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We provide a step-by-step method to construct skyrmions from instanton ADHM data, including when
the exact ADHM data is unknown. The configurations look like clusters of smaller skyrmions, and can be
used to build manifolds of skyrmions with or without symmetries. Nuclei are described by quantum states
on these manifolds. We describe the construction and quantization procedure generally, then apply the
methods in detail to the 8-skyrmion which describes the Beryllium-8 nucleus.
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I. INTRODUCTION

Skyrmions are topological solitons used to model nuclei
[1]. Each classical configuration has a topologically pro-
tected integer,N, which is identified with the baryon number
of the corresponding nucleus. To compare properties such as
energies, allowed (iso)spins, and charge radii one must
quantize the classical skyrmion. This may be done semi-
classically by selecting a low energy manifold of configu-
rations, which we will call the configuration space, and
solving a Schrödinger equation on it. In the simplest case one
chooses the minimal energy skyrmion and its zero modes:
translations, rotations, and isorotations [2,3]. But it is well
known that skyrmions and nuclei deform. Hence to improve
the approximation one should include deformations in their
configuration space. This is difficult due to the nonlinearity
of the Skyrme model. Previous studies which attempt to
include deformations are limited in different ways. They:
generated one-dimensional submanifolds using gradient
flow [4,5], made phenomenological guesses about the
space [6], or used a harmonic approximation [7,8].
In this paper we will develop a method that uses the

instanton approximation, based on ADHMdata, to construct
configuration spaces in the Skyrmemodel; as an examplewe
apply this method to the quantization of the 8-skyrmion.
Atiyah and Manton first suggested that instantons, soliton
solutions ofYang-Mills theory, could be used to approximate
skyrmions [9]. The idea is powerful as instantons are
incredibly well understood. In each topological sector, there

are 8N instantons and all can be described by ðN þ 1Þ × N
quaternionic matrices, called ADHM data [10].
There has been significant recent progress in understand-

ing the link between skyrmions and instantons. The Atiyah-
Manton approximation is understood by viewing the
Skyrme Lagrangian as the first term in an expansion relating
instantons to skyrmions coupled to vector mesons [11], and
this has been used to interpret modes in 2-skyrmion scatter-
ing [12]. A new numerical method to generate skyrmions
from instantons was developed in [13,14]; this has been used
to construct larger spaces of skyrmions from instantons than
ever before [15], and to generate explicit rational approx-
imations of skyrmions [16]. Very recently, a new formula for
calculating Finkelstein-Rubinstein constraints directly from
ADHM data has been found [17] improving on old results
which were only applicable to rigid body quantization [18].
Despite this progress, the instanton approximation is

still not widely used. Hence one aim of this paper is to write
a simple “recipe” to generate ADHM data, and hence
skyrmion spaces, quickly and easily. After briefly review-
ing the Skyrme model, Atiyah-Manton construction, and
ADHM data in Sec. II, we outline such a step-by-step guide
in Sec. III, along with a review of the quantization
procedure. These steps are applied in detail in Sec. IV,
and some more detailed (but more generic) examples are
showcased in Sec. V.

II. SKYRMIONS, INSTANTONS AND ADHM DATA

The Lagrangian density of the Skyrme model, with zero
pion mass, is given by

L ¼ −
f2π
16ℏ

trðLμLμÞ þ ℏ
32e2

trð½Lμ; Lν�½Lμ; Lν�Þ; ð2:1Þ

and is written in terms of the left-invariant current
L ¼ U−1dU, for U∶ R3 ⟶ SUð2Þ. For simplicity, we
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choose energy and length units fπ=4e and 2ℏ=fπe respec-
tively; these are called Skyrme units. Skyrmions are
energy-minimizing maps U∶ R3 ⟶ SUð2Þ of the dimen-
sionless static Skyrme energy

EðUÞ ¼ −
1

2

Z
tr

�
LiLi þ

1

8
½Li; Lj�½Li; Lj�

�
d3x; ð2:2Þ

satisfying the space-compactifying boundary condition
U → Id as r → ∞; this boundary condition allows for a
well-defined topological degree N ∈Z ¼ π3ðSUð2ÞÞ,
physically identified as the baryon number, and computed
via the integral

N ¼ 1

24π2

Z
trðL ∧ L ∧ LÞ: ð2:3Þ

The energy is bounded below proportionally by the charge
[19], and the choice of units has been made so that the
energy bound is E ≥ 12π2jNj.
The Euler-Lagrange equations for (2.2) are highly non-

linear and no solutions are known analytically. A good
approximation of solutions is provided by instantons on R4

[9]. Instantons are gauge fields A on R4 with anti-self-dual
curvature ⋆F ¼ −F which extend smoothly to the one-
point compactification S4 ≅ R4 ∪ f∞g. This boundary
condition identifies each instanton with a topological
charge N ∈Z called the instanton number, computed as
the second Chern number

N ¼ c2ðS4Þ ¼
1

8π2

Z
trðF ∧ FÞ: ð2:4Þ

For each N there is an 8jNj-dimensional moduli space IN
of instantons modulo gauge transformations which tend to
identity at infinity [20]. The moduli spaces IN are para-
metrized by a moduli space of matrices called ADHM data
[10]. The ADHM data may be described as follows. LetXN
denote the set of all pairs ðL;MÞ where L is a length-N row
vector of quaternions, andM is anN × N symmetric matrix
of quaternions. For any element ðL;MÞ∈XN , and x∈H,
one may write down the associated matrix

Δx ¼
�

L

M − xIdN

�
: ð2:5Þ

To describe an instanton at x ¼ x1iþ x2jþ x3kþ x41∈
H ≅ R4, these data must satisfy the reality condition: that
the N × N matrix Δ†

xΔx is real and invertible for all x∈H.
The moduli space AN of ADHM data is the set of all
ðL;MÞ∈XN satisfying the reality condition, modulo the
action of OðNÞ given by

O · ðL;MÞ ¼ ðLO−1; OMO−1Þ; O∈OðNÞ: ð2:6Þ

The instanton associated to any ADHM data is given by an
induced connection on kerΔ†; the subbundle of the trivial
quaternionic bundle R4 × HNþ1 with fibers kerΔ†

x.
Explicitly, one solves for each x∈H

Δ†
xΨx ¼ 0; Ψ†

xΨx ¼ 1; Ψ∞ ¼ ð 1 0 � � � 0 Þt;
ð2:7Þ

and sets Ajx ¼ Ψ†
xdΨx.

The Atiyah-Manton approximation of skyrmions [9]
generates an approximate skyrmion U∶ R3 ⟶ SUð2Þ as
the holonomy of an instanton along all lines of fixed
imaginary part ℑðxÞ∈ℑðHÞ ≅ R3. In this scheme, the
instanton number N is the baryon number of the associated
Skyrme field, hence why we use the same symbol for both
quantities. In general, it is not possible to write down
instanton holonomies analytically, so one must approxi-
mate them numerically. Since instantons are understood via
ADHM data as induced connections, we may approximate
the holonomy using the methods outlined in [14]. In this
paper, we approximate the holonomy using the improved
order 3 method, the details of which may be found in [14].

III. GENERAL METHODOLOGY

Previouswork has focused on finding theADHMdata that
has the same, often large, symmetry group as a known
skyrmion. We will generalize this problem and try to
construct ADHM data which looks like k-clusters of smaller
skyrmions, which can have any symmetry. These will often
be families of data, used to generate a configuration space of
skyrmions. In this section we shall discuss how to generate
ADHMdata of this type.Wewill also discuss a semiclassical
quantization on a configuration space.

A. Constructing clustered configurations

To describe any configuration in terms of smaller clusters,
we follow a general roadmapoutlined below. The procedure,
formulated through the framework introduced in [15], will
generate ADHM data, hence a genuine instanton, which
models the skyrmion configuration of interest.
Step 1: Understand the component clusters and

their ADHM data. These will be k true ADHM data
ðLi;MiÞ∈ANi

, i ¼ 1;…; k, which describe the constituent
components. A list of ADHM data describing common
components, such as tori and cubes, may be found in [15].
Step 2: Write down specific “test data” ðLT;MTÞ∈XN

(with N ¼Pi Ni) which describes the problem. The test
data is explicitly given by embedding each constituent of
ANi

into XN as a block diagonal:

LT ¼ ðp1L1q−11 � � � pkLkq−1k Þ;
MT ¼ diagfq1M1q−11 þ a1IdN1

;…; qkMkq−1k þ akIdNk
g:
ð3:1Þ
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The test data (3.1) will generally not be ADHM data as it
will not solve the reality condition; it is instead a building
block from which to determine true ADHM which
describes the physical system of interest. In (3.1) the
ðpi; qiÞ∈SUð2Þ2 are unit quaternions that describe the
orientations of the components in isospace and space
respectively, and the ai ∈H describe the positions.
Typically one sets ℜðaiÞ ¼ 0 so then the ai are 3-vectors
represented by imaginary quaternions; separations in the
real (holographic) direction may be relevant for parame-
trizing vector meson modes [12], but we do not consider
this possibility here.
If the system requires any inverted constituents, i.e. those

whose Skyrme fields differ by the parity transformation
UðxÞ ↦ Uð−xÞ−1, one simply replaces the relevant con-
stituent data ðLi;MiÞ by ð−Li;−MiÞ.
Step 3: Determine the symmetry of the entire system.

The group SUð2Þ × SUð2Þ × Z2 of isorotations, rotations,
and parity transformations, acts on ðL;MÞ∈XN via

ðp; q; 1Þ · ðL;MÞ ¼ ðpLq−1; qMq−1Þ;
ðp; q;−1Þ · ðL;MÞ ¼ ð−pLq−1;−qMq−1Þ: ð3:2Þ

The test data ðLT;MTÞ may be invariant, up to gauge
transformation, under a subgroup of these: this is the
stabilizer subgroup ST of (3.1) in SUð2Þ × SUð2Þ × Z2.
A detailed discussion of identifying such symmetries may
be found in [15]. In brief, the symmetry is made explicit by
finding, for each generator g∈ ST of the symmetry group of
(3.1), a compensating gauge transformation Og ∈OðNÞ
such that

ðLT;MTÞ ¼ g · ðLTO−1
g ; OgMTO−1

g Þ: ð3:3Þ

Step 4: Construct the most general ðL;MÞ∈XN=OðNÞ
consistent with the system and symmetry. Starting with the
rigid body symmetries ST , one may write down the most
general ðL;MÞ∈XN with these symmetries, i.e. such that

ðL;MÞ ¼ g · ðLO−1
g ; OgMO−1

g Þ for all g∈ ST; ð3:4Þ

where Og are the compensating gauge transformations
identified earlier in (3.3). Our approach here contrasts with
previous work (for example in Refs. [21,22]) which found
symmetric ADHM data by fixing a symmetry group G and
performed an exhaustive search for all ADHM data with
that symmetry. In general there will be several choices of
compensating gauge transformations which allow for
solutions of (3.4) given by different N-dimensional repre-
sentations of G, and the fixed point set under the action of
G may well be disconnected in AN , with some different
representations describing different components. In our
case the compensating gauge transformations are fixed in
step 3, and this guarantees we end up with data in the

connected component of the fixed point set of ST in XN
which describes the physical system of interest.
Even after imposing symmetry, the most general

ðL;MÞ∈XN found in this way will likely depend on
several free parameters. Some of these will be fixed by the
reality condition in the next step, whereas others may be
redundancies due to gauge freedom and may be removed.
Note that (3.1) acts as a partial gauge fixing imposed by the
choice of gauge for the individual components ðLi;MiÞ,
and this fixes the compensating gauge transformations
arising in the symmetry. To respect this, the residual gauge
freedom may be determined explicitly as the subgroupO ⊂
OðNÞ which commutes with the compensating gauge
transformations, i.e.

O ¼ fΩ∈OðNÞ∶ ΩOg ¼ OgΩ for all g∈ STg: ð3:5Þ

Finally, the remaining free parameters may be thought of as
depending on a set of physical parameters Ri which are
prescribed by the parameters of the test data. These may be
constrained by internal symmetries of the test data, man-
ifested by one-parameter families RðtÞ, t∈ ½0; 1�, such that
there exists Ω∈OðNÞ with

ðLTðRð0ÞÞ;MTðRð0ÞÞÞ
¼ ðpLTðRð1ÞÞq−1Ω−1;ΩqMTðRð1ÞÞq−1Ω−1Þ: ð3:6Þ

in the chosen gauge.
Step 5: Find the ADHM data which is closest to

MTðRiÞ ¼ ðLT;MTÞðRiÞ consistent with the symmetries.
To do so, start with the general data ðL;MÞ∈XN=OðNÞ
consistent with the symmetries found in step 4. We will
parametrize this set by rj, and denote the general matrices
as MðrÞ. We then try to minimize kMðrjÞ −MTðRiÞk,
while enforcing the reality condition, which will project
MðrÞ from XN=OðNÞ to AN ; the space of ADHM data.
Explicitly, we need to solve

min
r
kMðrÞ−MTðRiÞk subject to ℑðMðrÞM†ðrÞÞ ¼ 0:

ð3:7Þ
Throughout, we will choose the gauge-invariant distance
function induced by the standard inner product on matrices

hA;Bi ¼ trðA†BÞ: ð3:8Þ

In general, for complicated clusters, resolving the reality
condition [and hence even more so the problem (3.7)] is not
possible to do analytically, so we have developed a
numerical procedure to overcome this.

B. Quantization procedure

In Sec. III A above, we detailed how to generate ADHM
data describing any desired physical configuration of
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Skyrme fields. These data are parametrized by physical
parameters Ri which may be thought of as coordinates for a
vibrational manifold V. Upon applying the Atiyah-Manton
construction, this family of ADHM data generates Skyrme
fields which form a finite-dimensional submanifold V of
the true configuration space CN ¼ MapsNðS3; S3Þ. The aim
is to quantize the Skyrme model on this manifold coupled
with the manifold of zero modes: the group SUð2Þ2 of
isorotations and rotations. Naïvely this restricted configu-
ration space is a product manifold SUð2Þ × SUð2Þ × V,
however this may not be true globally. The correct
perspective, as pointed out by Rawlinson [23], is to view
the restricted configuration space of interest as a principal
SUð2Þ2 bundle P → V over V. The configuration space
on which to quantize the theory is then P, which is a
ð6þ dimðVÞÞ-dimensional manifold which locally looks
like SUð2Þ2 × V; formally, there is a surjective map
π∶P → V, such that for any point R∈V, there is a
neighborhood U ⊂ V of R, so that π−1ðUÞ≅ SUð2Þ2×U.
We now briefly review what the quantization procedure on
P entails. We perform a canonical quantization on this
manifold by resolving the Schrödinger equation�

−
ℏ2

2
Δg þ V

�
Ψ ¼ EΨ; ð3:9Þ

where Δg and V are the Laplace-Beltrami operator and
potential on P inherited from the Skyrme Lagrangian.
Local formulas for the metric and potential are determined
by constructing a family UX of Skyrme fields dependent on
X∈SUð2Þ2 × V as

UXðx⃗;XÞ ¼ pURðq · x⃗Þp−1; ð3:10Þ

whereUR denotes the family of Skyrme fields parametrized
purely by the vibrational coordinates R∈V, and p, q are
general points in SU(2). Letting these coordinates depend
on time, we introduce angular velocity vectors associated to
the isorotations and rotations respectively:

ai ¼ −itrðτip−1ṗÞbi ¼ itrðτiq̇q−1Þ; ð3:11Þ

these give rise to associated right (and left resp.) invariant
one forms αi and βi on SU(2). Here, as usual, τi denotes the
standard (Hermitian) Pauli matrices. Inserting (3.10) into
the dimensionless Lagrangian density

L ¼ −
1

2

Z
tr

�
LμLμ −

1

8
½Lμ; Lν�½Lμ; Lν�

�
d3x ¼ Tg − V;

ð3:12Þ

the local metric on P is then extracted from the kinetic
energy

Tg ¼
1

2
gijẊiẊj;

gij ¼ −
Z

tr

�
GiGj þ

1

4
½Lk;Gi�½Lk;Gj�

�
d3x; ð3:13Þ

where

Ẋi ¼
8<:

ai; i ¼ 1; 2; 3;

bi−3; i ¼ 4; 5; 6;

Ṙi−6; i ≥ 7;

ð3:14Þ

and Gi∶ R3 ⟶ suð2Þ is a current determined by deriv-
atives of (3.10) with respect to the coordinates Xi. Because
of the (iso)rotational symmetry of the Lagrangian, the
metric terms corresponding to the SUð2Þ2 action are
generated by special Gi that only depend on the skyrmion
at fixed R∈V:

Gi ¼
� i

2
U−1

R ½τi; UR� i ¼ 1; 2; 3;

εði−3ÞlmxlLm i ¼ 4; 5; 6;
ð3:15Þ

where Lm ¼ U−1
R ∂mUR. Terms corresponding to V explic-

itly involve derivatives with respect to the parameters Ri:

Gi ¼ U−1
R ð∂Ri−6

URÞ i ≥ 7: ð3:16Þ

Due to the SUð2Þ2 action, we can decompose the wave
function via an expansion into spin and isospin states as

Ψ ¼
XI
K3¼−I

XJ
L3¼−J

ψK3;L3
ðRiÞjI; K3i ⊗ jJ; L3i: ð3:17Þ

Here I and J are isospin and spin, and K3 and L3 are the
body-projected isospin and spin respectively. There are also
the space-projected isospin and spin I3 and J3 respectively,
but these have no effect on the energy spectrum, so we are
free to set I3 ¼ J3 ¼ 0 throughout. In this framework, the
wave function is then a function of local coordinates
Ri ∈U ⊂ V on the vibrational manifold taking values in
Cð2Iþ1Þð2Jþ1Þ, with components ψL3;K3

ðRiÞ. However, the
formula (3.17) is only valid locally, and only extends
globally when P is trivial. In general the expansion (3.17)
gives the local formula for a section Ψ of the associated
vector bundle P ×SUð2Þ2 Cð2Iþ1Þð2Jþ1Þ, in which suitable
conditions are imposed on overlapping patches using the
transition functions on P [23]. In each trivialization
the wave function (3.17) can be substituted into the
Schrödinger equation (3.9), which becomes a PDE on a
manifold with dimension equal to the number of vibrational
coordinates Ri.
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C. Finkelstein-Rubinstein constraints

Although we are working with a truncated configuration
space modeled by instanton moduli, ultimately this acts as
an approximation to the true configuration space of Skyrme
fields CN ¼ MapsNðS3; S3Þ. The scheme outlined in the
previous section is an approximation to obtaining a
Schrödinger equation on CN . In the untruncated picture,

the wave function is really a map1 Ψ∶fCN ⟶ C defined on

the universal cover fCN of CN . Since π1ðCNÞ ¼ Z2, this is a
double cover. In particular, for any loop γ∶½0; 1� ⟶ CN in
the configuration space, there is a corresponding lifted path

γ̃∶½0; 1� ⟶ fCN in the universal cover whose endpoints are
projected to the same point in CN . At these points, the wave
function should differ only by a sign, leading to constraints:

Ψðγ̃ð1ÞÞ ¼ χFRðγÞΨðγ̃ð0ÞÞ: ð3:18Þ

Such constraints (3.18) induced by loops in configuration
space are known as Finkelstein-Rubinstein signs [24]. The
sign is determined explicitly by

χFRðγÞ ¼
�
1 γ is contractible;

−1 γ is not contractible;
ð3:19Þ

i.e. χFRðγÞ is the representative of γ in the homotopy
group π1ðCNÞ.
As an example, in the rigid body quantization, the relevant

loops are those induced by symmetries: every symmetry of a
skyrmion gives rise to a constraint of the form

exp ðiαn⃗ · K̂ þ iβN⃗ · L̂ÞΨ ¼ ð−1ÞNα;βΨ; ð3:20Þ

where the symmetry is generated by an isorotation/rotation
pair ðpðα; n⃗Þ; qðβ; N⃗ÞÞ of angles α and β around fixed axes n⃗
and N⃗ respectively, and here K̂ and L̂ are the (body-fixed)
angular momentum operators in target space and space
respective. It is well known how to compute these types
of constraints for certain Skyrme fields, for example those
generated from rational maps [18].
When dealing with more complicated configuration

spaces, one will invariably encounter loops which do not
arise from zero-mode symmetries. For instance, as relevant
for the present work, one may construct ADHM data which
has internal symmetries of the form (3.6) which do not arise
simply from the SUð2Þ2 action on a single point. In
addition, the formulas from [18] only apply to rational
map skyrmions. So for a complete quantum treatment of
instanton-generated-skyrmions, we require a way to deter-
mine the Finkelstein-Rubinstein signs for all loops which
arise for Skyrme fields generated from instantons; both

symmetries of the form (3.4) and those internal to the
configuration space (3.6).
This problem has recently been resolved [17]. A loop in

the space of ADHM data is a one-parameter family
ðLðtÞ;MðtÞÞ∈AN , for t∈ ½0; 1� such that

ðLð0Þ;Mð0ÞÞ ¼ ðLð1ÞΩ−1;ΩMð1ÞΩ−1Þ; ð3:21Þ

for some Ω∈OðNÞ. This gives rise to a loop UðtÞ in the
space CN , and hence a Finkelstein-Rubinstein sign
χFR ∈ f−1; 1g. For the Skyrme fields generated by a loop
satisfying (3.21), the sign is

χFR ¼ detΩ: ð3:22Þ
In other words, a loop is contractible if and only if the
compensating gauge transformation has determinant 1, i.e.
is in SOðNÞ ⊂ OðNÞ. The proof of this result may be found
in [17].
The simple formula (3.22) complements the process

outlined in Sec. III A since all symmetries are accounted for
along with their compensating gauge transformations. In
particular, explicit formulas for the full ADHM data are not
needed to determine these signs; the final ADHM data is
modeled on diagonal test data (3.1), and all generating
loops and symmetries (and hence the compensating gauge
transformations) are extracted from the symmetries of the
test data via (3.4) and (3.6).

IV. THE 8-SKYRMION AS TWO CUBIC
4-SKYRMIONS

To demonstrate the methods outlined in the previous
section, we shall now consider a specific example which
showcases all of the different steps required for studying a
quantum system in the Skyrme model using instantons.

A. Physical picture and configuration space

We will consider the nonlinear extension of the lowest
frequency vibrational mode of the N ¼ 8 twisted cube
skyrmion. This is also the unstable mode of the untwisted
N ¼ 8 skyrmion. Physically, both 8-skyrmions can be
thought of as two cubic 4-skyrmions stacked atop one
another. Skyrmions are typically visualized by first plotting
an isosurface of constant baryon charge density. This is
colored to reflect the value of UðxÞ at that point, based
on the Runge color sphere. The skyrmions are colored white/
black when U ¼ �iτ3 and red, green and blue when U ¼
iðτ1 cosðαÞ þ τ2 sinðαÞÞ and α is 0; 2π=3 and 4π=3 respec-
tively. The interaction of skyrmions can often be intuitively
understood using these colors, as explained in [15]. For the
twisted 8-skyrmion, the cubes are orientated so their touching
face has the same color, and their touching vertices have
either the same (twisted) or opposite (untwisted) color.
The vibrational mode we consider is the relative rotation

of the two cubes around the axis joining them. Let us fix the
1Again, this is a local picture; in reality Ψ is a section of a

complex line bundle over CN.
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separation vector along the z-axis and parametrize their
relative orientation with a coordinate ξ. This path is
visualized in Fig. 1 where we plot several skyrmions for
different values of ξ from 0 to π

4
. At ξ ¼ 0 the cubes have

the same orientation, giving the untwisted cubes, while at
ξ ¼ π

4
the cubes have different orientations, giving the

twisted cubes.
Due to the symmetry of the cubes, a shift by ξ ↦ ξþ π

is a symmetry of the configuration space. In this way ξ ¼ 0
and ξ ¼ π can be identified and so the vibrational manifold
has topology of a circle S1. The full configuration space is
then the SUð2Þ2 bundle over S1 given by acting with
rotations and isorotations. G-bundles over S1 are classified
by connected components of G. As G ¼ SUð2Þ2 is con-
nected, the configuration space considered here is a trivial
(product) bundle SUð2Þ × SUð2Þ × S1.

B. ADHM data for the configuration space

We now execute the steps described in Sec. III A to
generate instantons describing the physical picture.
Step 1: The two clusters used are cubic 4-skyrmions

which have zero center-of-mass ADHM data, with scale
λ > 0, [25]

L4 ¼ λρð 1 i j k Þ;

M4 ¼
λffiffiffi
2

p

0BBB@
0 −j − k −i − k −i − j

−j − k 0 −iþ j i − k

−i − k −iþ j 0 −jþ k

−i − j i − k −jþ k 0

1CCCA: ð4:1Þ

This data is invariant under the cubic group Oh; more
details can be found in [15]. The axes of isorotation
symmetry depend on the choice of unit quaternion
ρ∈SUð2Þ. We shall fix

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − ffiffiffi

2
p Þð3þ ffiffiffi

3
p Þ

24

s � ffiffiffi
3

p
− 1ffiffiffi
2

p 1þ iþ ð1þ
ffiffiffi
2

p
Þj

−
1

2
ð
ffiffiffi
3

p
− 1Þð

ffiffiffi
2

p
þ 2Þk

�
; ð4:2Þ

which colors each pair of opposite faces of the cube red,
green, and blue.
Step 2: To describe the full path, we build diagonal test

data from the cubic subunits as

LT ¼ ðL4ωðξÞ−1 L4ωð−ξÞ−1 Þ
MT ¼ diagfωðξÞM4ωðξÞ−1

þ RId4k;ωð−ξÞM4ωð−ξÞ−1 − RId4kg; ð4:3Þ

where

ωðξÞ ¼ 1 cos
ξ

2
þ k sin

ξ

2
ð4:4Þ

is the rotation of angle ξ which determines the path of the
twist, and R > 0 is a separation parameter.
Step 3: Every configuration in the configuration space

has D4 symmetry, generated by
(i) A π rotation about (1, 0, 0).
(ii) A π

2
rotation about (0, 0, 1) and a π isorotation about

(1, 0, 0).
In the gauge described by (4.1), this symmetry is res-
pected by the test data (4.3), and understood explicitly by2

LT ¼ pðe1; πÞLTq

�
e3;

π

2

�
−1
O−1

4 ;

MT ¼ O4q

�
e3;

π

2

�
MTq

�
e3;

π

2

�
−1
O−1

4 ;

LT ¼ LTqðe1; πÞ−1O−1
2 ;

MT ¼ O2qðe1; πÞMTqðe1; πÞ−1O−1
2 ; ð4:5Þ

with compensating gauge transformations

FIG. 1. Configurations joining the untwisted (far left) and twisted (far right) N ¼ 8 skyrmions. The coordinate ξ increases from 0 to
π=4 from left to right.

2Here, and throughout, we employ the notation pðv; θÞ and
qðw;φÞ to denote the unit quaternion representing a rotation by
angle θ or φ around the unit axis v or w respectively. Explicitly

qðw;φÞ ¼ cos
φ

2
1þ sin

φ

2
w · ði; j; kÞ

and similarly for p.
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O4 ¼
�
o4 0

0 o4

�
; O2 ¼

�
0 o2
o2 0

�
;

o4 ¼

0BBB@
0 0 −1 0

−1 0 0 0

0 0 0 1

0 −1 0 0

1CCCA; o2 ¼

0BBB@
0 1 0 0

−1 0 0 0

0 0 0 −1
0 0 1 0

1CCCA:

ð4:6Þ

In addition to this D4 symmetry, there are internal sym-
metries induced by moving through the vibrational mani-
fold. Specifically

(i) ξ ↦ ξþ π
2
and a π

2
rotation about (0, 0, 1).

(ii) ξ ↦ −ξ, a parity inversion, and a π isorotation about
(0, 0, 1).

The data (4.3) exhibits these symmetries via

LTðξÞ ¼ LT

�
ξþ π

2

�
q

�
e3;

π

2

�
−1
O−1

σ ; MTðξÞ ¼ Oσq

�
e3;

π

2

�
MT

�
ξþ π

2

�
q

�
e3;

π

2

�
−1
O−1

σ ;

LTðξÞ ¼ −pðe3; πÞLTð−ξÞO−1
− ; MTðξÞ ¼ −O−MTð−ξÞO−1

− ; ð4:7Þ
with compensating gauge transformations

Oσ ¼
�
oσ 0

0 Id4

�
; O− ¼

�
0 o−
o− 0

�
;

oσ ¼

0BBB@
0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

1CCCA; o− ¼
ffiffiffi
3

p

3

0BBB@
0 −1 −1 −1
1 0 −1 1

1 1 0 −1
1 −1 1 0

1CCCA: ð4:8Þ

Step 4: The symmetry equations (4.5) are equivalent to a
nullspace problem, which we solve using Mathematica.
The most general test data MðrÞ consistent with the D4

symmetry can be found in the Appendix.
Step 5:We now have a set of dataMðrÞ∈X8, consistent

with D4 symmetry. To become ADHM data these must
satisfy the reality condition,

ℑðMðrÞMðrÞ†Þ ¼ 0; ð4:9Þ
which reduces to nine quadratic equations. The test
data (4.1) depends on three parameters: R, λ and ξ. The
parameters R and λ are interpreted as separation and scale,
and shall be fixed below; as such the only variable
parameter in our configuration space is the coordinate ξ.
We now want to find the ADHM data closest to the test
data by solving (3.7). We do this using Mathematica’s
NMinimize function. We first fix ξ ¼ π=4 and optimize λ and
R to minimize the static Skyrme energy. We find the
minimizer at ðR; λÞ ¼ ð1.99; 1.142Þ; remarkably close to
ðR; λÞ ¼ ð2; ffiffiffi

2
p Þ. Now fixing these two parameters, we

find the ADHM data, and hence the skyrmions, for all other
ξ∈ ½0; π=4�. For each new ξ, the initial data is taken as the
previous solution. Energy density plots of these configu-
rations are displayed in Fig. 1.

C. Classical results from instanton approximation

Including rotational and isorotational zero modes, the
manifold of configurations is given by SUð2Þ × SUð2Þ × S1.

The potential energy and metric on this manifold depend
only on the circle, “vibrational,” coordinate ξ. We write the
metric in terms of moment of inertia coefficients3 as

g ¼ gξξðξÞdξ2 þ gUijðξÞαiαj þ gVijðξÞβiβj þ gWij ðξÞαiβj;
ð4:10Þ

where αi, βj are the one forms dual to the angular velocity
vectors (3.11). We can calculate these coefficients using the
formulas in Sec. III B. Note that the cross terms gξi vanish
because of the parity symmetry (4.7). Also, because of theD4

symmetry (4.5), we find that there are only six independent
moment of inertia coefficients. In our orientation, the zero-
mode metric tensors take the form

gU ¼

0BB@
gU11 0 0

0 gU22 gU23
0 gU23 gU33

1CCA; gV ¼

0BB@
gV11 0 0

0 gV11 0

0 0 gV33

1CCA;

gW ¼ 03×3; ð4:11Þ
where the mixed rotational-vibrational metric terms gW

vanish. We plot the seven independent metric components
and the potential energy in Fig. 2.

3Here we use the notation gUij; g
V
ij; g

W
ij rather than the more

standard (e.g. [26]) notation Uij; Vij;Wij so as not to conflate
with other notation, and to emphasize that these are metric
components.
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D. Quantization

We will now use the classical information to construct a
model of the Beryllium-8 nucleus. We have constructed the
manifold of configurations that have a rotational orienta-
tion, isorotational orientation, and a relative twist parameter
ξ. We will now implement a canonical quantization on this
manifold.
The Schrödinger equation is given by�

−
ℏ2

2
Δg þ V

�
Ψ ¼ EΨ; ð4:12Þ

where Δg is the Laplace-Beltrami operator on SUð2Þ ×
SUð2Þ × S1 induced by the metric (4.10). Due to rotational-
isorotational symmetry, we can write the wave function
using an expansion in spin states

Ψ ¼
XJ
L3¼−J

XI
K3¼−I

ψL3;K3
ðξÞjJ; J3; L3ijI; I3; K3i: ð4:13Þ

J∈N is spin, I ∈N is isospin, J3=I3 are the space-projected
spin/isospin and L3=K3 are the body-projected spin/iso-
spin. The space-projected spins have no effect on the
energy spectrum, so we are free to choose J3 ¼ I3 ¼ 0
and use the reduced notation

Ψ ¼
X
L3;K3

ψL3;K3
ðξÞjJ; L3ijI; K3i: ð4:14Þ

Only certain wave functions are allowed due to the
symmetry of the system. All configurations considered
are invariant under D4 symmetry, realized as a π rotation
about (1, 0, 0) and a π

2
rotation about (0, 0, 1) combined with

a π isorotation about (1, 0, 0). These give the Finkelstein-
Rubinstein constraints

exp ðiπL̂1ÞΨ ¼ ð−1ÞN1Ψ ð4:15Þ

exp

�
i
π

2
L̂3 þ iπK̂1

�
Ψ ¼ ð−1ÞN2Ψ: ð4:16Þ

Using the formula (3.22) from [17], we compute that both
compensating gauge transformations (4.6) have determi-
nant 1, and so N1 ¼ N2 ¼ 0. This matches the result
expected based on a rigid body analysis [18]. The operators
that make up these symmetry elements are simple when
applied to the spin basis:

exp ðiπL̂1ÞjJ; L3ijI; K3i ¼ ð−1ÞJjJ;−L3ijI; K3i ð4:17Þ

exp

�
i
π

2
L̂3 þ iπK̂1

�
jJ; L3ijI; K3i

¼ iL3ð−1ÞIjJ; L3ijI;−K3i ð4:18Þ
The first FR constraint (4.15) implies that all rotational
wave functions must either have even spin and appear as
jJ; L3i þ jJ;−L3i, or odd spin and appear in the combi-
nation jJ; L3i − jJ;−L3i. The second FR constraint (4.16)
implies that L3 must be even, and that if I þ L3=2 is even,
the isorotational wave functions appear in pairs jI; K3i þ
jI;−K3i while if I þ L3=2 is odd the isorotational wave
functions must appear as jI; K3i − jI;−K3i. Overall, the
allowed wave functions take the form

ðjJ; L3i þ ð−1ÞJjJ;−L3iÞðjI; K3i þ ð−1ÞIþL3=2jI;−K3iÞ:
ð4:19Þ

Note that if J is odd there is no allowed state with L3 ¼ 0
and, similarly, if I þ L3=2 is odd there is no allowed state
with K3 ¼ 0. In particular, there are no states with spin-
projection L3 ¼ 2 and isospin I ¼ 0.
Next, there are combined rotational-vibrational trans-

formations exhibited explicitly via (4.7). The first is

FIG. 2. The potential energy and the seven independent metric coefficients, as a function of ξ, in Skyrme units. These can be converted
to MeV using the factor fπ=4e.
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ξ ↦ ξþ π=2 combined with a π=2 rotation about (0, 0, 1).
This transformation provides the third and final FRconstraint

exp

�
i
π

2
L̂3

�
Ψ
�
ξþ π

2

�
¼ ð−1ÞN3ΨðξÞ: ð4:20Þ

This constraint may be determined again using the for-
mula (3.22) and the determinant of the compensating gauge
transformationOσ in (4.8) corresponding to the symmetry of
the test data; this works because the test data is true ADHM
data in the limit R → ∞, which can be continuously
deformed into the data we use in our work. The determinant
is 1, and as suchN3 ¼ 0. Thismatches physical intuition: the
transformation (4.20) corresponds to rotating one cube by π
and leaving the other one untouched. The FR sign of a single
cube rotated by π is þ1, matching the result from the new
method based on ADHM data.
Finally, there is a parity symmetry. The full parity operator

(UðxÞ ↦ Uð−xÞ−1) can be combined with ξ ↦ −ξ and a π
isorotation about (0, 0, 1). So, whatever our final wave
function is, we can calculate its parity by the operator

P̂ ¼ exp ðiπK̂3ÞP̂ξ: ð4:21Þ

It is convenient to now split the symmetries into their
(iso)rotational parts and the “vibrational” parts. The vibra-
tional transformations are just ξ ↦ ξþ π=2 and ξ ↦ −ξ.
These two operations generate the group C2h, which has
four irreducible representations: Ag, Bg, Au and Bu. Each
vibrational wave function, ψðξÞ, transforms as one of these.
To satisfy (4.20) the vibrational wave functions which
transform trivially under ξ ↦ ξþ π=2 (the Ag and Au wave
functions) must be combined with the spin states with
L3 ¼ 0; 4; 8;…; those which pick up a sign must be
combined with the spin states with L3 ¼ 2; 6; 10;….
Finally, the parity of the total wave function is given by
the combined action (4.21). Vibrational wave functions
which transform as Ag or Bg transform trivially under
ξ ↦ −ξ, while those which transform as Au or Bu pick up a
sign. Then isospin wave functions with even (odd) pro-
jection K3 transform trivially (pick up a sign) under the
operator exp ðiπK̂3Þ. So the combination of these trans-
formations give the overall parity P.
The vibrational wave functions satisfy Schrödinger’s

equation (3.9), which depends on the metric g. The results
in Fig. 2 show that gU23 is orders of magnitude smaller than
the other metric coefficients. Further, gU23 is the only term
which mixes the wave functions with different jK3j. Hence
it is physically reasonable, and theoretically simpler, to set
gU23 ¼ 0 which we do from now on. The D4 symmetry
ensures that

ψL3;K3
¼ ψL3;−K3

¼ ψ−L3;K3
¼ ψ−L3;−K3

: ð4:22Þ

The symmetry means that each allowed state depends on
only one vibrational wave function. The Schrödinger
equation determining the wave function is

−
ℏ2

2
ffiffiffiffiffiffigξξ

p d
dξ

�
1ffiffiffiffiffiffigξξ

p
dψðξÞL3;K3

dξ

�
þ VðξÞψL3;K3

ðξÞ

þ ℏ2

2
EL3;K3

ðξÞψL3;K3
ðξÞ ¼ EvψL3;K3

ðξÞ ð4:23Þ

where

EL3;K3
ðξÞ ¼ hI; K3jhJ; L3jððL̂; K̂Þ · ðgRÞ−1ðξÞ

· ðL̂; K̂ÞÞjI; K3ijJ; L3i; ð4:24Þ

and gR is the (iso)rotational, 6 × 6 submetric. The metric
contains no spin-isospin mixing (i.e. gR ¼ diagfgU; gVg),
so the spin and isospin parts decouple and can be
considered separately. We have that

hJ;L3jL̂ · ðgVÞ−1 · L̂jJ;L3i ¼
1

gV11
JðJþ 1Þþ

�
1

gV33
−

1

gV11

�
L2
3

ð4:25Þ

while

h1; 0jK̂ · ðgUÞ−1 · K̂j1; 0i ¼ 1

gU11
þ 1

gU22
ð4:26Þ

ðh1; 1j þ h1; 1jÞK̂ · ðgUÞ−1 · K̂ðj1; 1i þ j1; 1iÞ ¼ 1

gU11
þ 1

gU33
ð4:27Þ

ðh1; 1j − h1; 1jÞK̂ · ðgUÞ−1 · K̂ðj1; 1i − j1; 1iÞ ¼ 1

gU22
þ 1

gU33
:

ð4:28Þ

Finally, we can reinsert physical units and expand the ξ
metric term. Overall, the Schrödinger equation for each
vibrational wave function takes the form

fπ
4e

�
−
2e4

gξξ

�
d2

dξ2
−
∂ξgξξ
2gξξ

d
dξ

�
þVðξÞþ 2e4EL3;K3

ðξÞ
�
ψL3;K3

¼EvψL3;K3
: ð4:29Þ

E. Results

To solve the equation (4.29) numerically, we extend the
domain from ½0; π=4� to ½0; π�. On the extended domain, all
the vibrational wave functions are periodic and we dis-
cretize the Schrödinger equation as such, which becomes
an eigenvalue problem. The four lowest energy solutions
when J ¼ I ¼ 0 (and hence EL3;K3

¼ 0) are shown in
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Fig. 3. When spin or isospin is nonzero, the vibrational
wave functions receive a small correction. Each vibrational
wave function is labeled by an irrep, depending on how it
transforms under the vibrational group. We remind the
reader that wave functions which are invariant (pick up a
sign) under ξ ↦ ξþ π=2 are labeled by A (resp. B) and
those that are even (odd) under ξ ↦ −ξ are sublabeled by g
(resp. u). Note that the wave functions Ag and Bu have
similar energies as they are both concentrated at the
minimum energy configuration ξ ¼ π=4. The symmetry

of the other wave functions forces them to vanish at the
minimum, and so they have much higher energy.
To compare with experimental data, we must fix the

physical units of the theory. We choose units to fit the first
excited state, with ðI; JÞ ¼ ð0; 2Þ, to the first experimen-
tally observed state with the same quantum numbers.
Hence we take fπ ¼ 184 MeV and e ¼ 3.3. The allowed
states for each isospin I ¼ 0, 1 and spin J ¼ 0;…; 4, and
their energies, are displayed in Table I. For each spin/
isospin structure, there are two states: one with lower

TABLE I. List of wave functions which appear in Fig. 4. We list their isospin I, spin J, spin structure, parity P,
vibrational energy Ev, spin energy EI;J, total energy E and (if applicable) the energy of an experimentally observed
state which they model.

I J Wave function P Ev EL3;K3
E Experiment

0 0 ψAgj0; 0i þ 0.0 0.0 0.0 0.0
0 ψAuj0; 0i − 36.9 0.0 36.9
2 ψAgj2; 0i þ 0.0 3.1 3.1 3.03
2 ψAuj2; 0i − 36.9 3.1 40.0
4 ψAgj4; 0i þ 0.0 10.2 10.2 11.35
4 ψAuj4; 0i − 36.9 10.2 47.1
4 ψAgðj4; 4i þ j4;−4iÞ þ 0.0 37.4 37.4
4 ψAuðj4; 4i þ j4;−4iÞ − 36.9 37.2 74.1

1 0 ψAuðj1; 1i − j1;−1iÞj0; 0i þ 36.9 11.5 48.5
0 ψAgðj1; 1i − j1;−1iÞj0; 0i − 0.0 11.6 11.6
2 ψBgðj1; 1i þ j1;−1iÞðj2; 2i þ j2;−2iÞ − 35.1 17.6 52.7
2 ψBuðj1; 1i þ j1;−1iÞðj2; 2i þ j2;−2iÞ þ 0.1 17.8 17.9 16.6
2 ψBuj1; 0iðj2; 2i þ j2;−2iÞ − 0.1 18.8 18.9
2 ψBgj1; 0iðj2; 2i þ j2;−2iÞ þ 35.1 18.8 53.9
2 ψAuðj1; 1i − j1;−1iÞðj2; 0iÞ þ 36.9 14.6 51.5
2 ψAgðj1; 1i − j1;−1iÞðj2; 0iÞ − 0.0 14.7 14.7
3 ψBgðj1; 1i þ j1;−1iÞðj3; 2i − j3;−2iÞ − 35.1 20.7 55.8
3 ψBuðj1; 1i þ j1;−1iÞðj3; 2i − j3;−2iÞ þ 0.1 20.9 21.0 19.1
3 ψBuj1; 0iðj3; 2i − j3;−2iÞ − 0.1 21.9 22.0
3 ψBgj1; 0iðj3; 2i − j3;−2iÞ þ 35.1 21.8 56.9
4 ψAuðj1; 1i − j1;−1iÞj4; 0i þ 36.9 21.8 58.7
4 ψAgðj1; 1i − j1;−1iÞj4; 0i − 0.0 21.8 21.8
4 ψBgðj1; 1i þ j1;−1iÞðj4; 2i þ j4;−2iÞ − 35.1 24.8 59.9
4 ψBuðj1; 1i þ j1;−1iÞðj4; 2i þ j4;−2iÞ þ 0.1 25.0 25.1
4 ψBuj1; 0iðj4; 2i þ j4;−2iÞ − 0.1 26.0 26.1
4 ψBgj1; 0iðj4; 2i þ j4;−2iÞ þ 35.1 25.9 61.0
4 ψAuðj1; 1i − j1;−1iÞðj4; 4i þ j4;−4iÞ þ 36.9 48.7 85.7
4 ψAgðj1; 1i − j1;−1iÞðj4; 4i þ j4;−4iÞ − 0.0 49.0 49.0

FIG. 3. The four lowest energy vibrational wave functions, ordered left to right by energy, for J ¼ I ¼ 0 and fπ ¼ 184 MeV and
e ¼ 3.3.

JOSH CORK and CHRIS HALCROW PHYS. REV. D 110, 016027 (2024)

016027-10



energy and one with higher energy. The low energy states
arise from the Ag and Bu wave functions. These all have
rigid-rotor equivalent states in the Skyrme model [27]. The
states with Bg vibrational wave function are equivalent to
the rigid body states of the untwisted cube. These have a
high energy mostly because the untwisted cube has much
higher energy than twisted cube. Finally the Au wave
function produces states which cannot be described by a
rigid rotor, and these have very high energy.
There are three low-lying states of 8Be which form a

rotational band and are seen experimentally. Our model
also contains many states with very high energy (greater
than 25 MeV). As energy increases, so does the number of
experimentally observed states. Hence it is impossible to
match our states with any observed states. The most
important fact is that our model does not introduce new
states which are not consistent with experimental data.
The energy spectrum is plotted in Fig. 4. In a harmonic,

rigid rotor approximation each classical solution gives rise
to a set of quantum states called bands, whose energy
increases with JðJ þ 1Þ. Figure 4 clearly reveals that a
similar result occurs in our model but with the bands built
upon vibrational wave functions. In the I ¼ 0 plot, we see a
band in red, built upon the Ag wave function, and a higher
energy band in green built upon the Bg wave function. In
the I ¼ 1 plot there are three bands, built upon the lowest
energy Bu, Au and Bg wave functions.
Beryllium-8 is a difficult nucleus to study both theo-

retically and experimentally, as it is unstable to decay into
two α-particles. This fact alone motivates models which
describe the nucleus as two α-particles. The experimental
spectrum includes spin 0þ, 2þ, and 4þ states whose
energies are consistent with a quantized rigid rotor. This
provides further evidence of the basic model: two α-
particles in a central potential. This was proposed and
studied in the original α-particle paper from 1937 [28] and
the basic picture still holds in modern, more complicated,
frameworks such as the algebraic cluster model [29].
Our results at isospin 1 are more novel. Boron-8,

Beryllium-8 and Lithium-8 form an isospin 1 isotriplet.
At the level of energy spectra, the isospin symmetry implies
that our isospin 1 states should appear in all three nuclei
spectra. In particular, Boron-8 and Lithium-8 should have
approximately equal spectra. However, there are some

contradictions in experiments, where many more states
are seen for Boron-8 than Lithium-8 [30]. Spin 2þ; 1þ and
3þ states are seen in both, and low energy states with these
spins are predicted by the Skyrme model. However, we also
predict a low-lying spin 0− state which is not seen for either
nucleus. The shell model also predicts a state with spin-
parity 0− at around 5 MeV (Fig. 2 of [31]; “non-normal
parity” refers to negative parity in this paper). Both our
model and the shell model in [31] predict a low energy spin
4− state (our state with energy 21.8 MeV, 10.2 MeV above
the lowest energy isospin-1 state) which has not been seen
for either nucleus. The paper [30] reports the existence
of a spin 1− state in Boron-8. There are also 1� states in
Beryllium-8. However, our model does not contain any
states with this spin. To construct these we would need to
include a different vibration. A good candidate is the low-
frequency 2Eu vibration described in [32]; a similar state
leads to spin 1 states in a model of Carbon-12 [33].

F. Improving the instanton approximation

The instanton approximation provides the correct global
picture. That is: it produces a manifold of skyrmions with
the correct symmetries and topology. However, the energies
and metric components are not accurate when compared
with true solutions of the Skyrme model. These are known
for the twisted and untwisted skyrmions. For zero pion
mass m ¼ 0, the twisted solution the true energy is Et ¼
1037 while the instanton energy is Ei ¼ 1066. The metric
terms are even worse. For example, the true value of the
rotational moment of inertia is ðgV11Þt ¼ 4458.7 while the
instanton approximation gives ðgV11Þi ¼ 1.45; ðgV11Þt ¼
6461.6. Further, it is believed that a nonzero pion mass
is needed to accurately describe real physics [26]. The pion
mass is modeled by including the term

−
m2

πf2π
8ℏ3

trðId −UÞ ð4:30Þ

in the Lagrangian (2.1). The dimensionless Skyrme energy
(2.2) receives the contribution

m2trðId −UÞ; where m ¼ 2mπ

fπe
: ð4:31Þ

FIG. 4. The energy spectrum for our model of Beryllium-8.
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We include these terms and compute the twisted and
untwisted skyrmions for pion mass m ¼ 1. The energy
and independent moment of inertia terms are listed for the
instanton approximation, m ¼ 0 skyrmions and m ¼ 1
skyrmions in Table II.
However since the Skyrme properties are understood at

special points, we can use these to improve the approxi-
mation. One way to do this is to assume that the shape of
the potential and metric functions from the instanton
approximation is correct, but that the overall zero-point
energy and scale are wrong. So we can calibrate around the
true values and define a new shifted and scaled potential
energy

VtðξÞ ¼ 1

Við0Þ − Viðπ
4
Þ
��

Vtð0Þ − Vt

�
π

4

��
ViðξÞ

þ Vt

�
π

4

�
Við0Þ − Vtð0ÞVi

�
π

4

��
; ð4:32Þ

with analogous expressions for the metric terms; here
superscript t refers to the true values dictated by numerical
solutions, and superscript i are the instanton-generated
values.
We find the new potential and metric functions and solve

the Schrödinger equation using them. The updated spec-
trum is displayed in Fig. 5. We adjust the parameters
to, once again, fit our first excited state with the first
experimental state. Here, fπ ¼ 184 MeV and e ¼ 2.7.

The final spectrum is very similar to the previous one.
Hence the overall effect of rescaling was undone by
choosing new physical parameters. So here, the poor match
between numerically generated skyrmions by instanton-
generated skyrmions is entirely fixed by rescaling physical
parameters. This is reassuring for those who want to use
instantons to model skyrmion configuration spaces.
Another way to improve on the instanton approximation

is to use a string, or elastic band, method. Here, the
instanton-generated skyrmions are used as initial data
which parametrize an “elastic band” of configurations.
The entire band is then flowed to minimize its total energy
while keeping the configurations separated. This was done
recently for pointlike skyrmions [34], and the instanton
method provides a way to generalize this work to the full
Skyrme model.

V. PATHS WITH NO SYMMETRY

In the previous sections, we have been very careful to
consider the symmetries and use all available information
to construct our ADHM data. In this section, we will be
significantly less careful with symmetries but show that the
same methods as before can be used to generate interesting
paths in the Skyrme configuration space. These paths could
be used as initial data in an elastic band calculation [34].
We will follow the steps of Sec. III A, but ignore consid-
erations of gauge fixing and symmetries. That is, we will
ignore steps 3 and 4.
First, consider two paths in the charge 3 sector. We can

write the tetrahedral skyrmion using the ADHM data

L ¼ λð 1 i k ÞM ¼

0B@ Rk ciþ cj 0

ciþ cj 0 cj − ci

0 cj − ci −Rk

1CA;

ð5:1Þ

with R ¼ λ and c ¼ λ=
ffiffiffi
2

p
. In this gauge the data can be

interpreted as three 1-skyrmions with positions z ¼ R;
0;−R. We will construct two paths which permute the
three skyrmions, starting and ending at the tetrahedron. In
the first, we permute the first and third skyrmions, leaving
the central one stationary. One such possible test dataset is
given by

TABLE II. Energies and metric coefficients for the twisted and
untwisted states given by the instanton approximation (at pion
mass m ¼ 0), and the numerical solutions with pion mass m ¼ 0
and m ¼ 1.

Untwisted (ξ ¼ 0) E gU11 gU22 gU33 gV11 gV33

Instanton 1072.4 567.3 511.4 666.9 6514.8 3627.5
m ¼ 0 1042.2 560.1 515.7 689.0 6921.6 3288.6
m ¼ 1 1210.0 289.9 282.6 346.4 4384.9 1677.2

Twisted (ξ ¼ π
4
)

Instanton 1066.3 541.8 528.1 618.2 6461.6 3533.1
m ¼ 0ðD6dÞ 1037.2 589.4 510.8 578.0 4458.7 4625.0
m ¼ 1 1206.7 295.3 287.0 321.6 3825.2 1684.0

FIG. 5. The energy spectrum for the rescaled m ¼ 1 input.

JOSH CORK and CHRIS HALCROW PHYS. REV. D 110, 016027 (2024)

016027-12



LAðtÞ ¼ λ

�
cos

�
π

2
t

�
1þ sin

�
π

2
t

�
k i cos

�
π

2
t

�
k

þ sin

�
π

2
t

�
1

�
;

MAðtÞ ¼ RdiagfcosðπtÞkþ sinðπtÞi; 0;− cosðπtÞk
− sinðπtÞig: ð5:2Þ

We find ADHM data from this diagonal data by finding the
closest data as defined in (3.7). The skyrmions generated
from this data, with R ¼ λ ¼ 1, are shown in Fig. 6(A). The
initial and final states of the path are related by

LAð1Þ ¼ LAð0ÞΩ−1; MAð1Þ ¼ ΩMAð0ÞΩ−1;

Ω ¼

0B@ 0 0 1

0 1 0

1 0 0

1CA: ð5:3Þ

The compensating gauge transform Ω has determinant −1
and hence this path is noncontractible. If this path were
included in a quantization, the wave function would pick up
a sign under this transformation. Further, Morse theory
guarantees that a saddle point exists on the energy-mini-
mized path. The true saddle configuration can be found
using elastic band methods, as was done recently in a point-
particle Skyrme model [34]. The plots of the energy density
suggest that the saddle point will be the 3-torus.
A set of test data permuting all three skyrmions is

given by

LBðtÞ ¼ λ

�
cos

�
π

2
t

�
1þ sin

�
π

2
t

�
k cos

�
π

2
t

�
i

þ sin

�
π

2
t

�
1 cos

�
π

2
t

�
kþ sin

�
π

2
t

�
i

�
;

MBðtÞ ¼ Rdiag

�
cosðπtÞkþ sinðπtÞi; sin2

�
π

2
t

�
k

− sinð2πtÞi=2;− cos

�
π

2
t

�
k

�
: ð5:4Þ

The skyrmions generated from the closest data to the
diagonal data are plotted in Fig. 6(B). The compen-
sating gauge transformation relating the endpoints is 
0 1 0

0 0 1

1 0 0

!
, which has determinant 1, showing that this

loop is contractible.
Now consider a path which splits the cubic 4-skyrmion

into two 2-tori, rotates them both and then recombines
them into the cube. First consider the ADHM data with
cubic symmetry, in a gauge which emphasizes the 2-tori
structure [15],

L4 ¼ λð iL2 L2 Þ; M4 ¼
�
μ1mT2 þ Rk μ2m⊥

μ2mT⊥ μ1mT2 − Rk

�
L2 ¼ ð1 k Þ; mT2 ¼

�
i j

j −i

�
; m⊥ ¼

�
i −j
−j −i

�
ð5:5Þ

with μ1 ¼ λ
ffiffiffi
3

p
=2, μ2 ¼ λ=2 and R ¼ λ. We will take λ ¼ 1

for our simulations. Test data which looks like two clusters

FIG. 6. Families of instanton-generated skyrmions, made from the ADHM data closest to the test data defined in this section. All
test data are defined with respect to the same parameter t, which varies from 0 to 1 as the figure goes from left to right. A: test data
defined in (5.2). B: test data defined in (5.4). C: test data defined in (5.6). D: test data defined in (5.7).
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being split, rotated, and recombined is given by

LC ¼
�
iL2q1ðtÞ−1 L2q2ðtÞ−1

�
MC ¼ diagfμ1q1ðtÞmT2q1ðtÞ−1

þ RðtÞId2k; μ1q2ðtÞmT2q2ðtÞ−1 − RðtÞId2kg ð5:6Þ
where RðtÞ grows linearly from 1 to 2 as t grows from 0 to
1=3, remains constant for t∈ ½1=3; 2=3� and decreases from
2 to 1 as t increases from 2=3 to 1. The rotation functions q1
and q2 apply rotations around the x- and y-axes respectively
from 0 to 2π as t grows from 1=3 to 2=3 and are unity
otherwise. The skyrmions generated from the ADHM data
closest to (5.6) are shown in Fig. 6(C).
Finally, consider two 1-skyrmions orbiting a 4-skyrmion.

The test data is given by

LD ¼
�
L4 ð1þ kÞqðe2;πtÞ−1 qðe3;πtÞði− jÞqðe1;πtÞ−1

�
MD ¼ diagfM4;qðe2;πtÞðRkÞqðe2;πtÞ−1;

qðe1;πtÞð−RkÞqðe1;πtÞ−1g: ð5:7Þ

As t varies from 0 to 1, the two 1-skyrmions will change
places, and swap their orientations. Hence this is a loop, and
since the compensating gauge transformation has determi-
nant −1, we find that it is noncontractible. The skyrmions
generated from the ADHMdata closest to (5.7) are shown in
Fig. 6(D). In this case, the results were better if we only
included a subset of elements in the algorithm to calculate the
closest data. We only included the 4 × 4 block and the 2 × 2
block containing the two 1-skyrmions when calculating the
distance between the test data and the ADHM data.
In this section we have seen four examples of creating

paths in the Skyrme configuration space from simple test
data.We have shown that withoutmuch analytical effort, one
can create many interesting paths. The paths created are not
necessarily usable themselves; the configurations likely have
very high energy. Instead, they will help construct initial
paths for numerical schemes such as those used in [34].

VI. CONCLUSION

We have described a step-by-step procedure for how to
construct manifolds of instanton-generated skyrmions
using ADHM data. These manifolds may be used to study
the space of all Skyrme fields; most importantly, to semi-
classically quantize the model and study nuclei. Following
our own procedure, we generated a particular space which
described the nonlinear extension of the lowest vibrational

mode of the untwisted 8-skyrmion. Quantization on this
space produces a model of Beryllium-8. We applied a new
method to calculate the Finkelstein-Rubinstein constraints
on the space, and compared the results of our model to data.
It has been long-known that instantons provide an

excellent approximation of skyrmions, being the only
approximation that can describe skyrmions when they
are well separated and when they are coalesced into a
high-symmetry object. However, there have been few
applications in practice [4]. We hope this paper will serve
as motivation and a template for further work.
Each N-skyrmion has approximately 7N normal modes

[32]. Each of these has a nonlinear extension and should be
treatable in a similar way to the mode discussion in Sec. IV.
Hence there is a deep well of problems for future work. It
would be interesting to develop general methods to
describe normal modes in the instanton approximation
building on past work for N ¼ 3 [35], although there are
subtleties relating to the instanton position in the fourth,
“holographic” direction [12]. But the more difficult prob-
lem is to realize which modes should be treated carefully
and which are well-described harmonically. In this paper,
we studied a mode linking two low-energy solutions and
whose nonlinear extension is compact. Neither of these
facts are included in a harmonic approximation.
As well as our step-by-step method, we considered a

more careless ad-hoc approach for generating skyrmions
from instantons. Here, we used a numerical method to find
the ADHM data closest to some test data, without fixing
symmetries. This allowed us to quickly generate paths of
skyrmions. These could be used as initial data for elastic
band methods [34] or simply as a tool to get qualitative
insights about the skyrmion configuration space.

The data that support the findings of this article are
available upon reasonable request from the authors.
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APPENDIX: GENERAL D4 SYMMETRIC DATA

The most general ðL;MÞ that is consistent with the
symmetries (4.5) takes the form

L ¼ ð1sþ itþ kð−s −
ffiffiffi
2

p
uÞ þ jðtþ

ffiffiffi
2

p
vÞ; jð−

ffiffiffi
2

p
s − uÞ þ iuþ kð−

ffiffiffi
2

p
t − vÞ − 1v;

juþ ið
ffiffiffi
2

p
sþ uÞ þ 1ð−

ffiffiffi
2

p
t − vÞ þ kv; ks − jtþ 1ðsþ

ffiffiffi
2

p
uÞ þ iðtþ

ffiffiffi
2

p
vÞ;

kð−
ffiffiffi
2

p
s − uÞ þ 1uþ ivþ jð

ffiffiffi
2

p
tþ vÞ; is − 1tþ jð−s −

ffiffiffi
2

p
uÞ þ kð−t −

ffiffiffi
2

p
vÞ;

jsþ ktþ iðsþ
ffiffiffi
2

p
uÞ þ 1ð−t −

ffiffiffi
2

p
vÞ; kuþ 1ð

ffiffiffi
2

p
sþ uÞ − jvþ ið

ffiffiffi
2

p
tþ vÞÞ
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and

M ¼
�
M11 M12

Mt
12 M22

�
; ðA1Þ

with

M11 ¼

0BBB@
1aþ ibþ jcþ kd 1eþ if þ jgþ kh 1e − jf þ igþ kh iiþ jj

1eþ if þ jgþ kh 1aþ jb − icþ kd −jiþ ij 1eþ jf − igþ kh

1e − jf þ igþ kh −jiþ ij 1a − jbþ icþ kd −1eþ if þ jg − kh

iiþ jj 1eþ jf − igþ kh −1eþ if þ jg − kh 1a − ib − jcþ kd

1CCCA

M12 ¼

0BBB@
1kþ il − jl jmþ kn ioþ kp 1qþ irþ jr

joþ kp 1kþ ilþ jl −1qþ ir − jr −imþ kn

imþ kn 1qþ ir − jr 1k − il − jl jo − kp

−1qþ irþ jr −ioþ kp jm − kn 1k − ilþ jl

1CCCA

M22 ¼

0BBB@
1a − jb − ic − kd −1e − if þ jgþ kh −1eþ jf þ igþ kh jiþ ij

−1e − if þ jgþ kh 1aþ ib − jc − kd ii − jj −1e − jf − igþ kh

−1eþ jf þ igþ kh ii − jj 1a − ibþ jc − kd 1e − if þ jg − kh

jiþ ij −1e − jf − igþ kh 1e − if þ jg − kh 1aþ jbþ ic − kd
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