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Reduction for one-loop tensor Feynman integrals in the relativistic quantum
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Hao-Ran Chang (3Ki%#%)e"*>"
lDepartment of Physics, Sichuan Normal University, Chengdu, Sichuan 610066, China
2Center for Computational Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
3Deparl‘menz of Physics, McGill University, Montreal, Quebec H3A 2TS, Canada

® (Received 7 August 2020; accepted 6 June 2024; published 23 July 2024)

The conventional Passarino-Veltman reduction is a systematic procedure based on the Lorentz
covariance, which can efficiently reduce the one-loop tensor Feynman integrals in the relativistic quantum
field theories (QFTSs) at zero temperature and zero density. However, the Lorentz covariance is explicitly
broken when either of the temperature and density is finite, due to a rest reference frame of the many-body
system in which the temperature and density are measured, rendering the conventional Passarino-Veltman
reduction not applicable anymore to reduce the one-loop tensor Feynman integrals therein. In this paper, we
report a generalized Passarino-Veltman reduction which can efficiently simplify the one-loop tensor
Feynman integrals in the relativistic QFTs at finite temperature and/or finite density. The generalized
Passarino-Veltman reduction can analyze the one-loop tensor Feynman integrals in a wide range of physical
systems described by the relativistic QFTs at finite temperature and/or finite density, such as quark-gluon

plasma in nuclear physics.
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I. INTRODUCTION

Lorentz symmetry is always respected by quantum fields
with relativistic energy-momentum relation in vacuum
where the temperature and density are both zero [1].
However, this symmetry is explicitly broken when either
of the temperature and density is finite, because a rest
inertial reference frame of the many-body system is
specified in which the temperature and density are mea-
sured [2—6]. Consequently, in the relativistic quantum field
theories (QFTs) thereat, the Lorentz symmetry is violated,
which definitely dictates a series of substantial physical
consequences encoded into the corresponding transition
amplitudes and correlation functions.

One-loop Feynman diagrams play an extremely impor-
tant role in calculating the transition amplitudes and
correlation functions in many subfields of physics, includ-
ing particle physics, nuclear physics, and condensed matter
physics [1-9]. Unfortunately, the one-by-one evaluation of
one-loop Feynman diagrams is often rather cumbersome,
time-consuming, error-prone, and disposable, given the
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amount of one-loop Feynman diagrams that needs to be
computed. Therefore, a very significant problem is how to
most efficiently perform the calculation of one-loop
Feynman diagrams.

Pioneering works in calculating the one-loop Feynman
diagrams for the relativistic QFTs at zero temperature and
zero density were performed by Veltman and his collab-
orators. Elaborating on the original idea of Brown and
Feynman [10], Passarino and Veltman provided a system-
atic reduction scheme of generic one-loop tensor Feynman
integrals based on the Lorentz covariance. With the help
of conventional Passarino-Veltman reduction [11], the
generic one-loop tensor Feynman integrals can be reduced
to a small number of generic one-loop scalar Feynman
integrals [11]. As a result, the calculations of a huge
number of one-loop Feynman diagrams boil down to
nothing but the automatic assembly of a small number
of generic one-loop scalar Feynman integrals [11-14].
Specifically, the generic one-loop scalar Feynman integrals
up to four-point have been analytically calculated by ‘t
Hooft and Veltman [12], and their analytical properties
have also been well studied [15-19]. Acting as the basic
building blocks, the generic one-loop scalar Feynman
integrals are reusable to the calculation of one-loop
Feynman diagrams in various physical processes and differ-
ent relativistic quantum fields. Owing to this advantage, the
conventional Passarino-Veltman reduction triggered many
variants [14,20-30], and the according program packages
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for automatic algebraic calculation [30-35] help to system-
atize the calculation of one-loop Feynman diagrams and
have been widely applied in numerous processes of high
energy physics.

The precondition of applying conventional Passarino-
Veltman reduction [11] and its variants [13,14,20-30] is that
the physical systems of interest must respect the Lorentz
symmetry, which is satisfied only for the relativistic QFTs at
zero temperature and zero density. When either the temper-
ature or the density is finite, the conventional Passarino-
Veltman reduction is not applicable any more to reduce the
generic one-loop tensor Feynman integrals due to the
explicit breaking of Lorentz symmetry therein. A natural
question follows that what the counterpart of conventional
Passarino-Veltman reduction is in the relativistic QFTs when
either of the temperature and density is finite. On the other
hand, it is known that the calculation of one-loop Feynman
diagrams in the relativistic QFTs become more complicated
when either the temperature or the density is not zero any
more [1-9]. Unfortunately, there have only been sparse
attempts [36-38] aiming at generalizing the conventional
Passarino-Veltman reduction to its counterpart at finite
temperature and/or finite density. Although several generic
one-loop scalar Feynman integrals up to three-point had
been analytically calculated [37], just as their counterparts at
zero temperature and zero density calculated by ‘t Hooft and
Veltman [12], the reduction procedure for the generic one-
loop tensor Feynman integrals still remains undeveloped,
limiting the efficient application of these generic one-loop
scalar Feynman integrals to various physical processes and
different interactions. Hence, from both the theoretical
interest and application-driven consideration, it is in need
to develop a systematic reduction for efficiently evaluating
the one-loop Feynman diagrams in the relativistic QFTs
when either of the temperature and density is finite.

Motivated by these, we report a generalized Passarino-
Veltman reduction in this work, which can simplify a huge
amount of one-loop Feynman diagrams in a wide range of
physical systems described by the relativistic QFTs at finite
temperature and/or finite density, such as quark-gluon
plasma in nuclear physics [39,40]. The rest of this paper
is organized as follows. In Sec. II, we present the general
definitions of N-point generic one-loop scalar Feynman
integrals and one-loop tensor Feynman integrals in the
relativistic QFTs at finite temperature and/or finite density,
and emphasize the explicit breaking of Lorentz covariance
due to either the finite temperature or finite density and its
consequences in the reduction of one-loop Feynman dia-
grams. We show the detailed reduction procedures of one-
point, two-point, and three-point generic one-loop tensor
Feynman integrals in Sec. III. Two demonstration appli-
cations of the generalized Passarino-Veltman reduction are
shown in Sec. IV. Our main conclusions and discussions are
presented in Sec. V. Finally, we provide three appendices to
show some detailed calculation.

II. GENERIC ONE-LOOP SCALAR AND TENSOR
FEYNMAN INTEGRALS

A direct comparison among the one-loop Feynman
diagrams in various physical processes and different
theoretical models led to an observation that any one-loop
Feynman diagrams in the relativistic QFTs can be decom-
posed into a linear combination of generic one-loop tensor
Feynman integrals and generic one-loop scalar Feynman
integrals [10,11,13,14] (see Sec. IV for demonstrations).

The N-point generic scalar Feynman integral and generic
tensor Feynman integrals in the one-loop Feynman dia-
grams (see Fig. 1) have the general form

ZN(plv --'»pN—l;ml,,ul;'";mN’ﬂN;ﬂ)

dPl 1
:/~ D/2 , (D)
it 2Dl pyy ooy PNt ML Hy 5 My, Hy)

Jz{vp;pa;pm;m}(l%, e DN H sy, s )

B / dPl {r,rie;rel, ...}
iﬂD/ZD(ZQPl, -'-’pN—l;mlwul;'";mN’/‘N)’
where f = 1/(kgT) with kg the Boltzmann constant and 7

the temperature, and the denominator of integrand is
defined as

Dyl pry oo Py—13 My s+ My, )
= P(1,0;my, 1) P(1, primy, pz)
o P(Lpy+prt o+ pyomy,py),  (3)

with

P(L psmy,py) = (0 + p° 4+ p,)* = [ +p)* +mi].  (4)

ma, 12

[
my, H1

FIG. 1. Generic N-point one-loop Feynman diagram with
external momenta p, = (p%.p,) = (p%. p,). The momentum
in the first internal propagator is denoted by [ = (I°,1) =
(1, 1"). All Lorentz momenta are defined to be directed towards
the vertices. In addition, m,, and u,, represent the mass and density
(chemical potential) in the nth propagator, respectively.
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The numerator of integrand in the generic one-loop
scalar Feynman integral (rank-zero one-loop tensor
Feynman integrals) Zo(pi, ..., Py—1:M1, 115 s My s )
is replaced by /” for the rank-one generic one-loop tensor
Feynman integral .97 (py, ..., py_13m, ;- My, iy B),
by /71° for the rank-two generic one-loop tensor Feynman
integral S7°(py, ..., py_13my, fys s my, pys B), by PI°TF
for the rank-three generic one-loop tensor Feynman integral
PPy ey DNo13 M, Jys sy, Uy ), and so forth. In
addition, [ = (I°,1) = (I°, I') is the momentum of the first
internal propagator, p, = (p%,p,) = (p%, p,) are the exter-
nal momenta, m, and u, denote the mass and density
(chemical potential) in the nth internal propagators, respec-
tively. All the Lorentz momenta are defined to be directed
towards the vertices. The temperature is encoded into the
temporal component of internal momentum, the loop
integration over which is needed to be replaced by the
summation over the Matsubara frequency [41] only
when the explicit analytical calculations of the generic
one-loop scalar Feynman integrals and the purely temporal
components of generic one-loop tensor Feynman integrals
are involved. However, such explicit analytical calculations
are beyond the scope of our present work. Throughout
this paper, we preserve the integration over [° instead of the
summation over the Matsubara frequency, and hence the
temporal component of internal momentum is a continuous
variable allowing an arbitrary shift. Consequently, the
temperature does not explicitly influence the reduction
procedure of generic one-loop tensor Feynman integrals.
In addition, we label the spacetime (spatial) components
by Greek (Roman) letters, work in Minkowski space with
a metric, g,, = ¢’° = diag(1,~1,...,—1), and take the
natural units where A = ¢ = 1.

The one-loop Feynman integrals in the relativistic QFTs
can be classified by N (the number of external momenta)
and r (the rank of tensors of loop momentum in the
numerator of integrand) [13,19]. Based on power counting
from the Feynman rules in the relativistic QFTs, one
observes that the coupling constants can regulate the rank
of tensors of the loop momenta in the numerator of
integrand in arbitrary loop Feynman diagrams therein. In

the N-point one-loop Feynman diagrams of any renorma-
lizable relativistic QFTs (such as the Standard Model and
quantum chromodynamics) or super-renormalizable rela-
tivistic QFTs, the rank of tensors of the loop momentum
turn out to be suppressed by the coupling constants of non-
negative mass dimensions. Consequently, the highest rank
(rp,) of tensor of the loop momentum in the integrand does
not exceed the number (N) of external momenta, namely,
r, < N. This is the reason that one usually stops at a given
rank r, = N and does not need to proceed further to
arbitrarily high ranks [13,19]. In the N-point one-loop
Feynman diagrams of any nonrenormalizable relativistic
QFTs, the coupling constants of negative mass dimension
therein tend to increase the rank of tensors of the loop
momentum. As a consequence, the highest rank (r;,) of
tensors of the loop momentum in the numerator of
integrand can exceed the number of external momenta,
namely, r;, > N. With the procedure proposed in this paper,
the reduction for tensor Feynman integral can be trivially
extended to higher ranks and hence applicable to the
one-loop tensor Feynman integrals in nonrenormalizable
theories.

Since the calculation of one-loop Feynman diagrams in
the renormalizable relativistic QFTs, such as the Standard
Model and quantum chromodynamics, is especially useful
for studying the physical systems including quark-gluon
plasma and nuclear/hadronic matter [2—6], we restrict our
attention in this work to the tensor reduction of one-loop
tensor Feynman integrals in renormalizable relativistic
QFTs, where the rank of one-loop tensor Feynman integrals
can be set to be no more than the number of external
momenta, namely, r;, < N.

For the sake of simplicity and without loss of generality,
we thereafter focus on the one-loop Feynman diagrams up
to three-point (N = 3) for illustrating the essential spirit of
generalized Passarino-Veltman reduction, and the generali-
zation to N-point one-loop Feynman diagrams is straight-
forward. Up to three-point, any one-loop Feynman diagrams
in the renormalizable relativistic QFTs can be decomposed
into linear combinations of a series of generic one-loop
scalar Feynman integrals,

Ao(psmy, py; p) =i (psmy, 13 )

dPl

1

_ , 5
/iﬂD/zP(l»P;ml,ﬂl) ®)

BO(Pl;ml’ﬂl;mz’ﬂﬂﬂ) = Iz(Pﬁml,ﬂl;mz,ﬂz;ﬂ)

1

_/ a1
a iﬂD/ZP(lyo;mlvﬂl)P(l’ pl;m27l’l2)’

(6)

Co(p1. pasmy. pysmy, oy my, pzs B) = L3(py. pasmy, pys My, plo; My, fs; f)

1

dPl
B / inP2 P(L,0;my, uy)P(L, prymy, i) P(L, py + pasms, pz)’

(7)
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and generic one-loop tensor Feynman integrals,

AP (pymy, s p) = I (pimy, pys )

14

_/ aPl
) inPP P pimypy)

%{’);/)”}(Pl§m1’ﬂ1§m2»ﬂ2§ﬁ) = jg);/)ﬂ}(l’l;ml»,ul;mz»ﬂz;ﬂ)

Cg{p;pa;pm}(lﬁ, P2y My, iy My, fos M3, 43 f)

(8)
_/ aPl {r; rie} o)
) 7P P(L0smy, )P pryimy, )’
= jg“’;f’“;/m}(pl,pz;ml,ul;mz,u2;m3,/43;ﬂ)
_/ aPl (; p1; PIETTY 10)
ir?/2 P(1,0;my, uy)P(L, prs my, pa) P(L py + payma, pis)

The compact notations in the definitions are explained as
follows. First, following the notation of Ref. [12], we set the
symbols of one-loop scalar Feynman integral Z, and one-
loop tensor Feynman integral .#, to be A, and &7 for
N =1, By and & for N =2, and Cy and ¥ for N = 3,
respectively. Second, for the one-point one-loop tensor
Feynman integral <7 (p;my, u;;f3), the numerator of inte-
grand in the one-point one-loop scalar Feynman integral
Ao(p;my, puy; p) is replaced by /2. Similarly for the two-
point one-loop tensor Feynman integrals %”(p;m,,
Uiy Mo, fos B) and B2 (py;my, i My, 4y ), the numerator
of integrand in the two-point one-loop scalar Feynman
integral By(p;my, py;ma, 4y f) are replaced by /# and
[71°, respectively. The convention also holds for the three-
point one-loop tensor Feynman integrals 67 (p1, po; my, py;
My, poimy, f3i ), CP7(prs pasmy, pys My, oy ms, pz; ),
and 677 (py, pa; My, dis Mo, o M3, Us; f3), in which the
numerators of integrand in the three-point one-loop scalar
Feynman integral Co(py, pa;my, s Mo, ho; M3, 3; B) are
replaced by /7, [’I°, and [PI°l*, respectively. Third, the
generic one-loop tensor Feynman integrals %77 (p;m, yy;
my, pp; B) and GP7(py, pyimy, pyimy, gy my, p3s ff)  are
symmetric in the Lorentz tensor indices p and o, and
CPT(p1, paymy, U1y My, oy M3, J3; ) is symmetric in the
Lorentz tensor indices p, o, and 7.

Before going further, we emphasize the explicit break-
ing of Lorentz covariance due to finite temperature and/or
finite density in the relativistic QFTs and its consequences.
In the vacuum where the temperature and density are both
zero, there is no preferred frame of reference. Therefore,
the Lorentz covariance always holds for the relativistic
QFTs, and consequently forces the amplitudes of one-loop
Feynman diagrams therein (and hence the generic one-
loop scalar Feynman integrals and one-loop tensor
Feynman integrals) to be convariant functions of external
momenta. Accordingly, with the help of conventional
Passarino-Veltman reduction, the generic one-loop tensor

Feynman integrals can be reduced to the generic one-loop
scalar Feynman integrals. However, in the presence of
matter, the finite temperature and/or finite density select
out a preferred rest frame of the heat bath, in which the
temperature and density of the equilibrium thermal system
are measured. The choice of this specific Lorentz frame of
the many-body system explicitly breaks the Lorentz
covariance [2-6]. Consequently, the largest continuous
spacetime symmetry of relativistic QFTs in D dimension is
no longer the SO(1,D —1) (proper normal) Lorentz
symmetry but the SO(D — 1) spatial rotation symmetry.
Therefore, the expressions of one-loop Feynman diagrams
(and hence the generic one-loop scalar Feynman integrals
and one-loop tensor Feynman integrals) depend independ-
ently on the temporal component and the spatial compo-
nent of external momenta. This leads to two crucial
consequences regarding the incompleteness in both tensor
structures and generic one-loop scalar Feynman integrals
for reducing the generic one-loop tensor Feynman inte-
grals in the relativistic QFTs at finite temperature and/or
finite density. Firstly, the Lorentz-covariant tensor struc-
tures in the conventional Passarino-Veltman reduction are
no longer complete to expand the generic one-loop tensor
Feynman integrals which are not Lorentz covariant.
Secondly, the generic one-loop scalar Feynman integrals
Ao(psmy, pis B), Bo(prsmy, pysmy, pp; B), and Co(py, po;
my, i My, 1oy M3, p3; f3) in the conventional Passarino-
Veltman reduction are incomplete to expand all the generic
one-loop tensor Feynman integrals due to the explicit
breaking of Lorentz covariance. It is stressed that these two
aspects are the essential differences between the conven-
tional Passarino-Veltman reduction and generalized
Passarino-Veltman reduction, which is also the very
motivation for the author to develop the generalized
Passarino-Veltman reduction.

The first incompleteness can be complemented by
introducing an extra D-dimensional constant vector
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u, = u’ = (10, ...,0) in energy-momentum space, which
was widely adopted to characterize the absence of Lorentz
covariance due to the finite temperature and/or finite
density [2-6]. It is emphasized that this D-dimensional
constant vector is defined only at finite temperature and/or
finite density. By contrast, at zero temperature and zero
density, this D-dimensional constant vector cannot play any
role and is not defined due to the lacking of preferred rest
frame [2]. Treating the spacetime components of the generic
one-loop tensor Feynman integrals on the same footing
[11,13,14] and adding the effect of Lorentz-covariance
breaking in terms of the constant vector, the generic one-
loop tensor Feynman integrals can be reduced in the
following section. For the second incompleteness, two
generic two-point one-loop tensor Feynman integrals
B (prsmy, pismy, i f) and - B2 (pysmy, pysmy, pa3 )
and three generic three-point one-loop tensor Feynman
integrals €°(py, pa;my, py; my, s ms, pi3; ), € (py, pas
My fys Mo, pos M, s B), and €% (py, posmy, pysmo, po;
ms, y3; ) must be introduced to form a complete set of
generic one-loop Feynman integrals as the building
blocks to express the form factors of the corresponding
tensor structures. These two observations motivate us to
develop the generalized Passarino-Veltman reduction in
this work for going beyond the applicability of previous
works [11,36-38].

III. REDUCTION OF GENERIC ONE-LOOP
TENSOR FEYNMAN INTEGRALS

The essential spirit of conventional Passarino-Veltman
reduction is to decompose the generic one-loop tensor
Feynman integrals into the corresponding generic one-
loop scalar Feynman integrals with the help of Lorentz-
covariant tensor structures and Lorentz-invariant generic
one-loop scalar Feynman integrals. Different from that
for the conventional Passarino-Veltman reduction, the
tensor structures for the generalized Passarino-Veltman
reduction contain the Lorentz-covariant parts and non-
Lorentz-covariant parts and the generic one-loop tensor
Feynman integrals in the generalized Passarino-Veltman
reduction must be decomposed into the corresponding
generic one-loop scalar Feynman integrals and several
purely temporal components of generic one-loop tensor
Feynman integrals. In the following, we present the
detailed reduction of one-point, two-point, and three-point
generic one-loop tensor Feynman integrals, respectively.

A. Reduction of one-point generic one-loop tensor
Feynman integral </ (p;my, puy;f)

Before reducing the one-point generic one-loop tensor
Feynman integral o/”(p;my,u;f3), it is interesting to
note that the one-point generic one-loop scalar Feynman
integral,

P 1
Ao(pim. i f) = inP2P(l, pymy, uy)

/ dP1 1
) 7P P(L,0;my, )
= Ay(0;my, uy: ), (11)

by shifting the loop momentum / to (/ — p), which indicates
that Ay (p; my, p1; B), is a function independent of external
momentum p. It is emphasized that the temperature is
encoded into the temporal component of internal momen-
tum, the loop integration over which is needed to be
replaced by the summation over the Matsubara frequency
only when the explicit analytical calculations of the generic
one-loop scalar Feynman integrals and the purely temporal
components of generic one-loop tensor Feynman integrals
are involved. However, such explicit analytical calculations
are beyond the scope of our present work. Throughout
this paper, we preserve the integration over I instead of the
summation over the Matsubara frequency, and hence the
temporal component of internal momentum is a continuous
variable allowing an arbitrary shift.

The temporal component and spatial component
of one-point generic one-loop tensor Feynman integral
AP (pymy, py; P) read

dPl (I°+ p° + ;) = (p° +
'Q{O(p;mla/"l;ﬁ):/iﬂ.Dﬂ( V-l )

P(L, psmy, py) ’
(12)

| dPl (I + pi) = p'
JZ%(P;ml’/"l;ﬂ)E/i”D/ZP(l,p;mh/ﬂ). (13)

After taking the asymmetry of integrands over symmetric
domain of integrals into account, one has two relations,

le lO 0
/-Dz( +p +ﬂ1):0, (14)
172 / P(lvp;m]nul)
le li i
[t ~o (15)
in?/2 P(1,0;my, py)
which lead further to
d’l —(p° +m)
A (pymy, =/
(P ) iz P(1, pymy, uy)
= —(u; + ") Ay(psmy, 1 )
= —(uy + P°) Ao (03 my, 1), (16)

016022-5



HAO-RAN CHANG

PHYS. REV. D 110, 016022 (2024)

i . d’l -p'
A prm i) :/inD/ZP(lﬁp;ml,m)
= —p'Ay(psmy. p1: p)
= —p' Ay (0;my. uy; ). (17)

In a compact form, the one-point generic one-loop tensor
Feynman integral <7”(p;m,,pu,; ) can be reduced as

,sz%/)(p;ml,m;ﬂ)f/ .d;)/lz ’

in?/ > P(l, pymy, py)

=~ &° + p*)Ag(0;my, py; )

= —(uu” + p*) Ag(0;my, py; ), (18)

indicating that the one-point generic one-loop tensor
Feynman integral </”(p;m,u;;f) can be expressed by
A0(02m1,/11;ﬂ)~

By contrast, for the relativistic QFTs at zero temperature
and zero density, one has

AP (pymy,puy =0; f=o0) = —ij‘o(Ole,/ll =0; =)
(19)

in the conventional Passarino-Veltman reduction, where
the symbols with tilde Ay(0;m;,u; =0;5 = o0) and
AP (pymy.uy = 0;p = o0) are introduced to denote the

quantities at zero temperature. Evidently, Aq(0;m,,pu; =0;
f=o0) 1is Lorentz-invariant and .&”(p;m;,pu; = O0;
f = ) is Lorentz covariant.

B. Reduction of two-point generic one-loop tensor
Feynman integral %’ (py;my. py;mz, p; )

Before reducing the two-point generic one-loop tensor
Feynman integrals %°(p;my, py; my, ur; 3) and %°°(py;
my, {y; Mo, o3 f3), we note that the two-point generic one-
loop scalar Feynman integral By(p;;my, uy;mo, o3 f) is a
function of finite temperature and/or finite density and
depends independently on p? and |p, |, which is not Lorentz
invariant.

Since the two-point generic one-loop tensor Feynman
integral %?(py;my, ui; my, 1y;#) is a rank-one non-
Lorentz-covariant tensor, the complete set of tensor
structures to expand it can be constructed by a rank-
one Lorentz-covariant tensor pf and a rank-one non-
Lorentz-covariant tensor u”. Consequently, % (p; my, uy;
my, yo; f3) can be reduced as

%p(P1;m17ﬂ12m2,M2;ﬂ)

_/ dPl r

) inPPP(1L0ymy g )P(L prima. o)

= PIBi(prsmy, pysma, pias f) + ul Bo(prsmy, iy my, i f)

(20)
in the generalized Passarino-Veltman reduction.
Contracting the two-point generic tensor integral

BP(primy, py;my, o f) with py, and u, gives rise to
two equations,

B F
(1) 1 1
G = , 21
Yoo( )= (3) 1)
where G%”( p1) is the Gram matrix defined as
2 0
Py p
o' = (" 1), 22)
pio 1

In these two equations, (py;my, ui; my, o ), the argu-
ments of By(py;my, pi;my, pas ), Ba(prsmy, py ma, pha;
B)s F1(primy, pismy, g3 B), and Fo(prsmy, pys ma, o3 )
are omitted for short, and p? is defined as (p?)? —p3.
In addition, F\(pi;my, psma, s B) and Fo(pismy, pi;
m,, Uy; f3) are obtained by

Fi(primy, pysmy, py; f)
= p1, B’ (prsmy. pyimy, po3 )

_/ le p1'l
) 7P P(L0smy g )P(L primy. )’

(23)

-7:2(P1§m17ﬂ1§m27ll22ﬂ)
= u, B’ (prsmy, pysmy, i )

/ dPl u-l
) 7P P(L0smy, ) P(L primy.py)
dll °
:/ (24)

iz P(1,05my, uy)P(L, prsma, pz)

By solving two equations in (21), the two form factors
By(piimy, pysma, po; B) and By(pismy, i ma, pio f) can
be expressed in terms of F(pi;my,puy;my, uy;3) and
Fo(prsmy, pismy, pp; B) as

<§)ZA(+@>(-L _pp)@) (25)

where A} (p)) = p? = (p%)2 = —p? is the Gram determi-

nant defined by the determinant of the Gram matrix
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Gg)(pl), Fi(prsmy, pysmo, po; B) and Fo(pysmy, uy;my, o ff) (see Appendix A for detailed evaluation) are given as

2 2

Fi(prsmy, pysmy, pp; f) = 5

= (o — 1) B°(prsmy. pys ma, s ) +

and

-7:2(191;”117#1;"127#2;/3) = %O(pl;ml,m;mwz;ﬁ)- (27)

Obviously, Fy(py;my, pysmy, pp; f) and Fr(pysmy, py;
my, iy f3) are functions of finite temperature and/or finite
density, and they depend independently on p? and |p]|,
which are not Lorentz invariant. Consequently, the two-
point generic one-loop tensor Feynman integral %”(p,;
my, fyi; My, s B) can be decomposed as linear combina-
tions of a Lorentz-covariant tensor p/ and a non-Lorentz-
covariant tensor u”, with the non-Lorentz-invariant form
factors ~ By(pi;my, pisma, o p)  and  By(prymy, py;
m,, o f3) being expressed by the generic one-point generic
one-loop scalar Feynman integral Ay(0;my,u;f),
two-point generic one-loop scalar Feynman integral
Bo(pr;my, puy;my, 1y f), and a temporal component of
two-point generic one-loop tensor Feynman integral
PB°(p1;my, s my, uo; B), which are also non-Lorentz
invariant.

where

(u3 —m?) = [(uy + pY)* — m3] + p? 5,

(primy. pysmy, py; )

AO(O;ml’,“l;ﬂ) - AO(O; mz#z?ﬂ)
3 )

(26)

By contrast, in the relativistic QFTs at zero temperature
and zero density, the D-dimensional constant vector u”
vanishes due to the Lorentz covariance, which leads to

K (primy, py = 05my, py = 0; = o0)
= pll)Bl(pl;mhﬂl =0;my, 1y = 0;=00) (28)

in the conventional Passarino-Veltman reduction, where the
symbols with tilde B, (py;my, pu; = 0;ma, py = 0; 4 = )
and 2 (pyimy,py = 0;my, yy = 0,4 = c0) are intro-
duced to denote the quantities at zero temperature.
Contracting the two-point genetic one-loop tensor
Feynman integral @”(pl;ml,,ul =0;my, py = 0; 8 = 0)
with p;, gives rise to an equation, whose solution is
evidently Lorentz invariant, namely,

By(primy. g = 0;my pp = 05 = o)

j:l(l’1§mlaﬂl =0§m2,/12=0§ﬂ=°°), (29)

= =

-i—l(pl;ml’ﬂl =0;my,pp =0;5 = 00) = plpf@p(pl;mlvﬂl = 0;my, py = 0; = o0)

2 2 2
m5 —my — py »

_m 1 1
= By

2

+ A~0(0;mlv/41 =0;f=00) - AO(O; My, py = 0; f = o)

(primy,py = 05my, pp = 05 = )

2

which agrees exactly with the results presented in the
Appendix A of Ref. [13]. It is noted that By(p;my, u; =
0; 5, p; f = o0) and Ay (0;m, u = 0; f = o) are Lorentz
invariant. Hence, B;(py;my.pu; = 0;my, py = 0, = )
is Lorentz invariant and @p(pl;ml,yl =0;my, py =
0; = o) is Lorentz covariant. It is stressed that
Fi(prsmy, g = 0;my, ppy = 0; = c0) can be obtained
by directly setting u; = p, =0 and 7 = 0 in Eq. (26).

, (30)

C. Reduction of two-point generic one-loop tensor
Feynman integral 2 (p;my, py;my. ps: f)

Because the two-point generic one-loop tensor Feynman
integral %°°(p,;my, py; My, o f3) is a symmetric rank-two
tensor, the complete set of tensor structures to expand it can
be constructed by the symmetric rank-two Lorentz-covariant
tensors ¢’ and p|p¢ and the symmetric rank-two non-
Lorentz-covariant tensors u’u° and (pfu® + pJu’). Con-
sequently, %7°(py;my, ui; ms, 4y; f) can be reduced as
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dPl rle
in?2 P(1,0;my, py)P(L, pysma, o)
= ¢ Boo(p13my, pismy, po; B) + prpIBii(pis my, pys ma, ps B)
+ (P{u® + pSu?)Biy(prs my, iy my, pg3 B) + wuBoy(prsmy, prsmy, po3 p) - (31)

%)M(Pl;ml,ﬂl;mz,ﬂz;ﬂ) :/

in the generalized Passarino-Veltman reduction, where By, (py;my, pi1; ma, o ) = B (p1smy, puys my, pos ff).
Contracting the two-point genetic one-loop tensor Feynman integral 7% (py; my, piy; my, po; f) With g5, P1,P16s P1pUss
and u,u, gives rise to four equations,

Boo Foo
B F
) 11 11
Gy (p1) = : (32)
’ B, Fis
By, Fan
where G](_?( p1) is the Gram matrix defined as
D pi 2p! 1
6D(p,) = pi (D) 200p7 (P))? (33)
B \P1) = 0 2,0 0Y2 2 o |-
pi pipl (P7)”+pi P
L) 2p 1

The arguments (py;my, 13 my, po; f) in Boo(pysmy, pysmoy, pos B), Biy(prsmy, pysma, o ), Bia(prsmy, pys ma, pos ),
822(P1§m1,/41§m2,ﬂz§ﬁ), foo(l?ﬁml,/h;mz,/lz;ﬂ), -7:11(P1;m1,/41§m2,ﬂz;ﬂ), -7:12(171;7”1,/11;"12,/42;/}), and -7:22(171;
my, py; My, oy ) are  omitted for short. In addition, Foo(pi;my,pr;ma, o),  Fri(prsmy, pur; ma, 1rs ),
Fra(prsmy, pismy, po; ), and Fop(pysmy, py; my, po; B) are obtained by

Foolp1s m1,ﬂ1§m2,ll2§ﬂ) = Qpa%)p”(l’ﬁml,ﬂﬁmz,ﬂﬁﬂ)

_/ il L (34)
- iﬂD/z P(la O;m17ﬂ1>7)<l’pl;m27ﬂ2)’

Fu(pismy,pysmy, po; f) = pl/)pla%/m(pl;m19/"1;m27ﬂ2;ﬂ)
_/ d’l (py - 1)?
; ir?/2 P(1,0;my, iy )P(L, prsma, i)

(35)

~7:12(P1;m1,/41§m27ﬂz;ﬁ) = Plp”a%)pg(l’ﬁmhﬂl;mz,M;ﬁ)

/ d’l (u-D(py-1)

inP2 P10 my, 1 )P(L pys ma. pa)

_/ dPl lo(pl'l)
) imPP PO my .y )P(L primy. )’

(36)

Fo(prsmy, py;my, po; f) = upua%/w(pl;ml’ﬂl;m27ﬂ2;ﬁ>

_/ dPl (u-D)(u-1)

) i7P2PL0smy, 1) P(L, pyymy, )

dPl 100
— | . b2 : (37)
inP2 P(1,0;my, py)P(L, prsmy, o)

By solving four equations in (32), we can express the four form factors Byy(p;my,
pisma, s B), Bri(prsmy,psmy, o ), Bia(prsmy, pisma, s B),  and By (prsmy, pysmy, pp;f) in terms  of
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Foolprsmy,pysmy, puos ), Fri(prsmy, pysmo, oy B), Fro(primy, pysmy, pos ), and Fop(pysmy, pysmy, piys ff) as

pi—(p))? 2pY -p3
Bog O (p-1) _ao-0pt 2 | [ Foo
By, [p% _ (P1)2]2 pi—(p9)? pi—(p9)? pi—(p})? Fi (38)
e 0 (D=1 (D=2p D) (D-1)p0p? ; 38
B A5 (p1) P =) P T
By, o 02R 2AD-0Rn (D-D() Fun
P pi—(pY)? pi—(p%)? pi—(p))?

where A (py) = (D =2)[p} = (p))* with p} — (p9)> =
—p% is the Gram determinant defined by the determinant of
the Gram matrix Gf) (p1)- These solutions indicate that the
generalized Passarino-Veltman reduction is singular when
D =2, which originates from the combination of the
Lorentz-covariance breaking and the (1 + 1)-dimensional

spacetime. Physically, it is unnecessary to further reduce

the one-loop tensor Feynman integrals in the (1 + 1)-
dimensional spacetime, because the space component
and the temporal component are not equivalent to each
other when the Lorentz covariance is explicitly broken.

Four axillary functions Foo(py;my, ui;ma, o ),
Fr(pismy, prsmo, po; B), Fra(prsmy, s o, py; ), and
Foo(prsmy, fysmy, uy; ) (see Appendix B for detailed
evaluation) can be expressed as

foo(Pﬁmhm;mz’ﬂz;ﬂ) = _</¢%_m%)BO(Pﬁml,M;mz,ﬂz;ﬁ) _ZﬂI@O(Pl;mhﬂl;mZ?/‘Z;ﬁ) +A0(0§m27ﬂ2§ﬂ)v (39)
2 _ 2 _ 0\2 _ .2 212
~7:11(P1;m1,ﬂ12m2,/12§ﬁ) = {(ﬂl ml) [(/42 : pl) mz] +p1} BO(P1;m1,ﬂ1;m2,/l2§ﬁ)
+ (12 —ﬂl)zf%)oo(l’ﬁml,m;mz,ﬂz;ﬂ)
- (12 _,“1){0/‘% - m%) — [(p2 + P?)z - m%] +P%}«@O(P1§m1,ﬂ1;mzvﬂ2§ﬂ)
m3 —mi — p7) — (= 42)* = 2pY(uy +
mi —m3 +3p7) — (g — p2)* +2pY(uy +
2 _ 2 — + p02 — 2] + p2
7'-12(171;’"1,/412"12,#22,5) = (ﬂl 1) [(M ) p,) 2] Pi '@O(pl;mh.“l;mb/‘z;ﬂ)
- (ﬂz —Ml)%OO(PHml,Ml;mz,Mz;ﬁ)
4 —M1~A0<0; m17ﬂ1;/3) + (ﬂz + P?)AO(OQ mz’M;ﬂ) (41)

2

and

Foo(primy,piimy, pp: f) = B (prymy, py my, oy ).
(42)

Obviously,  Foo(p1smi, pismy pos f8),  Fri(pismy, pys
My, 3 ), Fra(prsmy, pysmy, po; B), and Foo(prsmy, pi;
my, oy f) are functions of finite temperature and/or
finite density, and they depend independently on p9 and
[p1|, which are not Lorentz invariant. Consequently, the
two-point generic one-loop tensor Feynman integral

B (p1ymy, f1; Mo, do f) can be decomposed as linear
combinations of two Lorentz-covariant tensors ¢’° and
pPipS, and two Lorentz-covariant tensors w’u’ and
(Piu° + p§u’), with the non-Lorentz-invariant form fac-
tors Boo(piimy, ismy, a3 B), Biy(prsmy, pys ma, a3 ),
Bia(pysmypuismy, pos ), and By (pismy, pyimy, a3 )
being expressed by the one-point generic one-loop scalar
Feynman integral Ay (0; my, u;; ), two-point generic one-
loop scalar Feynman integral By(p; my, u1; mo, po; ), and
two temporal components of two-point generic one-loop
tensor Feynman integrals %°(p,;my, u ;ma, ur; f) and
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PBO(pr;my, uy;my, jy; B), which are also non-Lorentz
invariant.

By contrast, for the relativistic QFTs at zero temperature
and zero density, the D-dimensional constant vectors u”
and u° vanish due to the Lorentz covariance, which leads to

%/m(pl;ml’/"l =0;my,up =0, = 00)
= ¢ Boo(primy, py = 0;my, 4y = 0, = o)
+ pr{I;Bll(pl;mhﬂl = 0;my,pp = 0;=00) (43)

in the conventional Passarino-Veltman reduction, where
the symbols with tilde Boo(pi:my,puy = 0;ma, py =
Ojﬂ =00), Bii(pi;my,puy =0;my, pup = 0; 4= 0), and
B (prymy,py = 0;my, pp = 0; = o0) are introduced
to denote the quantities at zero temperature. Contracting
the two-point genetic one-loop tensor Feynman integral

B (primy. g = 0;my, iy = 0; 4 = c0)  with gpo and
PipP1s gives rise to two equations,

s B F
) 00 00
()= (2).
? By Fu
(2)

where Gj;”(p;) is the Gram matrix defined as

2
&2 (py) = (f ”;)2) (45)

The arguments (py;m;. puy = 0;my, 4y = 0; ) in Bog(ps;
my, py = 0§m2,ﬂ2~: 0;8=00), By(pizmy,py = 0;my,
po =0:f=00), Foo(primy, py = 0imy, piy = 0; f = 00),
and F (pr;my,puy = 0;my, 4y = 0; 8 = 00) are omitted
for short. The solutions to these two equations are given as

By, I (r1)?* -ri\{ Foo
(Bn> - A}(_’BZ)<p1) < —p% D )(j:ll)’ o

where A (p,) = (D — 1)(p?)? is the Gram determinant

defined by the determinant of the Gram matrix fo) (p1)-
These Lorentz-invariant solutions also indicate that the
conventional Passarino-Veltman reduction is singular when
D =1, which originates from the (1 + 0)-dimensional
spacetime. Physically, it is unnecessary to further reduce
the one-loop tensor Feynman integrals in the (1 + 0)-
dimensional spacetime, because there is no spatial compo-
nent when D = 1.

For the relativistic QFTs at zero temperature and zero
density, it is obvious that

j'-oo(m;ml,/h =0;my,pp =0;8 = °°>
= m%BOQ’l;mlvﬂl = 0;my, pp = 0; ) + Ao(()?mz,/lz;ﬁ = 00), (47)

and

j:ll(l?l;ml,//ll =0;my,pp =0;5 = 00)

(m3 —mi - pi)*;

:—BO(pl;mluul = O;m2uu2 = O?ﬂ = 00)

4
mi=mi=pi ¢

* 4

which agree exactly with the results presented in the
Appendix A of Ref. [13]. It is stressed that .7:00(171;
my, fy = 0ymy, py = 04 =00) and Fyy(piimy.puy =0;
m,,u, =0; 8= o00) can be obtained by directly setting y; =
U, =0 and T = 0 in Egs. (39) and (40), respectively.

D. Reduction for three-point generic one-loop tensor
Feynman integral 6% (py,p2;my. py;my, po;ms. p3; )
Before reducing the three-point generic one-loop tensor

Feynman integrals %7 (py, pa; my, pi; mo, fo; ms, us; f3),

(03my, 4y = 0; 8 = 0) +

m%—m%+3p%fio

4 (0; my, py =0, = 00), (48)

CP7(p1, pas s i my, poims p3i B), and € (py, po;
My, [y Mo, s M3, f3s f), we stress that the three-point
generic one-loop scalar Feynman integral Coy(pi, po;
My, fy; Mo, fos M3, d3; ) is a non-Lorentz-invariant func-
tion depending independently on pY, |p,|, p9, and |p,| at
finite temperature and/or finite density.

Since the three-point generic one-loop tensor Feynman
integral 67 (py, po; my, di; Mo, o M3, d3; f3) is a rank-one
non-Lorentz-covariant tensor, the complete set of tensor
structures to expand it can be constructed by two rank-one
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Lorentz-covariant tensors p| and p5, and a rank-one non-Lorentz-covariant tensor u”. Consequently, €”(py, ps;
my, {ys Mo, Jos M3, s ff) can be reduced as

dPl rr
inP/? P(L,0;my, uy )P(L, prsma, pa)P(L, py + pasms, pi3)
= PYCi(p1. pasmy. iy my, s ms, p3s B) + PACa(P1s Poi iy, pys My, pas ma, s B)
+w’Cs(py, pasmy, pys Moy, o My, p3; ). (49)

Cgp(Pl,Pz;ml,ﬂl;mz,ﬂz§m3,ﬂ3;ﬁ) —/

Contracting the two-point genetic tensor integral €7 (py, py; my, py; my, pps ms3, us; f) with py,, p,,, and u, gives rise to
three equations,

C K
Ge'(prp)| G | = | Ko | (50)
G Ks
where Gg)( P1, P2) is the Gram matrix defined by
pi pi-p2 DY
I
G(c>(P17P2) =1 P P2 P% Pg : (51)
Pl I

In these three equations, the arguments (pi,pyimy,py;ma, o ms, pz; ) in Cy(pr, pasmy, gy Mo, oy ms, pss B),

Co(prs Pasmy, s my, pos s, p3; ), C3(prs pos s pys Mo, o my, s B), Ky (prs pasmys s mys posms, s B), Ko(prs pas
My, fys Mo, oy m3, y3; ), and Ks(py, pasmy, py; mo, wy; ms, piz; f) are omitted for short. In addition, KC;(py, pa; my, uy;

My, foy M3, k3 B), Ko (prs posmy, s mo, posms, pz; ), and KC5(py, pos my, s mo, pio; ms, ;s ff) are defined by

Ki(p1s posmy, s my, oy ms, pis; f) = Pl,)(f”(l?uP2§m1,ﬂl§m2,ﬂ2§m37ﬂ3§ﬂ)

:/ d’l pi-l (52)

inP/? P(l, 0; mm“l)P(l, P1s mz,ﬂz)PU, P11+ p2; m3,ﬂ3) '

Ka(pis posmy, s my, s ms, pis; f) = Pzp%p(l?l’ P23 My, s Mo, o M3, f3; )

_/ dPl Pyl (53)
ix?2 P(1, 05 my, uy )P (L, prsmy, ua)P(L py + pasm, ps)

Ks(p1s posmy, pys my, oy ms, ps; f) = “p%p(PlvPz;mlvﬂl;mz,/h;mym;ﬁ)

/ le u-l
iz P(1, 0y )P(L. pr o, uo) PL py + pai s ps)
Pl r
-/ (54)

inP2 P(L,0;my, uy )P(L, pryma, ua)P(L, py + payms, pz)

By solving three equations in (60), the form factors Ci(py, pa;my, u1;mo, po;ms, us; f3), Co(pys pasmy, uis
My, poy My, pzs B), and  Cs(py, posmy, pysmy, oy ms, p3; ) can be expressed in terms of KCy(py, pasmy, py;
My, fos My, w3 B), Ko (p1s posmy. s my, pasms, iz ), and K3 (py. pos my, pys my, pos ms, iz ff) as

C | p3—(pY)? PipS—(pi-p2)  (pi-p2)PS—pP0P3\ [ G
G| =———1 pIPS-(p:i-p2) pi—(pY)? (pr PPl =piY || G | (55)

AY (p1, pa)
Cs M (prp)pd = P0p5 (pr-p)PY =PI Pipi—(piopa)? )\ Gs
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(1)

1 .
where  AZ)(py.po) s defined by AL (pr.ps) = pipd = (p1-p2)* = (P1PY = PIP2)% Ki(pr. poimy. s o, po:
my, ps; ), Ka(pis pasmy, pysmy, oy my, pss ), and Ks(py, posmy, pys my, pipsms, ps; f) (see Appendix C for detailed

evaluation) are given as

’Cl(Pl,Pz;ml,m;mz,ﬂz;mmﬂ};ﬁ) = >

(u3 —m?) — ((uy + p%)? — m3) + p? e,

(Pl, P2y, fys My, Hos m37ﬂ3§ﬂ)

- (,uz —/41)(50(171, Doy, fysmy, Ho, m37ﬂ32ﬁ)

4 Bo(pi + posmy, uysms, piz; B) — Bo(pa; ma, o ms, ps; )

ICo(p1s pasmy, s my, o ms, iz )

(o + p0)2 = m3 —p3] = [(u3 + p) + p9)* — m3 — (p1 + )]

— (43 —ﬂz)(go(m,P2§m1,ﬂ1§m27ﬂ22m3,ﬂs§ﬂ)
n Bo(pi:my, pysmy, pos f) — Bo(py + pasmy, puysms, pz; )

and

> , (56)

) Co(Pl’Pz;mlaﬂl;mz’ﬂ2§m3,ﬂ3§ﬂ)
5 , (57)
GOp1, Py, py o, oy m, s ). (58)

IC?’(pl’ p2§ml,/41;m27,‘42§m37/”3;ﬁ) =

Obviously, Ky (py,pasmy,pismy.poims,pusiB), Ko(pi, pas
My, pysmy, o my, p3s f), and  K3(py, pasmy, pysmy, o
ms, p3; ) are functions of finite temperature and/or finite
density, and they depend independently on pY, |p,|, p9, and
[p2|, which are not Lorentz invariant. Consequently, the
three-point generic one-loop tensor Feynman integral
CP(pys Posmy, 1y My, Uy M3, p3s f) can be decomposed
as linear combinations of two Lorentz-covariant tensors
P and p5 and a non-Lorentz-covariant tensor u”, with the
non-Lorentz-invariant form factors C(py, py; my, uy; my,
Hasmy, 3 ), Co(pis pasmy, i my, posms, 3 ), and
C3(p1, posmy, s My, pos my, p3; f) being expressed by a
two-point generic one-loop scalar Feynman integral
Bo(pi;my, puy;my, 1y f), a three-point generic one-loop
scalar Feynman integral Coy(py, pa;my, py;my, po; ms,
us;f3), and a temporal component of three-point generic
one-loop tensor Feynman integral €°(pi, py;my, u;
my, pys M3, p3; f3), which are also non-Lorentz covariant.
By contrast, in the relativistic QFTs at zero temperature
and zero density, the D-dimensional constant vector u”
vanishes due to the Lorentz covariance, which leads to

G (pr.paimypy = 0imy. g = 0;m3. = 0; 8 = o)
= PiCi(p1. primy iy = Osmy, iy = O3, i, = 03 = o)
+ PACo(p1. primypy = 0imy .ty = O;ms, 3 = 0; 8 = o0)
(59)

in the conventional Passarino-Veltman reduction, where
the symbols with tilde C,(py.paimy.p; = 0;my, iy =
0:my, p3 = 0; 8 = o0) and Co(py, pasmy, py = 05my, py =
0;m3, u3 = 0;/ = o0) are introduced to denote the quan-
tities at zero temperature. Contracting the three-point
genetic one-loop tensor Feynman integral %” (p1s P2s
my,py = 0;my, py = 0;m3, 3 = 0;f = o0) with p;, and
P2, gives rise to two equations,

- C K
(1) 1 1
G ) - =1~ 1 60
c (P 2)<Cz> <K2> (60)
(1)

where G’ (py, p,) is the Gram matrix defined by

2
~(1 p P11 P2
Gprp) = R N ()
P11 P2 P2

The arguments (py, posmy, p; = 0;my, u, = 0;ms,
py = 0;p = c0) in Ci(py. primy.py = 0imy, py = 03 m3,
p3 =0:=00), Copr, p2imi.py = 0;my, py = 0;my,
py = 0;p = c0), Ki(p1, pasmy g = 0imy, py = 0;ms,
p3 =0;p=00), and Ky(pi, primi,py = 05my, pp =
0; m3, u3 = 0;/ = o0) are omitted for short. The solutions
to these two equations are given as
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81 . 1 P% —P1°P2 Ial 62
7 ] k() —_p - 2 . ] (62)
CZ AC (pl,pz) P1°P2 P1 ’CZ

where A(Cl)(pupz) = pips—(p1-p2)* is the Gram determinant defined by the determinant of the Gram

matrix G(Cl)(pl,pz).

For the relativistic QFTs at zero temperature and zero density, it is evident that

Ky(p1s pasmy,puy = 0ymy, py = 0;ms3, 3 = 05 f = o0)
_m-mi-p,
= 5 o

By(pi + pasmy,py = 0yms, pz = 0; B = 00) — By(pasmy. pa = 0;ms, 3 = 03 p = o)
n 5 . (63)

(P1>pasmy, g = 03my, py = 03m3, 43 = 0, = c0)

Ka(pr. posmy uy = 05my, puy = 03m3, pu3 = 0;f = o)
m3 —m3 + pi = (p1 + p2)* 5

=3 2 12 L2 Co(prs pas sy = 05 my, py = 03 ma, iy = 03 f = o0)
Bo(Pﬁmhﬂl = 0;my, pp = 0;p = o) —Bo(m + paipy = 0yms, pu3 = 0; 8 = 0)

+ . . (64)

which agree exactly with the results presented in the Appendix A of Ref. [13]. It is stressed that I~Cl( D1, Doy, jy =
0; My, pty = 033, 3 = 0; = oo0) and Ky (py. prsmy, py = 0;my, uy = 0;ms, p3 = 0; f = c0) can be obtained by directly
setting u; = p, =0 and T =0 in Egs. (39) and (40), respectively. It is evident that I~C1 (p1,pasmy, iy = 0;my, py =
0;ms, 43 = 0; 8 = o0) and Ky(py. paimy, py = 0;my, uy = 0;ms, 3 = 0,4 = 00) are Lorentz invariant, and hence
@”(pl,pz;ml,ul = 0;my, uy = 0;m3, 43 = 0;f = o) is Lorentz covariant.

E. Reduction for three-point generic one-loop tensor Feynman integrals 67°(py,p,; my, py;my, py;ms, p3; f)
and C7°F(py,py;my, fy; My, fly; M3, p3; )
The other two three-point genetic one-loop tensor Feynman integrals can be reduced in the similar way as

dP1 rie
ir?/2 P(1,0;my, uy )P(L, prs my, pa) Pl py + payms, pi3)
= ¢"Coo(P1, P2 My, pys My, s 3, pi3; )
+ PIPIC1(P1s pos my. s iy, pios My, i )
+ (PS4 PP5)C1a(P1s pos my. pys my, pos my, i B)
+ P5P5Cos(P1. pas My iy My, s M3, pi3s )
+ (Pu® + p{uP)Ci3(p1. pasmy, pys My, pios ms, piss )
+ (Phu” + pSur)Caos (1. pasmy. pys Mo, pos ms, s )
+ wuCas(py, pasmy., pys my. poy ms, 33 ), (65)

Cgpg(l’hP22m1,ﬂ12m27ﬂz§m3,ﬂ3§ﬂ) :/

and

016022-13



HAO-RAN CHANG PHYS. REV. D 110, 016022 (2024)

CPT( 1. P2 My s My, fho My, i35 )

dPl P
- /iﬂD/2 P(LO0smy, uy )P(L, p1smy, pa)P(L, py + pasms, pz)
= (P19 + 797 + P19 )Coot (P1, P23 My, pys i, s M, i3 )
+ (P59 + P39 + P59 )Co2 (P 1, Pas s s My, pios M3, 33 f3)
+ (W g + ug? + ut g )Coos(P1s P2s My, fis My, oy M3, 433 )
+ IS PiCi (P1. pasmy. pys Mo, oy s, piss )
+ (PIPTP3 + PIPiPh + PiPPS)Ciia(prs pasmy, pys o, oy ms, i3 )
+ (PipSut + pSpiuw? + piphu)Ciiz(pis pas my, pys my, oy M, pss )
+ (PIP3Ps + PTP5Ps + PiPap3)Cina(P1s P2 M s Mo, po Mg, 33 )
+ PSS P5Co00(P1. Pas iy, Hys My, phos 3, i3 )
+ (Php3ut + pspsul + p5phu)Cors(pis Pas My, pis My, oy M, s )
+ [P (pSu + p5u) + ph(pTu” + piu?) + u’ (pTp5 + pip3)IC1a3 (1. Poimy, pys My, pas ma, ps; B)
+ (Pruu® + pfutu? + piuru®)Cys3(py, pas My, pys Mo, pos M, s )
+ (Phuu’ + pSuPu’ + p5u’u’)Cosz (P, pasmy, pys o, oy M3, i3 )

+ W uuCy3(p 1, posmy, pys My, plos M3, pss ), (66)

where the form factors satisfy C,, = Cpus Cape = Cuch = Cpac = Chea = Ceap = Cepq and the arguments (py, po;
my, {ys Moy, Jos M3, s; f) in them are omitted here for short. The form factors C,, and C,;,. can be expressed in terms
of generic one-loop scalar Feynman integrals and one-loop tensor Feynman integrals up to three-point.

By contrast, for the relativistic QFTs at zero temperature and zero density, the D-dimensional constant vectors ©”, u®, and
u’ vanish due to the Lorentz covariance, which leads to

P (p1. paimy. iy = 0:my. iy = O;m3, py = 0 f = o0)
= ¢*"Coo(p1. P2imy, py = 0smy, piy = 03 my, p3 = 0; f = o0)
+ PIPSC Py Py g = 03my py = 0yms, py = 038 = o0)
+ (iP5 + PIP5)Cia(pr. paimy iy = 0ymy, py = 0ym3, pz = 038 = o0)
+ P5PSCor (1. pasmy, g = 03my py = 0;ms, sy = 03 = 00), (67)

and

%pﬂt(l?lvpz;mhm = 0;my, py = 0ym3, p3 = 0; f = )
= (Pg" + p{g™ + pi9)Coot (1. pasmy. py = 0:my. py = 03m3. py = 0 f = 0)
+ (DA + 37 + 59 )Con (P pasmi iy = 0y, iy = 033, 3 = 03 = o0)
+ P pSpiCin (pr. pasmy g = 0imy, py = O3m3, p3 = 038 = o0)
+ (P1PSp5 + PIPiPS + TP pS)Cin(pr. paimy. iy = 0:my. gy = 0:ms, py = 0 f = o)
+ (P p3ps + PIpips + PiPapS)Cin (Prs pasmy. py = 0imy iy = 0y m. pz = 03 f = o0)
+ PoPSP5Con(Pr. Py pty = 0;my, py = 0yms, s = 0; 8 = o), (68)

in the conventional Passarino-Veltman reduction, where the symbols with tilde are introduced to denote the quantities at
zero temperature.
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F. General tensor structures for the reduction
of N-point generic one-loop tensor Feynman integrals

The central step for the reduction of generic one-loop
tensor Feynman integrals in the generalized Passarino-
Veltman reduction is to construct a complete set of tensor
structures. For the N-point generic one-loop tensor Feynman
integrals, we construct a complete set of tensor structures by
utilizing the generic momenta p’s, the D-dimensional
constant vectors u’s, and the metric tensors ¢’s. In a concise
way, we use a notation in which curly braces denote
symmetrization with respect to Lorentz indices [11]. If there
are only products of m metric tensors g’s in the rank-(2m)
tensor structure, then we generally have

{g S g}ﬂl/’Zﬂ3/’4“'ﬂ2m—1/’2m

— {g}P1P2 {g. .. g}p3p4'"/’2m—lp2m T , (69)

where - - - - - ”” denotes other nonequivalent permutations of

the 2m Lorentz indices (p1, 02,03, P4r - s Prm1sPom)-
Specifically, for m = 1 and m = 2, we have
{gyrrz = g2, (70)

{gg}/’]ﬂzmm — {g}/’]ﬂz {g}/’zm + {g}/’l/’,z {g}ﬂzfu
+ {g}/)l/’4{g}ﬂ2/]3' (7])

If the rank-m tensor structure consists purely of m external
momenta p’s, then we generally have

P1P2P3 Pm—-1Pm __ 1 P2P3 Pm—-1Pm
{p-p i igiy iy = Di {p- }1713 iy, +

where “----- ” denotes other nonequivalent permutations
of the m Lorentz indices (py,p2,---sPme1>Pm), and
(i1, 02y s i,,) label the momenta (p; . p;.,....p; .
pi, ). Specifically, for m = 1, m = 2, and m = 3, we have

ln—1s

{p}i =i, (73)

{pPY00 = PPl + Pl (74)
e} 00 = pi{ppYol + P ppYil + i pp il
(75)

When the rank-m tensor structure is purely expressed by the
product of m constant vectors u’s, we generally have

{u “e . u}/’l/’Z"'pm—lpm — uﬂl uﬂZ e u/)m—l I/t/)'”. (76)

Specifically, for m = 1 and m = 2, we have

{uyrr = ur, (77)

{uu}/)l/)Z — u/)lu/}Z‘ (78)

If the rank-(m + 2) tensor structure is defined as the
product of m external momenta p’s and one metric tensor g,
then we generally have

P1P2° Pm=1PmPm+1Pm+2
{p p‘g 1112 lm llm

= {p . p}fllzz lzn_:llllfmgpm+|ﬂm+z T , (79)
where .- - ” denotes other nonequivalent permutations
of the (m+2) Lorentz indices (p1,p02, - s Pm—1s

Pms PmatsPms2)s and  (iy,io, ..o, ip_y,i,) label the m
momenta (p; . p;,..... p;, . Pi,)- Specifically, for m =1

and m = 2, we have

{pg P1P2P3 pi?]l {g}ﬂzﬂ3 + pi.’lZ{g}ﬂzﬂl + Pfl} {g}ﬂlpz’ (80)

P1P2P3P4
{ppg}il"" =

{pp}i gy + {pp}i'e {9}
+{pp}itH{ gy + {pp}il g}
+ {pp}/l?lf? {g}ﬂl/’3 + {pp}fﬁ{ﬁ {g}plf’z .

(81)

If the rank-(m + 2) tensor structure consists of m
constant vectors # and one metric tensor g, then we
generally have

{u . Mg}ﬂl"'ﬂmpnz+lpnz+2 — {u e M}pl"'pm {g}ﬂnz+lﬂn1+2 + ...... s

where “----- ” denotes other nonequivalent permutations
of the (m + 2) Lorentz indices (01,02, ---s Pm—1sPms Pmt1s
Pms2)- Specifically, for m = 1 and m = 2, we have

{ug}/)lﬂzlh — uﬂl{g}ﬂzﬂz + uﬂz{g}mﬂl + uh3 {g}/’lpz, (83)

{uug}ﬂlﬂzp3ﬂ4 — {uu}ﬂlﬂz {g}/’3ﬂ4 + {uu}ﬂlm {g}P2P4

+ {uu}ﬂlﬂ4 {g}/’2/’3 + {uu}ﬂzl’3 {g}ﬂlﬂ4
+ {uu}ﬂzﬂ4 {g}/)lﬂs + {uu}/’3ﬂ4 {g}/’lf)z' (84)

If there are m external momenta p’s and n constant
vectors u’s in the rank-(m 4+ n) tensor structure, then we
generally have

R . P17 PmPm+1"""Pm-+n
{p pu u ll lm

_ PP Omed " Pon 4 e
_{p...p}lll kN {M u}/ +17Pm+, + s (85)
where “ ... ” denotes other nonequivalent permutations
of the (m + 2) Lorentz indices (py, ..., o1+ Pms -+ s Pimin)s
and (i, iy, ....0p_1.i,) label the m momenta (p;,
Piy» s Pi,_,» Pi, ) Specifically, we have
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{pu})"™ = pliju’ + u piy (86)
{ppu}?” = {pp}y 02w +{pp}yil w +{pp}yif u

(87)

{puu}p]/)ﬂ)’i — pz, {uu}/’zm + pﬂz{uu}psm + p/’z{uu}mﬂz
(88)

For the most general case in which the rank-(m + n +
21) tensor structure is defined as the product of m external
momenta p’s, n constant vectors u’s, and [ metric tensors
g’s, we have

{p .. p g}ll l/:ﬂpm+l Pm+nPmtnt1"" Pm+n421
frg {p “e ll lpm'”{u u}perl”'pmAn

X {g PR g}pm+11+l"'pn1+n+21 + ...... s (89)
where ... ” denotes other nonequivalent permutations
of the (m + n + 21) Lorentz indices (01, ..., Pons Pmsls -« -»
Pmtns Pm+n+1s '-'vpm+n+21)’ and (il’ i21 . lm 151 i ) label

the m momenta (p; ., pi,..... i, Pi,)- Spemﬁcally, for
m=1,n=1,and [ =1, we have

P1P2P3P4 golpz{pu}ﬁzlu + gp2p3{pu}?]1/)4

+ g {puli. (90)

{pug}y

Obviously, p? and w” with a =1,2,..., N —1 form a
complete set of rank-one tensor structures for the rank-one
N-point generic one-loop tensor Feynman integrals
FIP(pro- . py—rimy - s my, s B). Specifically, pf
and u” form a complete set of rank-one tensor structures
for the rank-one two-point (N = 2) generic one-loop
tensor Feynman integrals %”(pi;my, py; ma, Uy f3).
Similarly, p/, p5, and w” form a complete set of
rank-one tensor structures for the rank-one three-point
(N =3) generic one-loop tensor Feynman integrals
CP(P1s pas My, fis My, o3 M3, 33 B).

In addition, {g}"*, {pp};", . {pu};’, and {uu}’" with

a,b=1,2,....,N—1 form a complete set of rank-two
tensor structures for the rank-two N-point generic one-
loop tensor Feynman integrals .77 (py,- -, py_1:my, i1;

-y my, 1y ). Specifically, the complete set of rank-two
tensor structures for the rank-two two-point generic one-
loop tensor Feynman integrals %°°(py;my, uy; mo, pis; )
can be constructed by

{g}/m' — gm" (91)
{pr}iT = Pipf. (92)
{pu}i” = piu’ + pu’, (93)

{uu}r’® = wue. (94)

Similarly, the complete set of rank-two tensor structures for
the rank-two three-point generic one-loop tensor Feynman
integrals €7 (py, pa; my, f1; Mo, Py M3, fi3; B), can be con-
structed by

{g}ro =g, (95)
{pr}i7 = Pips. (96)
{rp}3 = pip5 + PiP5. (97)
{rr}3; = raps. (98)
{pu}i® = piu® + pu’, (99)
{pu}s® = phu’ + p3u’, (100)
{uu}r® = wue. (101)

The parallel procedure can be applied to the reduction
of rank-three generic one-loop tensor Feynman integrals.
The rank-three tensor structures {pg};”, {ug}’”,
{ppp}i . {ppuYlT. {puu}!™, and {uuu}re, with
a,b,c=1,2,...,N — 1 form a complete set for the rank-
three N-point generic one-loop tensor Feynman integrals
IPT(pry e, P13, ;e My, iy B). Namely,  the
complete set of rank-three tensor structures for the
rank-three three-point generic one-loop tensor Feynman
integrals 6777 (py, pasmy, pys Mo, gy m3, p3; ) can be
constructed by

{pg¥i”" = Pl + pig” + pig”, (102)
{pg}s”" = Pog™ + pSg™ + pig”, (103)
{ugy™ = wl g +ug” + ug’, (104)
{PPP}/l)ﬁ = P1P1P1» (105)
{PPP}TE P1P1P2+P1P1P2+P1P1pzv (106)
{ppu}l" = pipiu’ + pipiw’ + pipiu, (107)
{ppr}i5: = PiP3ps + PIpiph + Piphps, (108)
{ppp}s5; = PHP3D3, (109)
{ppu}ss’ = phpgu’ + pSpsu’ + piphu’, (110)

{ppp}1y = Pi(pSu™ + piu®) + p5(pJu’ + piu’)
+u(pips + pips), (111)

016022-16



REDUCTION FOR ONE-LOOP TENSOR FEYNMAN INTEGRALS ...

PHYS. REV. D 110, 016022 (2024)

{puu}(’* = pluu® + pJuu’ + piu'u®, (112)
{puu}y’™ = phu’u® + pSutu’ + piu'u®, (113)
{uuu}r™ = w’u’u’". (114)

We end this section by emphasizing the essentials of
generalized Passarino-Veltman reduction with that of con-
ventional Passarino-Veltman reduction due to the explicit
breaking of Lorentz covariance in the relativistic QFTs at
finite temperature and/or finite density. First, besides the
Lorentz-covariant tensor structures which appeared in the
conventional Passarino-Veltman reduction [11,12], several
other non-Lorentz-covariant tensor structures where the
non-Lorentz-covariant D-dimensional constant vector u”
appears at least once are needed in the generalized
Passarino-Veltman reduction. Second, up to N-point one-
loop Feynman diagrams, besides the generic one-loop scalar
Feynman integrals Z,, with 1 < n < N which are complete
to expand the generic one-loop tensor Feynman integrals in
the conventional Passarino-Veltman reduction [11,12], sev-
eral purely temporal components of generic one-loop tensor
Feynman integrals, %) = u,. 97, 73" = u,u, 97", /) =
U, u. 5" and so forth with 1 < n < N, are also needed in
the generalized Passarino-Veltman reduction to form a
complete set of elementary one-loop Feynman integrals
for expanding the generic one-loop tensor Feynman inte-
grals 7%, 777, 777", and so forth. Third, in contrast to the
Lorentz-invariant counterparts depending on p2 = p,, - p,,
in the conventional Passarino-Veltman reduction [11,12],
the generic one-loop scalar Feynman integrals in the
generalized Passarino-Veltman reduction depend independ-
ently on p) =u-p; and |p;|=/(u-p;)* = p; with
a=1,2,...,N — 1, which are no longer Lorentz-invariant
[36,37]. In addition, the purely temporal components of
generic one-loop tensor Feynman integrals are also non-
Lorentz invariant. Fourth, for the relativistic QFTs at zero
temperature and zero density, the Lorentz covariance is
restored for the absence of preferred rest reference frame.
Therefore, the D-dimensional constant vector is not defined
and always vanishes. As a consequence, one forces #” to be

twe{y’ [Py, + psyo + msly’[(I°

zero in the expressions of all the one-loop tensor Feynman
integrals in terms of tensor structures for the relativistic
QFTs at zero temperature and zero density, and hence the
generalized Passarino-Veltman reduction goes back to the
conventional Passarino-Veltman reduction.

IV. DEMONSTRATION APPLICATIONS

In this section, we present demonstration applications of
generalized Passarino-Veltman reduction for simplifying
the one-loop pseudoscalar polarization function in the
Nambu-Jona-Lasinio (NJL) model and the one-loop photon
self-energy in the D-dimensional quantum electrodynamics
(QED), respectively.

A. One-loop pseudoscalar polarization function
in the NJL model

As the first demonstration application, we utilize the
generalized Passarino-Veltman reduction to calculate the
one-loop pseudoscalar polarization function at finite tem-
perature and/or finite density in the NJL model [42,43]. In
the three-flavor version, the Lagrangian takes [36,37]

Ly = Z ylir"0, — ms +uglwy
f=ud,s

8
+GY [y
a=0

— K[dety (1 + )y + detip(1 — ¥y,

+ (lZfini“v/)z}
(115)

where we have added the term related to the chemical
potential u, for a quark of flavor f. In this expression, G
and K are dimensionful coupling constants, A denotes the
Gell-Mann matrices in flavor space, and m; is the flavor-
dependent current quark mass, respectively. The flavor
index f carried by the quark fields y; is only shown in the
free part of the Lagrangian, and the color index is generally
suppressed.

Following the notations in the Refs. [36,37], we write
down the one-loop pseudoscalar polarization function in
the NJL model [see Fig. 2] as

—k%)yo +ppyo +mpl}

=

lo+,,) _lz_mf] [(10+ko+ﬂf,) - (I-k)? —mf,]

k%) + gl (s + pis)

— GpokPus + (uppp —memp)

4 l/) I —
—4N/ i o

l°+u) —12—"1H(l°+q +up)? —(l+q)2—mfﬂ]

(116)
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AL
p

p—Fk
mf/,uf/

FIG. 2. One-loop pseudoscalar polarization function

—iH‘l;?,(k; my, ppsmp, s ) in the NJL model.

m,

[

[+ q
m, f

FIG. 3. One-loop photon self-energy iTT*(g;m, u;m, u; ) in
the D-dimensional QED.

In terms of two generic one-loop tensor Feynman integrals %7 (k;my, pgsmp, pps f) and B (kymy, pgsmp, pps f), and a
generic one-loop scalar Feynman integral By (k; my, puy; m . p s B), this one-loop pseudoscalar polarization function can be

decomposed into

4iN
—iT15S, (ks mp, s mp, p s :
L ff( My, fps My, fp p) (4”)2

=7 {gpa {%)pa(k; mf,ﬂf;mf’,/lf’;/))) -2 (k; mf,,uf;mf/,yf,)k”}

+ g0 B’ (ksmy, pupsmp, pips B) (g + pp) — gpok? Bo(ksmp, ppsmp, ups )

+ gy = mpmyp ) Bo(kmy, py mf””f’;ﬂ)'}'

(117)

After inserting J8°(py;my, puysmy, ppy f) and B (pysmy, pys my, po; ff) in Sec. III into Eq. (117) by setting py = py,
Mo = pg, my = my, my =myp, and p; = k, the one-loop pseudoscalar polarization function can be further written as

iN.,

—iTPS (% e ) = —=
le:f,(k,mf,ﬂf,mf,,uf9ﬂ) 872

Interestingly, it is adequate to express the one-loop
pseudoscalar polarization function by utilizing the one-loop
scalar Feynman integrals Ay (0;my, ug; ), Ag(0;mp,
,uf/;ﬂ), and By(k; mf,,uf;mf/,yf/;ﬁ), without resorting to
the temporal components of one-loop tensor Feynman
integrals ZB°(kymy, ppsmp, e f) and B (kymyp, ppimp,
tysB). It is emphasized that the one-loop pseudoscalar
polarization function here agrees exactly with the previous
results [36,37], which can be taken as a benchmark to test
the generalized Passarino-Veltman reduction.

B. One-loop photon self-energy
in the D-dimensional QED

As the second demonstration application, we employ the
generalized Passarino-Veltman reduction to perform

{-AO(O;mﬂﬂf;ﬂ) + Ao(0smp. iy )

+ [(mf —mp)? = (K 4 pp = pp)? —kz} Bo(k;mf:,uf;mf’vﬂf’;ﬁ)}~

(118)

the one-loop photon self-energy at finite temperature
and/or finite density in the D-dimensional QED, whose
Lagrangian in the Feynman gauge reads

—r. . 1 NC
Lorp = Wiy’ (0, + ieA,) —m + youly — 1 Fool”

—%(a"AP)Z, (119)

where e, m, and y denote the charge, mass, and chemical
potential of electrons, respectively.

The one-loop photon self-energy in the D-dimensional
QED [see Fig. 3] can be expressed as
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dPl w{y [y, + pyo + mly*[(I° + 4°)7s + pyo + m]}
Q)P[0 +p)* =P = m?][(I° + ¢° + u)* = (I + q)* — m?]

¥ (qsm, psm, ps; f) = —62/

_ 42 / d’l 995 = 9" 9po + 59, (I° + 4°)
B Q)P (104 pu)? =P = m?][(I° + ¢° + u)* — (I + q)* — m?]
42 / d’l 9595 = 9900 + 9095120 + ¢°)
Q)P[0+ p)? =P = m?|[(I° + ¢° + u)* = (I + q)* — m?]
_ger [0 242 g5 + (m* = ) g
4 / (2ﬂ)D [(IO +/’£)2 _ lz _ mZ][(IO _|_ q0 —|—,bt)2 _ (l _|_ q)2 _ mZ] N (120)

In terms of two generic one-loop tensor Feynman integrals %°(q; m, u; m, u; f) and 5°°(q; m, u; m, u; 3), and a generic
one-loop scalar Feynman integral By(q; m, u;m, u; ), the one-loop photon self-energy can be recast as

, —4ie®
i (qym, py m, 3 f) = W{ [g‘pg’a — 9" + g‘gg’p} [«@f"’(q; m. g m. i ) + B (q:m. p; m,ﬂ;ﬁ)qa}

+u {gﬂpg’o -9 g,0 + g’log’p} [2<@p(q; m, s m, w3 f) + q”By(q: m, p; m,u;ﬁ)}

+ [2/429*0970 + (m? —ﬂz)gﬂ By(q;m., u; m,ﬂ;ﬁ)}- (121)

After inserting % (py; my, uy; Mo, o ) and BP° (py;my, uy; Mo, s B) in Sec. Il into Eq. (121) by setting 1y = pr = p,
m; = my = m, and p; = g, this one-loop photon self-energy can be straightforwardly performed by employing the
generalized Passarino-Veltman reduction. To put it differently, when 2°(q;m,pu;m,u;p), B (q;m,p;m,u;p),
By(q; m, u; m, y; B), and Ay (0; m, u; f) were previously obtained, il1**(q; m, u; m, u; f) can be automatically assembled
via the generalized Passarino-Veltman reduction.

In order to further verify the generalized Passarino-Veltman reduction, we check the Ward identity of one-loop photon
self-energy at finite temperature and/or finite density. For convenience, we write down four components of
iTl* (q; m, p; m, w; B), namely,

—4ie?
(4ﬂ)D/2

+ [ﬂ(ﬂ +4°) + mﬂ Bo(gsm, p:m, y; ) = gup [«%"”(q; m, s m, p; f) + B (q; m, p; m,u;ﬂ)qh} }
(122)

iM% (gzm. pm. i ) = {ﬁoo(q;m,ﬂ;m,ﬂ;ﬂ) + (2p + 4°) B (q; m. s m. s B)

—4je?
(4”)D/2

+2u + ¢°) B (q;m, p;m, s B) + ug'Bo(q; m. p; m,u;ﬁ)-}
= i1 (q; m, s m, i3 ), (123)

i (q; m, s m, s ) = {~%’0"(q;m,ﬂ;m,u;ﬁ) + B (qsm, s m, i f) + B (q:m, i m, ps; f) g’

o —4ie? o . o
i1 (g; m, s m, s ) = ()7 {(Q’agfb =97 9ab + 99 a) [e@“”(q; m, wsm s ) + A (q; m, m,u;ﬁ)q”}

- g7 [%00(61; m.usm.,ps ) + (2u + q°) B0 (qs m. s m, s )
+ (ulu +4°) —mz)Bo(q;m,u;m,u;ﬂ)H. (124)
Obviously, i1 (q; m, u; m, u; B), il (q; m, w; m, p; B), iM% (q; m, w; m, w; B), and il (q; m, u; m, w; ) can be expressed

in terms of B°(q;m,u;m,u;B) and B (q; m, u;m, u; B), Bo(q; m, u;m, u; B), and Ay(0; m, u; ). Substituting these
results into qu/’O(q;m,,u;m,y;ﬂ) and qpl'[/’j(q;m,ﬂ;m,u;ﬁ), we have
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q, IV (q:m. pim. p; B) = gl (g: m. pzm. iz ) + q11° (g m. s m. iz B)

= ¢ (g m, iy m, p; f) = ' (g3 m. pm. p; ) = 0, (125)
q,V (g:m.pizm. i ) = qoT1” (g m. pizm. iz ) + q X1 (g m. i m. pi; p)
= ¢"T1% (g m. s m. s ) = ¢' T (g m. s, s ) = 0. (126)

These two relations can be further written in a compacted
form as qu/’”(q;m,,u; m, u; #) = 0, which is nothing but
the Ward identity. In this sense, we verified the generalized
Passarino-Veltman reduction by checking the Ward identity
of one-loop photon self-energy at finite temperature and/or
finite density.

It is subtle that besides the one-loop scalar Feynman
integrals Ay (0;m, u; ) and By(g;m,u;m,u; f) that are
adequate for expanding the one-loop pseudoscalar polari-
zation function in the NJL model, the purely temporal
components of generic one-loop tensor Feynman integrals
B (q;m, p;m,w; ) and B (q;m,u;m, u; ) are also
needed to form a complete set of basis in the one-loop
photon self-energy in the D-dimensional QED. This differ-
ence originates from that the interaction term is —yy”yA,
in the QED (vector-type interaction) while (A% )? +
(wiy’2%w)?* in the NJL model (scalar-type and pseudosca-
lar-type interactions). Roughly, in the relativistic QFTs with
scalar-type or pseudoscalar-type interaction, the generic
one-loop scalar Feynman integrals form a complete set of
one-loop Feynman integrals, such as in the NJL model. By
contrast, in the theories with vector-type or tensor-type
interaction, the temporal components of generic one-loop
tensor Feynman integrals are also needed, such as in the
QED. Additionally, the generalized Passarino-Veltman
reduction presented here provides a procedure for auto-
matic algebraic calculation, which in the Rehberg’s scheme
[36,37], the procedure can only be performed by hand. In
this sense, the generalized Passarino-Veltman reduction
presented in Sec. III goes beyond the applicability of
Rehberg’s works [36,37].

We further comment on some aspects of practical
application of employing the generalized Passarino-
Veltman reduction to the calculation of one-loop photon
self-energy. In the context of QED for Weyl fermion
(setting m = 0 in the Lagrangian) in D =4 dimension,
the author of the present paper explicitly calculated [38]
analytical expressions of one-loop photon self-energy
iT"°(q; 0, 4;0, u; f = o0) at zero temperature and finite
density by utilizing the crude version of generalized
Passarino-Veltman reduction. The exact analytical
expressions in Ref. [38] automatically give rise to
iM%(q; 0,40, 43§ = o0)  [44], iT1"(q; 0,450, 43 f = o0)
[diagonal component of il17(q;0, u;0,u; 8 = o0)] [45],
iM% (g3 0, 430, 3 fp = 00) /iT1(q: 0, p; 0, 3 fp = 00)  [46],

the parity-odd part of iI1V(q;0,u;0, ;8 = o) [47], and
the parity-even part of il1V(q; 0, u; 0, u; f = o). Besides,
under the hard dense loop approximation (u > ¢°, |q]), it
restores the results in Ref. [48]. All of these indicate that it
is more efficient and general to calculate the one-loop
photon energy once-for-all with the help of generalized
Passarino-Veltman reduction [38] than by the conventional
one-by-one method [44-48].

V. SUMMARY AND DISCUSSIONS

In summary, we presented a generalized Passarino-
Veltman reduction for simplifying the generic one-loop
tensor Feynman integrals in the one-loop Feynman dia-
grams of relativistic QFTs at finite temperature and/or finite
density. It is explicitly demonstrated that the generic one-
loop tensor Feynman integrals up to three-point can be
decomposed as linear combinations of symmetric Lorentz-
covariant tensor structures, non-Lorentz-covariant tensor
structures, and their hybrid terms with the form factors
being expressed by three generic one-loop scalar Feynman
integrals Ay(0;my, p1; ), Bo(pismi, pismy, pp; f), and
Co(p1s pasmy, py; my, iy m3, p3; f3), and five generic one-
loop tensor Feynman integrals Z°(p;my, uy; ma, uo; ),
B (prsmy, iy my, s ), CO(pys pasmy, s my, po; ms,
3 B), €C(pi. pasmy. i ma, i ms, s B), and €00 (py,
DPoi My, pys Mo, o M3, y3; f3). Since the generic one-loop
scalar Feynman integrals, Ay(0;my,pu;8), Bo(pismy,
pHisma, pios B), and Co(pr, posmy,pysmy, pasms, pzsf3), had
already been analytically calculated in the Matsubara
formalism [37], after further analytically performing the
purely temporal components of generic one-loop tensor
Feynman integrals %°(py; my, py3 my, o3 ), B (p1;my,
ps Mo, i3 ), C0(prs pasmy, pys g, ppsms, s ), € (py,
Pasmy, s my, posms, pss f3),  and  G0(py, pysmy, g
my, oy M3, uz; B) in the Matsubara formalism, one can
reduce all the one-loop Feynman diagrams up to three-point
to these generic one-loop scalar Feynman integrals and the
purely temporal components of generic one-loop tensor
Feynman integrals.

It is helpful to compare the generalized Passarino-
Veltman reduction above with its alternative representation.
Following the essential spirit of conventional Passarino-
Veltman reduction that expresses the generic one-loop
tensor Feynman integrals in terms of the Lorentz-covariant
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tensor structures dictated by the Lorentz symmetry [11,13,14], one can reduce the spatial components of generic one-loop
tensor Feynman integrals by utilizing the covariant tensor structures imposed by the SO(D — 1) spatial rotation symmetry.
In a spatial rotation covariant manner, the spatial components of generic one-loop tensor Feynman integrals
B (prsmy, py; My, wy; B) and BP°(py; my, uy; my, yo; ff) can be reduced on the same footing as

B (primy. pysmy, po; f) = By (primy. g my, s f) i,
BO{(Pﬁml,m;mz,llz;ﬂ) = BiO(Pﬁml,Ml;mz,llz;ﬂ)
= PP By (prsmy, pysmy, o B) + piBia(prsmy, i my, py: ),

%ij(l?l;ml,ﬂl;mz,ﬂz;ﬂ) = —5ijBoo(Pl§m17/41;”12,/42;,3) + PilP{Bn(Pl;ml,/ll;mz,ﬂz;ﬁ)- (127)

Note that the other two components of the generic one-loop tensor Feynman integrals %”(p;m, u; my, uy; 3) and
GBP°(pysmy, iy My, fy; B) are nothing but B°(p s my, uy; my, o B) and B (p s my, i my, o B), which are related to the
form factors By(p;my, pisma, pn), Bo(pismy, uysmo, pias B), Boo(pismy, s moy, pos B), Biy(prsmy, pys ma, pos B),
Bia(primy. i ma, po; ), and Boy(primy, pys ma, po; ) as

«@O(Pl;ml,ﬂl;mz,ﬂﬂﬁ) = Bl(p];mla//‘l;mb/h;ﬂ)p(l) + Bz(Pl;ml,M;mz,Hz;ﬂ),
B (prymy.pysmy,pys B) = Boo(prsmy,pysmy, pas B) + pOpByy (prsmy. pys my. py; )

+2pB1a(pismy, pys ma, o ) + Bao(prsmy, g my, p: ). (128)

Compared with the generalized Passarino-Veltman
reduction in Sec. III, which treats the spacetime compo-
nents of generic one-loop tensor Feynman integrals on the
same footing, the equivalent representation here restricts
the reduction only to the spatial component of the generic
one-loop tensor Feynman integrals, which is similar to the
naive generalization of conventional Passarino-Veltman
reduction at finite temperature and/or finite density [38]
proposed by the author of the present paper.

The framework of generalized Passarino-Veltman
reduction for the generic one-loop tensor Feynman inte-
grals can be straightforwardly extended to N-point, and
hence can efficiently evaluate a huge amount of one-loop
Feynman diagrams in physical systems described by the
renormalizable relativistic QFTs at finite temperature and/
or finite density, such as hot and dense quark matter
[39,40]. Based on the generalized Passarino-Veltman
reduction in this work, computer program packages can
be developed for automatic algebraic calculation as that in
the conventional Passarino-Veltman reduction for the
relativistic QFTs [30-35] or that in the generalization
of nonrelativistic effective field theories at zero temper-
ature and zero density [49].

It is emphasized that both the conventional Passarino-
Veltman reduction and the generalized Passarino-Veltman
reduction are based on continuous spacetime symmetry of
the system. For the conventional Passarino-Veltman reduc-
tion, it is the SO(1, D — 1) (proper normal) Lorentz sym-
metry. While for the generalized Passarino-Veltman
reduction, it is the SO(D — 1) spatial rotation symmetry

broken down from Lorentz symmetry. If the SO(D — 1)
symmetry further breaks down to the SO(D — 2) symmetry,
then one can introduce another extra D-dimensional constant
vector v = (0;0,...,0, 1). Following a similar procedure,
one can then reduce the generic one-loop tensor Feynman
integrals after the symmetry-breaking of SO(D — 1) spatial
rotation. Furthermore, the specific value of the dimension of
spacetime D does not affect the generalized Passarino-
Veltman reduction in this work, for example, it is valid for
two distinct dimensions of physical interest, D =3 or
D = 4. However, if the dimension of spacetime is D = 2
or the continuous spacetime symmetry of a physical system
is less than SO(2) in D dimension, there is no advantage of
applying conventional Passarino-Veltman reduction or gen-
eralized Passarino-Veltman reduction to simplify the generic
one-loop tensor Feynman integrals. Specifically, for the
relativistic QFTs at zero temperature and zero density,
the Lorentz covariance is restored for the absence of the
preferred rest reference frame, and hence the D-dimensional
constant vector always vanishes. As a consequence, the
generalized Passarino-Veltman reduction goes back to the
conventional Passarino-Veltman reduction.

This work opens up a new realm for the reductions of
Feynman diagrams at loop level in the physical systems
without Lorentz covariance. The generalized Passarino-
Veltman reduction presented in this work can be generalized
to the physical systems of condensed matter described by
pseudorelativistic QFTs at finite temperature and/or finite
density, such as graphene [50] and silicene [51] in two
spatial dimension and Dirac/Weyl semimetals [52] in three
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spatial dimension. In addition, the generalizations include
possible extensions for one-loop tensor Feynman integrals
in nonrelativistic effective field theories and two-loop tensor
Feynman integrals in relativistic QFTs. It is interesting to
note that the reduction of one-loop tensor Feynman integrals
in nonrelativistic effective field theories at zero temperature
and zero density and the corresponding software toolkit
FeynOnium building upon FeynCalc for automatic calcu-
lations [49] could be generalized to their counterparts at
finite temperature and/or finite density by applying the
essential spirits in this work. However, these important

problems are beyond the focus of this work and deserve
further study in the future.
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APPENDIX A: EXPRESSIONS OF fl(pl;ml,ﬂl;mz,ﬂz;ﬂ) AND fz(pl;ml,ﬂl;mz,ﬂz;ﬂ)

The numerator in the integrand of F(py;my, u;; my, py; ) in Eq. (23) can be decomposed as

P+pi—(1+p)*

pi-1=p°—1-p; =pYl°+ 2

2

2 2 0y2 2 2
pi —mi) = [(ua + pl)* —m3] +p
(1 1) [(2 l) 2] 1_(ﬂ2_ﬂl)lo+ )

P(L pisma, pp) — P(L,0;my, py)

- (A1)

Substituting this decomposition into the definition of F(py;my, u1;my, po; ) in Eq. (23), we can directly express

Fi(prsmy, pysmy, pp; B) as

2

0 = md) = [l + )7 = 3] 482

-7:1(P1;m1,/41§m2,ﬂ2§ﬁ) = )

= (up — 1) B (prsmy, pysma, o B) +

(pl;mluul;mZ»/’Q;ﬁ)

Ao(0;my, py; B) — Ao(0; my, po; )
3 .

(A2)

Different from the procedure for expressing Fi(pi;my,pui;my, puy;f3), we can straightforwardly obtain

Fy(piimy, pysmy, pos B) by defining

Fo(prsmy, pismy, o3 f) = up‘%p(pl;ml?ﬂl;mZ’ﬂZ;ﬁ) = B (prsmy, pysmy, o3 ). (A3)
At zero temperature and zero density, F;(py;my, uy; mo, py; f) reduces to
:'%l(pl;mlnul =0;my,up =0, = 00) = Pl,;@p(m;ml»ﬂl =0;my,u, =0, = 00)
= WBO(PIZWI,M = 0;my, py = 0;f = o0)
+A~0(0;m1’ﬂ1 202ﬂ:°°)—«‘{0(0§m2’,u2:Oéﬂzoo)’ (A4)

2

which can be obtained by setting u; = p, = 0 and replacing the symbols without tilde (7 > 0) by the counterparts with
tilde (7 = 0). Because u” automatically vanishes for the relativistic QFTs at zero temperature and zero density, it is not

necessary to calculate .7-"2(p1;m1,,ul = 0;my, 4y = 0;# = ), the counterpart of F,(pi;my,ui;my, usr;ff) at zero
temperature.

APPENDIX B: EXPRESSIONS OF -'Foo(l’uml,ﬂl;mz,ﬂz;ﬂ)a -7:11(171§m1,ﬂ1§m27ﬂ2;ﬂ>, -7:'12(171;’”1,#1;”127/12;,3),
AND Fy(p1;my. py;my. iz f)

We express the numerator in the integrand of Fog(py;my, u1;my, uy; ) in Eq. (34) as

= (10)2 -P= —(ﬂ% - m%) - 2#110 =+ 77(170§m17ﬂ1)~ (Bl)
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Substituting this decomposition into the definition of Foy(py;my, uy; ma, po; ), we have

]:oo(P1§m1,M1§m2,M2§ﬂ) = gpa%M(Pﬁmhm;mz,Mz;ﬂ)
= _</4% - m%)Bo(Pﬁml’ﬂl;mz’ﬂz;ﬁ) - 2#1@0(171;"117#13"127#23,3) + Ao (055, 123 B). (B2)

Similarly, we recast the numerator in the integrand of F;(py;my, u1;my, up; ) in Eq. (35) as

(117 = S P prima ) ~ POy )24 LWL = b 2P BT HDEE oo
— (2 = 1) [P(L, p1sma, py) = P(L,0; my, py)]1°
L i =mi) = [ ;L pY)? —m3] +pi PU py: iy, ) — POy )]
= (k2 = p){ (7 = m3) = (2 + PY)* = m3] + p7}0°. (B3)

It is helpful to perform two integrations

/ d’l 1 P(I’Pﬁmz,ﬂz)_l :/ dP1 1 [2(uy + p§ =) (I° + ) + (o + P} = 1)* + (mi —m3 —pi) =21 - p,
it 4 P10y my .y inP/2 4 P(L,0;my, py)

((/‘2+p(l)_ﬂl)2:_(m%_m% _p%)-AO(O;mlvﬂl;ﬂ)v (B4)

and

/ lel P(I,O;ml,,ul) 1
inP/? 4 7)(17171;’"27/42)

:/ d’l 1 {_2(/42+P(1)—M1)(10+M2+P(1))+(ﬂ2+P?—ﬂ1)2—(m%—m%—P%)+2I'P1

inP/24 P(l, prsmy, py)

o+ PO — uy)? = (m? —m2 —p?) - 2p?
:( 2 1 1) (4] 2 l) ]A()(pl;m2»/"2;ﬂ)

4

where we have applied the following four relations:

le 10 0
/. D/Z( i+ p1) =0, (B8)
2 P(I,Pﬁmz,llz)
/ a’lt (I +uw) _0 (B6)
in? P PO my ) L Lp
= —p2Ay(0;my, pr; B). (B9
/iﬂD/2 P(lypl;mz,/lz) plAO( my, o ﬂ) ( )
2] / Substituting the decomposition in Eq. (B3) and two
/ : P =0, (B7) integrations in Egs. (B4) and (B5) into the definition of
inP/2 P(1,0;my. uy) Fri(piimy, pysmy, pp; B) in Eq. (35), we have
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]:11(171;"11,#1;"12,#2;,3) = P1pP1593p6(P1;m1,/112m2 Mz;ﬂ)

{(Ml —mi) = (w2 + pY)?* — m3] + pi}?
4

+ (y = 11> B (prsmy, py; ma, o3 )

By(pismy.pysmy, piy; )

= (ua = p){ (i = m3) = (2 + PY)* = m3] +pi} B (prsmy, prs my, a3 B)

— (2 = ) [ °(0;my pys B) — °(primy. o B)

J o) = [ ;L PAY =) +pi [Ao(0s my, i3 ) = Ao(p s ma, a3 B)]
+(ﬂ2+l??—/l1)2:(m2—mz Pl)%(o;ml’ﬂl;ﬁ)
+(/¢2—|—p?—/¢1)2;(m%—m§ +p%),40(p1;m2,/42;ﬂ). (BIO)

With the help of Eq. (18), we have

2 2 212
Uy —m Wy +py)- —m3 +p
711(P12m17ﬂ1;m2,ﬂ2;ﬂ) :{< 1 1) [( 2 4 ]) 2] l} BO(pl;ml7ﬂ1;m27ﬂ2;ﬂ)

+ (2 = 11 )2B% (prsmy. s mo. o )
- (#2—/41){(#1 _ml) [(ﬂ2+P1) —mz] + P }%}O(Pl’ml,/llamz Ha3 )

+ (m% _ml _P1) — (1 —Mz) - 21’1(#1 +H2)A0(O‘m| i)
4 b 9 b
(m? —m3 +3p1) = (w1 — u2)* +2pY (w1 + o)

The numerator in the integrand of F,(py;my, py; ma, po; ) in Eq. (36) can be written as

2 02\ 02 _ ,.,2 2 l, : , lO_ 1’0; , lO
l()(p1 . l) _ (ﬂl ml) [(ﬂz ;_pl) m2] +p1 l()_ (ﬂz_ﬂl)lolo+7)( P15my lu2) 5 P( ny ﬂl) ) (BIZ)

Substituting this decomposition into the definition of F > (py;my, py; ma, po; ) in Eq. (36), we have

Fro(primy, pyymy, pos f) = Pl,;ur;«@ﬂ”(l?l;ml,m;mz,,uz;ﬁ)

2 2 0)2 2 2
ud—md) = [(uo + pY)* —m3] +p
:( 1 1) [( 2 1) 2] lﬁo(pl;ml’ﬂl;mQ’ﬂZ;ﬁ)

2
A0;my, py; B) — O (prsmy. py:
—(Mz—ﬂl)r%)oo(Plémhﬂl;mz,llz;ﬂ)+ ( Sl )2 (Pimz. )
2 2 0)2 2 2
ui = mi) = (2 + pY)* = m3] +p
R ) s £ PP B )
_(,“2—/41)%00(191;’”1,#1;’"2,/12;@
L Ao (Osmy i ) + (a4 P) Ag(0s o, i B). (B13)

2

Different from the above decomposition procedures, Fa,(py;my, i1; ma, iy; f) can be straightforwardly obtained by
defining

7:22<P12m17/¢12m2,ﬂ2;ﬁ> = ”p”af@’w(m;m17ﬂ1§m2,ﬂ2;ﬂ) = 9300(171;"11,#1;”12’#29,3)- (314)
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At zero temperature and zero density, Foo(py;my, f1;ma, po; ) and F iy (prsmy, py; my, 4y B) can be rewritten as

Foolprimy,puy = 03my, py = 0; 8 = c0)
= m%BO(Pl;ml,//ll =0;my, py = 0; = 0) + AO(O; my, pp, = 0;f = ), (B15)

Fulpismypu = 0ymy, up = 0; = )
m2 —m? — p?)? .
:%Bo(lﬁ;ml,ﬂl =05my, pup =0, = °°)
m2 —m2 — p?
2 1 P1A0

m%—m%+3p%A0
4

(0smy.py = 03 = o0) 2= Ay (0 ma. iy = 0: = 00), (B16)

which can be obtained by setting u; = p, = 0 and replacing the symbols without tilde (7 > 0) by the counterparts with
tilde (T = 0). Because ©#” and u° automatically vanish for the relativistic QFTs at zero temperature and zero density, it is not

necessary to calculate F 15 (py;my, g = 0;my, piy = 0;f = o) and Fa(pysmy, uy = 0;my, iy = 0; § = o0), the counter-
parts of Fo(pysmy, pysmy, ) and Foy(pysmy, pysmy, 4y) at zero temperature.

APPENDIX C: EXPRESSIONS OF ICy(py,pa;my, sy, po; m3, p3; B)s Ky (p1,p2smy, iy my, pym3, pis; )
AND IC3(py.paimy, py;my, py; my, p3; f)
One can express Ki(pi, pasmy, puysmy, posms, f3; ), Ko(pi, pasmy, piys ma, posms, puss ), and Ks(py, pasmy, py;

My, oy M3, jz; B) in a parallel procedure. The numerator in the integrand of ICy(py, pa; my, 1; mo, po; ms, uz; B) can be
decomposed as

P+pi—(1+p)?
2

2 2 0)2 2 2
uy—my) = ((po + pi)"—m3) +p
( 1 1) (( 22 1) 2) 1_(ﬂ2_ﬂ1)10+

pi-l=pll°=20-py = pil’+

P(L, prsma, pp) — P(L0smy, py)
> .

(C1)
Substituting it into the definition of K, (py, pa; my, uy; ma, po; ms, p3; ) in Eq. (52), we obtain

Ki(p1. pasmy, pysmy, oy ms, pz; f) = Pl,fg”(l?bP2§m1,/412m2»ﬂ2§m37ﬂ3§ﬁ)

2 2 0\2 2 2
uy —my) —((Up + pi)-—m3)+p
:( ! 1) (( 22 1) 2> 1CO(PI,Pz;ml,ﬂl;mz,ﬂz;m3,ﬂ3§ﬁ)

- (/42 —/41)(50(171,172; my, 1y, mz,ﬂ22m3,ll32ﬂ)

n Bo(p1 + paimy.pysms, ps; f) — Bo(pas ma., pos ms, pss )
5 .

(C2)
Similarly, the numerator in the integrand of KC,(py, po; my, uy; my, po; ms, p3; f) can be recast as

[(uy + p)2 —m3 —p3] = [(u3 + p) + p9)? — m3 — (p) +p2)?]
2
P(L, py + pasms, pus) — P(L, primy, pr)
: .

prl=

= (3 = ) I° +

(C3)

Substituting it into the definition of KCy(py, po; my, uy; mo, po; ms, ps; ) in Eq. (53), we arrive at
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’Cz(PhPz;m17ﬂ1§m2,ﬂz§m37ﬂ3§ﬂ) = Pzp%p@hP2§m1,ﬂ1;m23ﬂ2§m37ﬂ3§ﬂ)
(2 + P)* = m3 —p3) = [(us + pY + P)* = m3 = (p1 +p2)’]

2

X Co(p1. pasmy, pys My, po; My, ps; )
— (43 — p2)E°(p1. pas my, s Moy, s M3, s B)

n Bo(pismy. puys my, o B) = Bo(py + pasmy, pysms, pis; )

. (c4)

Different from the above procedures, KC3(py, po; my, puy; ma, po; ms, ps; f3) can be straightforwardly obtained by defining

KC5(p1s posmy, s mo, pios ms, pis; ) = ”p%p(Pl’P2§m17ﬂ1§m2,ﬂ2§m3’/¢32ﬂ)
= %O(Pth;m1,ﬂ1§m2,ﬂ2§m3,ﬂ3;ﬂ)- (CS)

At zero temperature and zero density, KC;(py, pa; my, py; Mo, o ms, ps; ) and Ky (py, pas my, pys mo, po; ms, ps; ff) can

be rewritten as

ICi(p1s p2smy,puy = 0;my, py = 0;m3, 3 = 0; f = o0)

m2—m? — p? -
Z%Co(m,pz;ml,m = 0;my, gy = 0;ms3, i3 = 0; f = o0)
Bo(pi + pasmy.py = 0;ms, s = 0; B = 00) = By(pa; my. py = 0;m3, p3 = 0, f = o0)
’az(Pth;ml’Ml = 0;my, pty = 05m3, pu3 = 0;f = 0)
m2—m2 + p? = (py + pa)>
= 2 12 Py 2) Co(p1, primy, iy = 05my, py = 03m3, p3 = 03 f = o0)
B smy g = 03mo, iy = 0; 5 = 00) — B + pasmy,pp = 0;m3, 43 =05 = o0
+ O(Pl 1, M1 2: H2 4 ) 0(171 P2smy, [ 3s M3 p ) (C7)

2 ’

which can be obtained by setting ¢; = p, = p3 = 0 and replacing the symbols without tilde (7 > 0) by the counterparts
with tilde (T = 0). Because u” automatically vanishes for the relativistic QFTs at zero temperature and zero density, it is not

necessary to calculate I~C3(p1,p2;m1,,ul = 0;my, fty = 0;m3, 3 = 0; f = ), the counterpart of Ks3(py, pa;my,uy;

My, jiy; M3, H3; f3) at zero temperature.
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