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Renormalization group flows of the SU(N;) x SU(N,) symmetric Ginzburg-Landau potential are
calculated for a general number of flavors, N ;. Our approach does not rely on the e expansion, but uses the

functional renormalization group, formulated directly in d = 3 spatial dimensions, with the inclusion of all
possible (perturbatively) relevant and marginal operators, whose number is considerably larger than those

in d = 4. We find new, potentially infrared stable fixed points spanned throughout the entire N range. By

conjecturing that the thermal chiral transition is governed by these “flavor continuous” fixed points,
stability analyses show that for N, > 5 the chiral transition is of second order, while for N, = 2, 3, 4, itis of
first order. We argue that the U, (1) anomaly controls the strength of the first-order chiral transition for
N, = 2,3, 4, and makes it almost indistinguishable from a second-order one, if it is sufficiently weak at the

critical point. This could open up a new strategy to investigate the strength of the U, (1) symmetry breaking

around the critical temperature.

DOI: 10.1103/PhysRevD.110.016021

I. INTRODUCTION

Since the seminal paper of Pisarski and Wilczek [1] it has
been widely accepted that the chiral phase transition of
quantum chromodynamics (QCD) is of fluctuation-induced
first-order in the chiral limit for Ny > 2 quark flavors. For
N = 2, the transition order depends on the strength of the
U A (1) anomaly at the critical point in the underlying theory
before the dimensional reduction: Only if m,/(T.) > T,
does the Ginzburg-Landau potential acquire O(4) sym-
metry and predict the transition to be of second-order. The
original argument of [I] was based on the absence of
infrared stable fixed points in the € expansion around d = 4
of the renormalization group (RG) flows. RG studies
directly at d = 3 either by the perturbative approach with
higher-loop contributions [2] or by the nonperturbative
functional renormalization group (FRG) technique [3-7]
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also seemed to confirm the original scenario: However,
those approaches did not consider all relevant and marginal
operators at d = 3; therefore, the fixed-point structure of
the full parameter space has not been fully explored.

If the chiral transition is of first-order for N r>12,
as predicted by the ¢ expansion, then there must exist a
critical quark mass, at which the chiral transition changes
from crossover (m, > m, ) to first order (m, < my c).
Several lattice QCD simulations attempted to determine
my oic [8—12], but they typically showed strong cutoff and
discretization dependencies. Recently, lattice QCD simu-
lations with unimproved staggered fermions suggested that
the chiral transition could be of second-order in the chiral
limit, presumably for any flavor number up to the con-
formal window, i.e., for N, < N;i ~9-12 [13]. A study
using highly improved staggered quark action did not find
direct evidence of the first-order transition for Ny = 3 in
the range of the pion mass 80 MeV < m, < 140 MeV [14].
With the use of Mobius domain wall fermions, the
critical quark mass for Ny = 3 was estimated to be m, ¢ <
4 MeV [15]. Apart from lattice studies, a recent work using
the Dyson-Schwinger approach also predicted the absence
of a first-order transition for Ny = 3 [16]. Furthermore,
nonperturbative computations with the numerical conformal
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bootstrap also claimed that the transition can be of second-
order for Ny = 3 [17]. The increasing number of pieces of
evidence of a possible second-order transition for Ny > 2, in
contrast to the prediction of the e expansion, is puzzling.

One of the present authors calculated the renormalization
group flows of couplings of the N; = 3 Ginzburg-Landau
potential in a truncation, where all terms up to O(¢%) in
d =3 were included [18]. The necessity of such an
approximation was based on the expectation that at least
all relevant and marginal interactions around the Gaussian
fixed point should be taken into account (the marginal
interactions contain a number of six fields). This study was
performed directly in d = 3 dimensions, without the use of
the e expansion, employing the FRG technique. The main
finding was that there does exist an infrared stable fixed
point, which may potentially correspond to a second-order
chiral transition for N, = 3, but only if the U, (1) anomaly
vanishes at the critical point. This is in contrast to the results
of [1,4] for N; = 2, where the transition was predicted to be
of second-order [belonging to the O(4) universality class]
only if the U, (1) anomaly is strong enough.

The thermal fate of the U, (1) symmetry is still under
debate [19]. There are studies finding that the axial anomaly
is still relevant at the critical temperature [20-25], while
some others claim that the Uy (1) symmetry is in effect
restored at that point [14,26-29]. We also note that the
thermal behavior of the anomaly could be very different for
vanishing quark masses compared to the physical point [30].

Our goal in the present study is to extend the previous
results of [18] to an arbitrary number of quark flavors. To
this end, we use the FRG technique in the local potential
approximation. The free energy functional will be expanded
up to O(¢°) so that all relevant and marginal interactions
(around the Gaussian fixed point) can be included. We are
interested in whether new fixed point(s) with one relevant
direction can be found, which were inaccessible in earlier
studies and could potentially be responsible for a second-
order chiral transition.

The paper is organized as follows. In Sec. II, we set up the
model and the FRG method with the corresponding trunca-
tion, putting particular emphasis on the chiral invariant
structure as building blocks of the potential. We analyze in
detail the main differences as the flavor number increases. In
Sec. III, we present the calculations of the renormalization
group flows and give the f functions explicitly for Ny > 6.
For lower values of N, the corresponding formulas are very
complicated and put into Supplemental Material [31].
Section [V is devoted to discussing the fixed point structures,
together with their stability analyses. The reader finds the
conclusions in Sec. V.

IL. FRG FOR THE SU(N;) x SU(N;) MODEL

In order to decide whether a system can undergo a second-
order phase transition, one needs to know if the free energy,

F, as afunctional of the mean field (or implicitly an external
source), can admit scaling behavior. That is, one has to
search for fixed points of the renormalization group flows of
F. In its functional version, the renormalization group
generates the scale dependence of the free energy, denoted
from now on by F, via the Wetterich equation [32],

1~
(3ka = EakTrLog(}'Z + Rk)? (1)

where 77 is the second derivative matrix of 7 with respect
to all field variables, and k is the scaling variable being the
wave number that separates fluctuations, which are included
in F; from those that are not. This scale separation is
guaranteed by the regulator matrix, R,, which, in effect
freezes all modes with wave numbers lower than k. Note that

the 5k operator by definition acts only on R, and both the Tr
and Log operations need to be taken in the functional and
matrix senses.

In the system of our interest F is a functional of a
Ny x N; complex matrix field ®, which emerges from the
quark gg condensate of the underlying microscopic theory
of quantum chromodynamics. According to the Ginzburg-
Landau paradigm, close to a second-order (or weakly first-
order) transition, at a suitable UV scale A, also serving as
the starting point of the RG, F, can be expanded in terms
of the components of ®. To this end, it is convenient to use
the U(N;) generators as a basis, ie, ®=¢,T,=
(sq +in,)T,, where Tr(T,T)) = b,,/2 [see details of
the U(N) algebra in Appendix A].

In this study we employ the leading order of the
derivative expansion without wave function renormaliza-
tion, sometimes called the local potential approximation
(LPA). Omitting the wave function renormalization is
equivalent of neglecting the anomalous dimension, which,
based on studies on scalar models, is expected to be small.!
That is, the scale dependent free energy is approximated as

Fo = / PA[Tr[0,070,0] + V, (D)), 2)

where the local function V; is called the potential, giving
the free energy density for homogeneous field configura-
tions. From here onwards, we restrict our discussion to an
approximation of V), that only contains perturbatively
relevant and marginal interactions, i.e., in d = 3 spatial
dimensions every possible term up to the order O(¢%) is
kept, while the remaining ones are dropped as they are
irrelevant (if the anomalous dimension is small, then
scaling is equivalent to that of around the Gaussian fixed
point). Note that this creates space for a much larger set of

'In case of O(N) scalar theories, the anomalous dimension is
of the order of O(1072).
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interactions compared to the ¢ expansion, which operates
close to d = 4, allowing only terms up to O(¢*).

Since we are not to rely on the ¢ expansion, that is, all
renormalization group flows will be evaluated directly in
d = 3, there is no small parameter in our approach and thus
the optimization of (1) important. First we note that scale
separation in (1) is achieved through the regulator term

1 / Ry(R.5)Tr(@ (7)0(3)]. 3)

which is chirally symmetric [note that R, (X, y) = Ry (¥, X)],
therefore, chiral symmetry is respected throughout the RG
flow. Second, it has been known for a long time that for the
approximate form of (2), the R(q,p) = (2x)*(k* —g*) x
O(k*—¢?)6(¢+ p) function, defined in Fourier space,
optimizes the renormalization group flow equation (1) [33].
Itis also known that this choice guarantees that the derivative
expansion is converging [34]. Assuming homogeneous field
configurations for @, this choice of regularization leads (1) to

k* ~
ko VYV, = —— oitr log(k> + V), 4
KV = 152 % g( i) (4)
where V) is the second derivative matrix of V;, and now the
trace and log operations need to be taken in the matrix sense

only. In accordance with the definition of 5k, it acts only on
the explicit k dependence, and not that of V}.

A. Basic invariants

Let Uy, and Uy be independent N, X N unitary matri-
ces. Then, a chiral transformation acts on the field as
O - U U ;. If we are to construct an F, functional that
respects chiral symmetry at all scales, then the potential V,
can only depend on the following combinations of ®:

I, = Tr(®'®), (5a)
I, = Tr(® oD @), (5b)
I; = Tr(O OO dDTD), (5¢)

where we also used our assumption that beyond O(¢%) all
terms are to be dropped. Note that, for Ny = 2, I is not
independent from I, and I,, therefore, it must also be left
out from V. For simplicity, we will work with a modified
set of invariants,

I, = Tr(®'®), (6a)
I = Tr(®'® — Tr(®Td)/N,)?, (6b)
I; =Tr(®'® - Tr(®'®)/N,)?, (6¢)

which is completely equivalent to (5). This will turn out to
be a more convenient choice as in the background
D~ Ty,un, O'® = Tr(®'®) /Ny, thus I, =0 = I;.

We also need to implement the U, (1) anomaly into the
free energy. This can be achieved via the usual Kobayashi-
Maskawa-‘t Hooft (KMT) determinant term [35,36], i.e.,

Lo = det @' + det ®. (7)

Note that 74, = det ®" — det® has the wrong parity, and
1 2. is not independent from /4. and the previous invariants
for any flavor number N;. That is to say, the only way to
include the anomaly is through the powers of I, pre-
sumably multiplied by invariants that are chirally symmet-
ric (i.e., Il’ 12, 13)

B. Structure of the local potential
We divide the potential into two parts,

Vi = Veni + Vano (8)

where Vg, respects any Up (Ny) x Ug(Ny) transforma-
tion, while V,, ; breaks U, (1). We stress that the form of
Venx 1s completely independent of the actual flavor number
(apart from Ny = 2, where I3 needs to be left out as it is not
an independent invariant), while the structure of V,,
depends on the size of @, determined by N,. By leaving
out the perturbatively irrelevant interactions, we have

Venr = m* 1 + g1 + g1,
+ M0+ WL, + g5, 9)

where in each line we have O(¢?), O(¢*), O(¢®) inter-
actions, respectively. Note that, close to d =4 spatial
dimensions, m?, g,, and g, are the only couplings that
are not irrelevant, however, for d =3 there are three
additional ones, i.e., 4;, 4, g3 (for Ny =2 we have to
set formally g; = 0). Now we investigate the structure of
Vank as a function of N. Our task is to find all anomalous
interactions, whose field content does not exceed O(¢°).

N; = 2: In this case the ® matrix is 2 x 2, thus I, is
O(¢?). This yields various new interactions to emerge from
the U,(1) anomaly. Keeping only the (perturbatively)
relevant and marginal terms we have

Van,k = aldet
+ aylgy + by g
+ a3l + Dol + b3 11 I + balolyer. (10)
where the terms in each line are O(¢?), O(¢*), and O(¢°),
respectively. For N, =2, the number of the relevant

and marginal couplings is 12 (note again that g; =0
for Ny =2).
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Ny = 3: The ® matrix is 3 x 3, and as a consequence /¢
is O(¢?). Dropping the irrelevant interactions we have

Vank = alge + bl 1 + ar I, (11)

each term being O(¢?), O(¢°), O(¢°), respectively. For
N = 3, the number of the relevant and marginal couplings
is 9.

Ny = 4: The structure of V,, ; is getting simpler as we
increase N;. Now there are only two anomalous combi-
nations that are not irrelevant:

Van,k = aldet + bllldet- (12)

For N; =4, the number of the relevant and marginal
couplings is 8.

N; =35, 6: The structure of V,,; is the same for both
cases, as the only anomalous combination that is not
irrelevant is simply the usual KMT term:

Van,k = alj- (13)

For Ny =5, 6, the number of the sum of the relevant and
marginal couplings is 7.

Ny > 6: Finally, for large enough N, there is no way to
construct any anomalous term that is not irrelevant. As a
result,

Vank = 0. (14)

For N; > 6, the number of the relevant and marginal
couplings is 6.

In what follows, we need to project the flow equation (4)
onto the combination of invariants, which then leads to the
logarithmic scale derivative (kd,) of each coupling. The j
functions are, in turn, defined as the logarithmic scale
derivative of the dimensionless couplings (denoted by a bar
on top), rescaled by appropriate powers of k. For the
anomaly free part, these are

22 212
m; =m; [k,

/11,k :/?'l,k9

Gk=g1k/k: Gk =924/ k,

Iog=log  G3x=Y3u- (15)

As for the anomalous part, the rescalings depend on N:

d:a/k2, azzaz/k, Z]lzbl/k
Nf:2(_ — - - ’
J Zl3:a3, b2:b2a b3:b3’ b4:b4
Nf:3<—{&:a/k3/2, B:b/kl/2, 6_12:02
Ny=4<{a=a/k, b=b,

Ny=5«{a=a/k?,
Ny=6«<{a=a.

III. COUPLING FLOWS

When we allow the ko, operator to act on the left-hand
side (lhs) of (4), we straightforwardly obtain the sum of the
logarithmic scale derivative of all couplings, each multi-
plied by their respective invariant combination. The right-
hand side (rhs) of (4) should exhibit compatibility with this
structure, meaning it must be a linear combination of
chirally symmetric interactions in the same fashion as they
appear in the lhs. Therefore, by expanding the rhs around
zero field and equating the two sides, the scale dependence
of the couplings should be identifiable as the coefficient of
the invariant combinations in the rhs. The main technical
challenge here is that the rhs of (4) is not manifestly chirally
invariant. This is unsurprising, as in essence, we need to
evaluate the tr log of the inverse propagator matrix, and
naturally the masses of the eigenmodes are not chirally
invariant. However, upon performing the tr log operation,
they should combine into invariants, yielding the f func-
tions (after also applying the appropriate rescalings of the
couplings with the RG variable k).

Calculating the tr log of the inverse two point function,
i.e., (k* + V), in the most general background field of @ is
a formidable task (see Appendix B). As described in detail
in [18], it is not necessary at all, if we do not want to prove
chiral invariance, but make use of it. That is, we may
capitalize on the fact that at each order the rhs of (4) has to
combine into a linear combination of products of invariants,
thus we can (at each order) use any background field at our
disposal to identify them, of course if we know the actual
form of the invariants in that given background. If one
follows Ref. [18], then the only thing one should be
cautious of is that at a given order the invariant combina-
tions should be able to be disentangled from each other;
e.g., if we only allow a simple, one component background,
then this is obviously not possible. If we have, for example
® = 50T, then for Ny = 2 both [, = s3/2 and 14 = 53/2,
showing that more components need to be introduced in ©
so that /| and /4 can be distinguished from each other in
the rhs of (4).

Unfortunately, it turns out that at higher orders even by
increasing the number of independent components of @,
the above procedure might fail. The reason is that at higher
orders the invariants cannot in principle be separated using
a step-by-step procedure that gradually eliminates them via
a clever choice of sequence of backgrounds, as done in [18]
for Ny = 3 specifically. A reoccurring pattern is that once
we try to eliminate one of the invariants, some other(s) also
diminish, making impossible to read off their respective
coefficients. What we would like to stress in this study is
that, fortunately, it is unnecessary to identify the invariant
combinations at each order, after all. It is sufficient to obtain
at a given order an enough number of linearly independent
algebraic equations for the logarithmic scale derivatives of
the couplings.
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The way to do so is as follows. Let us use the ® =
soTo + s, T background, where T; = TN§—1 is the longest
(“last”) diagonal generator of the algebra. Then at O(¢") all
invariant combinations take the form of

Z a,-jsf)Si (16)

i+j=n

with suitable «;; coefficients. Notice that we can indeed
work out the f functions without identifying the invariant
combinations, if we make use of that in both sides of the
flow equation (4) all invariant combinations can be
expressed in forms dictated by (16). The task then becomes
to match the coefficients of sési (instead of the invariants)
at each side of (4), the lhs now being linear combinations of

coupling, and after rescaling them with k, the f functions
themselves.

A. Cases of Ny > 6

First we apply the outlined procedure for N > 6, where
the anomaly does not appear; see Eq. (10) for the corre-
sponding potential. At O(¢?) there is only one invariant, at
O(¢*) there are two, while at O(¢®) we see a number of
three. That is, only at O(¢*) and O(¢°) do we need coupled
equations for the logarithmic scale derivatives, and the
background defined above (i.e., ® = 5,7+ s, 7T;) does
provide an enough number of linearly independent equa-
tions. After a straightforward but rather complicated calcu-
lation, the f functions are found to be the following:

GuNp (N7 +1) + Go k(N7 = 1)

logarithmic scale derivatives of the couplings. By solving B = 2m2 =2 (17a)
: .2 " k 322N (1 +m3)? '
the obtained coupled equations”™ we get the flow of every f k
|
. 491,1{N?'(N% +4) + 251 4 GoaN (N7 = 1) + 255 (N7 = 1) 3 321.ka(N} +2)+ 222.k(N?' -1 (17b)
o = Tk 3N + m)? 322N (1 + m2)? ’
5 — g+ 3914024N s + 55 4 (NF = 3) B 3534 (N7 —4) + 4Ny (N7 +4) (17¢)
n = Ok 322N (1 + m2)’ 322N, (1 + m2)? ’
5 — 4§1,kN§~ (B2uNf(NF +7) + 2204 (NF = 1)) 4 G2k s (N7 = 1) (BN p A1 4 + 44 )
h 322N} (1 + mp)?
_ g 2BNFNG A+ 13) + 631,32 NF(NG — 1) + 1251453, N; (N7 — 1) + 853, (N} — 1) (17d)
3N + m})? ’
5 —4 91N (kN p(NF +19) + 3934 (NF = 4)) + 524 (15836 (N7 = 4) + N (184 4N + A4 (5N7 = 1)))
B 3r2N3(1 + m3)?
_ 472N}§%‘k§2,k + 671475, N (2N7 + 3) 4 33, (24N7 = 90) (17)
3PNA(1 + i) ’
NG+ AN 1o shas + (ZNJ% = 17)92493 % B 5491 495N + ?JS,k(4N% - 54) (176)
oo m*N(1 + m3)? 3n2N(1+ m})*

All the fixed points and the corresponding stability analyses can be found in Sec. IV.

B. Cases of Ny < 6
The U, (1) anomaly does fit into the UV potential for N < 6. In case of N, = 5, 6 it contributes solely through the usual

KMT determinant, as it is O(¢°) and O(¢%), respectively. The N =5 calculation is simpler, as what we find terms at

O(¢’) in the expansion of the rhs of (4) produce solely the KMT term. As for N ¢ = 6, however, the situation is more

complicated, as the anomaly then contributes at O(¢°), and thus entangles with the non anomalous terms. The U (1)

“Some of them can be linearly dependent but never contradictory.
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breaking has two separate sources for Ny = 4, see (12). The
first one contributes at O(¢*), while the second one is at
O(¢°), mixing once again with the fully chirally symmetric
terms. As for N, = 3, the situation again gets simpler, as
the KMT determinant is cubic in the fields and thus at each
O(¢®) and O(¢°) we only have a single invariant
combination.

The most complicated is the N, =2 case. At O(¢?),
O(¢*), O(¢%) we have two, four and six invariant
combinations [note that g3 = 0 in (9) for N, = 2], respec-
tively. The choice of (16) only allows for a number of four
independent coupled equations at O(¢®), which is not
enough to obtain all the RG flows at this order. We need to
generalize (16) such that one more component is intro-
duced, e.g., ® = 5¢T + 5373 + iz T (note that T; =T
for Ny = 2), which leads at O(¢") all invariant combina-
tions become of the form of

Z ajshsy k. (18)

i+j+k=n

This choice is now able to provide enough independent
equations at O(¢°) so that all  functions can be obtained.

All the outlined calculations are straightforward, but
quite complicated and practically can only be carried out
through symbolic programming. We do not go into any
more detail to what is already presented, all the expressions
for the f functions as a function of N, can be found in the
Supplemental Material [31].

IV. FIXED POINTS

Zeros of the f functions correspond to renormalization
group fixed points. At each fixed point we define an w;; =
dp;/Bg; stability matrix, where the shorthand notations S
and g; are used for all # functions and couplings. Positive
(negative) eigenvalues of w;; refer to irrelevant (relevant)
directions. We are especially looking for fixed points with
one relevant direction. The latter, if associated with the
reduced temperature, yields infrared stability at the critical
point. We are interested whether such fixed points, belong-
ing to continuous thermal transitions can exist in the whole
flavor number range.

We follow the strategy already outlined in [37], that is,
we eliminate all the perturbatively marginal couplings by
solving analytically their respective fixed point equation,
which are then plugged into the f functions of the relevant
couplings. As shown in [37], this is (in part) produces
higher loop contributions to the flows of the relevant
interactions. Stability analyses are then carried out in the
space of the latter couplings using the obtained (partially)
resummed f functions.

Even before going into a detailed analysis, it is expected
that the Gaussian and Wilson-Fisher fixed points will
definitely be found. The former is trivial, while the latter

TABLE 1. Nontrivial fixed points (FPs) in the Ny — oo limit.
Note the rescalings g, — §;/N%, g» = §2/N;. The number of
relevant directions (RD) is shown in the last column.

FP n? I 9 RD
0() -0.33333 4.38649 0 2
BY 0.039812 —7.32668 6.05216 2
cy —0.37351 4.89039 —0.54978 1

is due to the fact that if we set the ¢,, 4,, g3, and all the
anomalous couplings to zero, then the free energy becomes
O(ZNJ%) symmetric. Therefore, for any N, there should
exist a fixed point of F, that belongs to the O(N)
universality class with N = ZN?.

A. Case of Ny=o0
Before analyzing the N, dependence of the fixed point
structure, it is instructive to perform a large N, expansion
on the f functions of (17). After making the
G1x = 914/N%, Gox = Gox/Ny rescalings and eliminating
the marginal couplings, we get the following fixed point
equations:

> 291+ G2x)

0=p,, = —2in} — ~JLk T 924) (19a)
2 k 3%(1 + m?)?

0=p, ==01x
2(G1 i + 891 190k + 1757 .95 + 2051475 + 1455 ;)
372(914 + 924) (14 + 5G24) (1 + m3)?

El

(19b)

493 (492 — J10)
91 +59) (1 + m3)?

0=p, =—Gous + g (19¢)

These algebraic equations can be easily solved numerically,
and the found fixed points are shown in Table I. On top of
the usual Gaussian and Wilson-Fisher [0(2Nj2£ = o0)] fixed

. .. . N,=
points, there are two additional ones with 1 (C,” *)and 2

Ny= L .
(B, “) relevant directions, respectively. Note that, sub-
scripts refer to the number of relevant directions.

B. Cases of finite N,

As we move away from N, = oo, a new C‘T’ ” fixed point
with one relevant direction branches from the O(ZN}) fixed
point. We show in Table II the values of the couplings in the
fixed points for N, = 50, Ny = 20, Ny = 10, respectively.
Once we hit N = 6, the structure of the renormalization
group flows changes, as the coefficient of the KMT
determinant ceases to be (perturbatively) irrelevant and
becomes marginal. Nevertheless, we see that even taking its
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TABLE II. Nontrivial fixed points for various flavor numbers
Ny > 6. Note that interactions caused by the axial anomaly are
irrelevant (marginal) for Ny > 6 (N; = 6). The number of rele-
vant directions is shown in the last column. The C‘II\J" and O(2N3)
fixed points merge as Ny — co.

N¢ FP mn? a1 7 RD
50 O(2N]%) —0.33342 0.0017538 0 2
" B3 0.040303 —0.0029448 0.12152 2
" 3 —0.37509 0.0019579 —0.011198 1
" P —0.33342 0.0017556 —0.000088291 1
20 O(ZN%) —0.33385 0.010939 0 2
" B3 0.043192 —-0.018915 0.31043 2
" cP —0.38411 0.012287  —0.030728 1
" c® —0.33393 0.011010  —0.0014253 1
10 O(2N]%) —0.33492 0.043430 0 2
" BY® 0.059163 —0.086421 0.68317 2
" clo —0.43356 0.048876  —0.082581 1
" clo —0.33641 0.044669  —0.012667 1
6 O(ZN?) —0.33516 0.11855 0 2
" BS 0.40276 —1.23414 3.80527 2
" (o 1.09084 —6.45942 16.76628 1
" (o —0.34848 0.12934  —0.069536 1
TABLE III.  Nontrivial fixed points for Ny = 5. The number of

relevant directions is shown in the last column.

Ny FP m? 7 0 a RD
5 0(2N2) —033386 0.16871 0 0 2
" C? —-0.36068 0.19128 —0.12675 0 1
" Ag —0.17023 0.14387 -0.056313 -2.79735 3

effect into account, in all the found fixed points the
corresponding coupling vanishes, therefore, it does not
change the aforementioned structure.

The structure does change at Ny = 5. In this case, the
KMT coupling is relevant, and we find only two fixed
points on top of the trivial and the 0(2N§) one, see

Table TI. C® — C} remains, but both C¢ and BS cease to
exist, while a new fixed point, A pops up with nonzero
anomaly,3 having three relevant directions.

As for Ny = 4, there are two anomalous couplings, one
of them being marginal, while the other one relevant. The
fixed point structure extends with another anomalous fixed
point, A;‘, see Table IV. Notice that, as the number of
relevant operators increases, so does the number of relevant
directions at each fixed point. As a result, there are no more
fixed points with only one relevant direction.

JAll fixed points denoted by A and its variations (A or A) have
nonzero anomaly couplings.

TABLE IV. Nontrivial fixed points for Ny = 4. The number of
relevant directions is shown in the last column. The numbers in
the parentheses correspond to the relevant directions under the
constraint that all directions corresponding to anomalous cou-
plings disappear.

N FP m? a1 D a RD
4 O(ZN}) —0.32940 0.25800 0 0 3(2)
" C“z‘ —0.38129 0.31042 —0.25480 0 2 (1)
" A‘Z‘ —0.34949 0.63992 —1.73326 —-3.82052 2
" A‘z‘ —0.40273 0.21168 0.17473 —0.73657 2

TABLE V. Nontrivial fixed points for N = 3. The number of
relevant directions is shown in the last column. The numbers in
the parentheses correspond to the relevant directions under the
constraint that all directions corresponding to anomalous cou-
plings disappear. Among the six fixed points with complex
eigenvalues of the stability matrices, only the one with a single
relevant direction is shown as A3, .

Ny FpP m? a0 I a b RD
3 0(2N%) —0.31496 0.43763 0 0 0 302
nmo €3 —0.38262 059725 —-0.62042 0 0 2
n A} —0.01786 0.091631 —0.14148 —0.11900 0.39087 4

" A3, 041126 0.73099 —0.88199 —0.46585 —0.91131 1x

We find a similar conclusion for Ny = 3, in accordance
with the earlier study [18], see Table V. As the number of
relevant interactions become five (with four marginal ones),
the flows are getting increasingly complicated, which is
reflected in the number of the fixed points in the system.
We again find an anomaly free C3 fixed point with two
relevant directions, and another one, AZ, with nonvanishing
anomaly, but with four relevant directions. On top of these,
we have six more fixed points with nonzero anomaly,
whose stability matrices have complex eigenvalues; one of
them, A?*, has only one relevant direction, meaning that the
real part of the eigenvalues is all but one positive. Whether
the complex nature of the eigenvalues of A3, is only due to
the LPA approximation is not clear, and we would not rule
out the possibility that this fixed point indicates a second-
order chiral transition.

As already mentioned in the previous section, Ny = 2 is
the most complicated case. Since the coupling space is 12
dimensional (with six relevant and six marginal inter-
actions), we could not find numerically all fixed points.
We did obtain, however, all the anomaly-free fixed points
as shown in Table VI. The CVs fixed point continues to
exist coming down from N, = 3 to Ny = 2, retaining two
relevant directions. On top of this, we see another fixed

point with two relevant directions, that is C‘%.

016021-7



G. FEJOS and T. HATSUDA

PHYS. REV. D 110, 016021 (2024)

TABLE VI.  Anomaly-free fixed points for Ny = 2. The num-
ber of relevant directions is shown in the last column. The
numbers in the parentheses correspond to the relevant directions
under the constraint that all directions corresponding to anoma-
lous couplings disappear.

N¢ FP n? a1 b RD
2 O(2N%)  —0.27094  0.85280 0 4 (3)
7 2 -0.20599 133367 —1.88211 2 (1)
7 2 -0.26318  0.33093 1.71728 2 (1)

As for fixed points with nonvanishing anomalous cou-
plings at Ny =2, we find an O(4) symmetric one [4]
associated to m* = oo and |a| = co with m? + @ = being
finite: It corresponds to the case where the (7, 5) multiplet
becomes infinitely heavy, while (s, 7) has a finite mass.
However, this fixed point is found to have the structure
ﬂg] = ﬂuz ?é ﬁh] and ﬂil = ﬂa; 56 ﬂbz = ﬂh37 which are dif-
ferent from S, =B, = py, and B; = Po, = Ps, = Pp,»
naively expected from the decoupling of (7, 5). It is not
clear whether such a discrepancy is due to the LPA
approximation. Note that this O(4) fixed point has only
one relevant direction, therefore, it could be responsible for
a second-order chiral transition at finite temperature.

In summary, for 5 < Ny < oo, there exists a collection of

anomaly-free fixed points, C’]lvf , which are continuously
connected with one another, each having one relevant
direction. At N = 4, it continues to C‘z‘, but now equipped
with two relevant directions. The same is observed for
Ny = 3, and on top C%, there also arises an anomalous fixed
point with one relevant direction (A?.*) but with complex
eigenvalues of the stability matrix. For N ¢ = 2, not only the
anomaly-free fixed point, C’% exists (again with two relevant
directions) but also another one, C’% with the same proper-
ties, and also an anomalous O(4) fixed point with one
relevant direction.

We stress that, in case of the U(N;) x U(N;) model,
none of the anomalous interactions exist in the free energy,
therefore, the locations of the anomaly-free fixed points,
e.g., CVr=234 found in the SU(N;) x SU(N;) model,
remain, while the number of their relevant directions
decreases from two to one.* That is to say, they may
also correspond to finite temperature continuous phase
transitions.

C. Order of the transition

At this point we consider three possibilities for the order
of the finite temperature chiral transition in the SU(N ) x
SU(Ny) model.

“In case of Ny =2, (3 — €% also becomes a fixed point with
only one relevant direction.

Case I (flavor continuity). This corresponds to an
assumption that the continuous family of anomaly free
fixed points, C"s, dictates the chiral phase transition at
finite temperature. It implies that the chiral transition is of
second-order for Ny > 5 [this statement is irrespective of
the thermal fate of the U, (1) anomaly], while for N, = 2,
3, 4, the transition is of first order. We note that if the
anomaly disappears at the critical point [i.e., the U(N ) x
U(N;) model applies], then the flavor continuity
assumption yields the transition to be of second order even
for Nf =2,3, 4.

Case II. This corresponds to an assumption that the
chiral transition is governed by the CVs fixed points for
Ny > 3, while for Ny = 2 it is dictated by the anomalous
O(4) fixed point. This case leads to the conclusion that the
chiral transition is of second order for N, > 5, first order for
N; =3, 4 and second order for N, = 2.

Case IlII. This corresponds to an assumption that the
chiral transition is governed by the C"s fixed points for
Ny > 4, while for Ny = 3 and Ny = 2 it is dictated by the
anomalous A3, and O(4) fixed points, respectively. In such
a case the chiral transition is of second order for Ny > 5,
first order for N = 4, and second order for Nf =2, 3.

In Table VII, we summarize the order of the chiral
transition on the basis of the e expansion and the present
FRG study, for the SU(N;) x SU(N;) model. A similar
summary for the U(N;) x U(Ny) model can be found in
Table VIII.

We note here that, although the exact recovery of U,(1)
symmetry is unlikely at any finite temperature [38],
according to studies on the eigenvalue spectrum of the
Dirac operator [39-41], it cannot be ruled out that the
anomaly becomes reasonably small at the critical point. In
such a case, as the anomaly coefficient may control the
strength of the transition’ (see the flavor continuity
assumption above, for N, = 2, 3, 4), it being small enough
might cause difficulties in distinguishing a weak first-order
transition from a second-order one. Turning this argument
upside down, by constraining the strength of the transition,
indirect conclusions could be drawn on the thermal
behavior of the U, (1) anomaly.

D. Relation to the ¢ expansion

The € expansion predicts that due to the absence of an IR
stable fixed point, the chiral transition has to be of
fluctuation induced first-order for Ny > 3. This statement
is irrespective of the thermal behavior of the Ujy(1)
anomaly,6 thus one may be curious of why our present

Similarly as an external magnetic field can control the
strength of the first-order transition in a ferromagnetic system.

6 X

Note that, at Ny = 2, for large anomaly the e expansion also
predicts the existence of an IR stable O(4) fixed point.
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TABLE VII.

Comparison with axial anomaly [SU(N ) x SU(N ;) model]. (*): In the € expansion, for N, = 2,

a
second-order transition only occurs, if the axial anomaly is strong enough at the critical point, leading to an O(4)

symmetric potential.

Ny=2 Ny=3 Ny=4 Ny>5
€ expansion (¢ = 1) 2nd order* 1st order 1st order 1st order
1st order (Case I) 1st order (Case I)
FRG (d = 3) {current study} 2nd order (Case II) Ist order (Case II) 1st order 2nd order

2nd order (Case III)

2nd order (Case III)

TABLE VIII. Comparison without axial anomaly [U(N,) x
U(Ny) model].

€ expansion Ist order Ist order Ist order Ist order
(e=1
FRG (d = 3) 2nd order 2nd order 2nd order 2nd order

{current study}

study provides a different scenario, especially in light of the
triumph of the ¢ expansion in O(N)-like models.

First, we mention that had we dropped in our d = 3 FRG
approach all couplings that are not present in the original
Pisarski-Wilczek study [1], we would have obtained
exactly the same conclusion. Second, instead of working
in d = 3, the flow equation (1) can also be evaluated in
d = 4 — ¢ dimensions, which leads to the f functions
obtained in [1] at the leading order of a small e expansion,
as already shown in [5].

We believe that the main reason why the d = 3 FRG
approach provides such different results compared to the €
expansion evaluated at ¢ =1 is not that € is “not small
enough,” but rather the operator structure of the free energy.
Close to d = 4 the number of operators is restricted, even if
one adds gradually more marginal and irrelevant inter-
actions, they can never produce any difference at the leading
order of the ¢ expansion. We also think that the reason why
the € expansion works really well for the O(N) model is that
there is only one term difference between the ultraviolet free
energy functional for d =3 and close to d =4, which
cannot alter the fixed point structure. The SU(N) x
SU(N ;) symmetry allows for a much larger set of invariants
as we lower dimensionality, which creates space for new
fixed points, yielding a much richer structure that can lead to
critical behavior. We believe that the ¢ expansion can only
work, if the number of invariant operators allowed by
symmetry does not differ much for d = 3 and d = 4.

V. CONCLUDING REMARKS

In this paper, we investigated the order of the chiral
transition in the SU(N,) x SU(N;) model for a general

flavor number, N;. Renormalization group flows of the
Ginzburg-Landau potential were calculated using the FRG
method with the inclusion of all relevant and marginal
interactions at d = 3, i.e., up to O(¢°). The main difference
compared to the ¢ expansion in d = 4 — ¢ dimensions is
that the number of relevant and marginal interactions are
considerably larger in the d = 3 case.

We found new anomaly-free fixed points spanned
throughout the entire range of Ny, which we call “flavor

continuous” fixed points, denoted by C"s. By conjectur-
ing that the finite temperature chiral phase transition is
governed by the CVs fixed points, numerical analyses of
the stability matrices around the fixed points show that
the transition for N 2 5 is of second-order, irrespective
of the realization of U,(1) symmetry at the critical
temperature. For N, =2, 3, 4, our results show that
the transition is of first-order, unless U, (1) symmetry
exactly recovers at the critical temperature.” (More gen-
eral possibilities of the thermal chiral transition beyond
the case of flavor continuity are summarized in
Table VII.) We also argued that, in case that the anomaly
is sufficiently weak around the critical temperature, it
could be difficult to distinguish a first-order transition
from a second-order one, and thus the critical quark mass
(mg cri) might be difficult to be extracted from numerical
lattice QCD simulations.

In Figs. 1 and 2, we show schematic Columbia plots
conjectured from the e-expansion and the flavor-continuity
scenario of the FRG method, respectively. Left panels of
these figures are for the axial anomaly being present at the
critical temperature, while right panels are for the axial
anomaly vanishing at the critical temperature. A small
my qie» Suggested by recent lattice QCD simulations are also
considered in the left panel of Fig. 2.

We should still be cautious in drawing final conclu-
sions as there is plenty of room for improving the

It may be natural to think that for odd N £ the transition
can only be of second order if the KMT coupling vanishes;
otherwise no parity symmetric potential can be formed at the
critical point [42]. Our results indicate that fluctuations appear to
be able to wash out the odd powered anomalous terms for Ny > 5,
but it is not the case for Ny = 3.
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€ expansion with axial anomaly

second order 1st
O) order
(2]
E mS‘C
crossover
1st order
0 myd ”

FIG. 1.

€ expansion w/o axial anomaly

1st
order

crossover

1st order

0 My d

Columbia plot of the e expansion. Left panel: the U , (1) anomaly does not vanish at 7., leading to a second-order transition for

Ny = 2 (top left corner). Right panel: the U, (1) anomaly vanishes exactly at T, leading to first-order transitions for both N, = 2, 3.

FRG with axial anomaly

1st
order

crossover

1st order

mu,d

FRG w/o axial anomaly

second order 1st
U(2)xU(2) order
(2]
€
crossover
second order
U(3)xU(3)
0 mu,d ~

FIG.2. Columbia plot of the FRG method directly at d = 3, assuming that the chiral transition is governed by the C"7 class of “flavor
continuous” fixed points (case I in the text). Left panel: the U, (1) anomaly does not vanish but is small at 7', yielding the first-order
region very narrow. Right panel: the U, (1) anomaly vanishes exactly at T, leading to second-order transitions for both N, = 2, 3 (top-

left, bottom-left corners).

present study. We have completely neglected the wave
function renormalization factor (and thus the anomalous
dimension), which may play an important role in the
fixed point structure. Since our truncation was based
on relevance (and irrelevance) around the Gaussian
fixed point, it may be appropriate to test the robustness
of the results with respect to introducing even higher
order (perturbatively irrelevant) terms. Furthermore, the
FRG formalism, through the flow equation (1), also
makes it possible to investigate global fixed point poten-
tials nonperturbatively, i.e., without expanding the poten-
tial in terms of the field variables. It would certainly be
very important to obtain the corresponding potentials
numerically, presumably on a grid, and investigate their
stability.
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APPENDIX A: U(N) ALGEBRA

The Lie algebra of the U(N) = U(1) x SU(N) group
contains N diagonal and N(N — 1) nondiagonal generators.
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All but one are traceless and we choose the normalization
as Tr(T,T,) = 8,,/2. The diagonal ones, including the
zeroth generator corresponding to the U(1) subgroup
read as

1
T o— 1 1
T V2N ’
1
1
7 1 -1
1 _E 0 5
1
T — 1 1
272\/5 _2 )
1
1 1
Ty-1 = (A1)
INN 1)

—-(N-1)

We note that throughout the text we follow the notation
Ty_y =Ty, referring to the “longest” diagonal generator.
The nondiagonal generators form two groups, as general-
izations of the o, and o, Pauli matrices in the following
sense:

I 1
(1Y), = 2 (8ak0j + BajOpi), (A2a)
T0) = L (5. = 5016 A2b
( y )ab_i( ak®bj — Caj bk)' ( )
We have a number of N(N — 1)/2 for each the x and y type

generators. The d,;,. symmetric, and the f,,. antisymmet-
ric structure constants are defined through the products of
generators:

Ta Tb = dabc + ifabc)Tc (A3)

5
The following identities turn out to be useful for calculating
them:

f abec —

_2iTr[[Ta9 Tb]Tc]’ (A4a)

dabc = 2TI‘HTa, Tb}Tc]’ (A4b)

where [,] and {, } refer to the commutator and anticom-
mutator, respectively. Alternatively, we can also deduce

fubc = 4STr(TaTch)’ (ASa)
dabc = 4.§RTI'(TaTbTC). (ASb)
Since for the practical calculations we mostly use a back-

ground field of ® = 5,7 + s, T, the following structure
constants will be needed:

2 2
doii =] =611 dypp=(2=N)y |,
0ij \/; ij LLL ( ) N(N—l)
(2_N)\/2N( ) ije 1fz]€{(x JN> (y’]N)}
1/—1\/(1\%-1)51'1’ else
d —\/55 +dp;10
iLL — N i0 LLLYiL>

N
m(éu,(,\ujN)év,(x,jN) = Ou x4 5v,<_v,ﬂv>) :

dpijz08=

fuLL':

(A6)

APPENDIX B: MASS MATRICES

In this appendix we discuss how to calculate the V] mass
matrix for a general flavor number N, defined via (8). In
what follows, we only consider the chirally symmetric part,
Veni» in V. Derivatives for the anomalous part, V,, ,, are
only relevant for Ny =2, 3, 4, 5, 6, and in such cases all
derivatives can be calculated in analogy with (B1), using
symbolic programming. We do not list the corresponding
formulas separately.

Denoting by ¢, either the scalar, s;, or pseudoscalar, z;
fields, we get

1, oI, oI, I,
V) g, = m G200
T ooy T ogiogy T o,
I, ol, oI, , 0%
+ 64,1 + 3441
F925500, " N ag.00, M g,
Pl dl, ol dl, ol
fhh——1, +/12<—1—2+—1 2)
oo i 0p; 0 0p;
1, 1,
Al Bl
G, ahd, B
For the derivatives, we have
ol I
=i =5y, (B2)
o oo
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and then by reintroducing the invariants I, and I5 [see (5)],
so that I, =1, —Nifl% and Iy =I5 — Niflllz +Nl;1§, we

arrive at

ol, o, 2 ol

2= 7t B3
op;  op, N, 'og, (B32)
Pl BT 20hoh_2 Pl g
(3(]5,0451 04)!6(]51 Nf aSi asj Nf aslasj
)4 Ji I -~ It )4
ofy oy 39l z_i 12+£]%Q’ (B3c)
dp; 0p; N;op, = Ny 0p; N; 0,
Py ;3 PL, 3 L
opoh;  opop; N 'opop; Njopop;
J(Gadh oy 2, 0ot
Ny \0p;0p;  0p;op; N}% la¢ia¢j
6 . I,
+—1I ) B3d

Then, after introducing the shorthand notation of A; =
3(5a = i74) (5 + i) (dapi + if api), We have

~ 1

- 1
I,= EAkAk» I;= ZAkAlAmdklmv (B4)

which leads to

ol,  0A; 1, _a, A, +aAkaAk
00 0pi0¢; ~ 0p; 0’

@_Ak@’ (B5a)

ol; 304,
Tk AA d, B5b
a¢i 4 a¢l Am@kim ( )
0?1 3 A 304, 0A
> CAA g+ A dg. (B5C)
0piop; 40¢;0¢; 20¢;0¢;

All the derivatives of )V, can now be expressed in terms of
derivatives of A;, which are found to be

0A,, 04,,

—:Sadu'm +7Tafa jm» —:”ada 'm_safa‘m’ (B6a)
aSj J / as] ! !
A 0’A

m.o__ g , m_o_ di im- B6b
as,-asj m 071',-071']- / ( )

As explained in the main text, for Ny > 6 we use the
background field of ® = 5Ty + s, T, . Therefore, substi-
tuting s; = 500,90 + §7.0;;, and z; = 0, we get

24 2
Syt s

V2N,
2-N;
Ty (R -
N, (N, — 1)

A, [2 0A,,
a_si =50 N—f5mi +5.dpmis 6_7ri: spfim-

Note that the second derivatives are background indepen-
dent, see (B6b). Using A; and its derivatives we can now
build up the V} matrix in the ® = 5,7 + s, T, back-
ground, which is the starting point of the evaluation of the
Wetterich equation.

A= bio

— 1) (B7a)
50 iLs

N, oSL | 0iL

(B7b)
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