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We analyze the vacuum structure of an eight-dimensional non-Abelian gauge theory with a compactified
four-dimensional torus as the extra dimensions. As a nontrivial background configuration of the gauge field
of an SUðnÞ gauge group, we suppose a magnetic flux in two extra dimensions, and continuous Wilson line
phases are also involved. We introduce matter fields and calculate the mass spectrum of low-energy modes
appearing in a four-dimensional effective theory in an SUð3Þ model as an explicit example. As expected,
potentially tachyonic states in four-dimensional modes appear from extra-dimensional gauge fields that
couple to the flux background since the gauge group is simply connected. The Wilson line phases give a
nonvanishing contribution to their masses, and we have a low-energy mass spectrum without tachyonic
states, given that these phases take an appropriate value. To verify the validity of the values of the Wilson
line phases, we examine the one-loop effective potential for these phases and explicitly show the
contribution from each type of field present in our model. It is clarified that, although there seems to be no
local minimum in the potential for the Wilson line phases in the pure Yang-Mills case, by including matter
fields, we could find a vacuum configuration where tachyonic states disappear.
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I. INTRODUCTION

The Standard Model (SM) has shown to be very
successful, but there still remain many mysteries to be
explored. The past decades have seen a significant increase
in research on higher-dimensional theories as a potential
framework for physics beyond the SM. For instance,
identifying the Higgs as a scalar originating from an
extra-dimensional gauge field, a model known as Gauge-
Higgs Unification (GHU) [1–4], gives a new perspective
on understanding its origin and solving the hierarchy
problem [5]. Thus, exploring extra-dimensional gauge
theories can provide insights into new physics beyond
the limitations of our usual four dimensions.
Nontrivial background configurations for extra-

dimensional gauge fields can lead to interesting phenom-
ena. A constant background value, which is the vacuum
expectation value (VEV) of the extra-dimensional gauge
fields, is closely related to the physical degrees of freedom
ofWilson line (WL) phases. Since these phases parametrize

physical vacua along flat directions of tree-level potentials
for gauge fields, they are interesting candidates for the
Higgs in GHU models. Consequently, the Higgs obtains a
finite effective potential through quantum corrections and a
finite mass even at the higher-loop level [6,7], characterized
by the size of the extra dimensions, also clarifying the origin
of the electroweak symmetry breaking [5,8–17]. In the
context of Grand Unified Theories (GUTs) [18], WL phases
can contribute to the spontaneous breaking of a more
extensive gauge symmetry to the SM symmetry [19–34].
Moreover, introducing a constant magnetic flux in the
background configuration brings extra phenomenologically
desirable properties. First, having a flux background gives
rise to chiral fermions in the effective theory [35,36], which
is one fundamental feature of the SM. They exhibit a
generation structure that can be used to explain the existence
of multiple quark-lepton generations [37–45] and the flavor
structure [46–52], and the flux was shown to be a source for
breaking supersymmetry (SUSY) [53].
There have been some recent studies considering the

flux background in various setups. In models with more
than six dimensions, massless scalars arising in the four-
dimensional (4D) effective theory were identified as the
Nambu-Goldstone (NG) bosons associated with the trans-
lational symmetry that is broken by the magnetic flux. For
Abelian gauge theories, quantum corrections of these
scalars were shown to cancel in both SUSY and non-
SUSY cases [54–59]. There are also studies focused on
non-Abelian cases [60–63].
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Recently, we have investigated the mass spectra of a six-
dimensional (6D) SUðnÞ gauge theory with a magnetic
flux background in the extra-dimensional torus [64]. We
have also included WL phases in the background and
could verify that their values along the flux direction have
no physical contribution to the masses. In models with a
simply connected gauge group, mass spectrum and vac-
uum structure generally become complicated compared to
the Abelian case since tachyonic states appear in a simple
setup [64]. A few attempts have been made to stabilize this
type of system [65,66], and tachyonic condensation was
discussed in a SUSY model [67]. However, there is less
research on vacuum structure in non-Abelian cases,
including quantum corrections for potentials of the WL
phases, which could lead to the development of phenom-
enologically interesting models.
In this work, we expand our setup to eight dimensions to

address the above issue. The extra dimensions are com-
pactified on a 4D torus with magnetic flux in only two
directions. We examine dynamics of WL phases along the
remaining two directions, whose values can now affect the
masses of low-energy modes as a nonvanishing contribu-
tion. We can find a parameter region of the WL phases
where tachyonic states disappear for a given flux back-
ground. However, as previously mentioned, these phases
have no potential at tree level. Thus, it is essential to
calculate quantum corrections for the potential to analyze
the validity of the vacuum. By taking an SUð3Þ gauge
theory as a simple example, and also introducing matter
fields, we show the mass spectrum of 4D modes and the
one-loop effective potential for the WL phases. We find
local minima of the potential where no tachyonic states
appear in a low-energy mass spectrum in models with
matter fields, whereas the pure Yang-Mills case has no
local minimum. Using the flux and WL phases in the
background configuration, we can generate many sym-
metry-breaking patterns and diverse low-energy effective
theories. Further exploration in this field can lead to the
development of new theories beyond the SM, such as GUT
and GHU frameworks.
The structure of this paper is as follows. In Sec. II, we

introduce definitions and basic concepts of an SUðnÞ gauge
theory on an eight-dimensional spacetime. Subsequently,
we take the SUð3Þ case as a simple example for further
discussion. In Sec. III, we elucidate the gauge fields and
matter fields present in our model and show the masses of
4D modes appearing at low energy. As expected, some 4D
modes can be tachyonic, which obtain positive mass
squared with the help of nonvanishing WL phases. Thus,
we discuss the conditions for the WL phases to stabilize
potentially tachyonic states. In Sec. IV, we compute the one-
loop effective potential for the WL phases, indicating the
different contributions from each type of field. Finally, in
Sec. V, we explore the vacuum structure, searching for local
minima of the potential. We obtain qualitative insights from

an analytical discussion of the potential. Then, we find local
minima where tachyonic states disappear in the potential
using numerical analysis. Section VI concludes our work,
and the Appendixes contain details of derivations of the
mass spectrum and the effective potential.

II. SETUP AND NOTATIONS

We consider an eight-dimensional (8D) setup, which is
an extension of the one discussed in Ref. [64]. It consists
of M4 × T4, where M4 is the Minkowski spacetime, and
the extra dimensions are given by a 4D torus, T4. The
coordinates are denoted as usual, xM (M ¼ 0, 1, 2, 3, 5, 6,
7, 8) with xμ (μ ¼ 0, 1, 2, 3) onM4 and xm (m ¼ 5, 6, 7, 8)
on T4. As a simple case, we define that the torus
coordinates satisfy the identification

ðx5; x6;x7; x8Þ∼ ðx5þLn5; x6þLn6; x7þL0n7; x8þL0n8Þ;
ð2:1Þ

where n5; n6; n7; n8 ∈Z, and L and L0 parametrize the size
of the torus. We set L ¼ 1 without loss of generality and
define L=L0 ¼ M̂w, which is a free parameter and
expresses the relative size of the torus in our theory.
For an SUðnÞ gauge theory, the gauge field AM ∈ suðnÞ

is expanded as AM ¼ Aa
Mta ðAa

M ∈R; a ¼ 1;…; n2 − 1Þ,
where ta ∈ suðnÞ are the generators that span the Lie
algebra suðnÞ. Given the identification in Eq. (2.1) above,
we have that the gauge fields AMðxμ; xmÞ must be physi-
cally equivalent to AMðxμ; x̃mÞ, where x̃m is xm translated as
in Eq. (2.1). Therefore, it is sufficient that they are the same
up to a gauge transformation. Let us define

T nxm ¼

8>>>>><
>>>>>:

ðx5 þ L; x6; x7; x8Þ; for n ¼ 5;

ðx5; x6 þ L; x7; x8Þ; for n ¼ 6;

ðx5; x6; x7 þ L0; x8Þ; for n ¼ 7;

ðx5; x6; x7; x8 þ L0Þ; for n ¼ 8:

ð2:2Þ

Then, we have

AMðT nxmÞ ¼ TnAMðxmÞT†
n þ i

g
Tn∂MT

†
n; ð2:3Þ

which are the boundary conditions for the gauge fields in
the torus. The matrices Tm ∈ SUðnÞ are called the twist
matrices, g is the gauge coupling constant, and xμ was
suppressed to simplify the notation. From now on, we will
keep this notation for all functions of xμ.
We start by discussing the pure Yang-Mills theory, which

has the following Lagrangian:

L ¼ −
1

2
Tr½FMNFMN �; ð2:4Þ
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where we have used the definitions

FMN ¼ i
g
½DM;DN � ¼ ∂MAN − ∂NAM − ig½AM;AN �;

and DM ¼ ∂M − igAM ð2:5Þ

for the field strength tensor and covariant derivative. Later,
we introduce matter fields.
Since we are considering nontrivial background con-

figurations for the extra-dimensional gauge fields, we make
the following replacement:

AMðxmÞ → BMðxmÞ þ AMðxmÞ; ð2:6Þ

where BM denotes the background configuration and AM
on the right-hand side represents the fluctuations around
BM. By imposing 4D Lorentz invariance at the vacuum, we
hereafter set Bμ ¼ 0. We define the background field
strength tensor and covariant derivative as

Fmn ¼ ∂mBn − ∂nBm − ig½Bm;Bn�;
Dm ¼ ∂m − igadðBmÞ; ð2:7Þ

where adðXÞY ¼ ½X; Y�. Using these definitions, we per-
form the standard Rξ gauge fixing by adding the term

LGF ¼ −
1

ξ
Tr½ð∂μAμ þ ξDmAmÞ2� ð2:8Þ

to the Lagrangian given by Eq. (2.4). In the above, ξ is a
real parameter called a gauge parameter.
This background has to satisfy the equation of motion for

consistency. Accordingly, we obtain the background equa-
tion of motion, which is given by

DmFmn ¼ 0: ð2:9Þ

A solution is

B5ðxmÞ ¼ v5 − ð1þ γ1Þf 1x6=2;
B6ðxmÞ ¼ v6 þ ð1 − γ1Þf 1x5=2; ð2:10Þ

B7ðxmÞ ¼ v7 − ð1þ γ2Þf 2x8=2;
B8ðxmÞ ¼ v8 þ ð1 − γ2Þf 2x7=2; ð2:11Þ

where

½vm;vn� ¼ ½vm; f 1� ¼ ½vm; f 2� ¼ ½f 1; f 2� ¼ 0: ð2:12Þ

Here, vm; fp ∈ suðnÞ (p ¼ 1, 2) and γp ∈R are constants.
The constants vm are called continuous WL phases, and fp
parametrize the constant magnetic flux present in the
background of the extra dimensions. In the above, γp
has no effect on physical results and labels different choices
of gauge. For instance, γp ¼ �1 and γp ¼ 0 are often
called the Landau and symmetric gauge, respectively.
Now, let us discuss our choice of basis of suðnÞ. It is

convenient to choose the Cartan-Weyl basis, where we
write the suðnÞ generators ftag ða ¼ 1;…; n2 − 1Þ as
ftag ¼ fHkg ∪ fEαg. The Cartan generators fHkg ðk ¼
1;…; n − 1Þ are Hermitian, and the step operators Eα

associated to a root vector α satisfy E†
α ¼ E−α. Their

commutation relations are given by

½Hk;Hl� ¼ 0; ½Hk; Eα� ¼ αkEα; ð2:13Þ

where αk ∈R is the kth component of the root vector α.
We also choose the basis of the generators to be in the

fundamental representation space of suðnÞ for simplicity.
Consequently, we write the Cartan generators as

H1 ¼

0
BBBBBBB@

1 0 0 � � � 0

0 −1 0 � � � 0

0 0 0 � � � 0

. .
.

0 0 0 � � � 0

1
CCCCCCCA
; H2 ¼

0
BBBBBBB@

0 0 0 � � � 0

0 1 0 � � � 0

0 0 −1 � � � 0

. .
.

0 0 0 � � � 0

1
CCCCCCCA
; … ; Hn−1 ¼

0
BBBBBBB@

0 0 � � � 0 0

0 0 � � � 0 0

. .
.

0 0 � � � 1 0

0 0 � � � 0 −1

1
CCCCCCCA
; ð2:14Þ

and the nðn − 1Þ step operators as

EðþÞ
ij ¼ êij; Eð−Þ

ij ¼ êji; 1 ≤ i < j ≤ n; ð2:15Þ

where we have defined the basis matrices êij to have the
ði0; j0Þ element given by ðêijÞi0j0 ¼ δii0δjj0, and δii0 is the
Kronecker delta.

The magnetic flux fp and vm can be simultaneously
diagonalized and therefore can be expanded by suðnÞ
Cartan generators:

fp ¼ fkpHk; vm ¼ vkmHk; fkp; vkm∈R; ð2:16Þ
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where summations over k are taken. In addition, the flux
background was found to be quantized, such as

fk1 ¼
2π

gL2
Nk

1 ¼ f̂1Nk
1; fk2 ¼

2π

gL02N
k
2 ¼ f̂2Nk

2;

Nk
1; N

k
2 ∈Z; ð2:17Þ

where we have introduced the unit of flux f̂1 ¼ 2π=ðgL2Þ
and f̂2 ¼ 2π=ðgL02Þ.
As already mentioned, it is known that there appear

tachyonic states in 6D non-Abelian gauge theories with
magnetic flux background [64]. For a 6D SUðnÞ gauge
theory, it was discussed that the WL phases have no
contribution to the mass spectra, implying that they cannot
stabilize the system. By this reasoning, we set v5 ¼ v6 ¼ 0
in the background. In addition, we focus on a case with
f 2 ¼ 0, leading to the following background:

B5ðzÞ ¼ −ð1þ γÞfx6=2; B6ðzÞ ¼ ð1− γÞfx5=2; ð2:18Þ

B7ðzÞ ¼ v7; B8ðzÞ ¼ v8; ð2:19Þ

where we have renamed f 1 and γ1 to f and γ. The
background BMðxmÞ in Eqs. (2.10) and (2.11) and the
twist matrices in Eq. (2.3) must be related by gauge
transformations. In other words, the expressions of the
twist matrices can vary depending on the choice of back-
ground. According to our choice above, the twist matrices
can be taken as

T5 ¼ eigð1−γÞfx6=2; T6 ¼ e−igð1þγÞfx5=2; T7 ¼ T8 ¼ I;

ð2:20Þ

where I is the unit matrix.
We also introduce bulk matter fields. Let us take a field

ΦR to be a complex scalar field of the representation R of
SUðnÞ. Weyl fermions in 8D theories may give bulk gauge
anomalies. To evade this, we introduce vectorlike (Dirac)
fermions. An 8D Dirac fermion of the representation R,
denoted by ΨR, is a 16-component spinor having 16 real
degrees of freedom (d.o.f.) on the mass shell. We suppose
that they satisfy the following boundary conditions:

ΦRðT nxmÞ ¼ e2πiηnðΦRÞðTnÞRΦRðxmÞ;
ΨRðT nxmÞ ¼ e2πiηnðΨRÞðTnÞRΨRðxmÞ; ð2:21Þ

where ðTnÞR is a matrix of Tn in a representation R. We
have introduced real numbers ηnðΦRÞ and ηnðΨRÞ, which
are independently taken for each matter field. Depending
on a global symmetry of the full theory, allowed values of
ηn are constrained. Hereafter, we consider η5, η6 ¼ 0 and
ηm0 ∈ f0; 1=2g ðm0 ¼ 7; 8Þ. As discussed in the next sec-
tion, for ηm0 ðϕÞ ¼ 1=2, the discrete momentum labeled by

nm0 in masses of 4D modes appearing from a field ϕ is
shifted from nm0 to nm0 þ 1=2.
With the background configuration in Eqs. (2.18) and

(2.19), the WL phases v7 and v8 can contribute to masses
of 4D modes. Thus, we expect that tachyonic states
disappear in a low-energy theory at a vacuum with non-
trivial values of flux and WL phases. Since the continuous
WL phases have no potential at tree level, quantum
corrections to their potential are crucial for examining
the validity of vacua. The following sections discuss the
vacuum structure in a concrete setup.

III. AN SUð3Þ MODEL

A. Background configuration

As a concrete example, we will explore our setup for the
gauge group SUð3Þ. Therefore, there are only two Cartan
generators, and we choose N1 ¼ 1 and N2 ¼ 2 in
Eq. (2.17), corresponding to the flux background

f ¼ fkHk ¼ f̂

0
B@

1 0 0

0 1 0

0 0 −2

1
CA; where f̂ ¼ 2π

g
: ð3:1Þ

While keeping this flux background, the continuous WL
phases can be diagonalized through a unitary transforma-
tion; hence, we write

vm0 ¼

0
BB@

v1m0 0 0

0 v2m0 − v1m0 0

0 0 −v2m0

1
CCA; m0 ¼ 7; 8: ð3:2Þ

In the following discussions, we assume these choices of
backgrounds.
We are interested in the theory at an energy scale

sufficiently lower than the compactification scale 1=L
and 1=L0. In this case, we have a 4D effective theory
where infinitely many 4D fields appear, coming from the
mode expansions of 8D fields. Masses of 4D fields are
determined by their charges concerning the Cartan gener-
ators and the helicity operator [53]. Let ϕ be an 8D field
with definite charges associated with the generatorsH1,H2,
and H3 ¼ H1 þ 2H2. We denote these charges of ϕ by
q1ðϕÞ, q2ðϕÞ, and q3ðϕÞ, respectively. Note that q3ðϕÞ ¼
q1ðϕÞ þ 2q2ðϕÞ holds. In addition, we denote the helicity of
ϕ associated with the x5–x6 plane by Σ56ðϕÞ. For example,
linear combinations of A5 and A6 have Σ56 ¼ �1, whereas
the other gauge fields, i.e., Aμ and Am0 , have Σ56 ¼ 0. In the
following, we clarify field contents and their charges. Then,
we discuss the masses of 4Dmodes that appear in this setup.

B. Gauge fields

We first discuss gauge fields in this model. The masses of
4D modes arising from these fields are determined by
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quadratic terms of the gauge-fixed Lagrangian Lgf
YM as

Lgf
YM ∋ Lð2Þ

Aμ
þ Lð2Þ

Am
þ Lð2Þ

c ; ð3:3Þ

Lð2Þ
Aμ

¼ Tr½Aμðημν□þ ημνðD2Þ− ð1− ξ−1Þ∂μ∂νÞAν�; ð3:4Þ

Lð2Þ
Am

¼ Tr½Amðδmn□þ δmnðD2Þ − ð1 − ξÞDmDn

− 2igðδm5δn6 − δm6δn5Þadðf ÞÞAn�; ð3:5Þ

Lð2Þ
c ¼ −2Tr½c̄ð□þ ξDmDmÞc�; ð3:6Þ

where δmn is the Kronecker delta function, ðD2Þ ¼ DmDm,
and c∈ suð3Þ is a ghost field. Note that the last term of
Eq. (3.5) is only nonzero for the x5–x6 directions where
there is magnetic flux. After it is diagonalized, it is
convenient to define

Az1 ¼
1

2
ðA5 − iA6Þ; Az̄1 ¼

1

2
ðA5 þ iA6Þ; ð3:7Þ

Az2 ¼
1

2
ðA7 − iA8Þ; Az̄2 ¼

1

2
ðA7 þ iA8Þ: ð3:8Þ

In component form, they are written as

Aμ ¼

0
BBB@

Að1Þ
μ Að12Þ

μ Āð31Þ
μ

Āð12Þ
μ −Að1Þ

μ þ Að2Þ
μ Að23Þ

μ

Að31Þ
μ Āð23Þ

μ −Að2Þ
μ

1
CCCA; ð3:9Þ

Azp ¼

0
BBB@

Að1Þ
zp Að12Þ

zp Āð31Þ
z̄p

Āð12Þ
z̄p −Að1Þ

zp þ Að2Þ
zp Að23Þ

zp

Að31Þ
zp Āð23Þ

z̄p −Að2Þ
zp

1
CCCA;

Az̄p ¼

0
BBB@

Āð1Þ
zp Að12Þ

z̄p Āð31Þ
zp

Āð12Þ
zp −Āð1Þ

zp þ Āð2Þ
zp Að23Þ

z̄p

Að31Þ
z̄p Āð23Þ

zp −Āð2Þ
zp

1
CCCA;

ð3:10Þ

where Az̄p ¼ ðAzpÞ† and p ¼ 1, 2.
We are interested in masses of 4D modes appearing from

8D fields in a low-energy theory. These masses depend on
quantum charges of 8D fields. In Table I, we have
summarized d.o.f. and quantum numbers of independent
8D gauge fields. In the table, we also show which fields
couple to WL phases or flux backgrounds. As shown in
Table I, A23

z1 , A
23
z̄1 , A

31
z1 , and A31

z̄1 receive tachyonic contri-
butions in masses of their 4D modes as will be discussed
later. We also have ghost fields that cancel unphysical
modes arising from gauge fields AM.

C. Matter fields

In this section, we discuss matter fields. First, we
consider matter fields in 3, the fundamental representation

of SUð3Þ. The scalar Φ3 has three components ϕðαÞ
3 (α ¼ 1,

2, 3). Their charges are given by

q1ðϕð1Þ
3 Þ ¼ 1; q2ðϕð1Þ

3 Þ ¼ 0; q3ðϕð1Þ
3 Þ ¼ 1; ð3:11Þ

q1ðϕð2Þ
3 Þ ¼ −1; q2ðϕð2Þ

3 Þ ¼ 1; q3ðϕð2Þ
3 Þ ¼ 1; ð3:12Þ

q1ðϕð3Þ
3 Þ ¼ 0; q2ðϕð3Þ

3 Þ ¼−1; q3ðϕð3Þ
3 Þ ¼−2: ð3:13Þ

We also introduce fermion fields. The fermion Ψ3 of the

fundamental representation has three components ψ ðαÞ
3 ,

which have the same charges as ϕðαÞ
3 . We note that fermion

fields have nontrivial helicities Σ56 ¼ �1=2, while scalar
fields have Σ56 ¼ 0. For the antifundamental representation

TABLE I. Summary of independent 8D gauge fields, which are
written in the first column. The following columns detail the real
d.o.f., helicity, and charges q1, q2, and q3 of each field. The next
two columns indicate which fields couple with WL phases or with
the flux background. Finally, the last column shows which fields
contain tachyonic contributions in their masses.

ϕ d.o.f. Σ56ðϕÞ q1ðϕÞ q2ðϕÞ q3ðϕÞ WL Flux Tachyonic

Að1Þ
μ

4 0 0 0 0

Að2Þ
μ

4 0 0 0 0

Að12Þ
μ

8 0 2 −1 0 ✓

Að23Þ
μ

8 0 −1 2 3 ✓ ✓

Að31Þ
μ

8 0 −1 −1 −3 ✓ ✓

Að1Þ
z1

2 �1 0 0 0

Að2Þ
z1

2 �1 0 0 0

Að12Þ
z1

2 �1 2 −1 0 ✓

Að23Þ
z1

2 �1 −1 2 3 ✓ ✓ ✓

Að31Þ
z1

2 �1 −1 −1 −3 ✓ ✓ ✓

Að12Þ
z̄1

2 �1 2 −1 0 ✓

Að23Þ
z̄1

2 �1 −1 2 3 ✓ ✓ ✓

Að31Þ
z̄1

2 �1 −1 −1 −3 ✓ ✓ ✓

Að1Þ
z2

2 0 0 0 0

Að2Þ
z2

2 0 0 0 0

Að12Þ
z2

2 0 2 −1 0 ✓

Að23Þ
z2

2 0 −1 2 3 ✓ ✓

Að31Þ
z2

2 0 −1 −1 −3 ✓ ✓

Að12Þ
z̄2

2 0 2 −1 0 ✓

Að23Þ
z̄2

2 0 −1 2 3 ✓ ✓

Að31Þ
z̄2

2 0 −1 −1 −3 ✓ ✓
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3̄, although charges change their signs, the mass spectrum
of their 4D modes is the same as the one of 3.
One can introduce matter fields with representations

other than the fundamental. The charges of any represen-
tation can be given by linear combinations of the charges of
the fundamental representation. For example, a scalar field
belonging to the second rank symmetric tensor of SUð3Þ
has six components, which can be written as ϕðα;βÞ

6
ð1 ≤ α ≤ β ≤ 3Þ. Their charges are written by

qkðϕðα;βÞ
6 Þ ¼ qkðϕðαÞ

3 Þ þ qkðϕðβÞ
3 Þ: ð3:14Þ

For the adjoint representation 8, there are eight compo-
nents, two of which are neutral with respect to the gauge
field background. The other components can be expressed

by ϕðα;βÞ
8 ð1 ≤ α; β ≤ 3Þ, whose charges are given by

qkðϕðα;βÞ
8 Þ ¼ qkðϕðαÞ

3 Þ − qkðϕðβÞ
3 Þ: ð3:15Þ

As a final example, we consider the representation 10, the
totally symmetric tensor product of three 3. The compo-
nents of Φ10 are labeled by

ðα; β; δÞ∈ ð1; 1; 1Þ; ð2; 2; 2Þ; ð3; 3; 3Þ; ð1; 1; 2Þ; ð1; 1; 3Þ;
ð2; 2; 1Þ; ð2; 2; 3Þ; ð3; 3; 1Þ; ð3; 3; 2Þ; ð1; 2; 3Þ;

ð3:16Þ

and their charges are given by

qkðϕðα;β;δÞ
10 Þ ¼ qkðϕðαÞ

3 Þ þ qkðϕðβÞ
3 Þ þ qkðϕðδÞ

3 Þ: ð3:17Þ

D. Masses of 4D modes

In this section, we discuss the mass spectra in a low-
energy effective theory of the SUð3Þ model. We perform
the Kaluza-Klein (KK) expansions of the fields and
calculate the eigenvalue of the mass operators in the
Lagrangian given by Eq. (3.5) acting on the corresponding
mode function. In a 4D effective theory, infinite 4D modes
appear from 8D fields discussed in the previous subsec-
tions. In the following discussions, the mass of a given 4D
field ϕwill be expressed asM2ðϕÞ, and we present the final
expressions for the mass spectrum of the fields.

1. q3ðϕÞ= 0 case

First, let us discuss the masses of 4D modes appearing
from an 8D field ϕ having q3ðϕÞ ¼ 0. They do not couple

to the flux background. For example, Að1Þ
M , Að12Þ

M , and ϕð1;2Þ
8

belong to this case. To obtain masses of 4D modes from an
8D field ϕ, the discussion in Ref. [64] is straightforwardly
generalized. Their 4D modes are labeled by four integers
n̂m ∈Z (m ¼ 5, 6, 7, 8). We use n̂ ¼ ðn̂5; n̂6; n̂7; n̂8Þ and

denote a 4D mode from ϕ by ϕðn̂Þ. It is convenient to
introduce

N̂m0 ðϕÞ ¼ n̂m0 þ ηm0 ðϕÞ − q1ðϕÞa1m0 − q2ðϕÞa2m0 ; ð3:18Þ

where we have used the parametrization of the WL phases
as akm0 ¼ gL0vkm0=2π. The parameter ηm0 ðϕÞ appears in the
boundary condition of matter fields in Eq. (2.21). We
imply ηm0 ðϕÞ ¼ 0 if ϕ is a gauge field. In the following, we
also use

M2
56ðϕÞ ¼ ð2πÞ2½n̂25 þ n̂26�;

M2
78ðϕÞ ¼ ð2πM̂wÞ2½N̂2

7ðϕÞ þ N̂2
8ðϕÞ�: ð3:19Þ

For a matter field ϕ, the tree-level mass spectrum of the
4D modes ϕðn̂Þ is given by

M2ðϕðn̂ÞÞ ¼ M2
56ðϕÞ þM2

78ðϕÞ; ð3:20Þ
for an arbitrary ξ. For a gauge field ϕ with ξ ¼ 1, masses of
the 4D modes ϕðn̂Þ are the same as in Eq. (3.20). For a
gauge field ϕ with an arbitrary ξ, in addition to the above,
there appear masses as

M2
ξðϕðn̂ÞÞ ¼ ξðM2

56ðϕÞ þM2
78ðϕÞÞ: ð3:21Þ

Note that the 4D modes that have masses M2
ξðϕðn̂ÞÞ are

would-be Goldstone modes. They are eaten by massive 4D
modes from Aμ.
Furthermore, the masses of the 4D modes from the ghost

fields also depend on ξ. It is observed that the masses of the
4D modes from the ghost fields M2

ghostðϕðn̂ÞÞ are equal to
the masses of Aμ as in Eq. (3.20), multiplied by ξ. Thus, we
have M2

ghostðϕðn̂ÞÞ ¼ M2
ξðϕðn̂ÞÞ.

One sees that ϕð0;0;0;0Þ is a massless zero mode if ϕ has

ηm0 ðϕÞ ¼ qkðϕÞ ¼ 0 (k ¼ 1, 2). For example, Að1Þ
μ and Að2Þ

μ

have massless zero modes for any values of the WL
phases. On the other hand, if ϕ has qkðϕÞ ≠ 0, then ϕ
couples to the WL phases, and their masses depend on the

values of the WL phases. For example, Að12Þ
μ have massless

zero modes only if the combination 2a1m0 − a2m0 is an

integer. Otherwise, Að12Þ
μ has no massless mode. As seen

below, 4D gauge fields coupled to the flux background
have no massless zero mode. Thus, in this case, the flux
background in Eq. (3.1) induces the spontaneous breaking
SUð3Þ → SUð2Þ ×Uð1Þ, and the WL phases can further
break the gauge symmetry as SUð2Þ ×Uð1Þ → Uð1Þ2
depending on their values.

2. Matter fields in the q3ðϕÞ ≠ 0 case

Next, we discuss the masses of 4D modes appearing
from an 8D matter field ϕ having q3ðϕÞ ≠ 0. In this case, ϕ
couples to the flux background. Then, their 4D modes
receive mass contributions associated with Landau-level
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excitations, which we will call Landau-level contributions.
Again, the discussion in Ref. [64] is straightforwardly
generalized to obtain masses of 4D modes in the
q3ðϕÞ ≠ 0 case. Scalar and fermion fields have Σ56 ¼ 0

and Σ56 ¼ �1=2, respectively. Their 4D modes are labeled
by four integers, l̂ ≥ 0, d∈ f1;…; jq3ðϕÞjg, and
n̂7; n̂8 ∈Z. Hence, we denote the 4D mode as ϕðl̂;d;n̂7;n̂8Þ.
Their masses are summarized as follows:

M2ðϕðl̂;d;n̂7;n̂8ÞÞ ¼ 4πjq3ðϕÞj½l̂þ 1=2þΣ56ðϕÞ� þM2
78ðϕÞ;

l̂ ≥ 0; ð3:22Þ

where we have used f̂ ¼ 2π=g from Eq. (3.1). Note that
these masses are consistent with the known mass for-
mula [53].
From Eq. (3.22), one sees that scalar fields have no

massless modes at low energy. On the other hand, for
fermions with Σ56 ¼ −1=2, the l̂ ¼ 0 mode can be mass-
less ifM2

78ðϕÞ ¼ 0 is satisfied. Such a massless mode has a
degeneracy labeled by d ¼ 1;…; jq3ðϕÞj.

3. Gauge fields in the q3ðϕÞ ≠ 0 case

Finally, we discuss the masses of 4D modes appearing
from 8D gauge fields ϕ having q3ðϕÞ ≠ 0, where ϕ couples
to the flux background. As in the matter case, the 4D modes
are labeled by four integers, and we denote the 4D mode
as ϕðl̂;d;n̂7;n̂8Þ.
The mass spectrum depends on the helicity Σ56ðϕÞ of the

gauge fields. One sees that Σ56ðAμÞ ¼ Σ56ðAm0 Þ ¼ 0,
whereas A5 and A6 has the helicity �1. In addition, there
appears to be a dependence on the gauge parameter ξ in the
mass spectrum of 4D modes in this case. The mass
spectrum of 4D modes from Aμ is determined independ-
ently to ξ and is the same as in Eq. (3.22). On the other
hand, the mass spectrum of 4D modes from Am depends
on ξ.
We first discuss masses of 4D modes from Am in the

ξ ¼ 1 case. From A5 and A6, we obtain 4D modes that have
masses as

M2ðϕðl̂;d;n̂7;n̂8ÞÞ ¼ 4πjq3ðϕÞjðl̂þ 1=2� 1Þ þM2
78ðϕÞ;

l̂ ≥ 0: ð3:23Þ

On the other hand, from Am0 , we obtain 4D modes that have
masses as

M2ðϕðl̂;d;n̂7;n̂8ÞÞ ¼ 4πjq3ðϕÞjðl̂þ 1=2Þ þM2
78ðϕÞ;

l̂ ≥ 0: ð3:24Þ

One sees that Eqs. (3.23) and (3.24) are summarized as in
Eq. (3.22). We note that 4D modes from ghost fields have
the same mass as in Eq. (3.24).
For arbitrary ξ, 4D modes from Am mix. As shown in

Appendix A, the mass spectrum of 4D modes from Am is
given by Eqs. (3.23) and (3.24), and

M2
ξðϕðl̂;d;n̂7;n̂8ÞÞ ¼ ξ½4πjq3ðϕÞjðl̂þ 1=2Þ þM2

78ðϕÞ�;
l̂ ≥ 0: ð3:25Þ

The 4D modes from ghost fields also have the same masses
as in Eq. (3.25).
As seen in Eq. (3.23), 4D modes ϕð0;d;n̂7;n̂8Þ receive a

negative Landau-level contribution, which potentially
makes some of the 4D modes tachyonic. The other 4D
modes from the extra-dimensional gauge fields coupled
with the flux are massive. To eliminate tachyonic states in a
low-energy theory, the values of WL phases included in N̂7

and N̂8 are constrained.

E. Stabilizing potentially tachyonic states through
Wilson line phases

As seen in the previous subsection, some of the 4D
modes from flux-coupled gauge fields can potentially be
tachyonic due to negative Landau-level contributions.
Since the existence of tachyonic states in a low-energy
theory implies vacuum instability, we have to eliminate
them from the 4D mass spectrum. As noted, masses of 4D

FIG. 1. Tachyonic region. This illustration depicts the param-
eter space (d7, d8) where tachyonic states appear, represented by
the white circle. The dark gray square delimits the region where
no such modes are present.
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modes generally depend on values of WL phases. A
condition to eliminate tachyonic states can be regarded
as a constraint on the values of WL phases.
In our setup, 4D modes from Að23Þ

z1 , Að31Þ
z1 , Að23Þ

z̄1 , and Að31Þ
z̄1

include potentially tachyonic states. We examine their
masses and derive constraints on WL phases in the
SUð3Þ model. For the lowest Landau-level excitations,
their masses are given by

Að23Þ
z ;Að23Þ

z̄ ∶ M2ðϕð0;d;n̂7;n̂8ÞÞ ¼ −6πþ ð2πM̂wÞ2ð½n̂7 − a17

þ 2a27�2 þ ½n̂8 − a18 þ 2a28�2Þ;
ð3:26Þ

Að31Þ
z ; Að31Þ

z̄ ∶M2ðϕð0;d;n̂7;n̂8ÞÞ ¼ −6π þ ð2πM̂wÞ2ð½n̂7 − a17

− a27�2 þ ½n̂8 − a18 − a28�2Þ:
ð3:27Þ

The WL phases contribute to the masses, stabilizing the
tachyonic states depending on their values. Sufficient
conditions to make all masses non-negative are given by

½n̂7 − a17 þ 2a27�2 þ ½n̂8 − a18 þ 2a28�2 ≥
3

2πM̂2
w
; ð3:28Þ

½n̂7 − a17 − a27�2 þ ½n̂8 − a18 − a28�2 ≥
3

2πM̂2
w
; ð3:29Þ

for any n̂7 and n̂8.
To facilitate the discussion of the above constraints, we

consider

½n̂7 þ d7�2 þ ½n̂8 þ d8�2 ≥
3

2πM̂2
w
; for n̂7; n̂8∈Z: ð3:30Þ

Since d7 and d8 have a shift symmetry modulo 1, we can
choose the region −1=2 ≤ d7;8 ≤ 1=2 to simplify our
analysis. For large values of n̂7 and n̂8, constraints on d7
and d8 from Eq. (3.30) become weak. On the other hand,
for n̂7 ¼ n̂8 ¼ 0, constraints on d7 and d8 are stronger. The
tachyonic region is visually clarified in Fig. 1, where it is
represented by the white circle. The dark gray zone
represents the region where the previous constraints in
Eq. (3.30) and −1=2 ≤ d7;8 ≤ 1=2 are satisfied. To obtain a
parameter region where tachyonic states disappear, we
obtain a constraint on the possible values of M̂2

w, given by

M̂2
w >

3

π
: ð3:31Þ

Solutions of the constraints on WL phases given by
Eqs. (3.28) and (3.29) are not simple to be clarified
analytically. We have checked that there are allowed
parameter regions of the WL phases for Oð1Þ values of
M̂w. In the following, we constrain the values of the WL
phases to satisfy the conditions in Eqs. (3.28) and (3.29).

IV. ONE-LOOP EFFECTIVE POTENTIAL
IN THE SUð3Þ MODEL

As shown in previous sections, masses of 4D modes
depend on values of the WL phases akm0 . An important
consequence is that values of the WL phases are con-
strained as shown in Eqs. (3.28) and (3.29). Although they
are continuous moduli and have flat potential at tree level,
quantum corrections generate effective potentials for the
WL phases. Thus, a natural question is whether a vacuum
that is consistent with the constraint exists. In this section,
to discuss the vacuum structure, we present the one-loop
effective potential for akm0, showing contributions from each
type of field in our setup. For a detailed derivation of the
potential contributions, please refer to Appendix B. For
simplicity of our discussion, we hereafter fix the gauge
fixing parameter as ξ ¼ 1.

A. Contributions from flux-blind fields

Let ϕ be a flux-blind field, that is, having q3ðϕÞ ¼ 0.
Their 4D mode masses are given by Eq. (3.20). To simplify
the notation, we define

dm0 ðϕÞ ¼ −q1ðϕÞa1m0 − q2ðϕÞa2m0 þ ηm0 ðϕÞ; m0 ¼ 7; 8:

ð4:1Þ

The effective potential contribution for the WL phases is
generated by integrating out 4D modes from ϕ and depends
on q1ðϕÞ, q2ðϕÞ, and ηm0 ðϕÞ. We write this contribution as

VðFBÞ
ðη7;η8Þðð−1ÞF̂Ndeg; q1; q2Þ, where (FB) refers to “flux

blind.” Here, NdegðϕÞ is a positive integer that gives the
real d.o.f. of ϕ, and F̂ is the fermion number of ϕ.
Using the standard procedure, we obtain the effective

potential contribution as

VðFBÞ
ðη7;η8Þðð−1ÞF̂Ndeg; q1; q2Þ ¼ −ð−1ÞF̂Ndeg

3

π4M̂2
w

×
X

ω5;ω6∈Z

 
2
X
ω≥1

cosð2πωd7Þ þ cosð2πωd8Þ
½ω2

5 þω2
6 þω2=M̂2

w�4
þ 4

X
ω7;ω8≥1

cosð2πω7d7Þ cosð2πω8d8Þ
½ω2

5 þω2
6 þ ðω2

7 þω2
8Þ=M̂2

w�4
!
: ð4:2Þ

KOJIMA, OKUBO, and TAKEDA PHYS. REV. D 110, 016028 (2024)

016028-8



Note that the potential contribution also depends on values
of M̂w, the relative size of the extra dimensions.
The potential in Eq. (4.2) is finite and has no ultraviolet

(UV) and infrared (IR) divergences. The UV finiteness is
expected since the WL phases are associated with non-
contractible loops along extra dimensions and are intrinsi-
cally nonlocal d.o.f. The integers ω, ω7, and ω8 are often
referred as winding numbers. One sees that local divergen-
ces are contained in the terms corresponding to vanishing
winding numbers, which are independent ofWL phases. We

have discarded such constants in Eq. (4.2). For more details,
see Appendix B.

B. Contributions from flux-coupled fields
with Σ56 = 0 or �1=2

Now, let ϕ be a flux-coupled field with Σ56 ¼ 0 or�1=2.
Their 4D mode masses are given by Eq. (3.22). After
integrating out the 4D modes, we obtain the contribution

to the effective potential, denoted by VðjΣ56jÞ
ðη7;η8Þðð−1ÞF̂Ndeg;

q1; q2Þ. Their contribution to the effective potential is
given by

Vð0Þ
ðη7;η8Þðð−1ÞF̂Ndeg; q1; q2Þ ¼ −ð−1ÞF̂ Ndegjq3j

128π3M̂2
w

0
B@2
X
ω≥1

½cosð2πωd7Þ þ cosð2πωd8Þ�
Z

∞

0

dt t−4
e
− ω2

4πM̂2
wt

2 sinhð2πjq3jtÞ

þ 4
X

ω7;ω8≥1
cosð2πω7d7Þ cosð2πω8d8Þ

Z
∞

0

dt t−4
e
−
ω2
7
þω2

8

4πM̂2
wt

2 sinhð2πjq3jtÞ

1
CA; ð4:3Þ

for Σ56 ¼ 0, and

Vð1=2Þ
ðη7;η8Þðð−1ÞF̂Ndeg; q1; q2Þ ¼ −ð−1ÞF̂ Ndegjq3j

128π3M̂2
w

0
B@2
X
ω≥1

½cosð2πωd7Þ þ cosð2πωd8Þ�
Z

∞

0

dt t−4
e
− ω2

4πM̂2
wt

tanhð2πjq3jtÞ

þ 4
X

ω7;ω8≥1
cosð2πω7d7Þ cosð2πω8d8Þ

Z
∞

0

dt t−4
e
−
ω2
7
þω2

8

4πM̂2
wt

tanhð2πjq3jtÞ

1
CA; ð4:4Þ

for Σ56 ¼ �1=2. In the above expression, q3 ¼ q1 þ 2q2
holds. We note that the Σ56 ¼ �1=2 contribution is
obtained from a pair of fields having Σ56 ¼ 1=2 and −1=2.
As in the flux-blind case, the effective potential con-

tributions in Eqs. (4.3) and (4.4) are free from UV and IR
divergences. For fixed winding numbers, M̂w, and q3,
integrals with respect to t in these contributions give
numerical constants, which are suppressed for a large
absolute value of winding numbers.

C. Contributions from flux-coupled fields
with Σ56 = � 1

If ϕ now corresponds to A5;6, there appears a pair of

fields having Σ56 ¼ �1. Let Vð1Þ
ðη7;η8ÞðNdeg; q1; q2Þ be a

contribution from a pair of 4D modes having masses as
in Eq. (3.23). The contribution is written as

Vð1Þ
ðη7;η8ÞðNdeg; q1; q2Þ ¼ −

Ndegjq3j
32π2

X
n̂7;n̂8 ∈Z

Z
∞

0

dt t−3e−M
2
78
t

�
e−4πjq3jð−1=2Þt þ e−4πjq3jð1=2Þt þ 2

X
l̂≥1

e−4πjq3jðl̂þ1=2Þt
�
; ð4:5Þ

which corresponds to Eq. (B25). This expression needs a more careful evaluation since it contains the contribution from the
potentially tachyonic states as seen in Sec. III D 3. Actually, tachyonic states are absent since we constrain the parameter
region of the WL phases, as discussed in Sec. III E. In Appendix B 3, we derive an expression of the contribution, which is
free from UV and IR divergences.
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Here, we only show the result. We introduce

ΔV tac ¼ −
Ndegjq3j
32π2

X
n̂7;n̂8 ∈Z

Z
∞

0

dt t−3e−ðM2
78
−2πjq3jÞt; ð4:6Þ

which corresponds to the contribution from potentially tachyonic states. We obtain the expression of ΔV tac as

ΔV tac ¼ −
Ndegjq3j
32π2

IT; ð4:7Þ

where

IT ¼ 2
X
ω≥1

½cosð2πωd7Þ þ cosð2πωd8Þ�
�
32π2M̂4

w

ω2
þ 8π2jq3jM̂2

w

ω4
þ 2π2jq3j2

ω6

�

þ 4
X

ω7;ω8≥1
cosð2πω7d7Þ cosð2πω8d8Þ

�
32π2M̂4

w

ω2
7 þ ω2

8

þ 8π2jq3jM̂2
w

ðω2
7 þ ω2

8Þ2
þ 2π2jq3j2
ðω2

7 þ ω2
8Þ3
�

þ
X

n̂7;n̂8 ∈Z

X
k≥1

ð2πjq3jÞ2þk

ðkþ 2Þðkþ 1ÞkðM2
78Þk

−
X

ðn̂7;n̂8Þ≠ð0;0Þ

ð2πjq3jÞ3
6ð2πM̂wÞ2ðn̂27 þ n̂28Þ

: ð4:8Þ

In the last term, the summations over n̂7 and n̂8 are taken for all integers except for ðn̂7; n̂8Þ ¼ ð0; 0Þ. Using the above, the
potential is given by

Vð1Þ
ðη7;η8ÞðNdeg; q1; q2Þ ¼ ΔV tac −

Ndegjq3j
128π3M̂2

w

0
B@2

X
ω∈≥1

½cosð2πωd7Þ þ cosð2πωd8Þ�
Z

∞

0

dt t−4
e
− ω2

4πM̂2
wte−2πjq3jt

tanhð2πjq3jtÞ

þ 4
X

ω7;ω8≥1
cosð2πω7d7Þ cosð2πω8d8Þ

Z
∞

0

dt t−4
e
−
ω2
7
þω2

8

4πM̂2
wt e−2πjq3jt

tanhð2πjq3jtÞ

1
CA; ð4:9Þ

which is finite. We note that in the derivation of the
potential, we have subtracted infinite constants that are
independent of WL phases.

D. Total effective potential

From the above, we obtain the total effective potential.
We first discuss the contribution from Að12Þ

M . We call these
fields and related ghosts the (12) sector. In this sector, there
are ghost fields cð12Þ and cð21Þ that obey ðcð12ÞÞ† ≠ cð21Þ
since they are complex. Thus, the ghosts have, in total, four
real d.o.f. The contributions from each field in this sector
are the same except for the overall sign, and the effective
real bosonic d.o.f. of the contribution to the effective
potential is given by 8 × 2 − 2 × 2 ¼ 12. Thus, the effec-
tive potential from the (12) sector is

V ½12�ðM̂wÞ ¼ VðFBÞ
ð0;0Þð12; 2;−1; M̂wÞ: ð4:10Þ

Next, we discuss the contribution from Að23Þ
M . We call

these fields and related ghosts the (23) sector. In this sector,

Að23Þ
μ , Að23Þ

z2 , Að23Þ
z̄2 , and ghosts have Σ56 ¼ 0. Thus, the

effective real bosonic d.o.f. of the contribution to the
effective potential can be counted as 6 × 2 − 2 × 2 ¼ 8.

On the other hand, Að23Þ
z1 and Að23Þ

z̄1 have Σ56 ¼ �1. Thus,
the contribution from the (23) sector is given by

V ½23�ðM̂wÞ ¼ Vð0Þ
ð0;0Þð8;−1; 2; M̂wÞ þ Vð1Þð2;−1; 2; M̂wÞ:

ð4:11Þ
Finally, we discuss the contribution from Að31Þ

M . We call
these fields and related ghosts the (31) sector. From a
similar discussion as done above, we have

V ½31�ðM̂wÞ ¼ Vð0Þ
ð0;0Þð8;−1;−1; M̂wÞ þ Vð1Þð2;−1;−1; M̂wÞ:

ð4:12Þ
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There are no fields that couple to the WL phases in the gauge sector other than the above. Thus, from the gauge fields and
ghosts, we obtain the effective potential V ½pYM�ðakm0 ; M̂wÞ for the WL phases akm0 as follows:

V ½pYM�ðakm0 ; M̂wÞ ¼ V ½12�ðM̂wÞ þ V ½23�ðM̂wÞ þ V ½31�ðM̂wÞ
¼ VðFBÞ

ð0;0Þð12; 2;−1; M̂wÞ þ Vð0Þ
ð0;0Þð8;−1; 2; M̂wÞ þ Vð0Þ

ð0;0Þð8;−1;−1; M̂wÞ
ð4:13Þ

þVð1Þð2;−1; 2; M̂wÞ þ Vð1Þð2;−1;−1; M̂wÞ: ð4:14Þ

Next, we discuss the effective potentials generated by bulk matter fields. Let V ½ϕ�
ðη7;η8Þðakm0 ; M̂wÞ be a contribution from a

matter field ϕ, where η7; η8 ∈ f0; 1=2g indicates the periodicity of ϕ. For scalar fields, we obtain

V ½Φ3�
ðη7;η8Þðakm0 ; M̂wÞ ¼ Vð0Þ

ðη7;η8Þð2; 1; 0; M̂wÞ þ Vð0Þ
ðη7;η8Þð2;−1; 1; M̂wÞ þ Vð0Þ

ðη7;η8Þð2; 0;−1; M̂wÞ; ð4:15Þ

V ½Φ6�
ðη7;η8Þðakm0 ; M̂wÞ ¼ Vð0Þ

ðη7;η8Þð2; 2; 0; M̂wÞ þ Vð0Þ
ðη7;η8Þð2;−2; 2; M̂wÞ þ Vð0Þ

ðη7;η8Þð2; 0;−2; M̂wÞ
þ Vð0Þ

ðη7;η8Þð2; 0; 1; M̂wÞ þ Vð0Þ
ðη7;η8Þð2;−1; 0; M̂wÞ þ Vð0Þ

ðη7;η8Þð2; 1;−1; M̂wÞ; ð4:16Þ

V ½Φ8�
ðη7;η8Þðakm0 ; M̂wÞ ¼ VðFBÞ

ðη7;η8Þð4; 2;−1; M̂wÞ þ Vð0Þ
ðη7;η8Þð4;−1; 2; M̂wÞ þ Vð0Þ

ðη7;η8Þð4;−1;−1; M̂wÞ; ð4:17Þ

V ½Φ10�
ðη7;η8Þðakm0 ; M̂wÞ ¼ VðFBÞ

ðη7;η8Þð4; 2;−1; M̂wÞ þ Vð0Þ
ðη7;η8Þð4; 1; 1; M̂wÞ þ Vð0Þ

ðη7;η8Þð4;−1; 2; M̂wÞ
þ Vð0Þ

ðη7;η8Þð2; 3; 0; M̂wÞ þ Vð0Þ
ðη7;η8Þð2;−3; 3; M̂wÞ þ Vð0Þ

ðη7;η8Þð2; 0;−3; M̂wÞ: ð4:18Þ

For 8D Dirac fermions, we obtain

V ½Ψ3�
ðη7;η8Þðakm0 ; M̂wÞ ¼ Vð1=2Þ

ðη7;η8Þð−8; 1; 0; M̂wÞ þ Vð1=2Þ
ðη7;η8Þð−8;−1; 1; M̂wÞ þ Vð1=2Þ

ðη7;η8Þð−8; 0;−1; M̂wÞ; ð4:19Þ

V ½Ψ6�
ðη7;η8Þðakm0 ; M̂wÞ ¼ Vð1=2Þ

ðη7;η8Þð−8; 2; 0; M̂wÞ þ Vð1=2Þ
ðη7;η8Þð−8;−2; 2; M̂wÞ þ Vð1=2Þ

ðη7;η8Þð−8; 0;−2; M̂wÞ
þ Vð1=2Þ

ðη7;η8Þð−8; 0; 1; M̂wÞ þ Vð1=2Þ
ðη7;η8Þð−8;−1; 0; M̂wÞ þ Vð1=2Þ

ðη7;η8Þð−8; 1;−1; M̂wÞ; ð4:20Þ

V ½Ψ8�
ðη7;η8Þðakm0 ; M̂wÞ ¼ VðFBÞ

ðη7;η8Þð−32; 2;−1; M̂wÞ þ Vð1=2Þ
ðη7;η8Þð−16;−1; 2; M̂wÞ þ Vð1=2Þ

ðη7;η8Þð−16;−1;−1; M̂wÞ; ð4:21Þ

V ½Ψ10�
ðη7;η8Þðakm0 ; M̂wÞ ¼ VðFBÞ

ðη7;η8Þð−32; 2;−1; M̂wÞ þ Vð1=2Þ
ðη7;η8Þð−16; 1; 1; M̂wÞ þ Vð1=2Þ

ðη7;η8Þð−16;−1; 2; M̂wÞ
þ Vð1=2Þ

ðη7;η8Þð−8; 3; 0; M̂wÞ þ Vð1=2Þ
ðη7;η8Þð−8;−3; 3; M̂wÞ þ Vð1=2Þ

ðη7;η8Þð−8; 0;−3; M̂wÞ: ð4:22Þ

In the above, we have used the fact that the mass spectrum of 4D modes from ϕ is unchanged under

ðq1ðϕÞ; q2ðϕÞÞ → ð−q1ðϕÞ;−q2ðϕÞÞ. Namely, VðsÞ
ðη7;η8Þðð−1ÞF̂Ndeg; q1; q2; M̂wÞ ¼ VðsÞ

ðη7;η8Þðð−1ÞF̂Ndeg;−q1;−q2; M̂wÞ holds
for s ¼ 0; 1=2, 1.

V. VACUUM STRUCTURE IN THE SUð3Þ MODEL

In this section, we will explore the vacuum structure. We aim to find a minimum point in the effective potential, which
will suggest the existence of a stable vacuum configuration. We start by doing an analytical discussion to understand
qualitative features of the effective potential. Some critical points are naturally characterized by simple fractional numbers
and have periodic properties. Through this discussion, it was possible to identify candidates for minimum points. To
facilitate the analysis, we proceed to numerical calculations. Although there seems to be no stable vacuum in the pure Yang-
Mills case, by adding matter fields, we can find minimum points.
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A. Analytical discussion of the potentials

To see the qualitative features of the effective potentials,
we first examine them analytically. We see that critical
points of the potentials are expected to exist in the field
space of the WL phases satisfying the constraint to
eliminate tachyonic states in Eqs. (3.28) and (3.29). It is
convenient to notice that the expressions contributing to the
effective potential from a field ϕ, that is Eqs. (4.2)–(4.4)
and (4.9), have the following structure:

VðϕÞ ¼ AðϕÞ
X
ω∈Zþ

�
cosð2πωd7Þ þ cosð2πωd8Þ

�
þ BðϕÞ

×
X

ω7;ω8 ∈Zþ

cosð2πω7d7Þ cosð2πω8d8Þ

þ
X

n̂7;n̂8 ∈Z

X∞
k¼1

CðϕÞ
�

1

ðn̂7 þ d7Þ2 þ ðn̂8 þ d8Þ2
�
k
;

ð5:1Þ

where AðϕÞ, BðϕÞ, and CðϕÞ are constants that depend on
the field ϕ.
Let us begin with the pure Yang-Mills setup. The critical

points are found when the first derivatives of Eq. (4.14)
with respect to the WL phases vanish. As can be seen from
Eq. (5.1), the derivative of the first line always generates
sine functions; the derivative can be factorized by the
following functions:

sin ð2πωð−2a1m0 þ a2m0 ÞÞ; sin ð2πωða1m0 − 2a2m0 ÞÞ;
sin ð2πωða1m0 þ a2m0 ÞÞ; ð5:2Þ

where ω is an integer. From the second line in Eq. (5.1),
we obtain 2d7 ¼ 2d8 ¼ 0 mod 1 as the condition for an
extremum.

One possible solution of an extremum of the potential is
to analyze the case where the sine functions in Eq. (5.2) and
the derivatives of the last line in Eq. (5.1) vanish simulta-
neously. Starting with the latter condition, we find that the
only possible critical points outside the tachyonic region
satisfy dm0 ¼ 1=2 mod 1, which implies

a1m0 − 2a2m0 ¼ 1=2 mod 1; and a1m0 þa2m0 ¼ 1=2 mod 1:

ð5:3Þ

The solution of this condition can be found in Fig. 2. The
WL phases have mod 1 property. If we restrict their values
as 0 ≤ akm0 < 1, the solutions are given by

ða1m0 ; a2m0 Þ ¼ ð1=2; 0Þ; ð1=6; 1=3Þ; ð5=6; 2=3Þ: ð5:4Þ

More generally, we can write all solutions as

ða1m0 ;a2m0 Þ ¼ ðð3− 2nm0 Þ=6;2nm0=6þn0m0 Þ; nm0 ;n0m0 ∈Z:

ð5:5Þ

One sees that the solutions in Eq. (5.5) also satisfy the
condition that the sine functions in Eq. (5.2) vanish.
Therefore, the values of the WL phases in Eq. (5.5) are
critical points, candidates for minima. A notable point is
that any solution in Eq. (5.5) gives the same physical
consequences in the pure Yang-Mills case. To see this,
it is convenient to examine the WL phase factors
Wm0 ¼ expðigL0hAm0 iÞ. Note that we can always make
VEVs of WL phases hAm0 i vanish by a gauge trans-
formation without changing physical consequences. After
eliminating hAm0 i, the boundary conditions in Eqs. (2.3)
and (2.21) change and contain the WL phase factors. As a
result, the low-energy mass spectrum remains unchanged
[64,68–70].
If the WL phases take the values in Eq. (5.5), we find that

Wm0 ¼ diagðe2πið3−2nm0 Þ=6; e2πið4nm0−3Þ=6; e2πið−2nm0=6ÞÞ ð5:6Þ

¼ e−2πinm0=3diagð−1;−1; 1Þ: ð5:7Þ

Let us introduce

Cm0 ¼ e−2πinm0=3diagð1; 1; 1Þ∈Z3;

Ŵm0 ¼ diagð−1;−1; 1Þ ¼ e2πiH3=2; ð5:8Þ

where Z3 is the center subgroup of SUð3Þ. Then, we obtain
Wm0 ¼ Cm0Ŵm0 . The center element Cm0 depends on nm0 ,
but Ŵm0 does not. Since the adjoint representation of SUð3Þ
is neutral under the subgroup Z3, the solutions in Eq. (5.5)

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

FIG. 2. Solutions of Eq. (5.3). The horizontal and vertical axes
show the values of a1m0 and a2m0 , respectively. Intersection points
of the solid and dashed lines on this figure correspond to solutions
of Eq. (5.3).
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are not discriminated for any values of nm0 in the pure Yang-
Mills case.
One also sees from Eq. (5.7) that the Wilson line phase

factors under the solution in Eq. (5.5) are along the same
direction to the flux background, f ∝ H3, up to a center
elementCm0 . Thus, the contribution to the effective potential
from the potentially tachyonic states tends to align the WL
phases with the flux background at an extremum. At a
vacuum, the remaining gauge symmetry is spanned by the
generators ta that satisfy ½f ; ta� ¼ ½Wm0 ; ta� ¼ 0. Thus,
around extrema in Eq. (5.5), the WL phases do not induce
further gauge symmetry breaking.
We can now investigate the effects of including matter

fields. Their contribution to the effective potential was
summarized in Sec. IV D. It can be shown that the solutions
in Eq. (5.5) also give extrema of matter contributions. For
example, when adding fermions in the 8 representation, as
given by Eq. (4.20), and following the same procedure as
done for the pure Yang-Mills case, we obtain the same
result as the one in Eq. (5.5). Hence, adding matter fields of
8 with the periodic boundary condition gives no change in
candidates for minimum points obtained from the pure
Yang-Mills discussion above. However, if we consider
general matter fields, candidates for minimum points might
change.

B. Potential structure with Ansätze

To see the potential structure more closely, let us
examine the potential numerically. There are four inde-
pendent WL phases in this setup. Here, we examine the
potential structure with some Ansätze. These Ansätze make
it easier to see the potential structure since the independent
values of WL phases are reduced.
We examine the cases where WL phase factors are

aligned along H1, H2, and H3. We call them Ansatz 1,
2, and 3, respectively. Ansatz 3 is a particular case since the
WL phase factors and the flux background are aligned as
was discussed in the previous subsection. In addition, we
also examine the case with ak7 ¼ ak8, called Ansatz 4. This is
motivated by a symmetry of the potential. Since the

potential is unchanged under the exchange between ak7
and ak8, a 2D hypersurface defined by ak7 ¼ ak8 in the 4D
field space of the WL phases seems to tend to have extrema.
These Ansätze are summarized as follows:

Ansatz 1∶ða17; a27; a18; a28Þ ¼ ðb1; 0; b2; 0Þ; ð5:9Þ

Ansatz 2∶ða17; a27; a18; a28Þ ¼ ð0; b1; 0; b2Þ; ð5:10Þ

Ansatz 3∶ða17; a27; a18; a28Þ ¼ ðb1; 2b1; b2; 2b2Þ; ð5:11Þ

Ansatz 4∶ða17; a27; a18; a28Þ ¼ ðb1; b2; b1; b2Þ; ð5:12Þ

where we have introduced b1; b2 ∈R. With the above
Ansätze, the WL phase factors in the fundamental repre-
sentation are given by

Ansatz 1∶W7 ¼ diagðe2πib1 ; e−2πib1 ; 1Þ;
W8 ¼ diagðe2πib2 ; e−2πib2 ; 1Þ; ð5:13Þ

Ansatz 2∶W7 ¼ diagð1; e2πib1 ; e−2πib1Þ;
W8 ¼ diagð1; e2πib2 ; e−2πib2Þ; ð5:14Þ

Ansatz 3∶W7 ¼ diagðe2πib1 ; e2πib1 ; e−4πib1Þ;
W8 ¼ diagðe2πib2 ; e2πib2 ; e−4πib2Þ; ð5:15Þ

Ansatz 4∶W7 ¼ W8 ¼ diagðe2πib1 ; e2πiðb2−b1Þ; e−2πib2Þ:
ð5:16Þ

We numerically examine the effective potentials with
these Ansätze. From now on, we take M̂w ¼ 5.0 as an
example. We begin by plotting the effective potential for
the pure Yang-Mills case, as shown in Fig. 3. In these
contour plots, the horizontal (vertical) axis shows the value
of b1 (b2). From light to dark colors in the plots, the
potential decreases. We also introduce the constraint on the
WL phases in Eqs. (3.28) and (3.29). In the contour plots,
the excluded region from the constraint is shown by the

FIG. 3. Contour plots of the effective potential in the pure Yang-Mills case. From left to right, we assume Ansätze 1 to 4. In these
contour plots, the horizontal (vertical) axis shows the value of b1 (b2). From light to dark colors in the plots, the potential decreases. The
white regions are excluded by the constraint on the WL phases in Eqs. (3.28) and (3.29).
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white area. In the numerical calculations, we introduce
some cutoffs for the infinite summations of winding
numbers in the potentials. In addition, the infinite summa-
tions of KK numbers n̂m0 and k inΔV tac in Eq. (4.7) are also
truncated at some finite terms. The results are less sensitive
to these cutoffs.

We see that local minima of the potentials in the pure
Yang-Mills case are located in the excluded parameter
region where tachyonic states appear in the low-energy
mass spectrum. We also analyze the behavior of the
potential contributions from matter fields. If we introduce
fermion fields as mentioned in Sec. III C, we obtain the

FIG. 4. Contour plots of the effective potential contributions from fermion fields. From left to right, we assume Ansätze 1 to 4. From
top to bottom, we plot contributions fromΨ3,Ψ6,Ψ8, andΨ10 with ðη7; η8Þ ¼ ð0; 0Þ. In these contour plots, the horizontal (vertical) axis
shows the value of b1 (b2). From light to dark colors in the plots, the potential decreases. The white regions are excluded by the
constraint on the WL phases in Eqs. (3.28) and (3.29).
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plots shown in Fig. 4. Now, we can see that there are some
possible minimum points in regions where tachyonic states
are absent.

C. An example of local minima

As seen above, in the pure Yang-Mills case, there seems
to be no local minimum under the condition discussed in
Sec. III E. On the other hand, including matter fields, we
can find local minima where tachyonic states disappear in
the low-energy mass spectrum.
As an example, we discuss local minima appearing with

an adjoint fermion with the periodic boundary condition.
The potential for the WL phases is given by

Vðakm0 Þ ¼ V ½pYM�ðakm0 ; M̂wÞ þ V ½Ψ8�
ð0;0Þðakm0 ; M̂wÞ: ð5:17Þ

In this potential, we have numerically checked that there
are degenerate local minima where the WL phases take

ða17; a27; a18; a28Þ ¼ ðð3 − 2n7Þ=6; 2n7=6þ n07;

ð3 − 2n8Þ=6; 2n8=6þ n08Þ;
nm0 ; n0m0 ∈Z: ð5:18Þ

There are degeneracies that are expected from the dis-
cussion in Sec. VA since the adjoint matter field is also
neutral under the center Z3. If we introduce matter fields
that are charged under Z3, the degeneracy of the local
minima is generally disturbed. For example, if we add the
contribution from a fermion in the fundamental represen-
tation with the periodic boundary condition to the potential
in Eq. (5.17), we have confirmed that only a subset of the
solution shown in Eq. (5.18), where nm0 ; n0m0 ∈ 3Z is
satisfied, corresponds to the local minima.
Let us discuss the case with the potential in Eq. (5.17).

As a representative of local minima, we take

ða17; a27; a18; a28Þ ¼ ð1=2; 0; 1=2; 0Þ: ð5:19Þ

At the minimum, the WL phase factors take

W7 ¼ W8 ¼ diagð−1;−1; 1Þ ¼ eiπH3 ; ð5:20Þ

where H3 is defined in Sec. III A. In our setup, the flux
background satisfies f ∝ H3. Thus, at the minimum, both
the WL phases and the flux are along the H3 direction. The
WL phases contribute to masses of all flux-coupled 4D
modes since their direction is the same as the one of the flux
background. At the minimum, no tachyonic states exist in
the low-energy mass spectrum. In Ref. [66], a 6D SUð2Þ
model with an adjoint scalar field is studied, focusing on

the mechanism to eliminate tachyonic states with a flux
background. In the 6D model, it was shown that tachyonic
states do not appear if an appropriate VEVof the scalar field
is developed. In our setup, although there are no elementary
scalar fields, the WL phases play a similar role to the
adjoint scalar in the 6D model in the sense that they give
contributions to masses of 4D modes from flux-coupled
fields.
Around the minimum, let us derive the mass spectrum of

the fluctuations of WL phases at low energy. The WL
phases are zero modes from Ak

m0 . The normalization of the
zero modes is chosen to be

Ak
m0 ¼ 1

LL0 A
ð0Þk
m0 þ ðnonzero modesÞ; ð5:21Þ

where Að0Þk
m0 are implied to be zero modes, which are

independent of the extra-dimensional coordinates. Then, in
the 4D Lagrangian L4D, the kinetic terms for the zero
modes take

L4D ∋ δm
0n0 ðAð0Þ1

m0 Að0Þ2
m0 Þ

�
2 −1
−1 2

�
ð∂μÞ2

 
Að0Þ1
n0

Að0Þ2
n0

!
: ð5:22Þ

Let ϕðαÞ (α ¼ 1;…; 4) be canonically normalized real
scalar fields, which are defined by

ϕð1Þ ¼ 2Að0Þ1
7 − Að0Þ2

7 ; ϕð2Þ ¼
ffiffiffi
3

p
Að0Þ2
7 ; ð5:23Þ

ϕð3Þ ¼ 2Að0Þ1
8 − Að0Þ2

8 ; ϕð4Þ ¼
ffiffiffi
3

p
Að0Þ2
8 : ð5:24Þ

These fields are massless at tree level. Their nonvanishing
masses arise from the one-loop corrections. LetM2

αβ be the

mass matrix for ϕðαÞ. We see that

M2
αβ ¼

∂
2Vðakm0 Þ

∂ϕðαÞ
∂ϕðβÞ

����
ða1

7
;a2

7
;a1

8
;a2

8
Þ¼ð1=2;0;1=2;0Þ

: ð5:25Þ

To evaluate the mass matrix in Eq. (5.25), we recall that
the VEVs of the canonically normalized fields ϕðαÞ are
rewritten by the WL phases akm0 as

akm0 ¼ gL0

2π
hAk

m0 i ¼ g
2πL

hAð0Þk
m0 i: ð5:26Þ

Thus, we obtain
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∂

∂ϕð1Þ ¼
g4L

2πM̂w

1

2

∂

∂a17
;

∂

∂ϕð2Þ ¼
g4L

2πM̂w

�
1

2
ffiffiffi
3

p ∂

∂a17
þ 1ffiffiffi

3
p ∂

∂a27

�
;

ð5:27Þ

∂

∂ϕð3Þ ¼
g4L

2πM̂w

1

2

∂

∂a18
;

∂

∂ϕð4Þ ¼
g4L

2πM̂w

�
1

2
ffiffiffi
3

p ∂

∂a18
þ 1ffiffiffi

3
p ∂

∂a28

�
;

ð5:28Þ

where we have defined the 4D gauge coupling g4 as
g4 ¼ g=ðLL0Þ. Let us define the dimensionless potential
Ṽðakm0 Þ as Ṽðakm0 Þ ¼ L4Vðakm0 Þ. The mass scale of M2

αβ is
roughly estimated as

OðM2
αβÞ ∼

1

L2

�
g4

2πM̂w

�
2 ∂

2Ṽðakm0 Þ
∂ðakm0 Þ2

¼ 1

L02
1

M̂2
w

�
g4

2πM̂w

�
2 ∂

2Ṽðakm0 Þ
∂ðakm0 Þ2 : ð5:29Þ

From the above, one sees that the mass scale depends on g4
and M̂w.
For M̂w ¼ 5, we numerically evaluate the mass matrix in

Eq. (5.25). Around the minimum, we find

M2
αβ ≃

g24
L02 diagð1.307; 3.945; 1.307; 3.945Þ × 103: ð5:30Þ

For comparison, we also show the mass matrix in the pure
Yang-Mills case, where ða17; a27; a18; a28Þ ¼ ð1=2; 0; 1=2; 0Þ
is a local maximum as

M2
αβjpure Yang-Mills

≃ −
g24
L02 diagð0.760; 2.345; 0.760; 2.345Þ × 103: ð5:31Þ

Although the eigenvalues of the mass matrix are negative in
the pure Yang-Mills case, they become positive if we
include the potential contribution from the matter field. For
a small value of the 4D gauge coupling, mass scales of
eigenvalues of the matrix in Eq. (5.30) are smaller than
Oð1=L0Þ. On the other hand, for a moderate size of the
coupling, the mass scale exceeds Oð1=L0Þ. In the 4D
effective theory, there are infinite massive modes. The
one-loop effective potential is a sum of the contributions
from the infinite modes and tends to be large because of the
infinite summation in the presence of the flux background.
Let us discuss the masses of the 4D modes from the other

fields around the minimum. For flux-blind fields, masses of
4D modes are determined byM2

56 andM
2
78 in Eq. (3.19). As

implied from the WL phase factors in Eq. (5.20), there are
no contributions from the VEV of the WL phases to the
tree-level masses of 4D modes from flux-blind fields at the

minimum. The massless 4D gauge fields appearing from
zero modes of Ak

μ correspond to the remaining gauge
symmetry at low energy. In addition, there are 4D scalars
that are massless at tree level, originating from zero modes
of the extra-dimensional components of the flux-blind
gauge fields, and they could obtain nonvanishing masses
from the quantum corrections. However, in this setup, zero
modes of Ak

5 and Ak
6 contain the NG bosons, which are

intrinsically massless scalars related to the breaking of the
translational symmetry by the flux background. Since light
scalars would induce cosmological problems, an explicit
breaking of the translational symmetry may be required to
complete a phenomenologically viable setup, for example,
introducing an orbifold in place of the torus as extra
dimensions. In an extended setup, these light scalars
may play the role of Higgs scalars in GHU and GUT
models.
For flux-coupled fields, masses of the 4D modes consist

of the KK mass contribution M2
78 and the Landau-level

contribution, as discussed in Sec. III D. At the minimum,
M2

78 contains the nonzero contribution of the WL phases.
The Landau-level contribution can vanish only for the
fermion case. An interesting feature is that 4D modes from
fermion fields with the antiperiodic boundary condition
ðη7; η8Þ ¼ ð1=2; 1=2Þ are massless at the minimum. These
massless states have degeneracy, characterized by q3. For
example, in the adjoint fermions, there are flux-coupled
components, which have jq3j ¼ 3. At the minimum, they
lead to three massless states. Massless fermionic states with
degeneracy may be useful for understanding the generation
structure in the standard model, as often discussed in
models with Uð1Þ flux.

VI. CONCLUSIONS

In this work, we have explored the vacuum configura-
tions of an 8D non-Abelian gauge theory. The extra
dimensions consist of a 4D torus, having a flux background
in two of them. The WL phases along the remaining two
compactified dimensions are treated dynamically. Their
values contribute to the masses of low-energy 4D modes.
Thus, to obtain phenomenological implications of this
setup, it is crucial to clarify the vacuum structure of the
potential of the WL phases.
As a concrete example, in an SUð3Þ model, we have

performed the analysis of the vacuum structure evaluating
the quantum corrections of the potential. We have intro-
duced matter fields and began by deriving the masses of the
4D modes emerging in the low-energy effective theory. As
expected, some 4D modes can be tachyonic, coming from
flux-coupled fields. However, the masses of these 4Dmodes
also contain contributions depending on the WL phases,
which can stabilize the system by taking appropriate values.
We have shown the constraints on the parameter region of
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the WL phases where tachyonic states disappear at low
energy.
To discuss the vacuum structure, we have derived the

one-loop effective potential for the WL phases, which have
no tree-level potential. In the search for minimum points of
the one-loop potential, we have shown that critical points
naturally appear where the WL phases take a simple
fractional form. The WL phase factors at these extrema
of the potential were shown to be aligned with the flux
background in the SUð3Þ space. We also have plotted the
effective potential as functions of the WL phases with some
Ansätze. For the pure Yang-Mills case, the local minima
were found to be located only on the parameter region
excluded by the condition to eliminate tachyonic states
from the 4D mass spectra. On the other hand, in the
fermionic contributions to the potential, some local minima
were found in the allowed parameter region of the WL
phases.
In models including matter fields, we have numerically

found that local minima exist without any Ansatz, and at
the minima, tachyonic states disappear from the low-
energy mass spectrum. As discussed, the WL phase factors
at these points are aligned with the flux background.
As an illustrative example, we have examined the
low-energy mass spectrum around a minimum point
ða17; a27; a18; a28Þ ¼ ð1=2; 0; 1=2; 0Þ. The fluctuations of the
WL phases around the minimum obtain positive mass
squared, which are generated by the one-loop effective
potential and are proportional to g24=L

02. Massless 4D
gauge fields appear corresponding to the remaining gauge
symmetry SUð2Þ ×Uð1Þ. In addition, massless 4D scalars
regarded as the NG bosons appear from the flux-blind
fields. We also have discussed that chiral fermions can be
obtained from flux-coupled fields at the minimum point if
we introduce fermion fields with the antiperiodic boundary
condition.
The above results imply that several higher-dimensional

gauge theories with flux backgrounds related to a simply
connected gauge group can have phenomenologically
viable metastable vacua. Thus, we expect new possibilities
of diverse models beyond the SM, such as GHU and GUT,
in this framework. The discussions on vacuum stability
concerning tunneling processes, realistic model construc-
tions, and their predictions are intriguing research topics
left for future studies.
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APPENDIX A: MASS SPECTRUM OF 4D MODES
FROM EXTRA-DIMENSIONAL GAUGE FIELDS

WITH ARBITRARY ξ

In Sec. III D 3, we show the masses of 4D modes from
the extra-dimensional gauge fields having q3ðϕÞ ≠ 0. Here,
we explain the derivation of their masses in an arbitrary ξ
case. To obtain the mass spectrum of the 4D mode from the
gauge fields that couple to the flux, we have to diagonalize
the Lagrangian corresponding to Eq. (5.34) in Ref. [64].
The gauge parameter dependence appears with Am, and the
relevant part of the Lagrangian is given by

LAm
¼ 2Ām½δmn

□þ δmnðDlÞ2 − ð1 − ξÞDmDn

− 2igf̂q3ðδm5δn6 − δm6δn5Þ�An; ðA1Þ

D5¼ ∂5þ igf̂q3ð1þγÞx6=2; D6¼ ∂6− igf̂q3ð1−γÞx5=2;
ðA2Þ

D7 ¼ ∂7− igðq1v17þq2v27Þ; D8 ¼ ∂8 − igðq1v18þq2v28Þ;
ðA3Þ

where qk is the charge of ϕ with respect to Hk. One sees
that the terms including A5;6 and A7;8 are completely
separated in Eq. (A1) for ξ ¼ 1. For an arbitrary ξ, there
are mixing terms.
To diagonalizeLAm

, we change the basis from ðA5; A6Þ to
ðA−; AþÞ as �

A−

Aþ

�
¼ 1ffiffiffi

2
p
�
A5 − iA6

A5 þ iA6

�
: ðA4Þ

Note that ½D5; D6� ¼ −igf̂q3 holds. We hereafter take
f̂; q3 > 0 for simplicity. Then, we can introduce the
annihilation and creation operators as

D5 − iD6 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffi
2gf̂q3

q
â†;

D5 þ iD6 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffi
2gf̂q3

q
â; ½â; â†� ¼ 1; ðA5Þ

and

ðD5Þ2 þ ðD6Þ2 ¼ −2gf̂q3ðâ†âþ 1=2Þ: ðA6Þ

We can rearrange the Lagrangian in Eq. (A1) as

LAm
¼ −2ðĀ− Āþ Ā7 Ā8Þð−□I þ ΓmassÞ

0
BBBB@

A−

Aþ
A7

A8

1
CCCCA; ðA7Þ

where
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Γmass ¼ ½2gf̂q3ðâ†âþ 1=2Þ −D2
7 −D2

8�I þ ð1 − ξÞðDDÞ − 2gf̂q3

0
BBBB@

1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

1
CCCCA; ðA8Þ

and

ðDDÞ ¼

0
BBBBBBBB@

D2
5
þD2

6
þgf̂q3
2

ðD5−iD6Þ2
2

ðD5−iD6ÞD7ffiffi
2

p ðD5−iD6ÞD8ffiffi
2

p

ðD5þiD6Þ2
2

D2
5
þD2

6
−gf̂q3

2

ðD5þiD6ÞD7ffiffi
2

p ðD5þiD6ÞD8ffiffi
2

p

ðD5þiD6ÞD7ffiffi
2

p ðD5−iD6ÞD7ffiffi
2

p D2
7 D7D8

ðD5þiD6ÞD8ffiffi
2

p ðD5−iD6ÞD8ffiffi
2

p D8D7 D2
8

1
CCCCCCCCA
: ðA9Þ

Here, I is the 4 × 4 unit matrix.
To evaluate the eigenvalues of the operator Γmass, let us introduce the mode expansion as

ϕðxμ; z1; x7; x8Þ ¼
X
l≥0

Xq3
d¼1

X
n̂7;n̂8 ∈Z

ϕðn̂7;n̂8Þ
ðl;dÞ ðxμÞζl;dðz1Þfn̂7;n̂8ðx7; x8Þ; ðA10Þ

where z1 ¼ x5 þ ix6, and fn̂7;n̂8ðx7; x8Þ is defined as

fn̂7;n̂8ðx7; x8Þ ¼ e2πin̂7M̂wx7e2πin̂8M̂wx8 : ðA11Þ

On the other hand, the mode functions ζl;dðz1Þ satisfy [64]

âζ0;dðz1Þ ¼ 0; ζl;dðz1Þ ¼
1ffiffiffiffi
l!

p ðâ†Þlζ0;dðz1Þ: ðA12Þ

We obtain

â†ζl;d ¼
ffiffiffiffiffiffiffiffiffiffi
lþ 1

p
ζlþ1;d; âζl;d ¼

ffiffi
l

p
ζl−1;d; â†âζl;d ¼ lζl;d: ðA13Þ

Using this mode expansion, we can deduce the low-energy mass spectrum from the Lagrangian in Eq. (A7) integrating
over the extra dimensions. Let ðΓmassÞij be an ði; jÞ component of the matrix Γmass. From the diagonal entries of Γ, we obtain

Z
ED

Ā−ðΓmassÞ11A− ¼
X0ðĀ−Þðn̂7;n̂8Þðl;dÞ

�
2gf̂q3

�
1þ ξ

2
l −

1

2

�
þ ð2πM̂wÞ2ðN̂2

7 þ N̂2
8Þ
�
ðA−Þðn̂7;n̂8Þðl;dÞ ; ðA14Þ

Z
ED

ĀþðΓmassÞ22Aþ ¼
X0ðĀþÞðn̂7;n̂8Þðl;dÞ

�
2gf̂q3

�
1þ ξ

2
lþ 2þ ξ

2

�
þ ð2πM̂wÞ2ðN̂2

7 þ N̂2
8Þ
�
ðAþÞðn̂7;n̂8Þðl;dÞ ; ðA15Þ

Z
ED

Ā7ðΓmassÞ33A7 ¼
X0ðĀ7Þðn̂7;n̂8Þðl;dÞ

h
2gf̂q3ðlþ 1=2Þ þ ð2πM̂wÞ2ðξN̂2

7 þ N̂2
8Þ
i
ðA7Þðn̂7;n̂8Þðl;dÞ ; ðA16Þ

Z
ED

Ā8ðΓmassÞ44A8 ¼
X0ðĀ8Þðn̂7;n̂8Þðl;dÞ

h
2gf̂q3ðlþ 1=2Þ þ ð2πM̂wÞ2ðN̂2

7 þ ξN̂2
8Þ
i
ðA8Þðn̂7;n̂8Þðl;dÞ ; ðA17Þ

where we have used
P0 ¼Pl≥0

Pq3
d¼1

P
n̂7;n̂8 ∈Z and

R
ED ¼ R d4y. The WL phases are contained in N̂7 and N̂8, defined in

Eq. (3.18). From the off diagonal entries of Γ, we find
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Z
ED

Ā−ðΓmassÞ12Aþ ¼
X0ðĀ−Þðn̂7;n̂8Þðlþ2;dÞ

h
ðξ − 1Þgf̂q3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þðlþ 2Þ

p i
ðAþÞðn̂7;n̂8Þðl;dÞ ; ðA18Þ

Z
ED

Ā−ðΓmassÞ13A7 ¼
X0ðĀ−Þðn̂7;n̂8Þðlþ1;dÞ

h
ðξ − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gf̂q3ðlþ 1Þ

q
ð2πM̂wÞN̂7

i
ðA7Þðn̂7;n̂8Þðl;dÞ ; ðA19Þ

Z
ED

Ā−ðΓmassÞ14A8 ¼
X0ðĀ−Þðn̂7;n̂8Þðlþ1;dÞ

h
ðξ − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gf̂q3ðlþ 1Þ

q
ð2πM̂wÞN̂8

i
ðA8Þðn̂7;n̂8Þðl;dÞ ; ðA20Þ

Z
ED

ĀþðΓmassÞ21A− ¼
X0ðĀþÞðn̂7;n̂8Þðl;dÞ

h
ðξ − 1Þgf̂q3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þðlþ 2Þ

p i
ðA−Þðn̂7;n̂8Þðlþ2;dÞ; ðA21Þ

Z
ED

ĀþðΓmassÞ23A7 ¼
X0ðĀþÞðn̂7;n̂8Þðl;dÞ

h
ðξ − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gf̂q3ðlþ 1Þ

q
ð2πM̂wÞN̂7

i
ðA7Þðn̂7;n̂8Þðlþ1;dÞ; ðA22Þ

Z
ED

ĀþðΓmassÞ24A8 ¼
X0ðĀþÞðn̂7;n̂8Þðl;dÞ

h
ðξ − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gf̂q3ðlþ 1Þ

q
ð2πM̂wÞN̂8

i
ðA8Þðn̂7;n̂8Þðlþ1;dÞ; ðA23Þ

Z
ED

Ā7ðΓmassÞ31A− ¼
X0ðĀ7Þðn̂7;n̂8Þðl;dÞ

h
ðξ − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gf̂q3ðlþ 1Þ

q
ð2πM̂wÞN̂7

i
ðA−Þðn̂7;n̂8Þðlþ1;dÞ; ðA24Þ

Z
ED

Ā7ðΓmassÞ32Aþ ¼
X0ðĀ7Þðn̂7;n̂8Þðlþ1;dÞ

h
ðξ − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gf̂q3ðlþ 1Þ

q
ð2πM̂wÞN̂7

i
ðAþÞðn̂7;n̂8Þðl;dÞ ; ðA25Þ

Z
ED

Ā7ðΓmassÞ34A8 ¼
X0ðĀ7Þðn̂7;n̂8Þðl;dÞ

h
ðξ − 1Þð2πM̂wÞ2N̂7N̂8

i
ðA8Þðn̂7;n̂8Þðl;dÞ ; ðA26Þ

Z
ED

Ā8ðΓmassÞ41A− ¼
X0ðĀ8Þðn̂7;n̂8Þðl;dÞ

h
ðξ − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gf̂q3ðlþ 1Þ

q
ð2πM̂wÞN̂8

i
ðA−Þðn̂7;n̂8Þðlþ1;dÞ; ðA27Þ

Z
ED

Ā8ðΓmassÞ42Aþ ¼
X0ðĀ8Þðn̂7;n̂8Þðlþ1;dÞ

h
ðξ − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gf̂q3ðlþ 1Þ

q
ð2πM̂wÞN̂8

i
ðAþÞðn̂7;n̂8Þðl;dÞ ; ðA28Þ

Z
ED

Ā8ðΓmassÞ43A7 ¼
X0ðĀ8Þðn̂7;n̂8Þðl;dÞ

h
ðξ − 1Þð2πM̂wÞ2N̂7N̂8

i
ðA7Þðn̂7;n̂8Þðl;dÞ : ðA29Þ

We hereafter suppress the indices nm0 and d of 4D modes
since there are no mixing terms with respect to them. It is
convenient to introduce

Km0 ¼ 2πM̂wN̂m0 ; Lk ¼ gf̂q3ðlþ kÞ: ðA30Þ

Note that gf̂ ¼ 2π holds under the assumption in Eq. (3.1).
Let us define

Z
d4yðĀ− Āþ Ā7 Ā8ÞΓ

0
BBBB@

A−

Aþ
A7

A8

1
CCCCA≡Xq3

d¼1

X
n̂7;n̂8 ∈Z

LΓ; ðA31Þ

where

LΓ ¼ ðĀ−Þð0Þ½−2πq3 þ K2
7 þ K2

8�ðA−Þð0Þ
þ ðĀ−Þð1Þ½2πq3 þ K2

7 þ K2
8 þ ðξ − 1Þ2πq3�ðA−Þð1Þ

þ
X
l≥0

ðL0ðlÞ þ ðξ − 1ÞL1ðlÞÞ; ðA32Þ
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L0ðlÞ ¼ ðĀ−Þðlþ2Þ½L1 þ L2 þ K2
7 þ K2

8�ðA−Þðlþ2Þ þ ðĀþÞðlÞ½L1 þ L2 þ K2
7 þ K2

8�ðAþÞðlÞ
þ ðĀ7ÞðlÞ½L0 þ L1 þ K2

7 þ K2
8�ðA7ÞðlÞ þ ðĀ8ÞðlÞ½L0 þ L1 þ K2

7 þ K2
8�ðA8ÞðlÞ; ðA33Þ

L1ðlÞ ¼ ðĀ−Þðlþ2ÞL2ðA−Þðlþ2Þ þ ðĀþÞðlÞL1ðAþÞðlÞ þ ðĀ−Þðlþ2Þ
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
ðAþÞðlÞ þ ðĀþÞðlÞ

ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
ðA−Þðlþ2Þ

þ ðĀ7ÞðlÞK2
7ðA7ÞðlÞ þ ðĀ8ÞðlÞK2

8ðA8ÞðlÞ þ ðĀ7ÞðlÞK7K8ðA8ÞðlÞ þ ðĀ8ÞðlÞK7K8ðA7ÞðlÞ
þ ðĀ7ÞðlÞ

ffiffiffiffiffiffi
L1

p
K7ðA−Þðlþ1Þ þ ðĀ−Þðlþ1Þ

ffiffiffiffiffiffi
L1

p
K7ðA7ÞðlÞ þ ðĀ8ÞðlÞ

ffiffiffiffiffiffi
L1

p
K8ðA−Þðlþ1Þ þ ðĀ−Þðlþ1Þ

ffiffiffiffiffiffi
L1

p
K8ðA8ÞðlÞ

þ ðĀ7Þðlþ1Þ
ffiffiffiffiffiffi
L1

p
K7ðAþÞðlÞ þ ðĀþÞðlÞ

ffiffiffiffiffiffi
L1

p
K7ðA7Þðlþ1Þ þ ðĀ8Þðlþ1Þ

ffiffiffiffiffiffi
L1

p
K8ðAþÞðlÞ þ ðĀþÞðlÞ

ffiffiffiffiffiffi
L1

p
K8ðA8Þðlþ1Þ: ðA34Þ

In this expression, mixing terms only appear in L1ðlÞ. After a straightforward calculation, we find the mass eigenstates as

ðB0Þðlþ2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L1 þ L2

p
� ffiffiffiffiffiffi

L2

p
ðAþÞðlÞ −

ffiffiffiffiffiffi
L1

p
ðA−Þðlþ2Þ

	
; ðA35Þ

ðC0ÞðlÞ ¼
1ffiffiffiffiffiffiffiffi
M2

78

p ðK8ðA7ÞðlÞ − K7ðA8ÞðlÞÞ; ðA36Þ

ðD0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πq3 þM2
78

p
" ffiffiffiffiffiffiffiffiffiffi

2πq3
M2

78

s
ðK7ðA7Þð0Þ þ K8ðA8Þð0ÞÞ −

ffiffiffiffiffiffiffiffi
M2

78

q
ðA−Þð1Þ

#
; ðA37Þ

ðDξÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πq3 þM2
78

p ðK7ðA7Þð0Þ þ K8ðA8Þð0Þ þ
ffiffiffiffiffiffiffiffiffiffi
2πq3

p
ðA−Þð1ÞÞ; ðA38Þ

ðE0ÞðlÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L1 þ L2 þM2
78

p
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

78

L1 þ L2

s
ð
ffiffiffiffiffiffi
L1

p
ðAþÞðlÞ þ

ffiffiffiffiffiffi
L2

p
ðA−Þðlþ2ÞÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1 þ L2

M2
78

s
ðK7ðA7Þðlþ1Þ þ K8ðA8Þðlþ1ÞÞ

3
5;
ðA39Þ

ðEξÞðlÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L1 þ L2 þM2
78

p ð
ffiffiffiffiffiffi
L1

p
ðAþÞðlÞ þ

ffiffiffiffiffiffi
L2

p
ðA−Þðlþ2Þ þ K7ðA7Þðlþ1Þ þ K8ðA8Þðlþ1ÞÞ; ðA40Þ

where M2
78 is defined in Eq. (3.19). A diagonalized form of the Lagrangian LΓ is given by

LΓ ¼ ðĀ−Þð0Þ½4πq3ð−1=2Þ þM2
78�ðA−Þð0Þ þ

X
l≥0

ðB̄0Þðlþ2Þ½4πq3ðlþ 3=2Þ þM2
78�ðB0Þðlþ2Þ

þ
X
l≥0

ðC̄0ÞðlÞ½4πq3ðlþ 1=2Þ þM2
78�ðC0ÞðlÞ

þ ðD̄0Þ½4πq3ð1=2Þ þM2
78�ðD0Þ þ

X
l≥0

ðĒ0ÞðlÞ½4πq3ðlþ 3=2Þ þM2
78�ðE0ÞðlÞ

þ ðD̄ξÞξ½4πq3ð1=2Þ þM2
78�ðDξÞ þ

X
l≥0

ðĒξÞðlÞξ½4πq3ðlþ 3=2Þ þM2
78�ðEξÞðlÞ: ðA41Þ

This expression shows that the masses of the 4D modes are given as discussed in Sec. III D 3. It also shows that the mass
eigenvalues consist of different contributions; one is from the Landau-level excitations, and the other depends on the WL
phases contained in M2

78. The former contributions are specified by half integers appearing in coefficients of 4πq3. These
contributions for each 4D mode are schematically expressed as follows:
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fðA−Þð0Þ; ðB0Þð2Þ; ðB0Þð3Þ;…g −1=2 3=2 …

fðC0Þð0Þ; ðC0Þð1Þ;…g 1=2 3=2 …

fðD0Þ; ðE0Þð0Þ; ðE0Þð1Þ;…g 1=2 3=2 …

fðDξÞ; ðEξÞð0Þ; ðEξÞð1Þ;…g ξ1=2 ξ3=2 …

: ðA42Þ

The ghost sector has the same masses as fðDξÞ; ðEξÞð0Þ; ðEξÞð0Þ;…g. For ξ ¼ 1, contributions from L1ðlÞ vanish. We obtain
simplified mass eigenstates as follows:

fðA−Þð0Þ; ðA−Þð1Þ;…g −1=2 3=2 …

fðAþÞð0Þ; ðAþÞð1Þ;…g 1=2 3=2 …

fðA7Þð0Þ; ðA7Þð1Þ;…g 1=2 3=2 …

fðA8Þð0Þ; ðA8Þð1Þ;…g 1=2 3=2 …

: ðA43Þ

The physical mass spectrum corresponds to the ξ-independent ones:

fðA−Þð0Þ; ðB0Þð2Þ; ðB0Þð3Þ;…g −1=2 3=2 …

fðC0Þð0Þ; ðC0Þð1Þ;…g 1=2 3=2 …

fðD0Þ; ðE0Þð0Þ; ðE0Þð1Þ;…g 1=2 3=2 …

: ðA44Þ

APPENDIX B: DERIVATION
OF THE EFFECTIVE POTENTIAL

In this section, we derive contributions to the one-loop
effective potential for the WL phases akm0 (m0 ¼ 7, 8 and
k ¼ 1, 2) in the SUð3Þ model in Sec. IV.

1. Flux-blind case

Let ϕ be a flux-blind field. As discussed in Sec. III D,
their 4D modes ϕðn̂Þ have massesM2ðϕðn̂ÞÞ as in Eq. (3.20).
The effective potential contribution for the WL phases
generated by 4D modes from ϕ is given by

ΔVðϕÞ¼ ð−1ÞF̂ Ndeg

2

X
n̂

Z
d4pE

ð2πÞ4 lnðp
2
EþM2ðϕðn̂ÞÞÞ ðB1Þ

¼ −ð−1ÞF̂ Ndeg

32π2
X
n̂

Z
∞

0

dt t−3e−M
2ðϕðn̂ÞÞt; ðB2Þ

where Ndeg is a positive integer that gives the number of
real d.o.f. of ϕ, and F̂ is the fermion number of ϕ. The
summation for n̂ ¼ ðn̂5; n̂6; n̂7; n̂8Þ is taken over all integers
for each n̂m. The expression above is divergent for small

values of the integration variable t. Since t has dimension of
M−2, it is a UV divergence. It is useful to rewrite this
expression using the Poisson resummation formula, which
is given by

X
ni ∈Z

e−πðniþdiÞðA−1ÞijðnjþdjÞ ¼
ffiffiffiffiffiffiffiffiffiffi
detA

p X
ωi ∈Z

e−πω
iAijω

j
e2πiω

kdk ;

ðB3Þ

for a d-dimensional invertible matrix A ði; j ¼ 1;…; dÞ
[33]. In our case, we have

A¼ 1

4πt
diagð1;1;1=M̂2

w;1=M̂
2
wÞ;

ffiffiffiffiffiffiffiffiffiffi
detA

p
¼ 1=j4πtM̂wj2;

ðB4Þ

d5 ¼ d6 ¼ 0; d7 ¼ −q1a17 − q2a27 þ η7;

d8 ¼ −q1a18 − q2a28 þ η8: ðB5Þ

Thus, we rewrite Eq. (B2) as

VACUUM STRUCTURE OF AN EIGHT-DIMENSIONAL SUð3Þ … PHYS. REV. D 110, 016028 (2024)

016028-21



ΔVðϕÞ ¼ −ð−1ÞF̂ Ndeg

32π2
X
ω

Z
∞

0

dt
1

ð4πM̂wÞ2
t−5e−

1
4tðω2

5
þω2

6
þðω2

7
þω2

8
Þ=M̂2

wÞe2πiðω7d7þω8d8Þ ðB6Þ

¼ −ð−1ÞF̂ 3Ndeg

π4M̂2
w

X
ω

e2πiðω7d7þω8d8Þ

½ω2
5 þ ω2

6 þ ðω2
7 þ ω2

8Þ=M̂2
w�4

; ðB7Þ

where we have used

Z
∞

0

dt t−5e−X=t ¼ 6

X4
for X > 0; ðB8Þ

and the summation is taken over ω5;ω6;ω7;ω8 ∈Z in
P

ω.
In Eq. (B7), the UV divergence became more evident, now being expressed by the term ðω5;ω6;ω7;ω8Þ ¼ ð0; 0; 0; 0Þ.

The contributions from ðω7;ω8Þ ¼ ð0; 0Þ have no dependence on the WL phases. Therefore, they can be disregarded since
we are only interested in the potential for the WL phases. Then, the remaining part is finite. Hereafter, we replace the
summations in Eq. (B7) with the new definition,

X
ω

0 ¼
X
ω

− ðcontributions of ðω7;ω8Þ ¼ ð0; 0ÞÞ: ðB9Þ

This summation is written more explicitly as

X
ω

0 ¼
X

ω5;ω6 ∈Z

 X
ω7≥1

����
ω8¼0

þ
X
ω7≤−1

����
ω8¼0

þ
X
ω8≥1

����
ω7¼0

þ
X
ω8≤−1

����
ω7¼0

þ
X
ω7≥1

X
ω8≥1

þ
X
ω7≥1

X
ω8≤−1

þ
X
ω7≤−1

X
ω8≥1

þ
X
ω7≤−1

X
ω8≤−1

!
: ðB10Þ

We find

 X
ω7≥1

þ
X
ω7≤−1

!����
ω8¼0

e2πiðω7d7þω8d8Þ

½ω2
5 þ ω2

6 þ ðω2
7 þ ω2

8Þ=M̂2
w�4

¼
X
ω7≥1

2 cosð2πω7d7Þ
½ω2

5 þ ω2
6 þ ω2

7=M̂
2
w�4

; ðB11Þ

 X
ω8≥1

þ
X
ω8≤−1

!����
ω7¼0

e2πiðω7d7þω8d8Þ

½ω2
5 þ ω2

6 þ ðω2
7 þ ω2

8Þ=M̂2
w�4

¼
X
ω8≥1

2 cosð2πω8d8Þ
½ω2

5 þ ω2
6 þ ω2

8=M̂
2
w�4

: ðB12Þ

Thus, we obtain

 X
ω7≥1

����
ω8¼0

þ
X
ω7≤−1

����
ω8¼0

þ
X
ω8≥1

����
ω7¼0

þ
X
ω8≤−1

����
ω7¼0

!
e2πiðω7d7þω8d8Þ

½ω2
5 þ ω2

6 þ ðω2
7 þ ω2

8Þ=M̂2
w�4

¼ 2
X
ω≥1

cosð2πωd7Þ þ cosð2πωd8Þ
½ω2

5 þ ω2
6 þ ω2=M̂2

w�4
; ðB13Þ

and

 X
ω7≥1

X
ω8≥1

þ
X
ω7≥1

X
ω8≤−1

þ
X
ω7≤−1

X
ω8≥1

þ
X
ω7≤−1

X
ω8≤−1

!
e2πiðω7d7þω8d8Þ

½ω2
5 þ ω2

6 þ ðω2
7 þ ω2

8Þ=M̂2
w�4

¼ 4
X

ω7;ω8≥1

cosð2πω7d7Þ cosð2πω8d8Þ
½ω2

5 þ ω2
6 þ ðω2

7 þ ω2
8Þ=M̂2

w�4
: ðB14Þ
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Finally, the contribution to the effective potential obtained from flux-blind fields is summarized as

ΔVðϕÞ ¼ −ð−1ÞF̂ 6Ndeg

π4M̂2
w

X
ω5;ω6 ∈Z

 X
ω≥1

cosð2πωd7Þ þ cosð2πωd8Þ
½ω2

5 þ ω2
6 þ ω2=M̂2

w�4
þ 2

X
ω7;ω8≥1

cosð2πω7d7Þ cosð2πω8d8Þ
½ω2

5 þ ω2
6 þ ðω2

7 þ ω2
8Þ=M̂2

w�4
!
: ðB15Þ

2. Flux-coupled case with Σ56 = 0 or Σ56 = � 1=2

Now, let ϕ be a flux-coupled field. As shown in Sec. III D 2, if ϕ has Σ56 ¼ 0 or �1=2, the masses of 4D modes from ϕ,
denoted byM2ðϕðl̂;d;n̂7;n̂8ÞÞ, are given by Eq. (3.22). From a discussion similar to the one in the previous subsection, we find
that 4D modes from ϕ generate the effective potential contribution ΔVðϕÞ, which is given by

ΔVðϕÞ ¼ −ð−1ÞF̂ Ndegjq3j
32π2

X
l̂≥0

X
n̂7;n̂8 ∈Z

Z
∞

0

dt t−3e−M
2ðϕðl̂;d;n̂7 ;n̂8ÞÞt ðB16Þ

¼ −ð−1ÞF̂ Ndegjq3j
32π2

Z
∞

0

dt t−3
X

n̂7;n̂8 ∈Z

e−ð2πM̂wÞ2ðN̂2
7þN̂2

8Þt
X
l̂≥0

e−4πjq3jðl̂þ1=2þΣ56Þt; ðB17Þ

where the overall factor jq3j is a result of the degeneracy
labeled by d in ϕðl̂;d;n̂7;n̂8Þ, and the order of the integration
and the summations were exchanged in the second line.
The infinite sum over n̂7 and n̂8 in Eq. (B17) can be

rearranged by using the Poisson resummation formula
given by Eq. (B3) with

A−1 ¼ 4πM̂2
wt

�
1 0

0 1

�
; A ¼ 1

4πM̂2
wt

�
1 0

0 1

�
;

ffiffiffiffiffiffiffiffiffiffi
detA

p
¼ 1

j4πM̂2
wtj

; ðB18Þ

and d7 and d8 in Eq. (B5). We obtain

X
n̂7;n̂8 ∈Z

e−ð2πM̂wÞ2ðN̂2
7þN̂2

8Þt

¼
X

ω7;ω8 ∈Z

1

j4πM̂2
wtj

e
− 1

4πM̂2
wt
ðω2

7
þω2

8
Þ
e2πiðω7d7þω8d8Þ: ðB19Þ

We focus on the infinite sum over l̂ in Eq. (B17). In the
Σ56ðϕÞ ¼ 0 case, the summation is rewritten using

X
l̂≥0

e−Sð2l̂þ1Þt ¼ e−St þ e−3St þ e−5St þ… ¼ 1

2 sinhSt
;

ðB20Þ

where S ¼ 2πjq3j is implied. In Σ56ðϕÞ ¼ �1=2 cases, we
combine contributions from 4D modes from Σ56ðϕÞ ¼ 1=2

and Σ56ðϕÞ ¼ −1=2 fields. Then, the summation is rewrit-
ten using

 X
l̂≥1

þ
X
l̂≥0

!
e−2Sl̂t ¼ ðe−2St þ e−4St þ…Þ

þ ð1þ e−2St þ e−4St þ…Þ

¼ 1

tanh St
: ðB21Þ

From the discussions above, the effective potential
contribution for the Σ56ðϕÞ ¼ 0 case is given by

ΔVðϕÞjΣ56¼0 ¼ −ð−1ÞF̂ Ndegjq3j
128π3M̂2

w

×
X

ω7;ω8 ∈Z

e2πiðω7d7þω8d8Þ

×
Z

∞

0

dt t−4
e
−
ω2
7
þω2

8

4πM̂2
wt

2 sinhð2πjq3jtÞ
: ðB22Þ

As was done in the previous subsection, we subtract the
divergent ðω7;ω8Þ ¼ ð0; 0Þ contribution. Finally, the con-
tribution to the effective potential from flux-coupled fields
with Σ56 ¼ 0 is given by
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ΔVðϕÞjΣ56¼0 ¼ −ð−1ÞF̂ Ndegjq3j
128π3M̂2

w

 
2
X
ω≥1

½cosð2πωd7Þ þ cosð2πωd8Þ�
Z

∞

0

dt t−4
e
− ω2

4πM̂2
wt

2 sinhð2πjq3jtÞ

þ 4
X

ω7;ω8≥1
cosð2πω7d7Þ cosð2πω8d8Þ

Z
∞

0

dt t−4
e
−
ω2
7
þω2

8

4πM̂2
wt

2 sinhð2πjq3jtÞ

!
: ðB23Þ

On the other hand, the effective potential contribution for the Σ56ðϕÞ ¼ �1=2 case is given by

ΔVðϕÞjΣ56¼�1=2 ¼ −ð−1ÞF̂ Ndegjq3j
128π3M̂2

w

X
ω7;ω8 ∈Z

e2πiðω7d7þω8d8Þ
Z

∞

0

dt t−4
e
−
ω2
7
þω2

8

4πM̂2
wt

tanhð2πjq3jtÞ

¼ −ð−1ÞF̂ Ndegjq3j
128π3M̂2

w

 
2
X
ω≥1

½cosð2πωd7Þ þ cosð2πωd8Þ�
Z

∞

0

dt t−4
e
− ω2

4πM̂2
wt

tanhð2πjq3jtÞ

þ 4
X

ω7;ω8≥1
cosð2πω7d7Þ cosð2πω8d8Þ

Z
∞

0

dtt−4
e
−
ω2
7
þω2

8

4πM̂2
wt

tanhð2πjq3jtÞ

!
: ðB24Þ

We note that the expression above comes from a pair of Σ56ðϕÞ ¼ �1=2 fields. Thus, Ndeg corresponds to half of the real
d.o.f. of the pair.

3. Flux-coupled case with Σ56 = � 1

Here, we consider the ξ ¼ 1 case. If ϕ now corresponds to A5;6, there appears a pair of fields having Σ56 ¼ �1. Their 4D
modes have masses as in Eq. (3.23). Hence, the effective potential contribution from a pair of jΣ56j ¼ 1 fields is given by

ΔVðϕÞ ¼ −
Ndegjq3j
32π2

X
n̂7;n̂8 ∈Z

Z
∞

0

dt t−3e−M
2
78
t

 
e−2Sð−1=2Þt þ e−2Sð1=2Þt þ 2

X
l̂≥0

e−2Sðl̂þ1=2Þt
!
; ðB25Þ

where we have used M2
78 as in Eq. (3.19) and

S ¼ 2πjq3j > 0; ðB26Þ

for simplicity of the expressions.
The contribution in Eq. (B25) contains UV divergences

corresponding to the singularity of the integrand in the
t → 0 limit. On the other hand, there are no IR divergences
since we only consider the WL phases that satisfy the
conditions in Eqs. (3.28) and (3.29). We can use the
Poisson resummation as done in previous subsections to
isolate the UV divergent contribution, which is independent
of the WL phases. However, in this case, the Poisson
resummation may cause a worse IR behavior.

To see this, we first show an evaluation of the contri-
butions that have a worse IR behavior. Using the formula

eSt þ e−St þ 2ðe−3St þ e−5St þ…Þ ¼ coshð2StÞ
sinhðStÞ ; ðB27Þ

we can formally rewrite Eq. (B26) as

ΔVðϕÞ ¼−
Ndegjq3j
32π2

X
n̂7;n̂8∈Z

Z
∞

0

dt t−3e−M
2
78
t coshð4πjq3jtÞ
sinhð2πjq3jtÞ

:

ðB28Þ

As in previous subsections, using the Poisson resummation
formula, we obtain

ΔVðϕÞ ¼ −
Ndegjq3j
128π3M̂2

w

 
2
X
ω≥1

½cosð2πωd7Þ þ cosð2πωd8Þ�
Z

∞

0

dt t−4e
− ω2

4πM̂2
wt
coshð4πjq3jtÞ
sinhð2πjq3jtÞ

þ 4
X

ω7;ω8≥1
cosð2πω7d7Þ cosð2πω8d8Þ

Z
∞

0

dt t−4e
−
ω2
7
þω2

8

4πM̂2
wt
coshð4πjq3jtÞ
sinhð2πjq3jtÞ

!
: ðB29Þ
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In this expression, one sees that the integrands badly
diverge for t → ∞, namely the IR limit. This behavior
cannot be evaded as long as we use the Poisson resumma-
tion formula to separate unwounded local divergences in
the contributions from potentially tachyonic states, the first
term in the parenthesis in Eq. (B25). Alternatively, we can
regularize the local divergences, which are independent of
the WL phases, by subtracting an infinite constant, leading
to the final expression for the regularized contribution to
the effective potential.
To give a more appropriate evaluation of the potential

contribution ΔVðϕÞ, we give a careful treatment of the
contribution from potentially tachyonic states in the 4D
modes. Let us define

ΔV tac ¼ −
Ndegjq3j
32π2

X
n̂7;n̂8 ∈Z

Z
∞

0

dt t−3e−ðM2
78
−SÞt: ðB30Þ

The total contribution is rewritten as

ΔVðϕÞ ¼ ΔV tac −
Ndegjq3j
32π2

X
n̂7;n̂8 ∈Z

Z
∞

0

dt t−3e−M
2
78
t

×

0
@X

l̂≥0

þ
X
l̂≥0

1
Ae−2Sðl̂þ1=2Þt: ðB31Þ

Let us use

0
@X

l̂≥0

þ
X
l̂≥0

1
Ae−Sð2l̂þ1Þt ¼ ðe−St þ e−3St þ…Þ þ ðe−3St þ e−5St þ…Þ ¼ e−St

tanhðStÞ : ðB32Þ

Except for ΔV tac, we calculate the potential contributions as in the previous sections. The result is given by

ΔVðϕÞ ¼ ΔV tac −
Ndegjq3j
128π3M̂2

w

0
B@2
X
ω≥1

½cosð2πωd7Þ þ cosð2πωd8Þ�
Z

∞

0

dt t−4
e
− ω2

4πM̂2
wte−2πjq3jt

tanhð2πjq3jtÞ

þ 4
X

ω7;ω8≥1
cosð2πω7d7Þ cosð2πω8d8Þ

Z
∞

0

dt t−4
e
−
ω2
7
þω2

8

4πM̂2
wt e−2πjq3jt

tanhð2πjq3jtÞ

1
CA: ðB33Þ

Let us discuss the evaluation of ΔV tac. As discussed in
Sec. III E, we only consider values of WL phases that
eliminate tachyonic states. In this case, the relation M2

78 −
S ≥ 0 is ensured, and the integrand in Eq. (B30) converges
for t → ∞. We evaluate ΔV tac under the condition
M2

78 − S ≥ 0. Let us first define

IT ¼
X

n̂7;n̂8∈Z

Z
∞

0

dt t−3e−ðM2
78
−SÞt; ΔV tac ¼−

Ndegjq3j
32π2

IT:

ðB34Þ

We consider the parameter region of our interest
M2

78 − S ≥ 0, which is rewritten as

0 ≤ S=M2
78 ≤ 1; ðB35Þ

and expand the factor eSt in IT as

IT ¼
X
k≥0

Sk

k!
IðkÞT ; IðkÞT ¼

X
n̂7;n̂8 ∈Z

Z
∞

0

dt t−3þke−M
2
78
t:

ðB36Þ

One sees that IðkÞT for k ¼ 0, 1, 2 contains UV diver-
gences. Let us use the Poisson resummation formula as in
Eq. (B3) to separate the UV divergent parts,

X
n̂7;n̂8 ∈Z

e−M
2
78
t ¼

X
ω7;ω8 ∈Z

1

j4πM̂2
wtj

e
− 1

4M̂2
wt
ðω2

7
þω2

8
Þ
e2πiðω7d7þω8d8Þ

ðB37Þ

and evaluate Iðk≤2ÞT as
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Iðk≤2ÞT ¼
X

ω7;ω8 ∈Z

e2πiðω7d7þω8d8Þ

j4πM̂2
wj

Z
∞

0

dt
e
− 1

4πM̂2
wt
ðω2

7
þω2

8
Þ

t4−k
¼ Γð3 − kÞ

ð4πM̂2
wÞk−2

X
ω7;ω8 ∈Z

e2πiðω7d7þω8d8Þ

ðω2
7 þ ω2

8Þ3−k
: ðB38Þ

Thus, we have that the expressions for each value of k ≤ 2 are given by

Ið0ÞT ¼ 32π2M̂4
w

 
2
X
ω≥1

cosð2πωd7Þ þ cosð2πωd8Þ
ω2

þ 4
X

ω7;ω8≥1

cosð2πω7d7Þ cosð2πω8d8Þ
ω2
7 þ ω2

8

1
Aþ ðconstantÞ; ðB39Þ

Ið1ÞT ¼ 4πM̂2
w

 
2
X
ω≥1

cosð2πωd7Þ þ cosð2πωd8Þ
ðω2Þ2 þ 4

X
ω7;ω8≥1

cosð2πω7d7Þ cosð2πω8d8Þ
ðω2

7 þ ω2
8Þ2

!
þ ðconstantÞ; ðB40Þ

Ið2ÞT ¼ 2
X
ω≥1

cosð2πωd7Þ þ cosð2πωd8Þ
ðω2Þ3 þ 4

X
ω7;ω8≥1

cosð2πω7d7Þ cosð2πω8d8Þ
ðω2

7 þ ω2
8Þ3

þ ðconstantÞ: ðB41Þ

In these expressions, the UV divergent part originating
from zero winding terms is separated as “(constant).” Since
they are independent of the WL phases, we hereafter
discard these constants.
For k ≥ 3, we obtain a simple expression of IðkÞT as

Iðk≥3ÞT ¼
X

n̂7;n̂8 ∈Z

Γðk − 2Þ
ðM2

78Þk−2
: ðB42Þ

Then, the k ≥ 3 contributions are expressed as

X
k≥3

Sk

k!
IðkÞT ¼

X
n̂7;n̂8 ∈Z

X
k≥1

S2ðS=M2
78Þk

ðkþ 2Þðkþ 1Þk : ðB43Þ

In the above expression, there is a divergent contribution
contained in the k ¼ 1 term on the right-hand side, which

originates from Ið3ÞT . It is possible to regularize it by a
procedure similar to the Pauli-Villars regularization. We
subtract the infinite constant that is independent of the WL
phases from IT as

IT → IT −
X

ðn̂7;n̂8Þ≠ð0;0Þ

S3

6ð2πM̂wÞ2ðn̂27 þ n̂28Þ
; ðB44Þ

which exactly cancels the divergence in Eq. (B43). We note
that the summation is taken over integers n̂7 and n̂8 except
for ðn̂7; n̂8Þ ¼ ð0; 0Þ in the regulator.

Consequently, we obtain the expression of IT as

IT ¼ Ið0ÞT þ SIð1ÞT þ S2

2
Ið2ÞT þ

X
n̂7;n̂8 ∈Z

X
k≥1

S2ðS=M2
78Þk

ðkþ 2Þðkþ 1Þk −
X

ðn̂7;n̂8Þ≠ð0;0Þ

S3

6ð2πM̂wÞ2ðn̂27 þ n̂28Þ
ðB45Þ

¼ 2
X
ω≥1

½cosð2πωd7Þ þ cosð2πωd8Þ�
 
32π2M̂4

w

ω2
þ 8π2jq3jM̂2

w

ω4
þ 2π2jq3j2

ω6

!

þ 4
X

ω7;ω8≥1
cosð2πω7d7Þ cosð2πω8d8Þ

 
32π2M̂4

w

ω2
7 þ ω2

8

þ 8π2jq3jM̂2
w

ðω2
7 þ ω2

8Þ2
þ 2π2jq3j2
ðω2

7 þ ω2
8Þ3
!

þ
X

n̂7;n̂8 ∈Z

X
k≥1

ð2πjq3jÞ2þk

ðkþ 2Þðkþ 1ÞkðM2
78Þk

−
X

ðn̂7;n̂8Þ≠ð0;0Þ

ð2πjq3jÞ3
6ð2πM̂wÞ2ðn̂27 þ n̂28Þ

þ ðconstantÞ: ðB46Þ

Discarding the irrelevant constant contribution in the last equation, this expression is finite.
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