
Order of the SUðNf Þ × SUðNf Þ chiral transition via the functional
renormalization group

G. Fejős *

Institute of Physics and Astronomy, Eötvös University, 1117 Budapest, Hungary
and Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN,

Wako, Saitama 351-0198, Japan

T. Hatsuda †

Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS),
RIKEN, Wako, Saitama 351-0198, Japan

(Received 21 April 2024; accepted 26 June 2024; published 23 July 2024)

Renormalization group flows of the SUðNfÞ × SUðNfÞ symmetric Ginzburg-Landau potential are
calculated for a general number of flavors, Nf . Our approach does not rely on the ϵ expansion, but uses the
functional renormalization group, formulated directly in d ¼ 3 spatial dimensions, with the inclusion of all
possible (perturbatively) relevant and marginal operators, whose number is considerably larger than those
in d ¼ 4. We find new, potentially infrared stable fixed points spanned throughout the entire Nf range. By
conjecturing that the thermal chiral transition is governed by these “flavor continuous” fixed points,
stability analyses show that forNf ≥ 5 the chiral transition is of second order, while forNf ¼ 2, 3, 4, it is of
first order. We argue that the UAð1Þ anomaly controls the strength of the first-order chiral transition for
Nf ¼ 2, 3, 4, and makes it almost indistinguishable from a second-order one, if it is sufficiently weak at the
critical point. This could open up a new strategy to investigate the strength of theUAð1Þ symmetry breaking
around the critical temperature.
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I. INTRODUCTION

Since the seminal paper of Pisarski andWilczek [1] it has
been widely accepted that the chiral phase transition of
quantum chromodynamics (QCD) is of fluctuation-induced
first-order in the chiral limit for Nf > 2 quark flavors. For
Nf ¼ 2, the transition order depends on the strength of the
UAð1Þ anomaly at the critical point in the underlying theory
before the dimensional reduction: Only if mη0 ðTcÞ ≫ Tc

does the Ginzburg-Landau potential acquire Oð4Þ sym-
metry and predict the transition to be of second-order. The
original argument of [1] was based on the absence of
infrared stable fixed points in the ϵ expansion around d ¼ 4
of the renormalization group (RG) flows. RG studies
directly at d ¼ 3 either by the perturbative approach with
higher-loop contributions [2] or by the nonperturbative
functional renormalization group (FRG) technique [3–7]

also seemed to confirm the original scenario: However,
those approaches did not consider all relevant and marginal
operators at d ¼ 3; therefore, the fixed-point structure of
the full parameter space has not been fully explored.
If the chiral transition is of first-order for Nf > 2,

as predicted by the ϵ expansion, then there must exist a
critical quark mass, at which the chiral transition changes
from crossover (mq > mq;crit) to first order (mq < mq;crit).
Several lattice QCD simulations attempted to determine
mq;crit [8–12], but they typically showed strong cutoff and
discretization dependencies. Recently, lattice QCD simu-
lations with unimproved staggered fermions suggested that
the chiral transition could be of second-order in the chiral
limit, presumably for any flavor number up to the con-
formal window, i.e., for Nf < N�

f ∼ 9–12 [13]. A study
using highly improved staggered quark action did not find
direct evidence of the first-order transition for Nf ¼ 3 in
the range of the pion mass 80 MeV≲mπ ≲ 140 MeV [14].
With the use of Möbius domain wall fermions, the
critical quark mass for Nf ¼ 3 was estimated to bemq;crit ≲
4 MeV [15]. Apart from lattice studies, a recent work using
the Dyson-Schwinger approach also predicted the absence
of a first-order transition for Nf ¼ 3 [16]. Furthermore,
nonperturbative computationswith the numerical conformal
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bootstrap also claimed that the transition can be of second-
order for Nf ¼ 3 [17]. The increasing number of pieces of
evidence of a possible second-order transition forNf > 2, in
contrast to the prediction of the ϵ expansion, is puzzling.
One of the present authors calculated the renormalization

group flows of couplings of the Nf ¼ 3 Ginzburg-Landau
potential in a truncation, where all terms up to Oðϕ6Þ in
d ¼ 3 were included [18]. The necessity of such an
approximation was based on the expectation that at least
all relevant and marginal interactions around the Gaussian
fixed point should be taken into account (the marginal
interactions contain a number of six fields). This study was
performed directly in d ¼ 3 dimensions, without the use of
the ϵ expansion, employing the FRG technique. The main
finding was that there does exist an infrared stable fixed
point, which may potentially correspond to a second-order
chiral transition for Nf ¼ 3, but only if the UAð1Þ anomaly
vanishes at the critical point. This is in contrast to the results
of [1,4] forNf ¼ 2, where the transition was predicted to be
of second-order [belonging to the Oð4Þ universality class]
only if the UAð1Þ anomaly is strong enough.
The thermal fate of the UAð1Þ symmetry is still under

debate [19]. There are studies finding that the axial anomaly
is still relevant at the critical temperature [20–25], while
some others claim that the UAð1Þ symmetry is in effect
restored at that point [14,26–29]. We also note that the
thermal behavior of the anomaly could be very different for
vanishing quarkmasses compared to the physical point [30].
Our goal in the present study is to extend the previous

results of [18] to an arbitrary number of quark flavors. To
this end, we use the FRG technique in the local potential
approximation. The free energy functional will be expanded
up to Oðϕ6Þ so that all relevant and marginal interactions
(around the Gaussian fixed point) can be included. We are
interested in whether new fixed point(s) with one relevant
direction can be found, which were inaccessible in earlier
studies and could potentially be responsible for a second-
order chiral transition.
The paper is organized as follows. In Sec. II, we set up the

model and the FRG method with the corresponding trunca-
tion, putting particular emphasis on the chiral invariant
structure as building blocks of the potential. We analyze in
detail themain differences as the flavor number increases. In
Sec. III, we present the calculations of the renormalization
group flows and give the β functions explicitly for Nf > 6.
For lower values ofNf, the corresponding formulas are very
complicated and put into Supplemental Material [31].
Section IVis devoted to discussing the fixed point structures,
together with their stability analyses. The reader finds the
conclusions in Sec. V.

II. FRG FOR THE SUðNf Þ × SUðNf Þ MODEL

In order to decidewhether a system can undergo a second-
order phase transition, one needs to know if the free energy,

F , as a functional of the mean field (or implicitly an external
source), can admit scaling behavior. That is, one has to
search for fixed points of the renormalization group flows of
F . In its functional version, the renormalization group
generates the scale dependence of the free energy, denoted
from now on by F k, via the Wetterich equation [32],

∂kF k ¼
1

2
e∂kTr LogðF 00

k þ RkÞ; ð1Þ

whereF 00
k is the second derivative matrix ofF k with respect

to all field variables, and k is the scaling variable being the
wave number that separates fluctuations, which are included
in F k from those that are not. This scale separation is
guaranteed by the regulator matrix, Rk, which, in effect
freezes all modeswithwave numbers lower than k. Note that
thee∂k operator by definition acts only on Rk and both the Tr
and Log operations need to be taken in the functional and
matrix senses.
In the system of our interest F k is a functional of a

Nf × Nf complex matrix field Φ, which emerges from the
quark q̄q condensate of the underlying microscopic theory
of quantum chromodynamics. According to the Ginzburg-
Landau paradigm, close to a second-order (or weakly first-
order) transition, at a suitable UV scale Λ, also serving as
the starting point of the RG, FΛ can be expanded in terms
of the components of Φ. To this end, it is convenient to use
the UðNfÞ generators as a basis, i.e., Φ ¼ ϕaTa ≡
ðsa þ iπaÞTa, where TrðTaTbÞ ¼ δab=2 [see details of
the UðNÞ algebra in Appendix A].
In this study we employ the leading order of the

derivative expansion without wave function renormaliza-
tion, sometimes called the local potential approximation
(LPA). Omitting the wave function renormalization is
equivalent of neglecting the anomalous dimension, which,
based on studies on scalar models, is expected to be small.1

That is, the scale dependent free energy is approximated as

F k ¼
Z

d3x½Tr½∂iΦ†
∂iΦ� þ VkðΦÞ�; ð2Þ

where the local function Vk is called the potential, giving
the free energy density for homogeneous field configura-
tions. From here onwards, we restrict our discussion to an
approximation of Vk that only contains perturbatively
relevant and marginal interactions, i.e., in d ¼ 3 spatial
dimensions every possible term up to the order Oðϕ6Þ is
kept, while the remaining ones are dropped as they are
irrelevant (if the anomalous dimension is small, then
scaling is equivalent to that of around the Gaussian fixed
point). Note that this creates space for a much larger set of

1In case of OðNÞ scalar theories, the anomalous dimension is
of the order of Oð10−2Þ.
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interactions compared to the ϵ expansion, which operates
close to d ¼ 4, allowing only terms up to Oðϕ4Þ.
Since we are not to rely on the ϵ expansion, that is, all

renormalization group flows will be evaluated directly in
d ¼ 3, there is no small parameter in our approach and thus
the optimization of (1) important. First we note that scale
separation in (1) is achieved through the regulator termZ

x

Z
y
Rkðx⃗; y⃗ÞTr½Φ†ðx⃗ÞΦðy⃗Þ�; ð3Þ

which is chirally symmetric [note that Rkðx⃗; y⃗Þ ¼ Rkðy⃗; x⃗Þ�,
therefore, chiral symmetry is respected throughout the RG
flow. Second, it has been known for a long time that for the
approximate form of (2), the Rkðq⃗; p⃗Þ¼ ð2πÞ3ðk2− q⃗ 2Þ×
Θðk2− q⃗ 2Þδðq⃗þ p⃗Þ function, defined in Fourier space,
optimizes the renormalization group flow equation (1) [33].
It is also known that this choice guarantees that the derivative
expansion is converging [34]. Assuming homogeneous field
configurations forΦ, this choice of regularization leads (1) to

k∂kVk ¼
k4

12π2
e∂ktr logðk2 þ V 00

kÞ; ð4Þ

where V 00
k is the second derivative matrix of Vk, and now the

trace and log operations need to be taken in the matrix sense
only. In accordance with the definition of e∂k, it acts only on
the explicit k dependence, and not that of V 00

k .

A. Basic invariants

Let UL and UR be independent Nf × Nf unitary matri-
ces. Then, a chiral transformation acts on the field as
Φ → ULΦU†

R. If we are to construct an F k functional that
respects chiral symmetry at all scales, then the potential Vk
can only depend on the following combinations of Φ:

I1 ¼ TrðΦ†ΦÞ; ð5aÞ

Ĩ2 ¼ TrðΦ†ΦΦ†ΦÞ; ð5bÞ

Ĩ3 ¼ TrðΦ†ΦΦ†ΦΦ†ΦÞ; ð5cÞ

where we also used our assumption that beyond Oðϕ6Þ all
terms are to be dropped. Note that, for Nf ¼ 2, Ĩ3 is not
independent from I1 and Ĩ2, therefore, it must also be left
out from Vk. For simplicity, we will work with a modified
set of invariants,

I1 ¼ TrðΦ†ΦÞ; ð6aÞ

I2 ¼ TrðΦ†Φ − TrðΦ†ΦÞ=NfÞ2; ð6bÞ

I3 ¼ TrðΦ†Φ − TrðΦ†ΦÞ=NfÞ3; ð6cÞ

which is completely equivalent to (5). This will turn out to
be a more convenient choice as in the background
Φ ∼ 1Nf×Nf

, Φ†Φ ¼ TrðΦ†ΦÞ=Nf, thus I2 ¼ 0 ¼ I3.
We also need to implement the UAð1Þ anomaly into the

free energy. This can be achieved via the usual Kobayashi-
Maskawa-‘t Hooft (KMT) determinant term [35,36], i.e.,

Idet ¼ detΦ† þ detΦ: ð7Þ

Note that Ĩdet ¼ detΦ† − detΦ has the wrong parity, and
Ĩ2det is not independent from Idet and the previous invariants
for any flavor number Nf. That is to say, the only way to
include the anomaly is through the powers of Idet, pre-
sumably multiplied by invariants that are chirally symmet-
ric (i.e., I1, I2, I3).

B. Structure of the local potential

We divide the potential into two parts,

Vk ¼ Vch;k þ Van;k; ð8Þ
where Vch;k respects any ULðNfÞ ×URðNfÞ transforma-
tion, while Van;k breaks UAð1Þ. We stress that the form of
Vch;k is completely independent of the actual flavor number
(apart from Nf ¼ 2, where I3 needs to be left out as it is not
an independent invariant), while the structure of Van;k
depends on the size of Φ, determined by Nf. By leaving
out the perturbatively irrelevant interactions, we have

Vch;k ¼ m2I1 þ g1I21 þ g2I2

þ λ1I31 þ λ2I1I2 þ g3I3; ð9Þ

where in each line we have Oðϕ2Þ, Oðϕ4Þ, Oðϕ6Þ inter-
actions, respectively. Note that, close to d ¼ 4 spatial
dimensions, m2, g1, and g2 are the only couplings that
are not irrelevant, however, for d ¼ 3 there are three
additional ones, i.e., λ1, λ2, g3 (for Nf ¼ 2 we have to
set formally g3 ≡ 0). Now we investigate the structure of
Van;k as a function of Nf. Our task is to find all anomalous
interactions, whose field content does not exceed Oðϕ6Þ.
Nf ¼ 2: In this case the Φ matrix is 2 × 2, thus Idet is

Oðϕ2Þ. This yields various new interactions to emerge from
the UAð1Þ anomaly. Keeping only the (perturbatively)
relevant and marginal terms we have

Van;k ¼ aIdet

þ a2I2det þ b1I1Idet

þ a3I3det þ b2I21Idet þ b3I1I2det þ b4I2Idet; ð10Þ

where the terms in each line are Oðϕ2Þ,Oðϕ4Þ, andOðϕ6Þ,
respectively. For Nf ¼ 2, the number of the relevant
and marginal couplings is 12 (note again that g3 ≡ 0
for Nf ¼ 2).
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Nf ¼ 3: TheΦmatrix is 3 × 3, and as a consequence Idet
is Oðϕ3Þ. Dropping the irrelevant interactions we have

Van;k ¼ aIdet þ bI1Idet þ a2I2det; ð11Þ

each term being Oðϕ3Þ, Oðϕ5Þ, Oðϕ6Þ, respectively. For
Nf ¼ 3, the number of the relevant and marginal couplings
is 9.
Nf ¼ 4: The structure of Van;k is getting simpler as we

increase Nf. Now there are only two anomalous combi-
nations that are not irrelevant:

Van;k ¼ aIdet þ bI1Idet: ð12Þ

For Nf ¼ 4, the number of the relevant and marginal
couplings is 8.
Nf ¼ 5, 6: The structure of Van;k is the same for both

cases, as the only anomalous combination that is not
irrelevant is simply the usual KMT term:

Van;k ¼ aIdet: ð13Þ

For Nf ¼ 5, 6, the number of the sum of the relevant and
marginal couplings is 7.
Nf > 6: Finally, for large enough Nf, there is no way to

construct any anomalous term that is not irrelevant. As a
result,

Van;k ¼ 0: ð14Þ

For Nf > 6, the number of the relevant and marginal
couplings is 6.
In what follows, we need to project the flow equation (4)

onto the combination of invariants, which then leads to the
logarithmic scale derivative (k∂k) of each coupling. The β
functions are, in turn, defined as the logarithmic scale
derivative of the dimensionless couplings (denoted by a bar
on top), rescaled by appropriate powers of k. For the
anomaly free part, these are

m̄2
k ¼m2

k=k
2; ḡ1;k ¼ g1;k=k; ḡ2;k ¼ g2;k=k;

λ̄1;k ¼ λ1;k; λ̄2;k ¼ λ2;k; ḡ3;k ¼ g3;k: ð15Þ

As for the anomalous part, the rescalings depend on Nf:

Nf ¼ 2←

�
ā¼ a=k2; ā2 ¼ a2=k; b̄1 ¼ b1=k

ā3¼ a3; b̄2¼ b2; b̄3¼ b3; b̄4¼ b4
;

Nf ¼ 3← f ā¼ a=k3=2; b̄¼ b=k1=2; ā2 ¼ a2

Nf ¼ 4← f ā¼ a=k; b̄¼ b;

Nf ¼ 5← f ā¼ a=k1=2;

Nf ¼ 6← f ā¼ a:

III. COUPLING FLOWS

When we allow the k∂k operator to act on the left-hand
side (lhs) of (4), we straightforwardly obtain the sum of the
logarithmic scale derivative of all couplings, each multi-
plied by their respective invariant combination. The right-
hand side (rhs) of (4) should exhibit compatibility with this
structure, meaning it must be a linear combination of
chirally symmetric interactions in the same fashion as they
appear in the lhs. Therefore, by expanding the rhs around
zero field and equating the two sides, the scale dependence
of the couplings should be identifiable as the coefficient of
the invariant combinations in the rhs. The main technical
challenge here is that the rhs of (4) is not manifestly chirally
invariant. This is unsurprising, as in essence, we need to
evaluate the tr log of the inverse propagator matrix, and
naturally the masses of the eigenmodes are not chirally
invariant. However, upon performing the tr log operation,
they should combine into invariants, yielding the β func-
tions (after also applying the appropriate rescalings of the
couplings with the RG variable k).
Calculating the tr log of the inverse two point function,

i.e., ðk2 þ V 00
kÞ, in the most general background field ofΦ is

a formidable task (see Appendix B). As described in detail
in [18], it is not necessary at all, if we do not want to prove
chiral invariance, but make use of it. That is, we may
capitalize on the fact that at each order the rhs of (4) has to
combine into a linear combination of products of invariants,
thus we can (at each order) use any background field at our
disposal to identify them, of course if we know the actual
form of the invariants in that given background. If one
follows Ref. [18], then the only thing one should be
cautious of is that at a given order the invariant combina-
tions should be able to be disentangled from each other;
e.g., if we only allow a simple, one component background,
then this is obviously not possible. If we have, for example
Φ¼ s0T0, then for Nf ¼ 2 both I1 ¼ s20=2 and Idet ¼ s20=2,
showing that more components need to be introduced in Φ
so that I1 and Idet can be distinguished from each other in
the rhs of (4).
Unfortunately, it turns out that at higher orders even by

increasing the number of independent components of Φ,
the above procedure might fail. The reason is that at higher
orders the invariants cannot in principle be separated using
a step-by-step procedure that gradually eliminates them via
a clever choice of sequence of backgrounds, as done in [18]
for Nf ¼ 3 specifically. A reoccurring pattern is that once
we try to eliminate one of the invariants, some other(s) also
diminish, making impossible to read off their respective
coefficients. What we would like to stress in this study is
that, fortunately, it is unnecessary to identify the invariant
combinations at each order, after all. It is sufficient to obtain
at a given order an enough number of linearly independent
algebraic equations for the logarithmic scale derivatives of
the couplings.
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The way to do so is as follows. Let us use the Φ ¼
s0T0 þ sLTL background, where TL ≡ TN2

f−1
is the longest

(“last”) diagonal generator of the algebra. Then atOðϕnÞ all
invariant combinations take the form of

X
iþj¼n

αijsi0s
j
L ð16Þ

with suitable αij coefficients. Notice that we can indeed
work out the β functions without identifying the invariant
combinations, if we make use of that in both sides of the
flow equation (4) all invariant combinations can be
expressed in forms dictated by (16). The task then becomes
to match the coefficients of si0s

j
L (instead of the invariants)

at each side of (4), the lhs now being linear combinations of
logarithmic scale derivatives of the couplings. By solving
the obtained coupled equations2 we get the flow of every

coupling, and after rescaling them with k, the β functions
themselves.

A. Cases of Nf > 6

First we apply the outlined procedure for Nf > 6, where
the anomaly does not appear; see Eq. (10) for the corre-
sponding potential. At Oðϕ2Þ there is only one invariant, at
Oðϕ4Þ there are two, while at Oðϕ6Þ we see a number of
three. That is, only atOðϕ4Þ andOðϕ6Þ dowe need coupled
equations for the logarithmic scale derivatives, and the
background defined above (i.e., Φ ¼ s0T0 þ sLTL) does
provide an enough number of linearly independent equa-
tions. After a straightforward but rather complicated calcu-
lation, the β functions are found to be the following:

βm2 ¼ −2m̄2
k − 2

ḡ1;kNfðN2
f þ 1Þ þ ḡ2;kðN2

f − 1Þ
3π2Nfð1þ m̄2

kÞ2
; ð17aÞ

βg1 ¼ −ḡ1;k þ 4
ḡ21;kN

2
fðN2

f þ 4Þ þ 2ḡ1;kḡ2;kNfðN2
f − 1Þ þ 2ḡ22;kðN2

f − 1Þ
3π2N2

fð1þ m̄2
kÞ3

−
3λ̄1;kNfðN2

f þ 2Þ þ 2λ̄2;kðN2
f − 1Þ

3π2Nfð1þ m̄2
kÞ2

; ð17bÞ

βg2 ¼ −ḡ2;k þ 8
3ḡ1;kḡ2;kNf þ ḡ22;kðN2

f − 3Þ
3π2Nfð1þ m̄2

kÞ3
−
3ḡ3;kðN2

f − 4Þ þ λ̄2;kNfðN2
f þ 4Þ

3π2Nfð1þ m̄2
kÞ2

; ð17cÞ

βλ1 ¼ 4
ḡ1;kN2

f

�
3λ̄1;kNfðN2

f þ 7Þ þ 2λ̄2;kðN2
f − 1Þ�þ ḡ2;kNfðN2

f − 1Þð3Nf λ̄1;k þ 4λ̄2;kÞ
3π2N3

fð1þ m̄2
kÞ3

− 4
2ḡ31;kN

3
fðN2

f þ 13Þ þ 6ḡ21;kḡ2;kN
2
fðN2

f − 1Þ þ 12ḡ1;kḡ22;kNfðN2
f − 1Þ þ 8ḡ32;kðN2

f − 1Þ
3π2N3

fð1þ m̄2
kÞ4

; ð17dÞ

βλ2 ¼ 4
ḡ1;kNf

�
λ̄2;kNfðN2

f þ 19Þ þ 3ḡ3;kðN2
f − 4Þ�þ ḡ2;k

�
15ḡ3;kðN2

f − 4Þ þ Nfð18λ̄1;kNf þ λ̄2;kð5N2
f − 1Þ��

3π2N2
fð1þ m̄2

kÞ3

− 4
72N2

fḡ
2
1;kḡ2;k þ 6ḡ1;kḡ22;kNfð2N2

f þ 3Þ þ ḡ32;kð24N2
f − 90Þ

3π2N2
fð1þ m̄2

kÞ4
; ð17eÞ

βg3 ¼ 4
5Nfḡ1;kḡ3;k þ 4Nfḡ2;kλ̄2;k þ ð2N2

f − 17Þḡ2;kḡ3;k
π2Nfð1þ m̄2

kÞ3
− 4

54ḡ1;kḡ22;kNf þ ḡ32;kð4N2
f − 54Þ

3π2Nfð1þ m̄2
kÞ4

: ð17fÞ

All the fixed points and the corresponding stability analyses can be found in Sec. IV.

B. Cases of Nf ≤ 6

TheUAð1Þ anomaly does fit into the UV potential for Nf ≤ 6. In case of Nf ¼ 5, 6 it contributes solely through the usual
KMT determinant, as it is Oðϕ5Þ and Oðϕ6Þ, respectively. The Nf ¼ 5 calculation is simpler, as what we find terms at
Oðϕ5Þ in the expansion of the rhs of (4) produce solely the KMT term. As for Nf ¼ 6, however, the situation is more
complicated, as the anomaly then contributes at Oðϕ6Þ, and thus entangles with the non anomalous terms. The UAð1Þ

2Some of them can be linearly dependent but never contradictory.
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breaking has two separate sources forNf ¼ 4, see (12). The
first one contributes at Oðϕ4Þ, while the second one is at
Oðϕ6Þ, mixing once again with the fully chirally symmetric
terms. As for Nf ¼ 3, the situation again gets simpler, as
the KMT determinant is cubic in the fields and thus at each
Oðϕ3Þ and Oðϕ5Þ we only have a single invariant
combination.
The most complicated is the Nf ¼ 2 case. At Oðϕ2Þ,

Oðϕ4Þ, Oðϕ6Þ we have two, four and six invariant
combinations [note that g3 ≡ 0 in (9) for Nf ¼ 2], respec-
tively. The choice of (16) only allows for a number of four
independent coupled equations at Oðϕ6Þ, which is not
enough to obtain all the RG flows at this order. We need to
generalize (16) such that one more component is intro-
duced, e.g., Φ ¼ s0T0 þ s3T3 þ iπ1T1 (note that TL ≡ T3

for Nf ¼ 2), which leads at OðϕnÞ all invariant combina-
tions become of the form ofX

iþjþk¼n

αijksi0s
j
Lπ

k
1: ð18Þ

This choice is now able to provide enough independent
equations at Oðϕ6Þ so that all β functions can be obtained.
All the outlined calculations are straightforward, but

quite complicated and practically can only be carried out
through symbolic programming. We do not go into any
more detail to what is already presented, all the expressions
for the β functions as a function of Nf can be found in the
Supplemental Material [31].

IV. FIXED POINTS

Zeros of the β functions correspond to renormalization
group fixed points. At each fixed point we define an ωij ¼
∂βi=βgj stability matrix, where the shorthand notations βi
and gj are used for all β functions and couplings. Positive
(negative) eigenvalues of ωij refer to irrelevant (relevant)
directions. We are especially looking for fixed points with
one relevant direction. The latter, if associated with the
reduced temperature, yields infrared stability at the critical
point. We are interested whether such fixed points, belong-
ing to continuous thermal transitions can exist in the whole
flavor number range.
We follow the strategy already outlined in [37], that is,

we eliminate all the perturbatively marginal couplings by
solving analytically their respective fixed point equation,
which are then plugged into the β functions of the relevant
couplings. As shown in [37], this is (in part) produces
higher loop contributions to the flows of the relevant
interactions. Stability analyses are then carried out in the
space of the latter couplings using the obtained (partially)
resummed β functions.
Even before going into a detailed analysis, it is expected

that the Gaussian and Wilson-Fisher fixed points will
definitely be found. The former is trivial, while the latter

is due to the fact that if we set the g2, λ2, g3, and all the
anomalous couplings to zero, then the free energy becomes
Oð2N2

fÞ symmetric. Therefore, for any Nf there should
exist a fixed point of F k that belongs to the OðNÞ
universality class with N ¼ 2N2

f.

A. Case of Nf =∞
Before analyzing the Nf dependence of the fixed point

structure, it is instructive to perform a large Nf expansion
on the β functions of (17). After making the
ḡ1;k → ḡ1;k=N2

f, ḡ2;k → ḡ2;k=Nf rescalings and eliminating
the marginal couplings, we get the following fixed point
equations:

0≡ βm2
¼ −2m̄2

k −
2ðḡ1;k þ ḡ2;kÞ
3π2ð1þ m̄2

kÞ2
; ð19aÞ

0≡ βg1 ¼ −ḡ1;k

þ 2ðḡ41;k þ 8ḡ31;kḡ2;k þ 17ḡ21;kḡ
2
2;k þ 20ḡ1;kḡ32;k þ 14ḡ42;kÞ

3π2ðḡ1;k þ ḡ2;kÞðḡ1;k þ 5ḡ2;kÞð1þ m̄2
kÞ3

;

ð19bÞ

0≡ βg2 ¼ −ḡ2;k þ
4ḡ22;kð4ḡ2;k − ḡ1;kÞ

3π2ðḡ1;k þ 5ḡ2;kÞð1þ m̄2
kÞ3

: ð19cÞ

These algebraic equations can be easily solved numerically,
and the found fixed points are shown in Table I. On top of
the usual Gaussian andWilson-Fisher [Oð2N2

f ¼ ∞Þ] fixed
points, there are two additional ones with 1 (C

Nf¼∞
1 ) and 2

(B
Nf¼∞
2 ) relevant directions, respectively. Note that, sub-

scripts refer to the number of relevant directions.

B. Cases of finite Nf

As we move away from Nf ¼ ∞, a new C̃
Nf

1 fixed point
with one relevant direction branches from theOð2N2

fÞ fixed
point. We show in Table II the values of the couplings in the
fixed points for Nf ¼ 50, Nf ¼ 20, Nf ¼ 10, respectively.
Once we hit Nf ¼ 6, the structure of the renormalization
group flows changes, as the coefficient of the KMT
determinant ceases to be (perturbatively) irrelevant and
becomes marginal. Nevertheless, we see that even taking its

TABLE I. Nontrivial fixed points (FPs) in the Nf → ∞ limit.
Note the rescalings ḡ1 → ḡ1=N2

f , ḡ2 → ḡ2=Nf . The number of
relevant directions (RD) is shown in the last column.

FP m̄2 ḡ1 ḡ2 RD

Oð∞Þ −0.33333 4.38649 0 2
B∞
2 0.039812 −7.32668 6.05216 2

C∞
1 −0.37351 4.89039 −0.54978 1
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effect into account, in all the found fixed points the
corresponding coupling vanishes, therefore, it does not
change the aforementioned structure.
The structure does change at Nf ¼ 5. In this case, the

KMT coupling is relevant, and we find only two fixed
points on top of the trivial and the Oð2N2

fÞ one, see

Table III. C̃6
1 → C̃5

1 remains, but both C6
1 and B6

2 cease to
exist, while a new fixed point, A5

3 pops up with nonzero
anomaly,3 having three relevant directions.
As for Nf ¼ 4, there are two anomalous couplings, one

of them being marginal, while the other one relevant. The
fixed point structure extends with another anomalous fixed
point, Ã4

2, see Table IV. Notice that, as the number of
relevant operators increases, so does the number of relevant
directions at each fixed point. As a result, there are no more
fixed points with only one relevant direction.

We find a similar conclusion for Nf ¼ 3, in accordance
with the earlier study [18], see Table V. As the number of
relevant interactions become five (with four marginal ones),
the flows are getting increasingly complicated, which is
reflected in the number of the fixed points in the system.
We again find an anomaly free C̃3

2 fixed point with two
relevant directions, and another one, A3

4, with nonvanishing
anomaly, but with four relevant directions. On top of these,
we have six more fixed points with nonzero anomaly,
whose stability matrices have complex eigenvalues; one of
them, A3

1�, has only one relevant direction, meaning that the
real part of the eigenvalues is all but one positive. Whether
the complex nature of the eigenvalues of A3

1� is only due to
the LPA approximation is not clear, and we would not rule
out the possibility that this fixed point indicates a second-
order chiral transition.
As already mentioned in the previous section, Nf ¼ 2 is

the most complicated case. Since the coupling space is 12
dimensional (with six relevant and six marginal inter-
actions), we could not find numerically all fixed points.
We did obtain, however, all the anomaly-free fixed points
as shown in Table VI. The C̃Nf fixed point continues to
exist coming down from Nf ¼ 3 to Nf ¼ 2, retaining two
relevant directions. On top of this, we see another fixed
point with two relevant directions, that is Ĉ2

2.

TABLE III. Nontrivial fixed points for Nf ¼ 5. The number of
relevant directions is shown in the last column.

Nf FP m̄2 ḡ1 ḡ2 ā RD

5 Oð2N2
fÞ −0.33386 0.16871 0 0 2

00 C̃5
1

−0.36068 0.19128 −0.12675 0 1
00 A5

3
−0.17023 0.14387 −0.056313 −2.79735 3

TABLE IV. Nontrivial fixed points for Nf ¼ 4. The number of
relevant directions is shown in the last column. The numbers in
the parentheses correspond to the relevant directions under the
constraint that all directions corresponding to anomalous cou-
plings disappear.

Nf FP m̄2 ḡ1 ḡ2 ā RD

4 Oð2N2
fÞ −0.32940 0.25800 0 0 3 (2)

00 C̃4
2

−0.38129 0.31042 −0.25480 0 2 (1)
00 A4

2
−0.34949 0.63992 −1.73326 −3.82052 2

00 Ã4
2

−0.40273 0.21168 0.17473 −0.73657 2

TABLE V. Nontrivial fixed points for Nf ¼ 3. The number of
relevant directions is shown in the last column. The numbers in
the parentheses correspond to the relevant directions under the
constraint that all directions corresponding to anomalous cou-
plings disappear. Among the six fixed points with complex
eigenvalues of the stability matrices, only the one with a single
relevant direction is shown as A3

1�.

Nf FP m̄2 ḡ1 ḡ2 ā b̄ RD

3 Oð2N2
fÞ −0.31496 0.43763 0 0 0 3 (2)

00 C̃3
2

−0.38262 0.59725 −0.62042 0 0 2 (1)

00 A3
4

−0.01786 0.091631 −0.14148 −0.11900 0.39087 4
00 A3

1� −0.41126 0.73099 −0.88199 −0.46585 −0.91131 1�

TABLE II. Nontrivial fixed points for various flavor numbers
Nf ≥ 6. Note that interactions caused by the axial anomaly are
irrelevant (marginal) for Nf > 6 (Nf ¼ 6). The number of rele-

vant directions is shown in the last column. The C̃
Nf

1 and Oð2N2
fÞ

fixed points merge as Nf → ∞.

Nf FP m̄2 ḡ1 ḡ2 RD

50 Oð2N2
fÞ −0.33342 0.0017538 0 2

00 B50
2

0.040303 −0.0029448 0.12152 2
00 C50

1
−0.37509 0.0019579 −0.011198 1

00 C̃50
1

−0.33342 0.0017556 −0.000088291 1

20 Oð2N2
fÞ −0.33385 0.010939 0 2

00 B20
2

0.043192 −0.018915 0.31043 2
00 C20

1
−0.38411 0.012287 −0.030728 1

00 C̃20
1

−0.33393 0.011010 −0.0014253 1

10 Oð2N2
fÞ −0.33492 0.043430 0 2

00 B10
2

0.059163 −0.086421 0.68317 2
00 C10

1
−0.43356 0.048876 −0.082581 1

00 C̃10
1

−0.33641 0.044669 −0.012667 1

6 Oð2N2
fÞ −0.33516 0.11855 0 2

00 B6
2

0.40276 −1.23414 3.80527 2
00 C6

1
1.09084 −6.45942 16.76628 1

00 C̃6
1

−0.34848 0.12934 −0.069536 1

3All fixed points denoted by A and its variations (Ã or Â) have
nonzero anomaly couplings.
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As for fixed points with nonvanishing anomalous cou-
plings at Nf ¼ 2, we find an Oð4Þ symmetric one [4]
associated to m̄2 ¼ ∞ and jāj ¼ ∞ with m̄2 þ ā ¼ being
finite: It corresponds to the case where the ðπ0; s⃗Þ multiplet
becomes infinitely heavy, while ðs0; π⃗Þ has a finite mass.
However, this fixed point is found to have the structure
βg1 ¼ βa2 ≠ βb1 and βλ1 ¼ βa3 ≠ βb2 ¼ βb3 , which are dif-
ferent from βg1 ¼ βa2 ¼ βb1 and βλ1 ¼ βa3 ¼ βb2 ¼ βb3 ,
naively expected from the decoupling of ðπ0; s⃗Þ. It is not
clear whether such a discrepancy is due to the LPA
approximation. Note that this Oð4Þ fixed point has only
one relevant direction, therefore, it could be responsible for
a second-order chiral transition at finite temperature.
In summary, for 5 ≤ Nf < ∞, there exists a collection of

anomaly-free fixed points, C̃
Nf

1 , which are continuously
connected with one another, each having one relevant
direction. At Nf ¼ 4, it continues to C̃4

2, but now equipped
with two relevant directions. The same is observed for
Nf ¼ 3, and on top C̃3

2, there also arises an anomalous fixed
point with one relevant direction (A3

1;�) but with complex
eigenvalues of the stability matrix. ForNf ¼ 2, not only the
anomaly-free fixed point, C̃2

2 exists (again with two relevant
directions) but also another one, Ĉ2

2 with the same proper-
ties, and also an anomalous Oð4Þ fixed point with one
relevant direction.
We stress that, in case of the UðNfÞ ×UðNfÞ model,

none of the anomalous interactions exist in the free energy,
therefore, the locations of the anomaly-free fixed points,
e.g., C̃Nf¼2;3;4, found in the SUðNfÞ × SUðNfÞ model,
remain, while the number of their relevant directions
decreases from two to one.4 That is to say, they may
also correspond to finite temperature continuous phase
transitions.

C. Order of the transition

At this point we consider three possibilities for the order
of the finite temperature chiral transition in the SUðNfÞ ×
SUðNfÞ model.

Case I (flavor continuity). This corresponds to an
assumption that the continuous family of anomaly free
fixed points, C̃Nf , dictates the chiral phase transition at
finite temperature. It implies that the chiral transition is of
second-order for Nf ≥ 5 [this statement is irrespective of
the thermal fate of the UAð1Þ anomaly], while for Nf ¼ 2,
3, 4, the transition is of first order. We note that if the
anomaly disappears at the critical point [i.e., the UðNfÞ ×
UðNfÞ model applies], then the flavor continuity
assumption yields the transition to be of second order even
for Nf ¼ 2, 3, 4.
Case II. This corresponds to an assumption that the

chiral transition is governed by the C̃Nf fixed points for
Nf ≥ 3, while for Nf ¼ 2 it is dictated by the anomalous
O(4) fixed point. This case leads to the conclusion that the
chiral transition is of second order forNf ≥ 5, first order for
Nf ¼ 3, 4 and second order for Nf ¼ 2.
Case III. This corresponds to an assumption that the

chiral transition is governed by the C̃Nf fixed points for
Nf ≥ 4, while for Nf ¼ 3 and Nf ¼ 2 it is dictated by the
anomalous A3

1� and O(4) fixed points, respectively. In such
a case the chiral transition is of second order for Nf ≥ 5,
first order for Nf ¼ 4, and second order for Nf ¼ 2, 3.
In Table VII, we summarize the order of the chiral

transition on the basis of the ϵ expansion and the present
FRG study, for the SUðNfÞ × SUðNfÞ model. A similar
summary for the UðNfÞ ×UðNfÞ model can be found in
Table VIII.
We note here that, although the exact recovery of UAð1Þ

symmetry is unlikely at any finite temperature [38],
according to studies on the eigenvalue spectrum of the
Dirac operator [39–41], it cannot be ruled out that the
anomaly becomes reasonably small at the critical point. In
such a case, as the anomaly coefficient may control the
strength of the transition5 (see the flavor continuity
assumption above, for Nf ¼ 2, 3, 4), it being small enough
might cause difficulties in distinguishing a weak first-order
transition from a second-order one. Turning this argument
upside down, by constraining the strength of the transition,
indirect conclusions could be drawn on the thermal
behavior of the UAð1Þ anomaly.

D. Relation to the ϵ expansion

The ϵ expansion predicts that due to the absence of an IR
stable fixed point, the chiral transition has to be of
fluctuation induced first-order for Nf ≥ 3. This statement
is irrespective of the thermal behavior of the UAð1Þ
anomaly,6 thus one may be curious of why our present

TABLE VI. Anomaly-free fixed points for Nf ¼ 2. The num-
ber of relevant directions is shown in the last column. The
numbers in the parentheses correspond to the relevant directions
under the constraint that all directions corresponding to anoma-
lous couplings disappear.

Nf FP m̄2 ḡ1 ḡ2 RD

2 Oð2N2
fÞ −0.27094 0.85280 0 4 (3)

00 C̃2
2

−0.20599 1.33367 −1.88211 2 (1)
00 Ĉ2

2
−0.26318 0.33093 1.71728 2 (1)

4In case of Nf ¼ 2, Ĉ2
2 → Ĉ2

1 also becomes a fixed point with
only one relevant direction.

5Similarly as an external magnetic field can control the
strength of the first-order transition in a ferromagnetic system.

6Note that, at Nf ¼ 2, for large anomaly the ϵ expansion also
predicts the existence of an IR stable Oð4Þ fixed point.
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study provides a different scenario, especially in light of the
triumph of the ϵ expansion in OðNÞ-like models.
First, we mention that had we dropped in our d ¼ 3 FRG

approach all couplings that are not present in the original
Pisarski-Wilczek study [1], we would have obtained
exactly the same conclusion. Second, instead of working
in d ¼ 3, the flow equation (1) can also be evaluated in
d ¼ 4 − ϵ dimensions, which leads to the β functions
obtained in [1] at the leading order of a small ϵ expansion,
as already shown in [5].
We believe that the main reason why the d ¼ 3 FRG

approach provides such different results compared to the ϵ
expansion evaluated at ϵ ¼ 1 is not that ϵ is “not small
enough,” but rather the operator structure of the free energy.
Close to d ¼ 4 the number of operators is restricted, even if
one adds gradually more marginal and irrelevant inter-
actions, they can never produce any difference at the leading
order of the ϵ expansion. We also think that the reason why
the ϵ expansion works really well for theOðNÞmodel is that
there is only one term difference between the ultraviolet free
energy functional for d ¼ 3 and close to d ¼ 4, which
cannot alter the fixed point structure. The SUðNfÞ ×
SUðNfÞ symmetry allows for a much larger set of invariants
as we lower dimensionality, which creates space for new
fixed points, yielding amuch richer structure that can lead to
critical behavior. We believe that the ϵ expansion can only
work, if the number of invariant operators allowed by
symmetry does not differ much for d ¼ 3 and d ¼ 4.

V. CONCLUDING REMARKS

In this paper, we investigated the order of the chiral
transition in the SUðNfÞ × SUðNfÞ model for a general

flavor number, Nf. Renormalization group flows of the
Ginzburg-Landau potential were calculated using the FRG
method with the inclusion of all relevant and marginal
interactions at d ¼ 3, i.e., up toOðϕ6Þ. The main difference
compared to the ϵ expansion in d ¼ 4 − ϵ dimensions is
that the number of relevant and marginal interactions are
considerably larger in the d ¼ 3 case.
We found new anomaly-free fixed points spanned

throughout the entire range of Nf, which we call “flavor
continuous” fixed points, denoted by C̃Nf. By conjectur-
ing that the finite temperature chiral phase transition is
governed by the C̃Nf fixed points, numerical analyses of
the stability matrices around the fixed points show that
the transition for Nf ≥ 5 is of second-order, irrespective
of the realization of UAð1Þ symmetry at the critical
temperature. For Nf ¼ 2, 3, 4, our results show that
the transition is of first-order, unless UAð1Þ symmetry
exactly recovers at the critical temperature.7 (More gen-
eral possibilities of the thermal chiral transition beyond
the case of flavor continuity are summarized in
Table VII.) We also argued that, in case that the anomaly
is sufficiently weak around the critical temperature, it
could be difficult to distinguish a first-order transition
from a second-order one, and thus the critical quark mass
(mq;crit) might be difficult to be extracted from numerical
lattice QCD simulations.
In Figs. 1 and 2, we show schematic Columbia plots

conjectured from the ϵ-expansion and the flavor-continuity
scenario of the FRG method, respectively. Left panels of
these figures are for the axial anomaly being present at the
critical temperature, while right panels are for the axial
anomaly vanishing at the critical temperature. A small
mq;crit, suggested by recent lattice QCD simulations are also
considered in the left panel of Fig. 2.
We should still be cautious in drawing final conclu-

sions as there is plenty of room for improving the

TABLE VIII. Comparison without axial anomaly [UðNfÞ×
UðNfÞ model].

Nf ¼ 2 Nf ¼ 3 Nf ¼ 4 Nf ≥ 5

ϵ expansion
(ϵ ¼ 1)

1st order 1st order 1st order 1st order

FRG (d ¼ 3)
{current study}

2nd order 2nd order 2nd order 2nd order

TABLE VII. Comparison with axial anomaly [SUðNfÞ × SUðNfÞ model]. (*): In the ϵ expansion, for Nf ¼ 2, a
second-order transition only occurs, if the axial anomaly is strong enough at the critical point, leading to an Oð4Þ
symmetric potential.

Nf ¼ 2 Nf ¼ 3 Nf ¼ 4 Nf ≥ 5

ϵ expansion (ϵ ¼ 1) 2nd order* 1st order 1st order 1st order

FRG (d ¼ 3) {current study}
1st order (Case I) 1st order (Case I)
2nd order (Case II) 1st order (Case II) 1st order 2nd order
2nd order (Case III) 2nd order (Case III)

7It may be natural to think that for odd Nf , the transition
can only be of second order if the KMT coupling vanishes;
otherwise no parity symmetric potential can be formed at the
critical point [42]. Our results indicate that fluctuations appear to
be able to wash out the odd powered anomalous terms forNf ≥ 5,
but it is not the case for Nf ¼ 3.
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present study. We have completely neglected the wave
function renormalization factor (and thus the anomalous
dimension), which may play an important role in the
fixed point structure. Since our truncation was based
on relevance (and irrelevance) around the Gaussian
fixed point, it may be appropriate to test the robustness
of the results with respect to introducing even higher
order (perturbatively irrelevant) terms. Furthermore, the
FRG formalism, through the flow equation (1), also
makes it possible to investigate global fixed point poten-
tials nonperturbatively, i.e., without expanding the poten-
tial in terms of the field variables. It would certainly be
very important to obtain the corresponding potentials
numerically, presumably on a grid, and investigate their
stability.
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APPENDIX A: UðNÞ ALGEBRA

The Lie algebra of the UðNÞ≡Uð1Þ × SUðNÞ group
containsN diagonal andNðN − 1Þ nondiagonal generators.

FIG. 1. Columbia plot of the ϵ expansion. Left panel: theUAð1Þ anomaly does not vanish at Tc, leading to a second-order transition for
Nf ¼ 2 (top left corner). Right panel: the UAð1Þ anomaly vanishes exactly at Tc, leading to first-order transitions for both Nf ¼ 2, 3.

FIG. 2. Columbia plot of the FRG method directly at d ¼ 3, assuming that the chiral transition is governed by the C̃Nf class of “flavor
continuous” fixed points (case I in the text). Left panel: the UAð1Þ anomaly does not vanish but is small at Tc, yielding the first-order
region very narrow. Right panel: the UAð1Þ anomaly vanishes exactly at Tc, leading to second-order transitions for both Nf ¼ 2, 3 (top-
left, bottom-left corners).
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All but one are traceless and we choose the normalization
as TrðTaTbÞ ¼ δab=2. The diagonal ones, including the
zeroth generator corresponding to the Uð1Þ subgroup
read as

T0 ¼
1ffiffiffiffiffiffiffi
2N

p

0BBBB@
1

1

…

1

1CCCCA;

T1 ¼
1

2

0BBBB@
1

−1
0

…

1CCCCA;

T2 ¼
1

2
ffiffiffi
3

p

0BBBB@
1

1

−2
…

1CCCCA;

…

TN−1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NðN − 1Þp
0BBBB@

1

1

…

−ðN − 1Þ

1CCCCA: ðA1Þ

We note that throughout the text we follow the notation
TN−1 ≡ TL, referring to the “longest” diagonal generator.
The nondiagonal generators form two groups, as general-
izations of the σx and σy Pauli matrices in the following
sense:

ðTðjkÞ
x Þab ¼

1

2
ðδakδbj þ δajδbkÞ; ðA2aÞ

ðTðjkÞ
y Þab ¼

i
2
ðδakδbj − δajδbkÞ: ðA2bÞ

We have a number of NðN − 1Þ=2 for each the x and y type
generators. The dabc symmetric, and the fabc antisymmet-
ric structure constants are defined through the products of
generators:

TaTb ¼
1

2
ðdabc þ ifabcÞTc: ðA3Þ

The following identities turn out to be useful for calculating
them:

fabc ¼ −2iTr½½Ta; Tb�Tc�; ðA4aÞ

dabc ¼ 2Tr½fTa; TbgTc�; ðA4bÞ

where ½; � and f; g refer to the commutator and anticom-
mutator, respectively. Alternatively, we can also deduce

fabc ¼ 4ℑTrðTaTbTcÞ; ðA5aÞ

dabc ¼ 4ℜTrðTaTbTcÞ: ðA5bÞ

Since for the practical calculations we mostly use a back-
ground field of Φ ¼ s0T0 þ sLTL, the following structure
constants will be needed:

d0ij¼
ffiffiffiffi
2

N

r
δij; dLLL¼ð2−NÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

NðN−1Þ

s
;

dLij≠0;8¼

8><>:
ð2−NÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2NðN−1Þ
q

δij; if i;j∈fðx;jNÞ;ðy;jNÞgffiffiffiffiffiffiffiffiffiffiffiffi
2

NðN−1Þ
q

δij; else
;

diLL¼
ffiffiffiffi
2

N

r
δi0þdLLLδiL;

fuLv¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
2ðN−1Þ

s �
δu;ðy;jNÞδv;ðx;jNÞ−δu;ðx;jNÞδv;ðy;jNÞ

�
:

ðA6Þ

APPENDIX B: MASS MATRICES

In this appendix we discuss how to calculate the V 00
k mass

matrix for a general flavor number Nf, defined via (8). In
what follows, we only consider the chirally symmetric part,
Vch;k, in Vk. Derivatives for the anomalous part, Van;k, are
only relevant for Nf ¼ 2, 3, 4, 5, 6, and in such cases all
derivatives can be calculated in analogy with (B1), using
symbolic programming. We do not list the corresponding
formulas separately.
Denoting by ϕi either the scalar, si, or pseudoscalar, πi

fields, we get

ðV 00
kÞϕiϕj

¼ m2
∂
2I1

∂ϕi∂ϕj
þ 2g1

∂I1
∂ϕi

∂I1
∂ϕj

þ 2g1I1
∂
2I1

∂ϕiϕj

þ g2
∂
2I2

∂ϕi∂ϕj
þ 6λ1I1

∂I1
∂ϕi

∂I1
∂ϕj

þ 3λ1I21
∂
2I1

∂ϕiϕj

þ λ2
∂
2I1

∂ϕi∂ϕj
I2 þ λ2

�
∂I1
∂ϕi

∂I2
∂ϕj

þ ∂I1
∂ϕj

∂I2
∂ϕi

	
þ λ2I1

∂
2I2

∂ϕi∂ϕj
þ g3

∂
2I3

∂ϕi∂ϕj
: ðB1Þ

For the derivatives, we have

∂I1
∂ϕi

¼ ϕi;
∂
2I1

∂ϕi∂ϕj
¼ δij; ðB2Þ
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and then by reintroducing the invariants Ĩ2 and Ĩ3 [see (5)],
so that I2 ¼ Ĩ2 − 1

Nf
I21 and I3 ¼ Ĩ3 − 3

Nf
I1Ĩ2 þ 2

N2
f
I31, we

arrive at

∂I2
∂ϕi

¼ ∂Ĩ2
∂ϕi

−
2

Nf
I1

∂I1
∂ϕi

; ðB3aÞ

∂
2I2

∂ϕi∂ϕj
¼ ∂

2Ĩ2
∂ϕi∂ϕj

−
2

Nf

∂I1
∂si

∂I1
∂sj

−
2

Nf

∂
2I1

∂si∂sj
; ðB3bÞ

∂I3
∂ϕi

¼ ∂Ĩ3
∂ϕi

−
3

Nf

∂I1
∂ϕi

Ĩ2−
3

Nf
I1
∂Ĩ2
∂ϕi

þ 6

Nf
I21
∂I1
∂ϕi

; ðB3cÞ

∂
2I3

∂ϕi∂ϕj
¼ ∂

2Ĩ3
∂ϕi∂ϕj

−
3

Nf
I1

∂
2Ĩ2

∂ϕi∂ϕj
−

3

Nf

∂
2I1

∂ϕi∂ϕj
Ĩ2

−
3

Nf

�
∂I1
∂ϕi

∂Ĩ2
∂ϕj

þ ∂I1
∂ϕj

∂Ĩ2
∂ϕi

	
þ 12

N2
f

I1
∂I1
∂ϕi

∂I1
∂ϕj

þ 6

N2
f

I21
∂
2I1

∂ϕi∂ϕj
: ðB3dÞ

Then, after introducing the shorthand notation of Ai ¼
1
2
ðsa − iπaÞðsb þ iπbÞðdabi þ ifabiÞ, we have

Ĩ2 ¼
1

2
AkAk; Ĩ3¼

1

4
AkAlAmdklm; ðB4Þ

which leads to

∂Ĩ2
∂ϕi

¼Ak
∂Ak

∂ϕi
;

∂
2Ĩ2

∂ϕi∂ϕj
¼Ak

∂
2Ak

∂ϕi∂ϕj
þ∂Ak

∂ϕi

∂Ak

∂ϕj
; ðB5aÞ

∂Ĩ3
∂ϕi

¼ 3

4

∂Ak

∂ϕi
AlAmdklm; ðB5bÞ

∂
2Ĩ3

∂ϕi∂ϕj
¼ 3

4

∂
2Ak

∂ϕi∂ϕj
AlAmdklmþ3

2

∂Ak

∂ϕi

∂Al

∂ϕj
Amdklm: ðB5cÞ

All the derivatives of Vk can now be expressed in terms of
derivatives of Ai, which are found to be

∂Am

∂sj
¼ sadajmþπafajm;

∂Am

∂sj
¼πadajm−safajm; ðB6aÞ

∂
2Am

∂si∂sj
¼ dijm;

∂
2Am

∂πi∂πj
¼ dijm: ðB6bÞ

As explained in the main text, for Nf > 6 we use the
background field of Φ ¼ s0T0 þ sLTL. Therefore, substi-
tuting si ¼ s0δi0 þ sLδiL and πi ¼ 0, we get

Ai ¼
s20 þ s2Lffiffiffiffiffiffiffiffiffi

2Nf
p δi0

þ
 

2 − Nfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NfðNf − 1Þp s2L þ

ffiffiffiffiffiffi
2

Nf

s
s0sL

!
δiL; ðB7aÞ

∂Am

∂si
¼ s0

ffiffiffiffiffiffi
2

Nf

s
δmiþ sLdLmi;

∂Am

∂πi
¼ sLfiLm: ðB7bÞ

Note that the second derivatives are background indepen-
dent, see (B6b). Using Ai and its derivatives we can now
build up the V 00

k matrix in the Φ ¼ s0T0 þ sLTL back-
ground, which is the starting point of the evaluation of the
Wetterich equation.
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