.an ) = EB71a3 (D) (2 +1/2) + M3g($)],

Z>0. (3.25)
The 4D modes from ghost fields also have the same masses
as in Eq. (3.25).

As seen in Eq. (3.23), 4D modes (g 44,4, TECEIVE &
negative Landau-level contribution, which potentially
makes some of the 4D modes tachyonic. The other 4D
modes from the extra-dimensional gauge fields coupled
with the flux are massive. To eliminate tachyonic states in a
low-energy theory, the values of WL phases included in N 7
and Ny are constrained.

E. Stabilizing potentially tachyonic states through
Wilson line phases

As seen in the previous subsection, some of the 4D
modes from flux-coupled gauge fields can potentially be
tachyonic due to negative Landau-level contributions.
Since the existence of tachyonic states in a low-energy
theory implies vacuum instability, we have to eliminate
them from the 4D mass spectrum. As noted, masses of 4D
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modes generally depend on values of WL phases. A
condition to eliminate tachyonic states can be regarded
as a constraint on the values of WL phases.

In our setup, 4D modes from Ag3), Agl), A; , and Aé
include potentially tachyonic states. We examine their
masses and derive constraints on WL phases in the
SU(3) model. For the lowest Landau-level excitations,

their masses are given by

23) 31)
1 1

23) (23 . .
AP AP M?((0.4.0,.)) = =67 + (22M,,)* ([t — a}

+ 2a2)? + [fig — al +2a3]?),

(3.26)

z )3M2(¢(0,d,ﬁ7ﬁg)) = —6r + (ZﬂMw)2<[ﬁ7 - a
— a3]* + [y — ag — ag]?).

(3.27)

The WL phases contribute to the masses, stabilizing the
tachyonic states depending on their values. Sufficient
conditions to make all masses non-negative are given by

N 1 212 ~ 1 212
7 —aq +2a7)” + |fig — ag + 2ag|” > —==.
[7 7 7] [8 8 8] 2M3v

(3.28)

3
N 1 212 1 1 | 212
[t — a7 — a5]” + [fg — ag — ag]* > —= 5 (3.29)
w
for any 717 and 7ig.
To facilitate the discussion of the above constraints, we
consider

[ﬁ7+d7]2+ [flg-'—dg]z Z%, for fl7,fl8€Z. (330)
2zM;,
Since d; and dg have a shift symmetry modulo 1, we can
choose the region —1/2 <d;3 <1/2 to simplify our
analysis. For large values of 71; and 7ig, constraints on d
and dg from Eq. (3.30) become weak. On the other hand,
for 71; = ng = 0, constraints on d; and dg are stronger. The
tachyonic region is visually clarified in Fig. 1, where it is
represented by the white circle. The dark gray zone
represents the region where the previous constraints in
Eq. (3.30) and —1/2 < d; g < 1/2 are satisfied. To obtain a
parameter region where tachyonic states disappear, we
obtain a constraint on the possible values of /12, given by

FB ; . 3
VE'?N)IS)((_I)FNdeg’ qi, QZ) = _(_I)FNdegW

w

3
A > 2 (3.31)
T

Solutions of the constraints on WL phases given by
Egs. (3.28) and (3.29) are not simple to be clarified
analytically. We have checked that there are allowed
parameter regions of the WL phases for O(1) values of

M,,. In the following, we constrain the values of the WL
phases to satisfy the conditions in Egs. (3.28) and (3.29).

IV. ONE-LOOP EFFECTIVE POTENTIAL
IN THE SU(3) MODEL

As shown in previous sections, masses of 4D modes
depend on values of the WL phases a’:n .. An important
consequence is that values of the WL phases are con-
strained as shown in Egs. (3.28) and (3.29). Although they
are continuous moduli and have flat potential at tree level,
quantum corrections generate effective potentials for the
WL phases. Thus, a natural question is whether a vacuum
that is consistent with the constraint exists. In this section,
to discuss the vacuum structure, we present the one-loop
effective potential for a’r‘n,, showing contributions from each
type of field in our setup. For a detailed derivation of the
potential contributions, please refer to Appendix B. For
simplicity of our discussion, we hereafter fix the gauge
fixing parameter as & = 1.

A. Contributions from flux-blind fields

Let ¢ be a flux-blind field, that is, having ¢3(¢) = 0.
Their 4D mode masses are given by Eq. (3.20). To simplify
the notation, we define

dw () = —qi(@)al, — qx(p)a®, +n,y(Pp),  m' =7.8.
(4.1)

The effective potential contribution for the WL phases is
generated by integrating out 4D modes from ¢ and depends
on q,(¢), g(¢), and 1,/ (¢). We write this contribution as

E;Br)vw((_l)ﬁNdeg’CIl,%), where (FB) refers to “flux

blind.” Here, Ng.,(¢) is a positive integer that gives the
real d.o.f. of ¢, and F is the fermion number of ¢.

Using the standard procedure, we obtain the effective
potential contribution as

" Z (22005(2ﬂwd7)+cos(2ﬂwd8) 4

[@F + g + 0 /M

ws.,06 EZ 0>1

Z cos(2zwqdy) cos(2rmgdy) ) (4.2)

(2 + wf + (w3 + ) /M3 ]*

wq,wg>1
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Note that the potential contribution also depends on values
of M,,, the relative size of the extra dimensions.

The potential in Eq. (4.2) is finite and has no ultraviolet
(UV) and infrared (IR) divergences. The UV finiteness is
expected since the WL phases are associated with non-
contractible loops along extra dimensions and are intrinsi-
cally nonlocal d.o.f. The integers w, w7, and wg are often
referred as winding numbers. One sees that local divergen-
ces are contained in the terms corresponding to vanishing
winding numbers, which are independent of WL phases. We

have discarded such constants in Eq. (4.2). For more details,
see Appendix B.

B. Contributions from flux-coupled fields
with Z56=0 or £1/2

Now, let ¢ be a flux-coupled field with X5 = 0 or +1/2.
Their 4D mode masses are given by Eq. (3.22). After

integrating out the 4D modes, we obtain the contribution
to the effective potential, denoted by VEES:;B((—I)F Neg-
q1,4>). Their contribution to the effective potential is

given by

11)2

V(O) ((—I)FN )_ _(_1)ﬁM 22[ (2 d )—|— (2 d. )] 00611‘2‘_4L”1%2vr
(1718 deg> q1.492) = 1287531‘;\43\} - COS(2mmwad CoS(2mtmwag ) 25]1’]h(27[|q3|t)
_%
. e At
4 2rw,d 2rwgd dttr™* — 4.3
+ ng:ZICOS( nw-dy) cos(2mawg S)A 2 sinh(22]g3]7) (4.3)
for 256 = 0, and
: ; Naglas ® gt
(1/2) F _ _(_1\F 'degl93] -4 -
Vi (1) Nag, 41, 42) = =(=1) 1282501 2;[cos(zmd7) + cos(2nwdy)] /0 di i Galal)
ur2+a)2
_ 7A28
00 e 47!Mw1
4 2nwsd 2nwyd dtr* —————— 4.4
+ Z cos(2zw,d7) cos(2nwg 8)% anh(27] g3 (4.4)

w7,wg>1

for s = +1/2. In the above expression, g3 = q; + 2¢»
holds. We note that the X55 = £1/2 contribution is
obtained from a pair of fields having 55 = 1/2 and —1/2.

As in the flux-blind case, the effective potential con-
tributions in Egs. (4.3) and (4.4) are free from UV and IR
divergences. For fixed winding numbers, M,,, and gs;,
integrals with respect to ¢ in these contributions give
numerical constants, which are suppressed for a large
absolute value of winding numbers.

Ndeg|q3|
3272

1
Vénjqns)<Ndeg’ q1.92) = —

iy ig€Z

Z /w dt t—3e‘M38f<
0

C. Contributions from flux-coupled fields
with 256 =41
If ¢ now corresponds to Asg, there appears a pair of
fields having 5o = 1. Let V() (N q1.q2) be a

contribution from a pair of 4D modes having masses as
in Eq. (3.23). The contribution is written as

e=4alasl(=1/2)1 . p=dalas|(1/2) 226—4ﬂ43(?+1/2>f>, (4.5)

7>1

which corresponds to Eq. (B25). This expression needs a more careful evaluation since it contains the contribution from the
potentially tachyonic states as seen in Sec. III D 3. Actually, tachyonic states are absent since we constrain the parameter
region of the WL phases, as discussed in Sec. Il E. In Appendix B 3, we derive an expression of the contribution, which is
free from UV and IR divergences.
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Here, we only show the result. We introduce

N,
AV, = — deg|Q3|

Naeglds] / dt -3~ (Mi=2rlas)r
32z fiy,ig€Z

which corresponds to the contribution from potentially tachyonic states. We obtain the expression of AV, as

AVtac ==

where

Ndeg‘q3| I
3272 "

(4.7)

Ir = ZZ [cos(2zwdy) + cos(2rwdyg)] (

w>1

+4 Z cos(2zw,dy) cos(2rmgdy)

w7,wg>1

2+k

32722 MY

w

3222MY 872 |qs| M2 272 gs)?
> W + |QZ| v+ |‘613| >

8”2|‘13|M3v

2 2
w7 + wg

(2
+ Z Z T ”|613

i,y €7 k>1

In the last term, the summations over 7i; and fig are taken for all integers except for (717, fig) =

potential is given by

Ndeg|q3|
12873012,

)

V(,h,qs)(Ndegv q1, q2) = AV —

we>1

4nbt2 —2ﬂ\q;|t
+4 Z cos(2ﬂa)7d7)cos(2ﬂa)gd8)/ drrt S
0

w7,wg>1

which is finite. We note that in the derivation of the
potential, we have subtracted infinite constants that are
independent of WL phases.

D. Total effective potential

From the above, we obtain the total effective potential.
We first discuss the contribution from A( 2 We call these
fields and related ghosts the (12) sector. In this sector there
are ghost fields ¢('? and ¢V that obey (c(1?)F # ¢V
since they are complex. Thus, the ghosts have, in total, four
real d.o.f. The contributions from each field in this sector
are the same except for the overall sign, and the effective
real bosonic d.o.f. of the contribution to the effective
potential is given by 8 x 2 —2 x 2 = 12. Thus, the effec-
tive potential from the (12) sector is

v, = vi® (12,2, -1, 1,).

0.0) (4.10)

k(M)

00 " anit?
2 Z [cos(2mwd;) + cos(2nwdy)] / A4S
0

2”2|513|2 >
(07 + a5)* (07 + o)’

(27|q5])°
6(2zM,,)?* (A3 + 73)

(4.8)
(17.725)#(0.0)

(0, 0). Using the above, the

g o —2"-'\‘13\?‘
tanh(27|q;|1)

w% +o?

tanh(27|qs|r) (49)

Next, we discuss the contribution from Agf). We call
these fields and related ghosts the (23) sector. In this sector,

A,<l23), A23), Ag3>, and ghosts have X5 = 0. Thus, the
effective real bosonic d.o.f. of the contribution to the

effective potential can be counted as 6 x2 -2 x 2 = 8.
On the other hand, A?) and Ag3) have Xss = +1. Thus,

the contribution from the (23) sector is given by

y[23] ( Mw) —_y0

(O,O)(S’ _I’Z’MW) + V(l)(z, -1, 2,MW).

(4.11)

Finally, we discuss the contribution from A}j”. We call
these fields and related ghosts the (31) sector. From a
similar discussion as done above, we have

V[31] (MW) _ V<O)

00)(8 1. —1,M,,) +V"(2,-1,-1,M,).

(4.12)
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There are no fields that couple to the WL phases in the gauge sector other than the above. Thus, from the gauge fields and
ghosts, we obtain the effective potential VPYM (a’;l s M,,) for the WL phases aﬁl , as follows:

VIPYMI(al i,,) = VIPl(i,) + vPI(a, ) + vEII(i,,)

(4.13)
FB o 0 o 0 o
= Vi (12,2, -1, 81,) + VEO?O)(S, —1.2.8,) + Vigy (8.~ 1.-1,51,,)
+vW(©2,-1,2,M,) + VD (2,-1,-1,M,,). (4.14)
Next, we discuss the effective potentials generated by bulk matter fields. Let V%”S) (a’};,; M,,) be a contribution from a
matter field ¢, where 7;,15 € {0,1/2} indicates the periodicity of ¢. For scalar fields, we obtain
L R S I R 7 \U) 0 (0) _ 0 (0) 10
V('?N?s)(am/’MW) - V(’I%ﬂs)(z’ 1.0, MW) + V('77J78)(2’ L, 1’MW> + V(ﬂ%ﬂs)(z’ 0, 1’MW)’ (415)
@] (k. y— O () (0) _ ) (0) N
V(’i7-'78) (am/’ MW) - V(’I7-'78)(2’ 2,0, MW) + V('77»’78)<2’ 2,2, MW) + V('77J78)<2’ 0.-2, MW)
(0) 0 (0) () (0) ()
+ V(ﬂmns)(z’ 0.1,M,) + V<'77J78)(2’ —1.0.M,) + V(Vh-ﬂs)(z’ L=1.M,), (4.16)
[©s] (k.7 y_ y/(FB) 1 (0) _ {/ (0) 1 -1
V('77-,'78)(am/’MW) - V('I7J78)(4’ 2.-L MW) + V('I7”78)(4’ 1.2, MW) + V(ﬂ7”78)(4’ 11, MW)’ (417)
[@0] (k. Q7 \ — 1/(FB) 1 (0) ) (0) _ )
V('ﬁ»’?s)(am/’ MW) - V('77»’78)(4’ 2,-1, MW) + V('77»’78)(4’ L1, MW) + V(’77”78>(47 L, 2’MW)
(0) () (0) { (0) {
+ VWW(Z, 3,0,M,,) + V(”wg)(Z, -3,3,M,,) + V(m’ng)(Z,O, -3,M,,). (4.18)
For 8D Dirac fermions, we obtain
(s k. ) — (172 " (1/2) (_q _ 0 (172 (_ 171
V('?%'?s)(am/’MW) o V('ﬁ»’?s)( 8.1,0.M,) + V('ﬁ-’?s)( 8.-1.1.M,) + V('?%’?s)( 8.0.-1,M,). (4.19)
Wl (k. ) — 1(1/2) () (1/2) () (1/2)
V(ﬂvﬁ,ns)(arH”M”’) - V(’I7J78)(_8’ 2,0.M,,) + V(’I7J78)(_8’ ~2.2.M,) + V(%%)(—S,O, —2.M,)
(1/2) (_ () (1/2) _ () (/2 (_ 10
+ V(ﬂmg)( 8,0,1,M,,) + V(Wm( 8,—-1,0,M,) + V(’MS)( 8,1,-1,M,,), (4.20)

Vi (aki i) = ViP) (=322, -1.0,) + V)2 (<16, -1.2.01,) + V(Y (-16.-1.-1.81,).  (4.21)

(n7.18) \"m (n7.18) (n7.18) (n7.18)
Pl (k.57 \ — vyFB) (_ 1 1 (1/2) (_ 9 (1/2) _
V(ml,ng)(am”MW) - V('?7J78)( 32.2, I’MW) + V(VI7J78)( 16, 1, I’MW) + V(VI7J78)( 16,-1.2, MW)
(1/2) " (1/2) 0 (1/2) 0
+ VWWS)(—& 3,0,M,) + V(m»ns)(_& -3,3,M,,) + V(nmg)(—& 0,-3,M,). (4.22)

In the above, we have used the fact that the mass spectrum of 4D modes from ¢ is unchanged under

(91(9). 92(#)) = (=q1(¢). —q2(¢)). Namely, ngi,ng)((_l)ﬁNdeg»ql»quMw) = ngi.ng)((_l)ﬁNdeg’ ~41, =42, M,,) holds
for s =0,1/2, 1.

V. VACUUM STRUCTURE IN THE SU(3) MODEL

In this section, we will explore the vacuum structure. We aim to find a minimum point in the effective potential, which
will suggest the existence of a stable vacuum configuration. We start by doing an analytical discussion to understand
qualitative features of the effective potential. Some critical points are naturally characterized by simple fractional numbers
and have periodic properties. Through this discussion, it was possible to identify candidates for minimum points. To
facilitate the analysis, we proceed to numerical calculations. Although there seems to be no stable vacuum in the pure Yang-
Mills case, by adding matter fields, we can find minimum points.
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FIG. 2. Solutions of Eq. (5.3). The horizontal and vertical axes
show the values of a:n, and aﬁl,, respectively. Intersection points
of the solid and dashed lines on this figure correspond to solutions
of Eq. (5.3).

A. Analytical discussion of the potentials

To see the qualitative features of the effective potentials,
we first examine them analytically. We see that critical
points of the potentials are expected to exist in the field
space of the WL phases satisfying the constraint to
eliminate tachyonic states in Eqgs. (3.28) and (3.29). It is
convenient to notice that the expressions contributing to the
effective potential from a field ¢, that is Egs. (4.2)—(4.4)
and (4.9), have the following structure:

V(p) = A(g) Z (cos(27za)d7) + cos(27ra)d8)> + B(¢)

w€EZ,

X Z cos(2zwqd7) cos(2mwgdy)

w03 €L,

Y Y cw [(m T ) i (s + ds)z] :

figiig €Z k=1

(5.1)

where A(¢), B(¢), and C(¢) are constants that depend on
the field ¢.

Let us begin with the pure Yang-Mills setup. The critical
points are found when the first derivatives of Eq. (4.14)
with respect to the WL phases vanish. As can be seen from
Eq. (5.1), the derivative of the first line always generates
sine functions; the derivative can be factorized by the
following functions:

sin (2zw(-2al, + a2,)), sin 2zw(a), —242))),

sin 2zw(al, +a2))), (5.2)
where @ is an integer. From the second line in Eq. (5.1),
we obtain 2d; = 2dg = 0 mod 1 as the condition for an
extremum.

One possible solution of an extremum of the potential is
to analyze the case where the sine functions in Eq. (5.2) and
the derivatives of the last line in Eq. (5.1) vanish simulta-
neously. Starting with the latter condition, we find that the
only possible critical points outside the tachyonic region
satisfy d,, = 1/2 mod 1, which implies

al,—2a>,=1/2 mod1, and a! +da2, =1/2 mod1.
(5.3)
The solution of this condition can be found in Fig. 2. The

WL phases have mod 1 property. If we restrict their values
as 0 < afn , < 1, the solutions are given by

(arln,, afn,) =(1/2,0),(1/6,1/3),(5/6,2/3). (5.4)
More generally, we can write all solutions as
(a),,a2)=((3-2n,,)/6.2n,y/6+1 ), ny.n €Z.

(5.3)

One sees that the solutions in Eq. (5.5) also satisfy the
condition that the sine functions in Eq. (5.2) vanish.
Therefore, the values of the WL phases in Eq. (5.5) are
critical points, candidates for minima. A notable point is
that any solution in Eq. (5.5) gives the same physical
consequences in the pure Yang-Mills case. To see this,
it is convenient to examine the WL phase factors
W,» = exp(igL'(A,,)). Note that we can always make
VEVs of WL phases (A, ) vanish by a gauge trans-
formation without changing physical consequences. After
eliminating (A,,), the boundary conditions in Egs. (2.3)
and (2.21) change and contain the WL phase factors. As a
result, the low-energy mass spectrum remains unchanged
[64,68-70].

If the WL phases take the values in Eq. (5.5), we find that

Wm’ _ diag(ez’”<3‘2"nx’>/6, 6271'[(4nm/—3)/6’ eZni(—Ztim//6)) (56)

= e~ 2w 3diag(—1,—1,1). (5.7)
Let us introduce
C,y = e~ B3diag(1,1,1) € Z3,
W,y = diag(—1,—1, 1) = £>7H:/2, (5.8)

where Z; is the center subgroup of SU(3). Then, we obtain
W, = C,yW,s. The center element C,, depends on n,,,
but W, does not. Since the adjoint representation of SU(3)
is neutral under the subgroup Z;, the solutions in Eq. (5.5)
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Contour plots of the effective potential in the pure Yang-Mills case. From left to right, we assume Ansdtze 1 to 4. In these

contour plots, the horizontal (vertical) axis shows the value of b, (b,). From light to dark colors in the plots, the potential decreases. The
white regions are excluded by the constraint on the WL phases in Egs. (3.28) and (3.29).

are not discriminated for any values of n,, in the pure Yang-
Mills case.

One also sees from Eq. (5.7) that the Wilson line phase
factors under the solution in Eq. (5.5) are along the same
direction to the flux background, f « Hs, up to a center
element C,,/. Thus, the contribution to the effective potential
from the potentially tachyonic states tends to align the WL
phases with the flux background at an extremum. At a
vacuum, the remaining gauge symmetry is spanned by the
generators #, that satisfy [f,¢,] =[W,,,t,] =0. Thus,
around extrema in Eq. (5.5), the WL phases do not induce
further gauge symmetry breaking.

We can now investigate the effects of including matter
fields. Their contribution to the effective potential was
summarized in Sec. IV D. It can be shown that the solutions
in Eq. (5.5) also give extrema of matter contributions. For
example, when adding fermions in the 8 representation, as
given by Eq. (4.20), and following the same procedure as
done for the pure Yang-Mills case, we obtain the same
result as the one in Eq. (5.5). Hence, adding matter fields of
8 with the periodic boundary condition gives no change in
candidates for minimum points obtained from the pure
Yang-Mills discussion above. However, if we consider
general matter fields, candidates for minimum points might
change.

B. Potential structure with Ansdtze

To see the potential structure more closely, let us
examine the potential numerically. There are four inde-
pendent WL phases in this setup. Here, we examine the
potential structure with some Ansditze. These Ansctze make
it easier to see the potential structure since the independent
values of WL phases are reduced.

We examine the cases where WL phase factors are
aligned along H;, H,, and H;. We call them Ansatz 1,
2, and 3, respectively. Ansatz 3 is a particular case since the
WL phase factors and the flux background are aligned as
was discussed in the previous subsection. In addition, we
also examine the case with aX = a¥, called Ansatz 4. This is
motivated by a symmetry of the potential. Since the

potential is unchanged under the exchange between a’7c

and af, a 2D hypersurface defined by a% = af in the 4D
field space of the WL phases seems to tend to have extrema.
These Ansdtze are summarized as follows:

Ansatz 1:(a}, a3, al,a3) = (b1,0, b,,0), (5.9)
Ansatz2:(a}, a3, al,a?) = (0,b,,0, b,), (5.10)
Ansatz3:(al, a3, al,a3) = (by,2b,, by, 2b,), (5.11)
Ansatz4:(ad, a3, al,al) = (by,by, by, by), (5.12)

where we have introduced b, b, € R. With the above
Ansdtze, the WL phase factors in the fundamental repre-
sentation are given by

Ansatz 1: W5 = diag(e?b1, e=27b1 1),

Wg = diag(ezﬂihz’ e—2ﬂl‘b2’ 1), (513)
Ansatz 2: W, = diag(1, e27iby | p=2mib, ).
WS — dlag(l, eznibz’ e—2ll'l'b2), (514)
Ansatz 3: W, = diag(e2mib1 | ¢27ib1 o=4mib1),
WS = diag(eZIZin, ezﬂibz, 6—47”'[72)’ (515)

Ansatz4: W, = Wy = diag(e?™1, 27i(b2mb1)  o=27ib2),

(5.16)

We numerically examine the effective potentials with
these Ansdtze. From now on, we take MW =5.0 as an
example. We begin by plotting the effective potential for
the pure Yang-Mills case, as shown in Fig. 3. In these
contour plots, the horizontal (vertical) axis shows the value
of b, (b,). From light to dark colors in the plots, the
potential decreases. We also introduce the constraint on the
WL phases in Egs. (3.28) and (3.29). In the contour plots,
the excluded region from the constraint is shown by the
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white area. In the numerical calculations, we introduce
some cutoffs for the infinite summations of winding
numbers in the potentials. In addition, the infinite summa-
tions of KK numbers 7, and k in AV, in Eq. (4.7) are also
truncated at some finite terms. The results are less sensitive
to these cutoffs.

We see that local minima of the potentials in the pure
Yang-Mills case are located in the excluded parameter
region where tachyonic states appear in the low-energy
mass spectrum. We also analyze the behavior of the
potential contributions from matter fields. If we introduce
fermion fields as mentioned in Sec. III C, we obtain the

) o@® |

) oo @ o0e |
()
0

00

FIG. 4. Contour plots of the effective potential contributions from fermion fields. From left to right, we assume Ansdtrze 1 to 4. From
top to bottom, we plot contributions from W3, ¥, Wg, and ¥4 with (177, 75) = (0, 0). In these contour plots, the horizontal (vertical) axis
shows the value of b, (b,). From light to dark colors in the plots, the potential decreases. The white regions are excluded by the

constraint on the WL phases in Egs. (3.28) and (3.29).
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plots shown in Fig. 4. Now, we can see that there are some
possible minimum points in regions where tachyonic states
are absent.

C. An example of local minima

As seen above, in the pure Yang-Mills case, there seems
to be no local minimum under the condition discussed in
Sec. III E. On the other hand, including matter fields, we
can find local minima where tachyonic states disappear in
the low-energy mass spectrum.

As an example, we discuss local minima appearing with
an adjoint fermion with the periodic boundary condition.
The potential for the WL phases is given by

V(ak,) = VIV s 81,,) + Vi (ak,; B1,).

0.0 (5.17)
In this potential, we have numerically checked that there
are degenerate local minima where the WL phases take

1

(a7, a3. ag. a3) = ((3 = 2n7)/6.2n7/6 + nf,

(3 —2ng)/6,2n3/6 + nj),

Ny, €Z. (5.18)

There are degeneracies that are expected from the dis-
cussion in Sec. VA since the adjoint matter field is also
neutral under the center Z5. If we introduce matter fields
that are charged under Z;, the degeneracy of the local
minima is generally disturbed. For example, if we add the
contribution from a fermion in the fundamental represen-
tation with the periodic boundary condition to the potential
in Eq. (5.17), we have confirmed that only a subset of the
solution shown in Eq. (5.18), where n,,.n/ €37 is
satisfied, corresponds to the local minima.

Let us discuss the case with the potential in Eq. (5.17).
As a representative of local minima, we take

(ab,a3,al,a3) = (1/2,0,1/2,0). (5.19)
At the minimum, the WL phase factors take
W, = Wy = diag(-1,-1,1) = ¢, (5.20)

where H; is defined in Sec. III A. In our setup, the flux
background satisfies f o« Hs. Thus, at the minimum, both
the WL phases and the flux are along the H; direction. The
WL phases contribute to masses of all flux-coupled 4D
modes since their direction is the same as the one of the flux
background. At the minimum, no tachyonic states exist in
the low-energy mass spectrum. In Ref. [66], a 6D SU(2)
model with an adjoint scalar field is studied, focusing on

the mechanism to eliminate tachyonic states with a flux
background. In the 6D model, it was shown that tachyonic
states do not appear if an appropriate VEV of the scalar field
is developed. In our setup, although there are no elementary
scalar fields, the WL phases play a similar role to the
adjoint scalar in the 6D model in the sense that they give
contributions to masses of 4D modes from flux-coupled
fields.

Around the minimum, let us derive the mass spectrum of
the fluctuations of WL phases at low energy. The WL
phases are zero modes from A’:n ,. The normalization of the
zero modes is chosen to be

1

Ak, = EAES,)]‘ + (nonzero modes),  (5.21)
where Aifl),)k are implied to be zero modes, which are

independent of the extra-dimensional coordinates. Then, in
the 4D Lagrangian L4p, the kinetic terms for the zero
modes take

L35 (A9 4 )( )(a,,)2< ’(’O)z>. (5.22)

Let q’)(“) (a=1,...,4) be canonically normalized real
scalar fields, which are defined by

P = 24101 _ 202, 2 =347 (5.23)
¢ =240 a7 g =3a0% (5.24)

These fields are massless at tree level. Their nonvanishing
masses arise from the one-loop corrections. Let M2 ap be the

mass matrix for ¢(®). We see that

(a',‘n
M(Zﬁ =

ﬁ) (5.25)
¢ a (a}.a?,ag.a2)=(1/2,0.1/2.0)

To evaluate the mass matrix in Eq. (5.25), we recall that
the VEVs of the canonically normalized fields ¢@ are
rewritten by the WL phases a’;,, as

Thus, we obtain
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0 gL 120 dg4L<10+16>
opV) 2zh1,20a) 9P 2zM,\2\/30a}  \/30a2)
(5.27)

0 gL 10 0 g4L<la 1@)

= — s = — +
o9 2ait, 200 o 2, \2v/30a} | V3oa3
(5.28)

where we have defined the 4D gauge coupling g, as
gs = g/(LL"). Let us define the dimensionless potential
V(al,) as V(a},) = L*V(a},). The mass scale of M7, is
roughly estimated as

1 [ g \20*V(a*))
OM2 ~ ad m
Map) ~ 12 <2erW> o, )?
— Li 94 2 azf/(dfn’) (5 29)
L? % \2zM,,) (k) '

From the above, one sees that the mass scale depends on g,
and M,,.

For M,, = 5, we numerically evaluate the mass matrix in
Eq. (5.25). Around the minimum, we find

2
Mgﬂ ~ %diag(1.307, 3.945,1.307,3.945) x 10°. (5.30)

For comparison, we also show the mass matrix in the pure
Yang-Mills case, where (a},a3,al,a3) = (1/2,0,1/2,0)
is a local maximum as

2
Ma} |pure Yang-Mills

2
g .
~ — 7 diag(0.760.2.345.0.760.2.345) x 10°.  (5.31)

Although the eigenvalues of the mass matrix are negative in
the pure Yang-Mills case, they become positive if we
include the potential contribution from the matter field. For
a small value of the 4D gauge coupling, mass scales of
eigenvalues of the matrix in Eq. (5.30) are smaller than
O(1/L’). On the other hand, for a moderate size of the
coupling, the mass scale exceeds O(1/L'). In the 4D
effective theory, there are infinite massive modes. The
one-loop effective potential is a sum of the contributions
from the infinite modes and tends to be large because of the
infinite summation in the presence of the flux background.

Let us discuss the masses of the 4D modes from the other
fields around the minimum. For flux-blind fields, masses of
4D modes are determined by M2, and M3, in Eq. (3.19). As
implied from the WL phase factors in Eq. (5.20), there are
no contributions from the VEV of the WL phases to the
tree-level masses of 4D modes from flux-blind fields at the

minimum. The massless 4D gauge fields appearing from
zero modes of Af, correspond to the remaining gauge
symmetry at low energy. In addition, there are 4D scalars
that are massless at tree level, originating from zero modes
of the extra-dimensional components of the flux-blind
gauge fields, and they could obtain nonvanishing masses
from the quantum corrections. However, in this setup, zero
modes of A% and A{ contain the NG bosons, which are
intrinsically massless scalars related to the breaking of the
translational symmetry by the flux background. Since light
scalars would induce cosmological problems, an explicit
breaking of the translational symmetry may be required to
complete a phenomenologically viable setup, for example,
introducing an orbifold in place of the torus as extra
dimensions. In an extended setup, these light scalars
may play the role of Higgs scalars in GHU and GUT
models.

For flux-coupled fields, masses of the 4D modes consist
of the KK mass contribution M3, and the Landau-level
contribution, as discussed in Sec. III D. At the minimum,
M3 contains the nonzero contribution of the WL phases.
The Landau-level contribution can vanish only for the
fermion case. An interesting feature is that 4D modes from
fermion fields with the antiperiodic boundary condition
(n7,mg) = (1/2,1/2) are massless at the minimum. These
massless states have degeneracy, characterized by ¢5. For
example, in the adjoint fermions, there are flux-coupled
components, which have |g;| = 3. At the minimum, they
lead to three massless states. Massless fermionic states with
degeneracy may be useful for understanding the generation
structure in the standard model, as often discussed in
models with U(1) flux.

VI. CONCLUSIONS

In this work, we have explored the vacuum configura-
tions of an 8D non-Abelian gauge theory. The extra
dimensions consist of a 4D torus, having a flux background
in two of them. The WL phases along the remaining two
compactified dimensions are treated dynamically. Their
values contribute to the masses of low-energy 4D modes.
Thus, to obtain phenomenological implications of this
setup, it is crucial to clarify the vacuum structure of the
potential of the WL phases.

As a concrete example, in an SU(3) model, we have
performed the analysis of the vacuum structure evaluating
the quantum corrections of the potential. We have intro-
duced matter fields and began by deriving the masses of the
4D modes emerging in the low-energy effective theory. As
expected, some 4D modes can be tachyonic, coming from
flux-coupled fields. However, the masses of these 4D modes
also contain contributions depending on the WL phases,
which can stabilize the system by taking appropriate values.
We have shown the constraints on the parameter region of
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the WL phases where tachyonic states disappear at low
energy.

To discuss the vacuum structure, we have derived the
one-loop effective potential for the WL phases, which have
no tree-level potential. In the search for minimum points of
the one-loop potential, we have shown that critical points
naturally appear where the WL phases take a simple
fractional form. The WL phase factors at these extrema
of the potential were shown to be aligned with the flux
background in the SU(3) space. We also have plotted the
effective potential as functions of the WL phases with some
Ansdtze. For the pure Yang-Mills case, the local minima
were found to be located only on the parameter region
excluded by the condition to eliminate tachyonic states
from the 4D mass spectra. On the other hand, in the
fermionic contributions to the potential, some local minima
were found in the allowed parameter region of the WL
phases.

In models including matter fields, we have numerically
found that local minima exist without any Ansarz, and at
the minima, tachyonic states disappear from the low-
energy mass spectrum. As discussed, the WL phase factors
at these points are aligned with the flux background.
As an illustrative example, we have examined the
low-energy mass spectrum around a minimum point
(al,d3,al,a?) = (1/2,0,1/2,0). The fluctuations of the
WL phases around the minimum obtain positive mass
squared, which are generated by the one-loop effective
potential and are proportional to g2/L. Massless 4D
gauge fields appear corresponding to the remaining gauge
symmetry SU(2) x U(1). In addition, massless 4D scalars
regarded as the NG bosons appear from the flux-blind
fields. We also have discussed that chiral fermions can be
obtained from flux-coupled fields at the minimum point if
we introduce fermion fields with the antiperiodic boundary
condition.

The above results imply that several higher-dimensional
gauge theories with flux backgrounds related to a simply
connected gauge group can have phenomenologically
viable metastable vacua. Thus, we expect new possibilities
of diverse models beyond the SM, such as GHU and GUT,
in this framework. The discussions on vacuum stability
concerning tunneling processes, realistic model construc-
tions, and their predictions are intriguing research topics
left for future studies.
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APPENDIX A: MASS SPECTRUM OF 4D MODES
FROM EXTRA-DIMENSIONAL GAUGE FIELDS
WITH ARBITRARY £

In Sec. III D 3, we show the masses of 4D modes from
the extra-dimensional gauge fields having g;(¢) # 0. Here,
we explain the derivation of their masses in an arbitrary &
case. To obtain the mass spectrum of the 4D mode from the
gauge fields that couple to the flux, we have to diagonalize
the Lagrangian corresponding to Eq. (5.34) in Ref. [64].
The gauge parameter dependence appears with A,,, and the
relevant part of the Lagrangian is given by

Ly =24,[6"0+6™(D,)? (1 - £)D"D"

- 219.?‘]3 (5m55n6 - 5m65n5)]Am (Al)

Ds=0s+igfqs(1+7)x°/2, Ds=0ds—igfqs(1-7)x’/2,
(A2)

Dy = 05 — ig(q,v§ + q203).
(A3)

D;=0d;— l'g(th% + Q2U%>7

where ¢, is the charge of ¢ with respect to Hj. One sees
that the terms including As¢ and A;g¢ are completely
separated in Eq. (A1) for £ = 1. For an arbitrary ¢, there
are mixing terms.

To diagonalize £, , we change the basis from (As, Ag) to

(A_,A,) as
<A_> 1 (AS—iA6>
A, ) V2\As+iAg)
Note that [Ds, Dg] = —igfg; holds. We hereafter take

f.q3 >0 for simplicity. Then, we can introduce the
annihilation and creation operators as

Ds — iDg = i\/2g9fq;a",

(A4)

Ds+iDg = i\/2¢fqza,  [a,a'] =1, (AS5)
and
(Ds)* + (De)* = —2gfqs(a’a +1/2).  (A6)
We can rearrange the Lagrangian in Eq. (A1) as
A_
- - - A,
£Am = _Z(A— A+ A7 AS)(_DI + l—‘mass) A ’ (A7)
7
Ag

where
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1 0 00
N 5 5 R 0 -1 0 0
Fiass = [20fg3(@"a +1/2) = Dy = DT + (1= £)(DD) =29fqs| o o 4 | (A8)
0 0 0
and
DiDitafas  (Ds=iDe)*  (Ds=iDe)D;  (Ds=iDg)Ds
2 2 V2 V2
(Ds+iDg)?  D3+Di=9fas  (Ds+iDg)D;  (Ds+iDe)Ds
(DD) = 2 : V2 V2 . (A9)
Ds+iDg)D Ds—iDg)D
( 5+\/§6) 7 (Ds \/56) 7 D% D7D8
(D5+£6)D8 (Ds—\i/Dis)Ds DyD;, D%
Here, 7 is the 4 x 4 unit matrix.
To evaluate the eigenvalues of the operator I',, let us introduce the mode expansion as
P 21,27, ZZ > (/)? )n (W) E1.a(z0) Fin g (7, 2%), (A10)
>0 d=1 n;,nige”Z
where z; = x° 4 ix%, and f; 5 (x7,x*) is defined as
ffu,ﬁg (x7, xS) _ eszthﬂ eznmswaR. ( All)
On the other hand, the mode functions {; 4(z;) satisfy [64]
N [P
ago.q(z1) =0, Cra(z1) = \/_ﬁ(aT)lCO,d(Zl)' (A12)
We obtain
' =VI+ 1404 alra = Vi 4. atag; =18 4. (A13)

Using this mode expansion, we can deduce the low-energy mass spectrum from the Lagrangian in Eq. (A7) integrating
over the extra dimensions. Let (', );; be an (i, j) component of the matrix I'yqg- From the diagonal entries of T, we obtain

[ ATt = S A [pafas (V551 5) + Cabtp 8D A
AT, = GO [2afas (5 51+ 25E) + mtt (8 W] . w19
/E Ay (T )ity = 37 () 207451+ 172) + (2ait, (85 + R3)] (A7) 757 (A16)
[E As(Taaats = 0 (A)(7 |20 as (14 1/2) + Qa2 (85 + ER3)| (A1 (A17)

where we have used ¥ = D150 Dot 2oiagez and [ = [d*y. The WL phases are contained in N7 and N, defined in
Eq. (3.18). From the off diagonal entries of I', we find
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We hereafter suppress the indices n,,, and d of 4D modes
since there are no mixing terms with respect to them. It is
convenient to introduce

Km’ = 277'-]‘/\4w]’vm’1 Lk = gj‘q3(l + k) (A30)

Note that g f = 27 holds under the assumption in Eq. (3.1).
Let us define

A (Ta) 137 = D (AT [ (6 = 1)/ af a1 + D)(@abt, )R] (A) (77,
AT iss = D (AT [ (6 = 1)y af a1+ D)(@alt, )R] (45) (757
(- )gfas

o= N\ (Agg) [
+(Fmass)23A7 = Z (A+)EZ-ZZ) ¥ _(5 a

)(l+2)] (A, (A18)
(A19)
(A20)
U+ 0+ 2)} (A (A21)
1) gfq3(l+1)(2ﬂ]\7[w)]v7} (Ap)iTi) (A22)
D/ afas(t+ 1)@, N (A7), (A23)
afas(1+ 1)@t )] (AT (A24)
D afas(1+ D(@ait, )| (475, (A25)
)(2xht,) 2N7N8} (Ag) 777, (A26)
afgs(1+1 )(zﬂMW)NS} (A (A27)
D/ afas(1+ D(@ait, ) 5| (475 (A28)
£—1)(2xi1,) 21\771\/8} (A7), (A29)
A_
/d4y(A_A+A7A8)F i* Ei > Lr.  (A31)
7 d=1 f;,ig€Z
Ag

where

Lr = (A)()[=27q5 + K3 + K§J(A_) )
+(AD)q )[27“13 + K7 + K3 + (£ = 1)27g5)(A) g
+) (Lo + (€= DLy, (A32)

>0
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Loy = (A2) o) [Ly + Lo + K5 + KFJ(AL) 1) + (AL) ) [Ly + Lo + K5 + KRJ(AL) )

+ (A7) ) [Lo + Ly + K7 + Kg|(A7) ) + (Ag) ) [Lo + L1 + K7 + K5 (Ag) s (A33)
= (AL) (i) L2 (A) (1) + (AL )y L1 (AL ) ) eV L1L2 (AL ) )+ (A ) )V LiLa(AD) (142

+ (A7) ) K3(A7) o) + ( )z)Kg(As) +(A )()K7K8(A Jo + (As)()K7K8(A7)<)
+ (A7) () VL1 K7 (AL) 141y + (AD) 11y V L1 K7 (A7) ) + (Ag) () v/ L1 K8 (AL) 151 + (A2) 141y v/ L1 K5 (Ag)
+ (A7) () VL1K7(AL) ) + (AL )V L1 K7 (A7) (1) + (Ag) (1) VL1 Ks (AL) ) 4+ (AL ) ) v/ L1 K (Ag) 1) (A34)

In this expression, mixing terms only appear in £ ;. After a straightforward calculation, we find the mass eigenstates as

(Bo)(142) = ﬁ (\/Z;(AH(I) - \/E(A—)(Hz))v (A35)
(Co)yy = \/;—7[2— (K3(A7) ) — K7(Ag) ) (A36)
78
(D) = e [\ o alds)o + Kalds)o) = \/M%8<A_><1>], (A37)
q3 78
(D) = \/ﬁ(&(fh) + K3(Ag) o) 27q3(A-) 1)), (A38)
q3 78
(Eo)y = ——— Vs (L) + VE(A ) = [ P2 (A0) ) + Ki(Ag)
o)y = VoL |\ +L ( +) 2(A0) (142) M2, 7(A7) 151y + Ks(Ag) 141)) | »
(A39)
(E9y = mm )+ V(A ) 2) + KalA7) )+ K(Ag) ) (A40)
1 78

where M2 is defined in Eq. (3.19). A diagonalized form of the Lagrangian Lr is given by

Ly = (A—)(o) [4rqs3(=1/2) + M%g](“‘—)(o) + Z(Bo)mz) [4rqs(1+3/2) + M%8]<BO>(I+2)
1>0

+) (Co)y[drgs (1 +1/2) + M%](Co)
>0

+ (Do) [4rq5(1/2) + M| (Do) + Z Eo)y[4rqs(1 4 3/2) + M3 (Eo) )
>0

+ (D¢)él4rqs(1/2) + M3 (De) + Z(E¢)<1)§[4nq3(1 +3/2) + M%) (Ee) - (A41)
1>0

This expression shows that the masses of the 4D modes are given as discussed in Sec. III D 3. It also shows that the mass
eigenvalues consist of different contributions; one is from the Landau-level excitations, and the other depends on the WL
phases contained in M3,. The former contributions are specified by half integers appearing in coefficients of 47g;. These
contributions for each 4D mode are schematically expressed as follows:
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{(A0)0) (Bo) 2y, (Bo)3)
{(Co)(0)> (Co)rys -+
{(Do). (Eo)(q)- (Eo)1): ---}
{(De). (E) o). (Ee)qrys -}

~1)2 32
12 32
12 32 (A42)
§1/2 £3/2

The ghost sector has the same masses as {(D;), (E:)
simplified mass eigenstates as follows:

0)» (E¢)(0)» -} For & = 1, contributions from L)

vanish. We obtain

{(A2))- (A-)qrys -}
(A0 (A )y -}
{(A7) 0y (A7) 1y -}
{(Ag)0): (As) (1) -}

~1/2 3/2
12 3/2
12 3/2
12 3/2

(A43)

The physical mass spectrum corresponds to the -independent ones:

{(A-)10): (Bo)2): (Bo) 3y -

{(Co)(0ys (Co)gays -}
{(Do). (Eo)0): (Eo)(1)s -}

~1/2 3/2
12 3/2
12 3/2

(A44)

APPENDIX B: DERIVATION
OF THE EFFECTIVE POTENTIAL

In this section, we derive contributions to the one-loop
effective potential for the WL phases a’:n , (m' =17, 8 and
k=1, 2) in the SU(3) model in Sec. IV.

1. Flux-blind case
Let ¢ be a flux-blind field. As discussed in Sec. III D,
their 4D modes ¢ ;) have masses M*(¢5)) as in Eq. (3.20).

The effective potential contribution for the WL phases
generated by 4D modes from ¢ is given by

AV(p) = Ndegz / & LEn(p}+ M2 (40)) (BY)

i Naeg
. dtr3eM Pw)r,
32712 Z/

where N, is a positive integer that gives the number of
real d.o.f. of ¢, and F is the fermion number of ¢. The
summation for 2 = (s, fig, fi7, fig) is taken over all integers
for each 71,,. The expression above is divergent for small

(B2)

values of the integration variable ¢. Since ¢ has dimension of
M2 it is a UV divergence. It is useful to rewrite this
expression using the Poisson resummation formula, which
is given by

E e—ﬂ(n,-er,-)( (n;+d;)

n,€Z

A /det E e—mu’A ! 27[1(1) d

w'eZ

(B3)

for a d-dimensional invertible matrix A (i,j =1,...,d)
[33]. In our case, we have

VdetA =1/ |4nth,,|?
(B4)

s

1 . .
A= 4—mdlag(1, 1,1/M2,1/0M2),

ds =dg =0, dy = —q1a5 — a5 + 117,

dy = —q1ag — g2a3 + 11s. (B5)

Thus, we rewrite Eq. (B2) as
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AV(¢) deg Z/ t 56_5( +w§+(w$+w§)/1f/[ﬁ,)eZni(ar7d7+a)gd8) (B6)
3Ndeg Z 2m (w7d7+wgdg) (B7)
N m M3, 4 [0} + 0} + (03 + f) /M)
where we have used
oo 6
/ dirSe X/ = —  for X >0, (BS)
0 X

and the summation is taken over s, wg, w7, wg €Z in ) _,.

In Eq. (B7), the UV divergence became more evident, now being expressed by the term (ws, wg, @7, wg) = (0,0,0,0).
The contributions from (w7, wg) = (0, 0) have no dependence on the WL phases. Therefore, they can be disregarded since
we are only interested in the potential for the WL phases. Then, the remaining part is finite. Hereafter, we replace the
summations in Eq. (B7) with the new definition,

Z’ = Z — (contributions of (w7, wg) = (0,0)). (B9)

This summation is written more explicitly as

- ¥ (%

ws,wg €Z \ w721

FY DA DD+ Z) (B10)

w721 wg>1 @721 wg<—-1 051 wg>1 @w75—-1 wg<—-1

D>

wg=0 w<-1

+

wg=0 wg>1

+

®7=0 wg<—1

w7=0

We find
627[[((1)7d7+wgd8) B 2 cos(27rco7d7)
Z+ Z [a)2+a)2+(a)2+w2)/1\7[2}4_Z[a)z—l—a)z—l—aﬂ/lfﬁ]“’ (Bll)
w721 w7<—1 wg=0 5 6 7 8 w w1 5 6 7 w
e2mi(@rdr+wydy) B 2 cos(2mmgdyg)
Z+Z [2+ 2+( 2+ 2)/M2}4_Z[2+ 2Jr 2/M2]4' (B12)
wg=l  wg<—1) lo;=0 |05 T Wg T (W7 T Wy w wg=1 [W5 T Wg T Wg /M,
Thus, we obtain
Z eZm(w7d7+a)3dg)
+ + + -
w>1wg=0 g <—1lwg=0  @e>1lw;=0  @e<—1lw;=0 [a)g + a)g + (a)% + w%)/Mgv]“
2rwd 2rwd,
S Pl LU (B13)
w>1 [0)5 +a)6 +w /Mw}
and
3D 32D 3D RS ) 3D i DR e e
+ <
ool wog>l ol ogial  wrel wgsl @y el wg<1 [0} + &f + (0} + ) /M3 ]*
_4 cos 27ra)7d7)cos(27rw8d8) (B14)
@ mp2l (2 + 0} + (03 + 03)/M;]*
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Finally, the contribution to the effective potential obtained from flux-blind fields is summarized as

6N deg

cos(2zwsd;) cos(2rwgdy)

4 2
MW ws,wg €EZ \ w>1

cos(2zwd;) + cos(2rwdy)
D I o i ey R
[0)5 +a)6 t+w /Mw]

>

wq,mg>1

(@3 + g + (@] + w§)/1f4@}4> - (BIS)

2. Flux-coupled case with X55=0 or Z5= +1/2

Now, let ¢ be a flux-coupled field. As shown in Sec. III D 2, if ¢ has Xsq = 0 or 1/2, the masses of 4D modes from ¢,
denoted by Mz(q’)( 2 dﬁ7ﬁs))’ are given by Eq. (3.22). From a discussion similar to the one in the previous subsection, we find

that 4D modes from ¢ generate the effective potential contribution AV(¢), which is given by

Nd |Q3|
3e2g7r Z Z

720 f7ig €2

_ Ndeg|Q% /
322

AV(p) =

dtt3 Z

g,y €Z

where the overall factor |¢3| is a result of the degeneracy
labeled by din ¢, , 5 ;). and the order of the integration
and the summations were exchanged in the second line.

The infinite sum over 71; and 7ig in Eq. (B17) can be
rearranged by using the Poisson resummation formula
given by Eq. (B3) with

/1 0 1 10
Al = Anh e , A= —n ,
0 1 4zM?t\0 1

1
vdetA =

|47zM 1|’ (B18)
and d; and dg in Eq. (B5). We obtain
o~ (27M, )2 (N3+R3)1
ng,ig€Z
_ Z 1,\ e_ﬁaj,(w?ﬂ”é)eZni(w7d7+(o8d8). (B19)
o ez |47rM3Vt|

We focus on the infinite sum over Z in Eq. (B17). In the
Ys6(¢p) = 0 case, the summation is rewritten using

P 1
} : -SQe+1) =St -3t —58t —
Z)>Oe e +e +e + ... 2 sinh St

(B20)

where S = 27|qs| is implied. In Zs4(¢p) = £1/2 cases, we
combine contributions from 4D modes from Xs4(¢p) = 1/2

/ dtt3e”

fdn7 Jfig) )

(B16)

—(2alt,, )2 (N2+N2)t } :e—4ﬂ\q3|(2+1/2+25(,)z
9

>0

(B17)

and Xs4(¢p) = —1/2 fields. Then, the summation is rewrit-
ten using

(Z + Z) o250t (€725 4 =451 4 )

7>1 20
+ (1 4+e 25 e )
1
" tanh St

(B21)

From the discussions above, the effective potential
contribution for the Xs4(¢p) = 0 case is given by

i Nee |fI3|
AV o= —(—1)F =22
Dlrmo ==V 5

% § 627”'((1)7d7+m3d3)

w703 EZ

[s0)
x/ dri*
0

As was done in the previous subsection, we subtract the
divergent (w7, wg) = (0,0) contribution. Finally, the con-
tribution to the effective potential from flux-coupled fields
with X5¢ = 0 is given by

202
w7 +w8

)
Mt

1)

(B22)
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AV(¢)|256:0 = —(_1> 1287;3M2

w>1

+4 Z cos(2rw,dy) cos(2rawyg

wq,wg>1

Ndeg|ch
128723812,

W wq,w8 €Z

AV(¢) |25(,:il/2 - _(_1

=—(-1
(=1)" 12873 M2,

w>1

+4 Z cos(2ﬂco7d7)cos(27m)8dg)/Do dr
0

wq,wg>1

We note that the expression above comes from a pair of Zs4(¢p) =

d.o.f. of the pair.

N 00 4nh2t
P Naeg 03] <22 cos(2zwdy) + cos(2rwdy)] / dirt—°
0

e 4zt
d drt
8)/ 2 sinh 2ﬂ|qg|t)>

On the other hand, the effective potential contribution for the Xs¢(¢p) =

N ) TanbiZe
P Naeala3] (22 cos(2nwdy) + cos(2rwdy)] / L e —
0

2
__w

2sinh(27|gs1)

ur +w2

8

(B23)

+1/2 case is given by

u)% +w§

)
Z e2mi(w7dr+wgds) / dr 2 &
tanh(27|q5|1)

20
1%

e 4xMt
tanh(2z|qs|t) |

+1/2 fields. Thus, Ny, corresponds to half of the real

(B24)

3. Flux-coupled case with X55= +1

Here, we consider the £ = 1 case. If ¢» now corresponds to As g, there appears a pair of fields having X5 = +1. Their 4D
modes have masses as in Eq. (3.23). Hence, the effective potential contribution from a pair of |Xs¢| = 1 fields is given by

AV(¢) _ _Ndeg|Q3|

where we have used M%S as in Eq. (3.19) and

S = 2z|q5] > 0, (B26)

for simplicity of the expressions.

The contribution in Eq. (B25) contains UV divergences
corresponding to the singularity of the integrand in the
t — 0 limit. On the other hand, there are no IR divergences
since we only consider the WL phases that satisfy the
conditions in Egs. (3.28) and (3.29). We can use the
Poisson resummation as done in previous subsections to
isolate the UV divergent contribution, which is independent
of the WL phases. However, in this case, the Poisson
resummation may cause a worse IR behavior.

AVig) = 12823062,

w>1

+4 Z cos(2zwqd) cos(2mwgdy)

w7,wg>1

N o
_ Naeglas| (22 cos(2zwd;) + cos(2rwdg)) / dite
0

/oo oy jMz* cosh(4ﬂ|q3|t)>
0

o / dt t-3eM3 t( (—1/2)t+e—25(1/2)t+22e—25(9+1/2)t>, (B25)
T
iy, ig€Z

>0

To see this, we first show an evaluation of the contri-
butions that have a worse IR behavior. Using the formula

cosh(2St)

St =St 4 9 (e=351 =58t —
el f e 4 2(e M e+ L) Sinh(S1)

(B27)

we can formally rewrite Eq. (B26) as

_Ndeg|LI3| / dl‘t_3 M2 COSh(4”|q3‘t)
2
327 g,y €L

sinh(27|g3|t)

AV(¢) =

(B28)

As in previous subsections, using the Poisson resummation
formula, we obtain

4,,M2 cosh(4x|qs|t)
sinh(27|qs]t)

B2
sinh(27|qst) (B29)
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In this expression, one sees that the integrands badly N deol 93] o
) - ) ) AV, = ——=22 " dt 3B, (B30)
diverge for t — oo, namely the IR limit. This behavior Y .
cannot be evaded as long as we use the Poisson resumma- Ay EZ
tion formula to separate unwounded local divergences in . )
the contributions from potentially tachyonic states, the first ~ 1he total contribution is rewritten as
term in the parenthesis in Eq. (B25). Alternatively, we can
regularize the local divergences, which are independent of . _ Nieg| 93] ® 3 My
the WL phases, by subtracting an infinite constant, leading AV(¢) = AV 3272 . ﬁZeZ 0 drr=e=n
to the final expression for the regularized contribution to o
the effective potential.
To give a more appropriate evaluation of the potential Z Z e 25120, (B31)
contribution AV(¢), we give a careful treatment of the 220 720
contribution from potentially tachyonic states in the 4D
modes. Let us define Let us use
|
-s
Dt e R P (B32)
= tanh(S?)
Except for AV,., we calculate the potential contributions as in the previous sections. The result is given by
w2
Nge |¢I3| 0 e 4;:M‘1,ze—2zr|q;|t
AV(¢) = AV ——2"2"1 2 [cos(2zwd;) + cos(2nwd / dtt———o——
(¢) tac 1287‘[3M%V wzz;[ ( 7) ( 8)] 0 tanh(27z|q3|t)
4 drarsds) cos(2mady) [ drit 33
tr—— B
+ Z cos(2zmwsd;) cos(2rwwg 8>A @nh(22lg3]0) (B33)

w7,03>1

Let us discuss the evaluation of AV .. As discussed in
Sec. ITE, we only consider values of WL phases that
eliminate tachyonic states. In this case, the relation M3 —
S > 0 is ensured, and the integrand in Eq. (B30) converges
for t > c0. We evaluate AV,. under the condition
M3g — S > 0. Let us first define

o N,
=) / e WS, Ay, =Nl
fyigez 0 327

(B34)

We consider the parameter region of our interest
M3g — S > 0, which is rewritten as
0<S/M3 <1 (B35)

and expand the factor €% in Iy as

Sk &
n=Y G W= ) / di 3k e=Miy!,
k>0 iagez 0

(B36)

One sees that I(Tk> for k =0, 1, 2 contains UV diver-
gences. Let us use the Poisson resummation formula as in
Eq. (B3) to separate the UV divergent parts,

>62ﬂi(w7d7 +wgdg)

2
E e Mt —

ig,ig €Z

1 e—m(m$+w§
Z |4z M2 1|

w703 €EZ

(B37)

(k<2)

and evaluate /5 as
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<2 e27ri(a)7d7+a)gdg) S e_WﬁJ(w%erg) F(3 _ k) eZni((u7d7+mgdg)
I(T_ )= ) / dt a—k = 012 \k—2 2 2\3—k © (B38)
w703 EZ |47[MW| 0 t (4”MW) w03 €EZ (607 + wS)
Thus, we have that the expressions for each value of k <2 are given by
N (2rwd 2rwdy) (2rw,d 2rwgd,
I(TO) = 322%M7} 22 cos(2nady) +2cos( rds) +4 Z cos(2ma, 7) COS( 7gds) + (constant), (B39)
w>1 w w7,w3>1 (07 + wS
N 2rwd 2rwd 2wd 2rwgd.
I(Tl) = 4z’ 22 cos2rwd;) —Zios( rardy) +4 Z cos(2mwy 27)002(271'&)3 ) + (constant), (B40)
w>1 ((1) ) w7,wg>1 (607 + a)S)
ZZ cos(2zwdy) —|2—;os(27ra)dg 4 Z cos(2zwqd;) cos(2rwgdyg) + (constant). (B41)

w>1 (w i

In these expressions, the UV divergent part originating
from zero winding terms is separated as “(constant).” Since
they are independent of the WL phases, we hereafter
discard these constants.

For k > 3, we obtain a simple expression of I(Tk) as

(k=3) ( )
I = (B42)
T e B
Then, the k > 3 contributions are expressed as
2(S / M3,
B43
=Y S e

k>3 iy ig€”Z k>1

Consequently, we obtain the expression of It as

Ir =11 + sitt)

ng.iig€Z k>1

w7,wg>1

(07 + )’

In the above expression, there is a divergent contribution
contained in the k = 1 term on the right-hand side, which
originates from I<T3 ) 1t is possible to regularize it by a
procedure similar to the Pauli-Villars regularization. We
subtract the infinite constant that is independent of the WL

phases from It as

S3

I+ - I — ~ ,
o 6(2xi,,)? (A2 + A2)

(727,713)#(0,0)

which exactly cancels the divergence in Eq. (B43). We note
that the summation is taken over integers 71; and 7ig except
for (i, ig) = (0,0) in the regulator.

(S/ M%)k $3

_I > Zk+2(k+

- VRVITI (B45)
(727.713)#(0,0) 6(277Mw)2(n% + né)

32722 MY 8P| qs |3 2725t
= ZZ[COS(Zﬂa)d7) + cos(2rwdy)] —+ |qi| + |C613|
>1 [0 In) )
3272 MY 8x2|qs|MP 2722 a2
+4° 3 cos(2mwrdy) cos(2rwgds) | ﬂ2|q3| 1, | 2m Iq3|2 :
w7,wg>1 w5 + C()8 (CU7 + wg) (0)7 + a)g),

271'|Qg 2+k
2 D ks RO

fip.ig €Z k>1

(717.713)#(0,0)

Z 6(27[1‘(42”)|q(3|)3+ 5 + (constant). (B46)

ng

Discarding the irrelevant constant contribution in the last equation, this expression is finite.
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