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The rates of the Xð3872Þ → π0π0χc1 and Xð3872Þ → πþπ−χc1 decays are estimated in the model of the
triangle loop diagrams with charmed D�D̄D and D̄�DD̄ mesons in the loops. There are the triangle
logarithmic singularities in the physical region of the Xð3872Þ → π0π0χc1 decay which manifest
themselves as narrow peaks in the π0χc1 mass spectrum near the D0D̄0 threshold. The model predicts
approximately the same branching fractions of the Xð3872Þ → π0π0χc1 and Xð3872Þ → πþπ−χc1 decays at
the level of about ð0.8–1.7Þ × 10−4. A distinct prediction of the model is the value of the ratio
R ¼ BðXð3872Þ → πþπ−χc1Þ=BðXð3872Þ → π0π0χc1Þ ≈ 1.1. It weakly depends on the Xð3872Þ reso-
nance parameters and indicates a significant violation of the isotopic symmetry according to which one
would expect R ¼ 2.
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I. INTRODUCTION

The modern studies of the first candidate for exotic
charmoniumlike states Xð3872Þ or χc1ð3872Þ [1] advance
in the line increasing the data accuracy and expanding the
nomenclature of it production and decay channels [1–13].
For example, the BESIII [2] and Belle [3] collaborations
obtained information about the rate for the isospin-violating
decay Xð3872Þ → π0χc1. Also the Belle [12] collaboration
and recently the BESIII [13] collaboration obtained upper
limits on the probability of the Xð3872Þ → πþπ−χc1 decay
which formally preserves G parity.
According to the Belle collaboration [12] and the Particle

Data Group [1] BðXð3872Þ → πþπ−χc1Þ < 7 × 10−3 at the
90% confidence level (CL). According to the BESIII
data [2,13]

R1 ¼
B½Xð3872Þ→ πþπ−χc1�
B½Xð3872Þ→ πþπ−J=ψ �< 0.18ð90%CLÞ ½13� and

R2 ¼
ΓðXð3872Þ→ πþπ−χc1Þ
ΓðXð3872Þ→ π0χc1Þ

< 0.2½2;13�: ð1Þ

The BESIII result [13] for R1 is consistent with the
measurement from the Belle collaboration [12]. An upper
limit on the ratio R2 turned out to be two orders of

magnitude smaller than the value of Γð23P1→πþπ−χc1Þ
Γð23P1→π0χc1Þ ≈ 25

expected under a pure charmonium 23P1 assumption for the
Xð3872Þ [14]. Therefore, Ref. [13] concluded that the
BESIII data favor the nonconventional charmonium nature
of the Xð3872Þ state. But this is not quite true. The point is
that the large theoretical value for R2 found in Ref. [14] is
entirely due to the tiny (≃0.06 keV) decay width of
23P1 → π0χc1, calculated in this work under the
assumption of the two-gluon production mechanism of
the π0, which is not a consequence of the hypothesis about
the nature of the Xð3872Þ. The mechanism of the isospin-
violating decay of 23P1 → ggχc1 → π0χc1 considered in
Ref. [14] is not a single one, and much less the leading
one, for the 23P1 charmonium state with a mass of
3872 MeV. The now known value for the decay width
ΓðXð3872Þ → π0χc1Þ ¼ ð0.04� 0.02Þ MeV [1,2] can be
explained, for example, by the mechanism of the 23P1 cc̄
Xð3872Þ state transition into π0χc1 via the intermediate
D�D̄D� and D̄�DD̄� mesonic loops, see Ref. [15] and
references herein. Thus, the results of the BESIII
collaboration [13] have yet to be compared with the
assumed possible variants for the nature of the Xð3872Þ
state.
In anticipation of future experiments on the decays

Xð3872Þ → π0π0χc1 and Xð3872Þ → πþπ−χc1, it is inter-
esting to estimate their probabilities and, accordingly,
the deviation from the relation BðXð3872Þ → π0π0χc1Þ ¼
1
2
BðXð3872Þ → πþπ−χc1Þ that takes place in the unbroken

isotopic symmetry. These estimates are the subject of
this work.
Earlier in the work [16], with the use a combination of

the heavy hadron chiral perturbation theory and effective
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field theory for the X(3872), the following results were
obtained:

�
B½Xð3872Þ → π0π0χc1�
B½Xð3872Þ → π0χc1�

�
LO

¼ 6.1 × 10−1;

�
B½Xð3872Þ → πþπ−χc1�
B½Xð3872Þ → π0χc1�

�
LO

≈Oð10−3Þ: ð2Þ

These estimates were performed with accounting the
contributions of the leading order (LO) diagrams for
the amplitudes of the transitions D0D̄�0 → π0χc1 and
D0D̄�0 → ππχc1 [16]. Subsequently, the value of the ratio

ðB½Xð3872Þ→π0π0χc1�
B½Xð3872Þ→π0χc1� ÞLO was adjusted towards its decrease by

two orders of magnitude as a result of recalculation of the
Xð3872Þ → π0π0χc1 amplitude [17]:

�
Br½Xð3872Þ → χc1π

0π0�
Br½Xð3872Þ → χc1π

0�
�

LO
¼ 2.9 × 10−3: ð3Þ

In the present work (as in Refs. [15,18–22]), we consider
the Xð3872Þ meson as a χc1ð2PÞ charmonium state, which
has the equal coupling constants with the D�0D̄0 and
D�þD− channels owing to the isotopic symmetry. Its
decay into D�D̄þ c:c: occurs [similarly to, for example,
the ψð3770Þ → DD̄ decay] by picking up of a light qq̄
pair from vacuum quark-antiquark fluctuations, cc̄ →
ðcq̄Þðqc̄Þ → D�D̄þ c:c: Undoubtedly, the main feature
of the Xð3872Þ resonance is that it is located directly at the
threshold of its main decay channel into D�0D̄0 þ c:c: →
D0D̄0π0 [1]. This circumstance ensures the smallness of its
width (it is ∼1 MeV) and clear violation of the isotopic
symmetry against a background of the kinematically closed
decay channel of the Xð3872Þ into D�þD− þ c:c: (the
thresholds of theD�0D̄0 andD�þD− channels are separated
by 8.23 MeV). Section II considers the kinematics of
the decays Xð3872Þ → π0π0χc1 and Xð3872Þ → πþπ−χc1.
Section III discusses hadronic loop diagrams, which we use
to estimate the branching fractions of these processes. The
estimates themselves are given in Sec. IV. Conclusions
from the analysis performed are presented in Sec. V.

II. KINEMATICS OF THE
Xð3872Þ → ππχ c1 DECAYS

Let us use the Particle Data Group data [1] and put a
mass of the Xð3872Þ state equal to mX ¼ 3871.65 MeV,
and also mχc1 ¼ 3510.67 MeV, mπþ ¼ 139.57039 MeV,
and mπ0 ¼ 134.9768 MeV. The invariant phase volumes
(PV) [23] for the three-body decays Xð3872Þ → π0π0χc1
and Xð3872Þ → πþπ−χc1 are equal to

PVðmX;mπ0 ; mπ0 ; mχc1Þ ¼ 0.0049718 GeV2;

PVðmX;mπþ ; mπ− ; mχc1Þ ¼ 0.00407956 GeV2; ð4Þ

respectively. For comparison, we point out that the invari-
ant phase volumes for the decays Xð3872Þ → D0D̄0π0

and Xð3872Þ → πþπ−J=ψ are equal to 0.0000686751
and 0.225852 GeV2, respectively. The energy release
in Xð3872Þ → π0π0χc1 is Tn ¼ mX − 2mπ0 −mχc1 ¼
91.0264 MeV, and that in Xð3872Þ → πþπ−χc1 Tc ¼
mX − 2mπ� −mχc1 ¼ 81.8392 MeV. The invariant mass
of the π0χc1 system, mπ0χc1

, varies from mχc1 þmπ0 to
mX −mπ0 , i.e., in the near-threshold region with a width of
91.0264 MeV, and the invariant mass of the π�χc1 system,
mπ�χc1 , varies from mχc1 þmπ� to mX −mπ∓ , i.e., in that
with a width of 81.8392 MeV. It is quite natural to believe
that in these regions the production amplitudes of the π0χc1
and π�χc1 pairs will be dominated by contributions from
the corresponding lower partial waves.
Let us denote the four-momenta of the particles in the

decay Xð3872Þ → ππχc1 as pX ¼ p1, pχc1 ¼ p2, pπ1 ¼ p3,
pπ2 ¼ p4, where π1 ¼ π01 or π

þ and π2 ¼ π02 or π
−, and the

polarization four-vectors of the Xð3872Þ and χc1 mesons
as εX ¼ ε1 and εχc1 ¼ ε2. The matrix element M of the
decay Xð3872Þ → ππχc1 is described in general case by
five independent invariant amplitudes bi¼1;…;5 and it can be
written as

M ¼ εμ1ε
ν�
2 Mμν

¼ εμ1ε
ν�
2 ðgμνb1 þ p2μp1νb2 þ ΔμΔνb3

þ Δμp1νb4 þ p2μΔνb5Þ; ð5Þ

where Δ¼p3−p4; bi ¼ biðm2
X; s; t; uÞ, s ¼ ðp2 þ p3Þ2 ¼

ðp1 − p4Þ2, t¼ðp2þp4Þ2¼ðp1−p3Þ2, u ¼ ðp3 þ p4Þ2 ¼
ðp1 − p2Þ2, and sþ tþ u ¼ m2

X þm2
χc1 þ 2m2

π. Here we
indicated the dependence of the invariant amplitudes from
m2

X because in what follows we will need to replace m2
X in

Mwith the variable quantity S1 meaning the invariant mass
squared of the virtual Xð3872Þ state.
The ππ system in the Xð3872Þ → ππχc1 decay has the

positive C parity. As a consequence, only even orbital
moments are allowed in this system and states with the
isospin I ¼ 1 are forbidden. It is clear that the matrix
element M must be an even function of Δ, i.e., should not
change with the permutation of p3 and p4, and the invariant
amplitudes must possess the following crossing properties:
b1;2;3ðm2

X;s;t;uÞ¼b1;2;3ðm2
X;t;s;uÞ and b4;5ðm2

X; s; t; uÞ ¼
−b4;5ðm2

X; t; s; uÞ. In the following, we will denote the
matrix elements for the decays Xð3872Þ → π0π0χc1 and
Xð3872Þ → πþπ−χc1 as Mn and Mc, respectively.
For the rates of the decays Xð3872Þ → ππχc1, the exact

isotopic symmetry predicts the following relation:
BðXð3872Þ→π0π0χc1Þ¼ 1

2
BðXð3872Þ→πþπ−χc1Þ. As will

be shown below, it can be significantly broken in the real
situation.
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III. HADRONIC LOOP DIAGRAMS
FOR Xð3872Þ → ππχ c1

Currently, the mechanism of triangle loop diagrams with
charmed mesons in the loops is considered as a main one of
the two-body decay of Xð3872Þ → π0χc1, see in this regard
Refs. [14–17,24–27] and references herein. We assume that
in the three-body decay Xð3872Þ → ππχc1 the final πχc1
system is produced mainly in a lower partial wave. This is
quite natural in the region near the πχc1 threshold. Then,
the decay of Xð3872Þ → ππχc1 can be considered as a
quasi-two-body process and applied to its description
the mechanism of the triangle loop diagrams. Examples
of such diagrams are shown in Figs. 1 and 2. These
diagrams (not all) contain so-called triangle logarithmic
singularities [28–33]. The literature is rich in examples
showing that such singularities lead to various enhancements
in two-body and three-body mass spectra in the decays of
resonances, see, for example, Refs. [21,30,32,34–42] and
references herein.
The logarithmic singularities in Figs. 1(a) and 1(b) lie along

the solid curves shown in Figs. 3(a) and 3(b), respectively. The
dependences of S1 on s given by these curves follow from the
equation 2x1x2x3 þ x21 þ x22 þ x23 − 1 ¼ 0 [29,31,32,40],
where x1¼ðS1−m2

1−m2
2Þ=ð2m1m2Þ, x2 ¼ ðs −m2

2 −m2
3Þ=

ð2m2m3Þ, and x3 ¼ ðm2
π −m2

1 −m2
3Þ=ð2m2

1m
2
3Þ, in the sol-

utionofwhich it is necessary to substitute specific values of the
masses (m1,m2,m3) of particles in the loops [see notations in
Fig. 1(a)] and themass of the outgoing πmeson.At singularity
points, all three particles in the loops simultaneously are on the

mass shell [28,29,32,33,40]. Of course, this requires that at
least one of the particles corresponding to the internal lines of
the diagram is unstable [32,33,40]. Horizontal and vertical
dotted lines in Fig. 3(a) mark the thresholds for the

ffiffiffiffiffi
S1

p
andffiffiffi

s
p

variables (i.e., the values of
ffiffiffiffiffi
S1

p ¼ mD�0 þmD0 ¼
3.87169 GeV and

ffiffiffi
s

p ¼ 2mD0 ¼ 3.72968 GeV) above
which the matrix element Mn ¼ MnðS1; s; t; uÞ (see
Sec. II) corresponding to Fig. 1(a) has the imaginary
parts on the S1 and s (or t) variables. Intervals contain-
ing the curve of singularities, m1þm2<

ffiffiffiffiffi
S1

p
<ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1þm2

2þm2m3þm2ðm2
1−m2

πÞ=m3

p
andm2þm3<

ffiffiffi
s

p
<ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
2þm2

3þm1m2þm2ðm2
3−m2

πÞ=m1

p
, are bounded by the

points, where this curve touches the above lines (see,
for example, Ref. [40]). The horizontal dashed line in
Fig. 3(a) marks the nominal mass of the Xð3872Þ state
mX ¼ 3.87165 GeV [1]. Since the width of the Xð3872Þ,
ΓX, is not less than 1MeV [1,6,8,11], and the available values
of

ffiffiffi
s

p
lie in the range from mχ1c þmπ0 ¼ 3.64565 GeV to

mX −mπ0 ¼ 3.73667 GeV, then the locus of logarithmic
singularities of triangle in Fig. 1(a) completely falls into the
physical region of the Xð3872Þ → π0π0χc1 decay.
Let us move on to Fig. 3(b) associated with

Fig. 1(b). The threshold values of
ffiffiffiffiffi
S1

p ¼ mD�þ þmD− ¼
3.87992 GeV and

ffiffiffi
s

p ¼ 2mD� ¼ 3.73932 GeVmarked by
horizontal and vertical dotted lines lie 8.23 and 9.64 MeV
above the thresholds of the D�0D̄0 and D0D̄0 channels,
respectively. It is clear that the triangle singularities of the
diagrams with charged charmed D� and D mesons in
the loops are located outside the physical region of the
Xð3872Þ → π0π0χc1 decay. However, the contribution of
Fig. 1(b), as will be shown in the next section, turns out to
be important and must be taken into account.
Let us now consider the diagrams in Fig. 2 for the decay

Xð3872Þ → πþπ−χc1. In Fig. 2(a), there are no triangle
singularities, since the decay channel of the D�0 into π−Dþ
is closed (mD�0 ¼2.00685GeV,mDþ þmπ− ¼2.00923GeV,
and ΓD�0 ≃ 55.6 keV [21]). Figure 2(b) have triangle(a) (b)

FIG. 1. Eight triangle loop diagrams for the transition
Xð3872Þ → π0π0χc1. (a), as well as (b), involves four diagrams
taking into account two charge-conjugate states in the loops
(D�D̄D and D̄�DD̄) and the permutation of identical π0 mesons.

(a) (b)

FIG. 2. Four triangle loop diagrams for the transition
Xð3872Þ → πþπ−χc1. (a), as well as (b), involves two diagrams
with charge-conjugate states in the loops (D�D̄D and D̄�DD̄).
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G
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(a)

3.7393 3.73935 3.7394 3.73945 3.7395
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3.87995
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3.88015
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1
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(b)

FIG. 3. Solid curves in (a) and (b) show loci of logarithmic
singularities in the ð ffiffiffi

s
p

;
ffiffiffiffiffi
S1

p Þ plain for (a) and (b) in Fig. 1,
respectively. The singularities are located in (a) in the intervals
3.87169GeV<

ffiffiffiffiffi
S1

p
<3.87194GeV and 3.72968 GeV <

ffiffiffi
s

p
<

3.72992 GeV, and in (b) in the intervals 3.87992 GeV <
ffiffiffiffiffi
S1

p
<

3.88012 GeV and 3.73932 GeV <
ffiffiffi
s

p
< 3.73951 GeV.
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singularities. But they lie in the region of 3.87992 GeV <ffiffiffiffiffi
S1

p
< 3.88014 GeV and 3.7345GeV<

ffiffiffi
s

p
<3.73471GeV

which on the
ffiffiffiffiffi
S1

p
variable starts 8.27 MeV above the

nominal mass of the Xð3872Þ and on the
ffiffiffi
s

p
variable

2.42 MeV to the right of the maximum permissible value offfiffiffi
s

p ¼ mX −mπ− ¼ 3.73208 GeV in this decay. The valuesffiffiffiffiffi
S1

p ¼ 3.87992 GeV and
ffiffiffi
s

p ¼ 3.7345 GeV indicate the
thresholds of the D�þD− and D0D− channels, respectively.
Thus, both of these channels are closed in the Xð3872Þ →
πþπ−χc1 decay and the amplitude for Fig. 2(b) turns out to
be purely real (if neglect by the tiny value of ΓD�þ in
the D�þ meson propagator). How the contributions of
Figs. 2(a) and 2(b) correlate to each other, we will find out
in the next section.

IV. ESTIMATES OF BðXð3872Þ → ππχ c1Þ
To estimateBðXð3872Þ → ππχc1Þwe restrict ourselves to

the contributions of the diagrams presented in Figs. 1 and 2.
First of all, consider the amplitude of the subprocessDD̄ →
πχc1which is a component part of thematrix elementM.We
will estimate it on the mass shell near theDD̄ threshold and
then use the found value as an effective “coupling constant”
characterizing the DD̄πχc1 vertex in the triangular loops.
The isotopic invariance of strong interactions and the
P-parity conservation allow us to write down a number of
of useful relations for the reaction DD̄ → πχc1:

If¼1¼ Ii; Gf¼−1¼Gi¼ð−1ÞIiþli ; li¼0;2;…;

J¼ li; Pi¼ð−1Þli ¼Pf¼−ð−1Þlf ; lf¼1;3;…; ð6Þ
where the indices i and f indicate the belonging of
quantum numbers to the initial DD̄ and final πχc1 states,
respectively; I,G, l, J, andP are the isospin,G parity, orbital
moment, total moment, and P parity, respectively. For
li ¼ 0 (J ¼ 0) there is only one possible value of lf ¼ 1,
and for each li ≥ 2 two values lf ¼ li � 1 are allowed. The
partial amplitude of the process DD̄ → πχc1 with li ¼ 0
(J ¼ 0) and lf ¼ 1 experiences a minimal suppression
caused by the threshold factors near the threshold. This
amplitude has the form

fJ¼0
DD̄πχc1

¼ gDD̄πχc1ðp⃗χc1ðsÞ; ξ⃗�Þ; ð7Þ

where p⃗χc1ðsÞ is the momentum of the χc1 meson in theDD̄

center-of-mass system, and ξ⃗ is the polarization vector of
the χc1 in its rest frame (see Ref. [43]); jp⃗χc1ðsÞj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 2sðm2

χc1 þm2
πÞ þ ðm2

χc1 −m2
πÞ2

q
=ð2 ffiffiffi

s
p Þ. It is quite

natural to assume that the factor gDD̄πχc1 near the threshold
is a smooth function of

ffiffiffi
s

p
. We will calculate it forffiffiffi

s
p ¼ 2mD assuming that the reaction DD̄ → πχc1 (near
the threshold) proceeds via D� exchanges in its t and u
channels. In this simple model we have

gDD̄πχc1 ¼ gD�Dπgχc1D�D̄
4mD

mχc1

3þm2
D=m

2
D�

2m2
D þ 2m2

D� −m2
χc1

¼ gD�Dπgχc1D�D̄ × ð3.05696 GeV−2Þ; ð8Þ
where gD�Dπ and gχc1D�D̄ are the coupling constants in the
interaction vertices VD�Dπ ¼ gD�Dπðε�D� ; pπ þ pDÞ and
Vχc1D�D̄ ¼ gχc1D�D̄ðεD� ; ε�χc1Þ. When obtaining Eq. (8), we
neglected the mass squared of the π meson, and also put
mD�þ ¼ mD�0 and mDþ ¼ mD0 . At the DD̄ threshold, the
virtuality of the exchanged D� mesons (i.e., m2

D� − q2,
where q is the four-momentum of the D�) is approximately
1.343 GeV2. In order to take into account to some
extent the internal structure and the off-mass-shell effect
for theD� meson, it is necessary to introduce the form factor
into the each vertices of the D� exchange: F ðq2; m2

D� Þ ¼
Λ2−m2

D�
Λ2−q2 [15,44–47]. Herewe orient on the typical value of the
parameter α ≈ 2 [15] associated with the Λ by the relation
Λ ¼ mD� þ αΛQCD [47], where ΛQCD ¼ 220 MeV. This
form factor results in decreasing the effective coupling
constant gDD̄πχc1 by approximately 2.84 times in comparison
with the estimate in Eq. (8); g2DD̄πχc1

decreases by a factor of

8.06 accordingly. Next we will use for gDD̄πχc1 the value of
gD�Dπgχc1D�D̄ × ð1.07647 GeV−2Þ obtained taking into
account the form factor. From the isotopic symmetry for
the coupling constants gD�Dπ and the data on the decays
D�þ→ðDπÞþ [1], it follows that gD�0D0π0 ¼ gD�0Dþπ−=

ffiffiffi
2

p ¼
gD�þD0πþ=

ffiffiffi
2

p ¼ −gD�þDþπ0 ≈ 5.93 [21]. The constant
gχc1D�D̄ cannot be measured directly, but its value is
predicted theoretically within the framework of the effec-
tive theory of heavy quarks [24,27,45–48]: gχc1D�D̄ ¼
2

ffiffiffi
2

p
g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimDmD�mχc1
p ¼ ð−21.45� 1.68Þ GeV [21], where

g1 is an universal constant. As a result, we get gD0D̄0π0χc1
¼

−gDþD−π0χc1
¼gDþD̄0πþχc1=

ffiffiffi
2

p ¼gD0D−π−χc1
=

ffiffiffi
2

p
≈137GeV−1

and will use this value as a guide.
The above structure of the DD̄πχc1 vertex allows us to

write the matrix element MnðS1; s; t; uÞ for the contribu-
tion of the eight diagrams in Fig. 1 as follows:

MnðS1; s; t; uÞ ¼ 2
ḡ

16π
εμX½Iμðp1; p4Þðp⃗χc1ðsÞ; ξ⃗�Þ

þ Iμðp1; p3Þðp⃗χc1ðtÞ; ξ⃗�Þ
þ Ĩμðp1; p4Þðp⃗χc1ðsÞ; ξ⃗�Þ
þ Ĩμðp1; p3Þðp⃗χc1ðtÞ; ξ⃗�Þ�; ð9Þ

where the common factor 2 arises owing to the equality of
the contributions from the loops with the charge conjugated
intermediate states, ḡ ¼ gXgD�0D0π0gD0D̄0π0χc1

, gX is the
coupling constant of the Xð3872Þ to D�0D̄0 in the vertex
VXD�0D̄0 ¼ gXðεX; ε�D�0Þ (the values of gX will be specified
below); the amplitude Iμðp1; p4Þ represents the following
vector integral
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Iμðp1; p4Þ ¼
i
π3

Z ð−gμν þ kμkν
m2

D�0
Þð2p4ν − kνÞd4k

ðk2 −m2
D�0 þ iϵÞððp1 − kÞ2 −m2

D̄0 þ iϵÞððk − p4Þ2 −m2
D0 þ iϵÞ : ð10Þ

The amplitude Iμðp1; p3Þ, Ĩμðp1; p4Þ, and Ĩμðp1; p3Þ have a
similar form. In so doing, Iμðp1; p4Þ and Iμðp1; p3Þ
correspond to Fig. 1(a) which differ in the permutation
of identical π0 mesons, and Ĩμðp1; p4Þ and Ĩμðp1; p3Þ
correspond to similar Fig. 1(b). In Ref. [21] it was shown
that the divergent part of a vector integral of type (10) is
proportional to p1μ [i.e., the four-momentum of the

Xð3872Þ resonance] and it does not contribute to the
matrix element MnðS1; s; t; uÞ because ðεX; p1Þ ¼ 0. It
was also shown in Ref. [21] that its convergent part,
Iconvμ ðp1; p4Þ, proportional to p4μ is dominated by the
amplitude of the scalar triangle diagram, which we
denote here as IðS1; sÞ, i.e., Iconvμ ðp1; p4Þ ¼ −2p4μIðS1; sÞ,
where

IðS1; sÞ ¼
i
π3

Z
d4k

ðk2 −m2
D�0 þ iϵÞððp1 − kÞ2 −m2

D̄0 þ iϵÞððk − p4Þ2 −m2
D0 þ iϵÞ : ð11Þ

As a result, Eq. (9) takes the form

MnðS1; s; t; uÞ ¼ −4
ḡ

16π
fðεX; p4Þ½IðS1; sÞ þ ĨðS1; sÞ�ðp⃗χc1ðsÞ; ξ⃗�Þ þ ðεX; p3Þ½IðS1; tÞ þ ĨðS1; tÞ�ðp⃗χc1ðtÞ; ξ⃗�Þg: ð12Þ

About the contributions of the scalar amplitudes IðS1; sÞ
and ĨðS1; sÞ one can speak as of the s contributions from
Figs. 1(a) and 1(b), respectively, and about the contribu-
tions of the scalar amplitudes IðS1; tÞ and ĨðS1; tÞ one can
speak as of the t contributions from Figs. 1(a) and 1(b) with
permutation of identical π0 mesons, respectively.
To numerically calculate scalar triangle amplitudes, we

use explicit formulas obtained in Refs. [24,40] within the
framework of nonrelativistic formalism. We convinced
that the results of such a calculation are in excellent
agreement with what is given for these amplitudes the
exact expressions through dilogarithms [49]. We take
into account the finite width of the D�0 meson by replacing
m2

D�0 in its propagator with m2
D�0−imD�0ΓD�0 and put

ΓD�0 ¼ 55.6 keV [21]. This leads to a significant smooth-
ing and reduction in the contributions of triangle logarith-
mic singularities to MnðS1; s; t; uÞ as compared with the
hypothetical case corresponding to ΓD�0 ¼ 0. The finite
width of the D�þ meson, ΓD�þ ¼ 83.6 keV, is taken into
account in a similar way.
The differential probability of the Xð3872Þ → π0π0χc1

decay which determines the distribution of events in the
Dalitz plot has the form [1]:

d2ΓðXð3872Þ → π0π0χc1; S1; s; t; uÞ
dtds

¼ 1

3ð2πÞ332S3=21

X
λλ0

jMnðS1; s; t; uÞj2; ð13Þ

where summation over λ and λ0 means summation over
polarizations of the Xð3872Þ and χc1 mesons, respectively.

We write the mass spectrum of the π0χc1 system over
the

ffiffiffi
s

p
variable as

dΓðXð3872Þ → π0π0χc1;S1; sÞ
d

ffiffiffi
s

p

¼ 2
ffiffiffi
s

p ZtþðS1;sÞ

t−ðS1;sÞ

d2ΓðXð3872Þ → π0π0χc1; S1; s; t; uÞ
dtds

dt;

ð14Þ

where t�ðS1; sÞ denote the boundaries of the physical
region for the t variable for fixed values of s and S1 [1].
Figure 4(a) shows examples of the π0χc1 unnormalized
mass spectra near the D0D̄0 threshold for several values offfiffiffiffiffi
S1

p
. These examples illustrate the resonantlike manifes-

tations of the triangle singularities present in the amplitude
IðS1; sÞ. Figure 4(b) shows [in the same units as in
Fig. 4(a)] all significant components of the π0χc1 mass
spectrum at

ffiffiffiffiffi
S1

p ¼ 3.87172 GeV throughout the acces-
sible region of

ffiffiffi
s

p
. Curves 1, 2, and 3 correspond to the

contributions of the amplitudes IðS1; sÞ [Fig. 1(a)], ĨðS1; sÞ
[Fig. 1(b)], and their sum IðS1; sÞ þ ĨðS1; sÞ, respectively.
Curve 4 corresponds to the contribution of the amplitude
IðS1; tÞ þ ĨðS1; tÞ [from the sum of Figs. 1(a) and 1(b) with
the transposed identical π0 mesons]. The contributions of
the amplitudes IðS1; tÞ and ĨðS1; tÞ are not shown sepa-
rately so as not to clutter the figure. Curve 6 corresponds to
the contribution of interference between the amplitudes
IðS1; sÞ þ ĨðS1; sÞ and IðS1; tÞ þ ĨðS1; tÞ which differ by
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permutation of identical π0 mesons. It can be seen that
the interference is small for all values of

ffiffiffi
s

p
and can

be neglected. The total contribution to the π0χc1 mass
spectrum from the amplitudes ðIðS1; sÞ þ ĨðS1; sÞÞ and

ðIðS1; tÞ þ ĨðS1; tÞÞ in neglecting their interference is
shown in Fig. 4(b) by curve 5. If the peak in the π0χc1
mass spectrum over the

ffiffiffi
s

p
variable in the vicinity offfiffiffi

s
p

≈ 2mD0 ≈ 3.72968 GeV is due to triangle singularities
in the amplitude IðS1; sÞ, then the peak in the region
3.65 GeV <

ffiffiffi
s

p
< 3.6575 GeV is a manifestation in the

distribution over
ffiffiffi
s

p
of the triangle singularities in the

amplitude IðS1; tÞ.
The width of the Xð3872Þ → π0π0χc1 decay in the

general case is determined by the expression

ΓðXð3872Þ → π0π0χc1; S1Þ ¼ 1

2

Zð ffiffiffiffi
S1

p
−mπ0 Þ2

ðmχc1
þmπ0 Þ2

ds
ZtþðS1;sÞ

t−ðS1;sÞ

d2ΓðXð3872Þ → π0π0χc1; S1; s; t; uÞ
dtds

dt; ð15Þ

where the factor 1=2 takes into account the identity
of π0 mesons. In Fig. 5(a), we presented the result of
the calculation of ΓðXð3872Þ → π0π0χc1; S1Þ using the
coupling constant g2X=ð16πÞ ¼ 0.25 GeV2 as a guide
(see Refs. [15,18,21]). The maximum of the width
ΓðXð3872Þ → π0π0χc1;S1Þ near the D�0D0 threshold is

caused by the presence in the amplitude of the triangle
singularities.
To estimate BðXð3872Þ → π0π0χc1Þ it is necessary

to weigh the energy dependent width ΓðXð3872Þ→
π0π0χc1;S1Þ with the resonance distribution 2S1=
ðπjDXðS1Þj2Þ:

BðXð3872Þ → π0π0χc1Þ ¼
Z∞

mχc1
þ2mπ0

2
ffiffiffiffiffi
S1

p
π

ffiffiffiffiffi
S1

p
ΓðXð3872Þ → π0π0χc1; S1Þ

jDXðS1Þj2
d

ffiffiffiffiffi
S1

p
; ð16Þ

where DXðS1Þ is the inverse propagator of the Xð3872Þ
which we take from Refs. [18,21]. Note that the resonance
distribution 2S1=ðπjDXðS1Þj2Þ has good analytical and
unitary properties [18,21]. Figure 5(b) shows an example
of this distribution calculated at mX ¼ 3871.65 MeV,
g2X=ð16πÞ ¼ 0.25 GeV2, and Γnon ¼ 1 MeV, where Γnon
approximately describes the width of the Xð3872Þ decay

into all non-ðD�D̄þ D̄�DÞ channels. Of course, the main
contribution to the integral (16) comes from the narrow
region of the resonance peak. The result of integration
over the region 3.869 GeV <

ffiffiffiffiffi
S1

p
< 3.875 GeV for the

above parameter values gives BðXð3872Þ → π0π0χc1Þ≈
1.24 × 10−4. Table I shows the estimates of BðXð3872Þ →
π0π0χc1Þ for different values of g2X=ð16πÞ and Γnon, which
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FIG. 4. (a) The solid curves a, b, and c show the examples of the
π0χc1 mass spectrum dΓðXð3872Þ → π0π0χc1; S1; sÞ=d

ffiffiffi
s

p
in the

region of the D0D̄0 threshold calculated using Eq. (14) atffiffiffiffiffi
S1

p ¼ 3.87165, 3.87172, and 3.87177 GeV, respectively. The
the dotted vertical lines mark the

ffiffiffi
s

p
values between which the

amplitude of the Xð3872Þ → ðD�0D̄0 þ D̄�0D0Þ → π0π0χc1 de-
cay contains the logarithmic singularities which manifest them-
selves in the π0χc1 mass spectrum as narrow peaks. (b) The
components of the π0χc1 mass spectrum at

ffiffiffiffiffi
S1

p ¼ 3.87172 GeV
throughout the accessible region of

ffiffiffi
s

p
; description of the curves

see in the text.
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FIG. 5. (a) The solid curve shows the width ΓðXð3872Þ →
π0π0χc1; S1Þ calculated using Eq. (15). The constructed example
corresponds to g2X=ð16πÞ ¼ 0.25 GeV2. (b) An example of the
resonance distribution 2S1=ðπjDXðS1Þj2Þ for the Xð3872Þ at
g2X=ð16πÞ ¼ 0.25 GeV2 and Γnon ¼ 1 MeV [21].
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we vary in a reasonable range taking into account the
current (far from final) information about the Xð3872Þ
obtained from the analyses of its main decay channels in
Refs. [6,8,11,15,18,21].
Let us now consider the diagrams in Fig. 2 describing the

decay of Xð3872Þ → πþπ−χc1. Although there are only four
of such diagrams, and not eight as in Fig. 1, the factor of 2 in
Eq. (9) is preserved also for the amplitude McðS1; s; t; uÞ
owing to the isotopic factors in the D�Dπ and DD̄πχc1
vertices, which are indicated above in the paragraph after
Eq. (8). Thus, with taking into account the replacement of
the particle masses in the loops and the masses of the final
pions, as well as the necessary changes in designations and
exclusion of the factor 1=2 from Eq. (15) when determining
the width of the Xð3872Þ → πþπ−χc1 decay, we can use
Eqs. (9)–(16) to calculate the π�χc1 mass spectra,
ΓðXð3872Þ→πþπ−χc1;S1Þ, and BðXð3872Þ → πþπ−χc1Þ.
Figure 6(a) shows (in the same units as in Fig. 4) the main
components of the πþχc1 mass spectrum in the Xð3872Þ →
πþπ−χc1 decay at

ffiffiffiffiffi
S1

p ¼ 3.87172 GeV throughout the
accessible region of

ffiffiffi
s

p
. The curves here have the same

meaning as the curves with the corresponding numbers in
Fig. 4(b), which have been described in detail above in the
text. In this case, there are no triangle singularities in the
physical region of the decay and the π�χc1 mass spectra are
smooth functions of

ffiffiffi
s

p
. The energy dependent decay width

ΓðXð3872Þ → πþπ−χc1; S1Þ [see the example shown in
Fig. 6(b)] has a characteristic break at the threshold of the
D�0D̄0 channel.
The estimates for BðXð3872Þ → πþπ−χc1Þ are given

in Table I. We see that the model under discussion
predicts the close values for BðXð3872Þ → πþπ−χc1Þ and
BðXð3872Þ → π0π0χc1Þ the absolute values of which turn
out to be at the level of about 10−4. Their ratio averaged
over the variants in Table I, R¼BðXð3872Þ→πþπ−χc1Þ=
BðXð3872Þ→π0π0χc1Þ≈1.1, indicates a noticeable

violation of isotopic symmetry, according to which one
would expect R ¼ 2.
The present calculation assumes that the Xð3872Þ is a

pure charmonium, and this is reflected in the equal
couplings of Xð3872Þ → D�0D̄0 and D�þD−. In a molecu-
lar interpretation of the Xð3872Þ, Xð3872Þ couples differ-
ently with D�0D̄0 and D�þD−. For example, in Ref. [16],
Xð3872Þ → D�0D̄0 is considered while Xð3872Þ→D�þD−

neglected. In this regard, we present in Table II the values of
the branching fractions corresponding only to Figs. 1(a)
and 2(a). In a sense, this corresponds to the limiting variant
of the molecular model when the Xð3872Þ is associated
only with the D�0D̄0 þ c:c: channel.

V. CONCLUSION

We have obtained the tentative estimates for
BðXð3872Þ → π0π0χc1Þ and BðXð3872Þ → πþπ−χc1Þ in
the model of the triangle loop diagrams with charmed
D�D̄D and D̄�DD̄ mesons in the loops. The decay rates
are predicted at the level of 10−4 at the reasonable values of
the coupling constants. We would like to draw a special
attention to the fact that in this model an important con-
tribution to BðXð3872Þ → ππχc1Þ is given by the (“heavy”)
charged D�þD− þ c:c: intermediate states, certainly,
together with the (“light”) neutralD�0D̄0 þ c:c: intermediate
states. This is obvious from Figs. 4(b) and 6(a).
Within the framework of the considered model, the

decay rates Xð3872Þ → π0π0χc1 and Xð3872Þ→πþπ−χc1
are proportional to the same product of coupling constants.
The existing uncertainties in these constants, as well as
the remaining (so far) uncertainties in such characteristics
of the Xð3872Þ resonance as its mass mX and width

TABLE I. BðXð3872Þ → ππχc1Þ in units of 10−4.

g2X=ð16πÞ (in GeV2) 0.25 0.5 0.671 0.25 0.5 0.671

Γnon 1 MeV 2 MeV

BðXð3872Þ → π0π0χc1Þ 1.24 1.63 1.61 0.77 0.88 0.90
BðXð3872Þ→πþπ−χc1Þ 1.51 1.77 1.73 0.86 0.97 0.99

R ¼ BðXð3872Þ→πþπ−χc1Þ
BðXð3872Þ→π0π0χc1Þ

1.22 1.09 1.07 1.12 1.10 1.10

TABLE II. BðXð3872Þ → ππχc1Þ (in units of 10−4) only for
Figs. 1(a) and 2(a).

g2X=ð16πÞ (in GeV2) 0.25 0.5 0.671 0.25 0.5 0.671

Γnon 1 MeV 2 MeV

BðXð3872Þ → π0π0χc1Þ 0.662 0.741 0.731 0.338 0.393 0.404
BðXð3872Þ→πþπ−χc1Þ 0.526 0.614 0.602 0.296 0.337 0.342

R ¼ BðXð3872Þ→πþπ−χc1Þ
BðXð3872Þ→π0π0χc1Þ

0.795 0.829 0.824 0.876 0.858 0.847
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FIG. 6. (a) The components of the πþχc1 mass spectrum atffiffiffiffiffi
S1

p ¼ 3.87172 GeV throughout the accessible region of
ffiffiffi
s

p
in

the same units as in Fig. 4; the curves here have the same meaning
as the curves with the corresponding numbers in Fig. 4(b), which
have been described in detail above in the text. (b) The width
ΓðXð3872Þ → πþπ−χc1; S1Þ as a function of

ffiffiffiffiffi
S1

p
. The con-

structed example corresponds to g2X=ð16πÞ ¼ 0.25 GeV2.
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Γnon [1,6,8,11,15] allow us only to hope (before the
experiment) that the model correctly predicts the order
of magnitude of the probabilities for the Xð3872Þ →
π0π0χc1 and Xð3872Þ → πþπ−χc1 decays. The ratio R ¼
BðXð3872Þ → πþπþχc1Þ=BðXð3872Þ → π0π0χc1Þ ≈ 1.1
does not depend on the product of coupling constants
included in the vertices of triangle loops and, in general,
weakly depends on the parameters of the Xð3872Þ reso-
nance. Its value is a direct consequence of the kinematics of
the loops determined by the masses of the internal particles.
The isotopic symmetry prediction for R is noticeably

broken. The value obtained for R is a specific prediction
of the considered model, which gives an opportunity to
verify it experimentally.
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