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In a few recent papers we introduced the chirality-flow formalism, which builds on the spinor-helicity
formalism, but incorporates the Fierz identity into the Feynman rules. Calculations at tree level are thereby
trivial, often to the extent that it is possible to immediately write down a tree-level Feynman diagram in
terms of spinor inner products. This simplification persists in tree-level computer implementations, giving
very sizable speedups. In the present paper, we argue that there is also a significant simplification of the
Lorentz structure at the one-loop level when using the four-dimensional formulation of the four-
dimensional helicity scheme. As at tree level, the gauge reference vector for external gauge bosons,
and the simplified Lorentz structure lead to significant shortening of the calculations. Additionally, we find
that the possible terms in a tensor decomposition of loop integrals are highly constrained, and therefore the
tensor reduction procedure is simplified.
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I. INTRODUCTION

Recently, we introduced the chirality-flow forma-
lism [1–4], which builds on the spinor-helicity forma-
lism [5–23], and relies on splitting the Lorentz algebra
into left- and right-chiral parts. As for the spinor-helicity
formalism, all objects, in particular polarization vectors,
are rewritten in terms of massless spinors, but the
chirality-flow method takes the simplification one step
further by recasting everything into diagrammatic
“flows,” i.e., contractions of spinors.
This allows for rewriting Feynman rules and diagrams

directly in terms of these flows, and results in amplitudes
that may be directly expressed in terms of spinor inner
products, i.e., the only Lorentz invariant quantities at
hand [1,2].
For tree-level calculations, the chirality-flow formalism

leads to significant simplifications [1,2], to the extent that it
is often possible to immediately write down the amplitude
corresponding to a Feynman diagram. On top of this,
reference vectors for external gauge bosons or spin direc-
tions can be chosen in such a way that many Feynman
diagrams simplify or vanish. This—as well as the simplified

algebra—has led to a significant speedup for a tree-level
QED test implementation in MadGraph5_aMC@NLO [3], for
high multiplicities exceeding a factor 10 for eþe− → nγ.
Ongoing work shows a sizable speedup also for the QCD
Lorentz structure. Besides their promising use in fixed-order
tree-level calculations, we have also demonstrated [4] that
chirality flow can be used to directly decompose amplitudes
in terms of the available group and spinor structures and
therefore is of utmost importance to provide reliable input to
resummation approaches at the amplitude level [24–27].
Moving beyond tree level, it is imperative to use a

consistent regularization scheme, which requires a careful
treatment of chirality and γ5 [28–44]. A comprehensive
summary of different regularization methods can be found
in [45,46]. In conventional dimensional regularization
(CDR) [28,29,47], all objects are regularized in d dimen-
sions, which (at least naively) would destroy many of the
simplifications brought about by chirality flow. While in
the long term we aim at a full treatment of chirality flow in
CDR (such as to use chirality flow to extract ϵ-dependent
quantities in tree-level calculations), in the present paper we
instead exploit a (partially) four-dimensional regularization
scheme, the 4D formulation (FDF) [48] of the 4D helicity
scheme (FDH)1 [51,52], in order to retain the significant
simplifications which chirality flow draws from using
charge conjugations, Fierz and Schouten identities. InPublished by the American Physical Society under the terms of
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1The equivalence of FDH (and therefore FDF) to CDR is
shown in [49,50].
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FDF, loop numerators arewritten as purely four-dimensional
objects together with some additional Lorentz scalars, while
the loop momenta and integrals are in d dimensions. This
implies that the algebraic manipulations implemented for
tree-level calculations in four dimensions [1,2] can be
retained, and Feynman diagrams are therefore easily “flow-
able”—as in tree-level calculations.2 After simplifying the
Lorentz algebra the integrals are in d dimensions, implying
that we can use all of the standard properties and results of
dimensionally regularized integrals.
The rest of this paper is organized as follows. In Sec. II,

we give a brief introduction to chirality flow and how it is
used in Feynman-diagram-based amplitude calculations.
Then, the 4D formulation of the 4D helicity scheme is
introduced in Sec. III. In Sec. IV, we illustrate with a
few examples how to perform one-loop calculations in
chirality flow, describing how chirality flow simplifies the
Lorentz algebra and tensor reduction. Finally, we conclude
in Sec. V.

II. INTRODUCTION TO CHIRALITY FLOW

In this section, we give a brief introduction to the
chirality-flow formalism, and exemplify how spinors,
propagators, and vertices are defined. A complete list of
Standard Model external wave functions, vertices, and
propagators can be found in [2], whereas all structures
needed for this paper are contained either in the main text or
in the Appendix. For details of conventions, we refer the
reader to [1].
The basic building blocks of the chirality-flow formal-

ism are the left- and right-chiral spinors, which we
represent graphically in terms of dotted and undotted
lines respectively [1],

ð1Þ

with hij ¼ hpij etc. We represent contractions of these
spinors with “flows”

ð2Þ

where (up to a phase) hiji ∼ ½ij� ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pi · pj

p
, and where

the antisymmetry of the spinor inner product is obvious.
We read chirality-flow lines along the chirality-flow arrow,
and, because the inner product is antisymmetric, swapping
the chirality-flow arrow direction induces a minus sign.

All particles and momenta are then written as (a
combination of) massless spinors.3 For example, massless
polarization vectors are given by

ð3Þ

where, similar to chiral spinors, we label the polarization
vectors L=R for convenience,4 with ϵLðpi; rÞ denoting a
negative-helicity incoming or positive-helicity outgoing
photon of momentum pi, and ϵRðpi; rÞ denoting a pos-
itive-helicity incoming or negative-helicity outgoing pho-
ton. Here, r is an arbitrary (massless) reference vector with
r · pi ≠ 0, and either set of opposing arrow directions may
be used as long as it matches the rest of the diagram [1].
To describe massive particles and momenta, a massive

momentum p with p2 ¼ m2 ≠ 0 is decomposed into a sum
of massless momenta p♭ and q as

pμ ¼ p♭;μ þ αqμ; ðp♭Þ2 ¼ q2 ¼ 0;

p2 ¼ m2; α ¼ m2

2p♭ · q
¼ m2

2p · q
; ð4Þ

with, for example, an incoming spinor with spin along the
axis sμ ¼ ðpμ − 2αqμÞ=m given by5 [2]

ð5Þ

While it is natural in chirality flow to measure spin along
any direction, we can of course also measure it along the
direction of motion, in which case we choose α ¼ 1, qμ ¼
pμ
b and p

♭;μ ¼ pμ
f, with p⃗f pointing in the same direction as

p⃗ and p⃗b pointing in the opposite direction, i.e.,

pμ
f ¼

p0þjp⃗j
2

ð1; p̂Þ; pμ
b ¼

p0− jp⃗j
2

ð1;−p̂Þ; ð6Þ

such that the three-vector of the spin sμ ¼ 1
m ðpμ

f − pμ
bÞ ¼

1
m ðjp⃗j; p0p̂Þ, is directed along the motion, giving the
helicity basis,

2It is likely also possible to use chirality flow in other four-
dimensional regularization schemes such as [53–70], but we do
not explore this here.

3Scalar particles have no Lorentz structure and therefore no
flow representation.

4The L=R label of a photon is given by the chirality of the
spinor in its numerator containing its momentum.

5We use the chiral basis for the Dirac γ matrices.
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ð7Þ

Vertices and propagators are also naturally described
using chirality flow. For example, the QED vertex can be
translated to

ð8Þ

where our use of the chiral basis is made explicit, and where
we introduce our (differently normalized) Pauli matrices
τμ ≡ σμ=

ffiffiffi
2

p
and τ̄μ ≡ σ̄μ=

ffiffiffi
2

p
, to avoid factors of 2 in the

Fierz identity.
The propagator for a massless gauge boson in the

Feynman gauge contains the chirality-flow rule for the
metric, which is a double line with arrows opposing,

ð9Þ

while the fermion propagator in the flow picture is

ð10Þ

where we have introduced a graphical “momentum-dot”
notation for momenta slashed with σ or σ̄. Note that any
momentum in the Feynman rules will be translated to this
momentum dot in the chirality-flow rules using

ð11Þ

where, like with the polarization vectors in Eq. (3), either
arrow direction in Eqs. (9) and (11) is allowed as long as it
matches the rest of the diagram [1].
Using these rules, it is easy to immediately write down

the values of Feynman diagrams, for example, in massless
QED,

ð12Þ

where we have superimposed a chirality-flow diagram onto
a ten-point Feynman diagram. For massless QED and
QCD, any chirality-flow arrow direction which has oppos-
ing arrows for bosons and which flows through momentum
dots is equivalent [1]. If masses or scalar particles are
involved, some care is needed to set consistent arrow
directions [2].
Finally, we also note that diagrams can be made to vanish

by appropriately choosing the reference vectors of our
polarization vectors and massive spinors. For example, the
above diagram vanishes if we pick r9 ¼ p10.
In this paper, we argue that much of the simplification

from chirality flow can be retained at the one-loop level. In
particular a good choice of gauge boson reference vector is
transparently shown to cancel many terms. More generally,
spinor contractions, the Weyl equation, the Fierz identity,
and other identities simplify the algebra and demonstrate
that we can fully exploit a graphical algorithm beyond tree
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level. For example, we may simplify the algebra of the
electron self-energy in Feynman gauge as

ð13Þ

where we defer a discussion on the arrow direction until
Sec. IV. The diagrammatic identity above is of course
simple, but we will demonstrate that similar diagrammatic
decompositions can be used together with methods of
decomposing tensor integrals, and thereby significantly
simplify calculations.

III. FDF

In this section we summarize the FDF formalism.
This formalism was created in 2014 with the aim of
providing a truly four-dimensional numerator algebra for
loop integrals. It has also been used in the context of
color-kinematics duality [71,72], while some example
calculations in FDF can be found in [42,45]. Since the
chirality-flow formalism makes use of explicitly four-
dimensional relations, the FDF method is easily converted
into a flow formalism (though we expect that a similar
flow formalism holds in CDR).
In FDF we have five vector spaces, the standard

Minkowski space S½4� with four integer dimensions, and
the infinite-dimensional spaces QS½d�, QS½ds�, QS½−2ϵ�,
QS½nϵ�, and QS½nϵ−2ϵ�, which satisfy [48]

S½4� ⊂QS½d� ⊂QS½ds�; QS½d� ¼ S½4�⊕QS½−2ϵ�;

QS½nϵ−2ϵ� ¼QS½−2ϵ� ⊕QS½nϵ�; QS½ds� ¼QS½d�⊕QS½nϵ�;

ð14Þ

where QS½d� is the vector space of CDR, QS½ds� with
ds ¼ 4 is the vector space of FDH and FDF, and we
follow the notation of [45,73]. Since the subspaces in
Eq. (14) are orthogonal, we can split up vectors and tensors
as, e.g.,

γμ½ds� ¼ γμ½4� þ γμ½nϵ−2ϵ�; gμν½ds� ¼ gμν½4� þ gμν½nϵ−2ϵ�; ð15Þ

where the subscript in square brackets gives the vector
space of the object. The metric is used to project onto the
different subspaces, for example,

gμν½ds�gνρ½4� ¼ δμρ½4�; gμν½ds�gνρ½d� ¼ δμρ½d�; ð16Þ

while the trace of the metric is given by the dimension of its
(sub)space, and the Dirac gamma matrices have their usual
anticommutation relations

ðg½dim�Þμμ ¼ dim; fγμ½dim�; γ
ν
½dim�g ¼ 2gμν½dim�: ð17Þ

The main starting point of FDF is to rewrite QS½ds� as

QS½ds� ¼ S½4� ⊕QS½−2ϵ� ⊕QS½nϵ� ¼ S½4�⊕QS½nϵ−2ϵ�; ð18Þ

that is, as the purely 4D Minkowski space plus an extra
space QS½nϵ−2ϵ� which can be represented by 4D objects
multiplying a new algebra called the −2ϵ selection rules
(−2ϵ-SRs). The −2ϵ-SRs are defined using the following
replacements,

gμν½nϵ−2ϵ�→GMN; lμ½−2ϵ� → iμQM; γμ½nϵ−2ϵ� → γ5ΓM; ð19Þ

together with the following algebra,

GMNGNP¼GMP; GMM ¼ 0; GMN ¼GNM;

ΓMGMN ¼ΓM; ΓMΓM ¼ 0; QMΓM ¼ 1;

QMGMN ¼QM; QMQM ¼ 1; fΓM;ΓNg¼ 2GMN:

ð20Þ

In any given Feynman diagram the −2ϵ-SRs can be
precalculated, and contribute an overall multiplicative
factor of 0 or �1 to the diagram.
In the Feynman rules of FDF, the −2ϵ-SRs imply that

fermion propagators within loops are rewritten to contain
only 4D terms and a new mass6 μ [48],

ð21Þ

and that vector boson propagators are split into two pieces,
with numerator structure

ð22Þ

in Feynman gauge. Here, the first term is the usual 4D
propagator with suppressed chirality-flow arrows (recall
that these arrows should be opposing; see Sec. II), and the

6This mass should not be confused with the ’t Hooft mass, but
signifies the extra-dimensional part of the loop momentum; see
Eq. (24).
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second is called an FDF scalar and has trivial Lorentz
structure.7

To build the correct Feynman diagrams with FDF,
we must use the FDF Feynman rules, which can be found
in [48]. These rules include new terms not present at
tree level in chirality flow. However, these new terms are all
either Lorentz scalars and therefore have no flow repre-
sentation, or contain additional momenta which have the
chirality-flow representation in Eq. (11), the metric which
has the chirality-flow representation in Eq. (9), or γ5 which
only affects the overall sign of a chirality-flow graph.
Therefore, we do not show them explicitly here.
All loop integrals Idi1…ik

½Nμ1…μn � in FDF, and therefore all
loop momenta lμ½d�, are in d dimensions. The loop integral is

defined in the usual way:

Idi1…ik
½Nμ1…μn �≡

Z
ddl½d�
ð2πÞd

Nμ1…μn

Di1…Dik

; ð23Þ

for Nμ1…μn some numerator which may be a scalar, vector,
or general tensor in Lorentz space, and Di a propagator
momentum of the usual form p2

½d� −m2. When squaring a

loop momentum we use the −2ϵ-SRs, Eqs. (19) and (20),
to obtain

lμ½d� ¼ lμ½4� þ lμ½−2ϵ�; l2½d� ¼ l2½4� þ l2½−2ϵ� ¼ l2½4�−μ2; ð24Þ

where we identify the spacelike mass l2½−2ϵ� ¼ −μ2. A

defining feature of FDF is that only even powers of μ
are allowed to contribute to the amplitude. Integrals
involving μ2 are reduced to integrals without μ2 using [74]

Idi1…ik
½ðμ2Þr� ¼ ð2πÞrIdþ2r

i1…ik
½1�

Yr−1
j¼0

ðd − 4 − 2jÞ: ð25Þ

The above identity is essentially related to dimensional
shift relations originating from powers of the loop momen-
tum in the numerator, as, e.g., also employed in the
decomposition of tensor integrals [75].
From the above, we see that all of the Lorentz algebra is

done in four dimensions and is easily “flowable,” while all
loop integrals are conveniently performed in d dimensions.

IV. FLOWING LOOPS

In this section we show how to turn the FDF formalism
into a chirality-flow formalism. To understand how this
works, it is useful to first go through an example, for which
we choose the axial anomaly of massless QED, well known

for causing inconsistencies if not treated correctly. To
calculate the anomaly, we consider the axial current
jμ5 ¼ ψ̄γμγ5ψ , and the divergence ∂μjμ5 of its matrix
element to create two photons. The matrix element is
calculated using the two diagrams in Fig. 1, and is well
known (see, e.g., [42,76–79]) to equal

ð26Þ

where 1; 2≡ p1; p2 are the (outgoing) momenta of the two
photons with polarization vectors ϵ�1; ϵ

�
2.

To obtain a comparison to chirality flow, we choose a set
of polarizations, then use Eqs. (A5) and (A6) to express the
polarization vectors and momenta in terms of spinors,
obtaining

ie2

ð4πÞ2 Tr½γ
5=1=ϵ1L=2=ϵ2R � ¼

ie2

ð4πÞ2
2

hr11i½2r2�
× ½−h1r1i½12�h22i|{z}

0

½r21� þ ½11�|{z}
0

hr12i½2r2�h21i� ¼ 0;

ie2

ð4πÞ2 Tr½γ
5=1=ϵ1L=2=ϵ2L � ¼

ie2

ð4πÞ2
2

hr11ihr22i
× ½−h1r1i½12�h2r2i½21� þ ½11�|{z}

0

hr12i ½22�|{z}
0

hr21i�

¼ 2ie2

ð4πÞ2 ½12�
2; ð27Þ

where we used the explicit representation of γ5 in the chiral
basis to separate the trace into two terms, and the cyclicity
of the trace to write everything in terms of spinor inner
products. Notice that the axial anomaly vanishes if the
photons have opposite helicity.
We now go through the calculation leading up to

Eqs. (26) and (27) in chirality flow.8 It is easiest to set

FIG. 1. The two Feynman diagrams for the axial anomaly. The
inserted axial current operator is labeled μ5 ⊗.

7Note that although FDF is designed to reproduce FDH results,
the FDF scalar is fundamentally different from the ϵ scalar which
appears in FDH [45]. 8To see this calculation in the pure FDF formalism, see [42].
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the polarizations and the reference vectors of the photons at
the beginning. We choose ϵ1L with r1 ¼ 2 and ϵ2R with
r2 ¼ 1. Using the QED vertex, Eq. (8); fermion propagator,
Eq. (21); and splitting the trace of γ matrices into two two-
component traces, we have

ð28Þ

which is immediately simplified since all terms propor-
tional to μ2 and parts of the first two chirality-flow
diagrams vanish, due to hiii ¼ ½jj� ¼ 0 and/or due to the
Weyl equation, e.g., =2j2i ¼ 0 [here, and in the rest of the
paper, we use the slash notation to refer to contraction with
a Pauli matrix; see Eq. (A5)]. Note how the clever choice of
reference vectors helps remove many terms, as at tree level.
Although in principle, this is not new to chirality flow, the
flow representation makes it obvious.
Next, we swap the arrow directions on all flow lines in

the second chirality-flow diagram, and separate the
momenta in the lþ 1 and l − 2 momentum dots of the
first chirality-flow diagram to obtain

ð29Þ

where, reading out the inner products, we see that the first
two chirality-flow diagrams cancel each other, as do the
two last two chirality-flow diagrams. Therefore, in chirality
flow, the axial anomaly for opposite-helicity photons can
be made to vanish before having to do the integration, with
—similar to tree level—a significant simplification coming
from our choice of reference vectors.
Note that if the terms did not cancel, they would anyway

individually vanish after integration. For example, the first
chirality-flow diagram can be rewritten as

ð30Þ

which is a rank-two tensor integral. This integral can be
solved using standard (d-dimensional) tensor analysis
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Z
ddl½d�
ð2πÞd

lμ½d�l
ν
½d�

l2½d�ðlþ1Þ2½d�ðl−2Þ2½d�
¼C00gμνþC111

μ1νþC222
μ2νþC12ð1μ2νþ1ν2μÞ; ð31Þ

where we used that =̄l≡ lμ½4�σ̄½4�μ ¼ lμ½d�σ̄½4�μ due to the

projective nature of the metric, Eq. (16). However, every
coefficient Cij multiplies a vanishing contribution, either
due to the Weyl equation, e.g., C11h2j=̄1j1�h2j=̄1j1� ¼ 0,
or due to the Fierz identity, C00h2jσ̄μj1�h2jσ̄μj1� ¼
2C00h22i½11� ¼ 0. This exemplifies one of the major
advantages of chirality flow for loop diagrams.
If we instead choose photon 2 to be “left chiral” (have

positive helicity), i.e., ϵ1L with r1 ¼ 2 and ϵ2L with r2 ¼ 1,
we get

ð32Þ

Tensor integrals with three-loop momenta, Idi1i2i3 ½lμlνlρ�,
can be reduced by using [4]

ð33Þ

and we can then write the Lorentz structure as spinor
products and strings to obtain (after cancellation of some
terms)

ð34Þ

where we used that l2½d� ¼ l2½4� − μ2 from Eq. (24). To solve

this, we have to solve three integrals, which, using standard
tensor reduction, we write as

Z
ddl½d�
ð2πÞd

lμ½d�
ðlþ 1Þ2½d�ðl− 2Þ2½d�

¼ C½0�
1 1μ þC½0�

2 2μ;

Z
ddl½d�
ð2πÞd

lμ½d�l
ν
½d�

l2½d�ðlþ 1Þ2½d�ðl− 2Þ2½d�
¼ C00gμν þC111

μ1ν

þC222
μ2ν

þC12ð1μ2ν þ 1ν2μÞ;Z
ddl½d�
ð2πÞd

μ2

l2½d�ðlþ 1Þ2½d�ðl− 2Þ2½d�
¼ C½μ2�; ð35Þ

such that

ð36Þ

where it was again obvious due to the Weyl equation that
not all tensor coefficients were required. Using Eq. (25) for
the integral with μ2, and calculating the tensor coefficients
using [75,80–84] we find

C½0�
1 −C½0�

2 þ4C00þ2C12h12i½21�¼0; C½μ2� ¼
1

2

i
ð4πÞ2 ;

ð37Þ
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and therefore we obtain the known result for the anomaly,
Eq. (27):

ð38Þ

This example shows many of the features of chirality flow
at one loop. We saw that many terms vanished due to the
choice of reference vector, as well as a transparent
simplification of the tensor reduction.
Though it was not required in this example, we may

also need to take some care with chirality-flow arrows and
minus signs at one loop (see the discussion of the fermion
self-energy in Sec. IV B). This, along with other details
of one-loop chirality-flow calculations, will be dis-
cussed below.

A. Reduction of tensor integrals

The method of performing one-loop calculations with
chirality flow explored here is traditional in the sense that
we do not exploit unitarity-based approaches, but rely on
separating the numerator algebra from a tensor integral,
which is then decomposed into the various tensor struc-
tures, and subsequently reduced to master integrals. The
chirality-flow method allows one to use spinor identities
and equations of motion directly, such as to directly
identify those tensor structures which will not contribute
to an amplitude.
In fact the diagrams in the examples above are not

ideally suited to chirality flow, as they contain fermion
propagators, giving rise to the momentum dots. Instead,
the largest amount of simplification comes from internal
gauge bosons which (in Feynman gauge) simply give rise
to two chirality flows, as exemplified in Eq. (12), or
external gauge bosons which [for example for r9 ¼ 10L in
Eq. (12)] can be chosen to make diagrams vanish. Beyond
this, translating gauge bosons to flows opens up for
reformulating the four-gluon vertex using Schouten iden-
tities, which can give rise to further simplifications as
illustrated in [85]. Generally, the flow description allows
for identifying vanishing spinor contractions arbitrarily far
inside Feynman diagrams, as long as no momentum dots
spoil the direct contraction of external (reference) spinors.
As we saw in the axial anomaly above, it is easy

to identify which contributions of a tensor integral in
chirality flow will vanish. A typical rank-n tensor integral
will occur as

hi1jσ̄μ1 jj1�…hinjσ̄μn jjn�Idd1…dk
½lμ1…lμn �;

hi1jσ̄μ1σμ2 jj1i…hinjσ̄μn jjn�Idd1…dk
½lμ1…lμn �;

hi1jσ̄μ1σμ2 jj1i…½injσμn−1 σ̄μn jjn�Idd1…dk
½lμ1…lμn �;

etc:; ð39Þ

and coefficients will vanish for one of three reasons. Either
they will vanish due to the Weyl equation, e.g., =̄j1jj1� ¼ 0;
due to massless momenta being contracted with consecu-
tive Pauli matrices, e.g., =j1=̄j1 ¼ j21 ¼ 0; or from the Fierz
identity contracting two spinor strings with a common
spinor, e.g.,

hi1jσ̄μjj1�½j1jσμji2i ¼ 2hi1i2i½j1j1� ¼ 0; ð40Þ

where we define a string of spinors to be a sequence like
hi1jσ̄μjj1� which starts and ends with spinors, possibly with
(many) Pauli matrices in between.
In general, the number of contributing structures in a

tensor integral is dependent on the choice of gauge or spin
reference momenta, and, like at tree level, choosing these
wisely can significantly reduce the amount of work
required to do the calculation.
Additionally, in chirality flow we are sometimes able to

reduce the rank of a tensor integral by using equations such
as Eq. (33). In [4], we showed how to reduce strings of
multiple momentum dots into simpler building blocks,
using, e.g.,

ð41Þ

where the former occurs in diagrams like

while the latter appears in, e.g., the axial anomaly calcu-
lation of the previous section. To use these relations, recall
that the momenta on the denominator are d-dimensional, so
we have to convert the four-dimensional dot products of
Eq. (41) to d-dimensional ones using

l2½4� ¼ l2½d� þ μ2;

2l½4� · p½4� ¼ 2l½d� · p½d� ¼ ðlþ pÞ2½d� − l2½d� − p2
½d�; ð42Þ

where we used that p is strictly four-dimensional, so
p½4� ¼ p½d�. For a full set of relations which can reduce
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the rank of a tensor integral, see [4]. Reduction methods
of tensor integrals along the lines of [80,81] then allow
us to directly reduce coefficients of individual tensor
structures.

B. Abelian gauge theories

One-loop diagrams in Abelian theories can be sepa-
rated into two categories, diagrams like the axial anomaly
in Sec. IV which have a purely fermionic loop, and
diagrams which have a mixture of fermions and bosons in
the loop.
For the former case, the procedure is simple: draw

the chirality-flow diagram as at tree level [1,2], putting
arrows in their natural position, i.e., against the fermion
flow. Then perform the integral, making use of the
simplifications from Sec. IVA. The rest of this section
deals with the second class of loops, those with
bosons and fermions, and shows that these can also be
handled.

1. Loops with a single fermion line

The simplest example of such a diagram is the self-
energy of a massless fermion in the Feynman gauge. There
are two diagrams for this process, one in which the fermion
emits and reabsorbs the gauge boson (usually just called a
photon below for convenience), and another in which it
emits and reabsorbs the FDF scalar. However, the FDF-
scalar contribution is proportional to ΓMΓM ¼ 0, so we do
not need to consider it.
If we consider just the Lorentz structure of the

self-energy, and consider only a single chirality, we
have, e.g.,

ð43Þ

for the numerator structure. In the upper chirality-flow
diagram, drawn to follow the Feynman diagram, we see
that naively applying chirality flow to the diagram leads
to either the photon having arrows in the same direction
or the momentum-dot not having a continuous flow, both
of which are avoided at tree level [1]. As we will see
below, this simply introduces a minus sign into equa-
tions. In the lower diagram, we see that chirality flow
quickly reduces the loop-level Lorentz structure to a
simple tree-level chirality structure (i.e., a Lorentz
structure which occurs in a tree-level chirality-flow
diagram), without having to apply any anticommutation
relations.

We now consider the general case of a single massless
fermion emitting a virtual photon, possibly emitting more
photons, and then reabsorbing the first virtual photon. The
simplest version of this is the fermion self-energy, sche-
matically given in Eq. (43).9 Considering just the Lorentz
algebra, we have for example

ð44Þ

where the Pauli matrices with repeated index are removed
using Eq. (A1), and the remaining Lorentz algebra is
calculated using Eqs. (A2) and (A3). Note that our
normalization of the Pauli matrices in the fermion-photon
vertex, Eq. (8), gives the unusual prefactor of one on the
right-hand side (which would have read 2 in the case of
Dirac matrices or more traditionally normalized Pauli
matrices). In chirality flow, Eq. (44) is drawn as

ð45Þ

If the massless fermion emitted a photon before reabsorp-
tion, we instead obtain

ð46Þ

using the same method as in Eq. (44) for the Lorentz
algebra. Note that we now have a μ2 term from the fermion
propagator, and that in the first line we obtain μ2 instead of
−μ2 due to the γ5 matrices in the propagator. In chirality
flow, this relation is

9The full calculation of the FDF (and therefore chirality flow)
fermion self-energy in QED, as well as counterterms, are given
in [45].
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ð47Þ

where we see that for chirality flow to look like a tree-level
structure, we must reverse the order of the momentum dots
in the diagram.
In general, for a massless fermion emitting n photons

between emission and absorption of the virtual photon, the
Lorentz structure will be sums of terms with the following
form:

ð48Þ

where k is an integer satisfying max ð0; n−1
2
Þ ≤ k ≤ n, we

suppress the propagator momenta, and the sequence of
Pauli matrices always goes τ, ττ̄τ, ττ̄ττ̄τ, etc. Note that this
relation only holds for an odd number of Pauli matrices,
and that, like in Eq. (47), the order of the Pauli matrices on
the bottom line of Eq. (48) is reversed. If the fermion in
Eq. (48) is massive, then some powers of μ2 may be
replaced by m2, and the overall sign in this equation is no
longer fixed and is calculated using Eq. (21).
The other thing which could happen if the fermion is

massive, is that the external fermions could have the same
chirality, say left-left. [This may also happen if we for
example replace one of the photons 1…n in diagrams like
Eq. (48) with a scalar particle.] In this case, there will be an
even number of Pauli matrices between emission and
absorption; it is easy to remove the repeated vector index

using Eq. (A1); and the Feynman diagram will have
Lorentz structures of the form

ð49Þ

where k, r, and q are non-negative integers satisfying
n=2 ≤ k ≤ n, r ¼ n − k − q ≤ n=2, and q ≤ n=2, and the
overall sign is determined using Eq. (21).
As a simple example of Eq. (49) we consider the diagram

from Eq. (47), but for the case of left-left chiralities coming
from the replacement of a =p with a mass

ð50Þ

or in chirality flow

ð51Þ

where the chirality-flow arrows go against the fermion-flow
arrows in order to get the correct sign, as in massive
chirality flow [2].
While we have given only half of the chiralities explic-

itly, swapping the chiralities of the fermions in the above
examples is trivial, since it is equivalent to swapping all
solid lines for dotted ones and vice versa.10

10If the theory is chiral then the chiral couplings must also be
exchanged.
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2. Loops with two or more fermion lines

We now consider loops with two or more fermion lines.
How to set the chirality-flow lines consistently in these
examples is analogous to the procedure in [2], and is
perhaps easiest understood by an example (we will give a
systematic treatment afterward). Consider the following
box diagram, redrawn as a chirality-flow diagram:

ð52Þ

where the chirality-flow lines have chirality-flow arrows
opposing fermion-flow arrows, and photons are drawn as
double lines which are not yet connected. We note that we
cannot connect the photons’ flow lines yet, since their
arrow directions do not match. To fix this, we use that the
chirality-flow lines will always (at least eventually) end
with spinors. Labeling the momenta of these end spinors i
and j, we can use

hijτ̄μð=q − =lÞτ̄νjj� ¼ ½jjτνð=̄q − =̄lÞτμjii; ð53Þ

an example of Eq. (A4), to swap the chirality-flow arrows
on the bottom line, obtaining

ð54Þ

where we first swapped the arrows, and then connected the
photons using the Fierz identity, leading to a completed
chirality-flow diagram. Note that we have, for the first time
in this paper, a closed chirality-flow string.11 Such chirality-
flow strings are simply traces of Pauli matrices, or
equivalently, strings of inner products.

If the top fermion line of the box diagram is massive, for
a given helicity configuration we will also have to calculate
chirality-flow diagrams like

ð55Þ

In this case, we can already use the Fierz identity to join the
rightmost photon, obtaining

ð56Þ

which has two strings of chirality-flow lines, one from the
bottom right to the top left (string 1), and the other from the
top right to the bottom left (string 2). To connect these two
together, we need to use Eq. (A4) to flip the arrows on one
string or the other. If we flip it on the string of lines
containing the momentum dot, there is an odd number of
inner products, so a minus sign will be introduced.
Alternatively, we can flip the arrows on string 1 which
has two inner products, and therefore will not introduce a
minus sign, obtaining

ð57Þ

Note that the final result is independent of where we swap
the arrows.
In a general one-loop Abelian Feynman diagram with

multiple fermion lines in the loop, the general procedure to
set the arrow directions is:
(1) Draw the chirality-flow lines for each fermion line

with chirality flow opposing fermion flow. (Do not

11This concept is not new to loop calculations. For example,
tree-level QCD diagrams also contained traces of two Pauli
matrices from the contraction of two momentum dots from gluon
vertices.
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use the Fierz identity to attach fermion lines
together yet.)

(2) Choose a photon to be Fierzed first. If needed, use
Eq. (A4) to swap the arrow directions of one of the
fermion lines containing this photon, and then use
the Fierz identity to connect the flow lines. Note that
the chirality-flow lines will always, eventually, end
in spinors, even if these spinor ends are not explicitly
included in the loop calculation, so Eq. (A4) will
always hold.

(3) To Fierz further photons, either repeat step 2 with the
fermion lines replaced by the strings of chirality-
flow lines, or use one of Eqs. (48) or (49), whichever
is appropriate.

(4) Repeat step 3 until all photons are replaced with
joined chirality-flow lines. This will give a com-
pleted one-loop chirality-flow diagram with fully
simplified Lorentz structure.

3. General Rξ gauge

Since the gauge-parameter (in)dependence is an impor-
tant cross-check of any perturbative calculation, we here
comment on the general Rξ gauge, for which the photon
propagator is

ð58Þ

in four dimensions. This is straightforwardly translated into
chirality flow by recalling that pμ will always be contracted
with a Pauli matrix, thus becoming a momentum dot [see
Eq. (11)],

ð59Þ

If the internal photon is part of a loop, Eq. (58) is
modified using the −2ϵ-SRs, Eqs. (19) and (20), to also add
the propagator of the FDF scalar, and a cross term,

ð60Þ

which will only contribute for loop integrations with an
even number of four-dimensional momenta in the numer-
ator. In fact it would be interesting to use Slavnov-Taylor
identities to find out, if the cross term can be eliminated in
favor of the other structures all together, something we
postpone to future work. In any case, the cross term is easy
to add using Eq. (11) for the 4D momentum terms.

4. Light cone gauge

While one would typically refrain from using a light
cone gauge in full fixed-order calculations, it is interesting
to consider this possibility, since the polarization sum of
external transverse vector boson polarizations equals the
numerator of the propagator in this gauge, justifying its use
as “physical gauge.” The light cone gauge is thus particu-
larly interesting when we consider cut loops. In four
dimensions, the photon propagator in light cone gauge is

ð61Þ

and can once again straightforwardly be written in chirality
flow as

ð62Þ
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or similarly with reversed arrows. As before, if the internal
photon is part of a loop, the d dimensional structures have
to be kept. Cutting such propagators with the choice of
gauge vector advocated in [48], i.e., pμ

½4� − pμ
½2ϵ�, gives us a

convenient separation of four-dimensional objects and FDF
scalars much like for the general Rξ gauge. However,
beyond this more care needs to be taken. In particular,
treating the gauge vector directly as we have done in the
four-dimensional case, Eq. (61), might only be possible
after we have chosen a definite momentum for it. In
general, the FDF scalar analog of the gauge vector is
not clear at this point. In addition, the tensor decomposition
of the loop integrals needs to include the gauge vector as an
additional contribution to the possible tensor structures. As
it will typically be taken to be one of the external momenta,
though, singularities of Gram matrices need to be carefully
monitored. Second, we need to regularize the light cone
denominators which is conveniently done with the
Mandelstam-Leibrandt prescription [86] (see also [26]
for a further discussion on how they would be treated in
applying unitarity cut methods). While it is not immedi-
ately clear that these complications would be outweighed
by the transparent and intuitive structure of the propagator
numerator we still consider this to be a viable option to
explore in future work. It definitely is relevant in the
context of using chirality flow for factorizing (loop)
amplitudes in preparing applications in resummation along
the lines of [4,27].

5. FDF scalars

One key feature of FDF is the appearance of FDF scalars,
which have their own Feynman rules (see [48]). In Abelian
theories, there are two new rules: the propagator for the
FDF scalar just discussed, and the interaction vertex of the
FDF-scalar with a fermion

ð63Þ

where the flow rule is the same as any scalar (up to the
coupling) and the sign on the left-chiral part coming
from γ5.
Looking ahead to non-Abelian theories, we find that the

Feynman rules for FDF scalars only add ingredients we
already know how to treat, such as four-dimensional
metrics [Eq. (9)] and four-dimensional momenta
[Eq. (11)], together with some of the −2ϵ-SRs which will
contract to either 0 or �1. Therefore, FDF scalars are a
noncomplication from the perspective of chirality flow. We
also note that counterterms do not introduce any new
structure which the chirality-flow formalism would not be
able to handle.

C. Non-Abelian gauge theories

To go from loops in an Abelian theory to those in a non-
Abelian theory is straightforward in chirality flow. As we
will see below, there is essentially nothing new to the non-
Abelian case compared to the Abelian case, only more
terms to keep track of.

1. QCD

The aim of this section is to explore what chirality-flow
structures we obtain in QCD, and argue that we can always
consistently set chirality-flow arrows. We will see that all
non-Abelian Feynman diagrams have a Lorentz structure
which is either composed of the tree-level structures
already described in [1,2], or of the same structures as
in an Abelian gauge theory like QED, discussed in the
previous section.
Compared to Abelian gauge theories like QED, there are

two new features in QCD: the addition of ghosts, and the
non-Abelian vertices. The ghosts have a scalar propagator
and couple to a gluon with a momentum which is easily
flowed [see Eq. (11)], so they are not a complication.
The non-Abelian vertices are built from Lorentz struc-

tures we have already treated. This can be seen using a
simple illustrative example like

ð64Þ

To understand the flow structure of this diagram, we first
recall the Lorentz structure of the triple gluon vertex

ð65Þ

Applying this vertex to the loop diagram in Eq. (64), we
find (using Feynman gauge and a massless fermion for
simplicity)
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ð66Þ

for the Lorentz structure. Here we see that the first and third
terms already have tree-level Lorentz structure, while the
second term has the “Abelian” Lorentz structure from
Eq. (45) (hence the minus sign), multiplied by a discon-
nected structure.12 Therefore, all of the Lorentz structures in
this QCDdiagram are either tree-level structures from [1], or
built from the Lorentz structures already encountered in
Abelian gauge theories, and setting a consistent arrow
direction is straightforward.
This conclusion holds for any general QCD one-loop

diagram. This is because the three- and four-gluon vertices,
Eqs. (65) and (A8), break up the Lorentz structure into
simpler pieces which either break the loop Lorentz struc-
ture into a tree-level Lorentz structure, or create loop
Lorentz structures of the form of Eqs. (48) and (49).
Further, the ghosts and FDF scalars only add 4D metrics
and momenta multiplied by −2ϵ-SRs objects, so again
break up the Lorentz structure into either trees or structures
like Eqs. (48) and (49).
Finally, since the external gluons can have either set of

arrow directions without introducing a minus sign, setting
arrows is either the same as at tree level, or follows the
Abelian case in Sec. IV B.

2. Other non-Abelian theories

Other non-Abelian theories will similarly be easily
flowable as long as they contain Feynman rules with 4D
objects like scalars, Weyl and Dirac spinors, polarization
vectors, momenta, the metric, γμ, and γ5, together with the
−2ϵ-SRs. In the Standard Model, the other non-Abelian
theory is the electroweak theory, which behaves like QCD
but has the addition of massive polarization vectors, chiral
vertices, and more (loop-level) scalars.
Chiral vertices and massive polarization vectors were

both discussed in [2]. The chiral vertices are most easily
understood by drawing the chirality-flow arrow opposing
the fermion-flow arrow, giving

ð67Þ

for PR=L ¼ ð1� γ5Þ=2. After having made this assignment,
all arrow swaps can be done as previously described.
The massive polarization vectors are given in Eq. (A7),

with the transverse polarization vectors having the same
structure as massless polarization vectors, while the longi-
tudinal polarization vector corresponds to a momentum dot.
Therefore, one consequence of longitudinal polarization
vectors is that we can obtain closed chirality-flow strings.
For example, the axial anomaly with longitudinally-
polarized W bosons has the following Lorentz structure:

ð68Þ

where both terms have closed chirality-flow strings. (The
chiral projectors ensure that these are the only two Lorentz
structures in the calculation.) These closed flow loops can
either be written as sums of spinor products or as traces of
Pauli matrices.
Finally, we comment on the fermion self-energy in a

theory with a spontaneously broken symmetry like the
Standard Model. As shown in Eq. (45), in the Feynman
gauge the contribution from a boson of mass m to the self-
energy is

ð69Þ

where we label the generic coupling factors as g2 and
ignore factors of −1, i, and

ffiffiffi
2

p
. Note that it is obvious in

chirality flow that this has exactly the same structure as the
contribution from a Goldstone boson of mass mG ¼ m

12Recall that the arrow directions of disconnected chirality-
flow structures can be set independently [1].
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ð70Þ

where g0 ≠ g is the coupling of the Goldstone to the
fermion. This type of transparency is one of the nice
features of chirality flow at both the tree and one-loop level.
Further, in a general Rξ gauge, we can use relations such

as Eq. (41) to relate the extra terms to the Goldstone
contribution. We envisage that the cancellation of gauge-
parameter dependence can thus be made more manifest by
using chirality flow.

V. CONCLUSION

The chirality-flow formalism has already proven to
significantly reduce the amount of work required for
calculating tree-level amplitudes, both with pen and paper
calculations (where the result often is trivial to obtain) and
in computer implementations where the speed gain exceeds
10 for a simple QED test implementation.
While similar algebraic manipulations of amplitudes

have been used before the chirality-flow formalism, the
graphical algorithm expressed at the level of Feynman rules
allows us to transparently employ the simplifications far
inside Feynman diagrams in a systematic way. This should
also make the formalism suitable for recursive algorithms.
In this paper we have taken the first steps toward

exploiting chirality flow beyond tree level. We conclude
that many of the simplifications seen at tree level can be
retained in the four-dimensional formulation of the 4D
helicity scheme. In particular, the Lorentz algebra can be
elegantly simplified, and Feynman diagrams can be made
to vanish by picking adequate reference vectors for external
gauge bosons and massive spinors, as at tree level. We note
that while gauge reference vectors bring simplifications
also without chirality flow, flowing entire diagrams makes
it possible to identify such cancellations even far inside
Feynman diagrams.
Beyond this, we find that the tensor reduction pro-

cedure is also simplified for one of two reasons, either
because we reduce the number of required coefficients in
the tensor decomposition, or because we reduce the rank
of the tensor integral. The former may happen either
directly due to the Weyl equation, or when applying the
Fierz identity, while the latter occurs when multiple
momentum dots containing the loop momentum are
contracted together.
No conceptual problem is preventing the extension of

our formalism beyond one loop. However, our current

understanding is that four-dimensional regularization
schemes beyond one loop are still not strictly proven to
be consistent, though there are hints toward their validity
beyond one-loop [87]. We expect the main structures
discussed in this article, as well as the simplifications and
insights they provide, to remain present for calculations
beyond one loop, and it is of course highly interesting to
also consider other flavors of dimensional regularization
tailored to four-dimensional objects, which we will
address in the future. Also, note that we did not use
any numerators to cancel denominators, such that our
formalism will not hit any problem connected to the
presence of irreducible numerators beyond one loop. Let
us also stress that a fully consistent treatment of regu-
larization will allow us to use chirality flow rules to
determine factorized contributions such as splitting func-
tions or soft currents.
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APPENDIX: ADDITIONAL
CHIRALITY-FLOW RULES

In this section we collect the chirality-flow rules required
for this paper which are not stated in the main text.
Additional chirality-flow rules can be found in [1,2].
We begin with some algebra relations required to prove

Eqs. (44)–(51). The vector indices of the Pauli matrices can
be contracted using

τα̇βμ τ̄μγη̇ ¼ δγ
βδα̇η̇; τ̄μ

αβ̇
τ̄μ;γη̇ ¼ ϵαγϵβ̇ η̇;

τμ;α̇βτγ̇ημ ¼ ϵα̇ γ̇ϵβη; ðA1Þ

while a τ can be turned into a τ̄ or vice versa using

τ̄μ
αβ̇
¼ ϵαγϵβ̇ η̇τ

μ;η̇γ; τμ;α̇β ¼ ϵα̇ γ̇ϵβητ̄μηγ̇; ðA2Þ

where the index positions are crucial, because
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ϵαβϵ
βγ ¼ δα

γ; ϵα̇ β̇ϵβ̇ γ̇ ¼ δα̇γ̇;

ϵαβ ¼ −ϵβα; ϵβ̇ γ̇ ¼ −ϵγ̇ β̇: ðA3Þ

Next, we recall the equations behind arrow flips. A string
of chirality-flow lines can have all of its arrows flipped
using one of

hijτ̄μ1…τ̄μ2nþ1 jj� ¼ ½jjτμ2nþ1…τμ1 jii;
hijτ̄μ1…τμ2n jji ¼ −hjjτ̄μ2n…τμ1 jii;
½ijτμ1…τ̄μ2n jj� ¼ −½jjτμ2n…τ̄μ1 ji�; ðA4Þ

where we note that the Pauli matrices stand in a sequence
ττ̄τ… or τ̄ττ̄…. In practice, when swapping the chirality-
flow arrows on a string of flow lines, if the endpoints of the
string have the same chirality (line type) then a minus sign
is required, while if the endpoints are of opposite chirality
(line type) then no minus sign is needed.
In the spinor helicity formalism, for example when

converting the axial anomaly from Eqs. (26) to (27), it
can be useful to write all objects as (sums of) outer
products of spinors. For example, every momentum can be
written as

=p≡pμσμ ¼p
2
i¼0X

i

ji�hij; =̄p≡pμσ̄μ ¼p
2
i¼0X

i

jii½ij; ðA5Þ

where we used that p ¼ P
i pi with p2

i ¼ 0 to write a
massive momentum p as a sum of massless ones [see
Eq. (4)], and the massless polarization vectors in Eq. (3)
can be written as

=ϵLðpi; rÞ ¼
ji�hrj
hrii or =̄ϵLðpi; rÞ ¼

jri½ij
hrii ;

=ϵRðpi; rÞ ¼
jr�hij
½ir� or =̄ϵRðpi; rÞ ¼

jii½rj
½ir� : ðA6Þ

In our discussion of non-Abelian theories, we require
the polarization vectors of outgoing massive particles

ðA7Þ

as well as the four-gluon vertex

ðA8Þ

where Zð2; 3; 4Þ denotes the set of cyclic permutations
of the integers 2,3,4, and in both cases the arrow directions
which give a continuous flow in a given diagram are
chosen.
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