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Parity doublet model is an effective chiral model that includes the chiral-variant and -invariant masses of
baryons. The chiral-invariant mass has large impacts on the density dependence of models which can be
constrained by neutron star observations. In the previous work, models of two flavors have been considered
up to a few times nuclear saturation density, but in such dense regions it is also necessary to consider
hyperons. With the chiral-invariant masses baryons can stay massive in extreme environments (e.g.,
neutron stars) where the chiral symmetry restoration takes place. In this work, we generalize the previous
SUð2ÞL × SUð2ÞR parity models of nucleons to SUð3ÞL × SUð3ÞR models of the baryon octet within the
linear realization of the chiral symmetry. The major problem in constructing such models has been too
many candidates for the chiral representations of baryons. Motivated by the concepts of diquarks and the
mended symmetry, we choose the ð3L; 3̄RÞ þ ð3̄L; 3RÞ, ð3L; 6RÞ þ ð6L; 3RÞ, and ð1L; 8RÞ þ ð8L; 1RÞ
representations and use quark diagrams to constrain the possible types of Yukawa interactions. The
masses of the baryon octets for positive and negative baryons up to the first excitations are successfully
reproduced. As expected from the diquark considerations, the ground-state baryons are well dominated by
ð3L; 3̄RÞ þ ð3̄L; 3RÞ and ð1L; 8RÞ þ ð8L; 1RÞ representations, while the excited states require ð3L; 6RÞ þ
ð6L; 3RÞ representations. Important applications of our model are the chiral restoration for strange quarks at
large density and the continuity of diquarks from hadronic to quark matter. We also address the problem of
large Yukawa couplings which are enhanced in three-flavor construction.
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I. INTRODUCTION

Understanding of the origin of the nucleon mass is
one of the most fundamental subjects in hadron physics.
Traditionally, the chiral symmetry in quantum chromody-
namics (QCD) and its spontaneous symmetry breaking
(SSB) [1–4] are often used to study the nucleon mass.
The order parameter of the SSB is the chiral condensate
hq̄qi, which is made of quark-antiquark pairs with
different chirality [5–7]. The existence of chiral condensate
breaks the chiral symmetry because it couples quarks of
different chirality, and in vacuum it has a nonzero value.

In certain extreme conditions, such as high-density or high-
temperature regions, the chiral condensate may vanish
with the restoration of chiral symmetry in the thermody-
namic state.
The linear sigma model (LSM) is an effective model

broadly used for investigating the SSB. In the LSM, the
order parameter of SSB is the expectation values of the
scalar field hσi ∝ hq̄qi. In the traditional hadronic model
with the LSM, the nucleon mass mN is considered to be
generated mainly by chiral condensates. An interesting
consequence of this perspective is that the nucleon mass
vanishes in the high-density or high-temperature region
where the chiral symmetry should be restored.
However, the traditional view of nucleon masses being

completely originated from the chiral condensate is being
reconsidered due to the insights gained from lattice QCD
simulations [8–12]. These lattice QCD results have indi-
cated the possibility of a chiral-invariant mass, denoted as
m0, which seems to exist apart from the conventional
chiral-variant mass which has dependence over the density
or temperature. This novel concept of a chiral-invariant
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mass suggests that the nucleon mass would keep a finite
value even when the chiral symmetry is restored. The
concept of the chiral-invariant mass is naturally incorpo-
rated in a parity doublet model (PDM) for nucleons in
which the ordinary nucleon and its parity partner form a
doublet structure [13–20]. Within this framework, nucleon
masses in the PDM are found to be less sensitive to the
chiral condensate than in the conventional LSM. This
changing of the sensitivity has far-reaching consequences,
especially when we construct the equation of state (EOS)
for nuclear and neutron star (NS) matter. The introduction
of chiral-invariant mass leads to significant changes in the
coupling constants, which, in turn, greatly affect the stiff-
ness of the EOS.
In the context of applications to NS phenomenology, the

nuclear EOS within the PDM is often extended to densities
beyond the nuclear saturation density n0 [21,22]. This
extrapolation has been achieved in various ways. One
approach involves a straightforward extrapolation of the
PDM EOS beyond n0 ≃ 0.16 fm−3, as studied in Ref. [23].
Another method combines the PDM EOS with a quark
model, assuming a quark-hadron crossover, which allows
for a smooth transition from hadronic matter to quark
matter [24–29]. This hybrid approach, where the PDM
EOS is employed up to densities around 2n0 to 3n0 and
interpolate with the quark EOS at ≥5n0 via polynomial
interpolants to obtain the unified EOS. This unified EOS is
valuable for modeling the behavior of dense matter within
neutron stars and can provide us with important insights
into the intermediate density region. However, the validity
of a purely hadronic picture at densities above 2n0 is
questionable because hyperons, strange baryons containing
strange quarks, may enter the matter and affect its proper-
ties. Taking this possibility into consideration, it becomes
necessary to explore the effect of a strange quark in the
finite density region. In a previous study of the nuclear
matter domain, we included the strange quark effects
through the Kobayashi–Maskawa–’t Hooft interactions
and constructed a three-flavor mesonic Lagrangian made
of scalar and vector mesons [27]. The corresponding
unified EOS was confronted with NS constraints from
the NS merger GW170817 [30–32], the millisecond pulsar
PSR J0030þ 0451 [33], and the maximum mass constraint
from the millisecond pulsar PSR J0740þ 6620 [34]. Based
on the above NS observation data, we constrainedm0 to the
range 400 MeV≲m0 ≲ 700 MeV, which is more relaxed
than the one obtained in Ref. [25].
In the analyses in Refs. [25–28], we assumed that the

hyperons do not appear in the density region below 2n0.
On the other hand, the analysis in Ref. [26] shows that
strangeness number density starts to appear in the cross-
over region at nB ≳ 2n0. This indicates that the hyperons
might appear even below 2n0. To clarify this, we need to
construct a parity doublet model including hyperons. There

were several analyses of chiral models with the parity
doublet structure based on the SUð3ÞL ⊗ SUð3ÞR chiral
symmetry [35–43]. Since the SU(3)-flavor-octet baryons
appear from the chiral representation of ð3L; 3̄RÞ, ð8L; 1RÞ,
ð3L; 6RÞ with L ↔ R; all three chiral representations are
included in most of these analyses.
In the previous analysis [40], we adopted the dynamical

assumption and included only ð3L; 3̄RÞ and ð8L; 1RÞ (and
L ↔ R) representations which are made from the so-called
good diquark without including ð3L; 6RÞ (and L ↔ R)
from the “bad diquark.” Based on the quark diagrams,
we constructed Yukawa interactions of baryons to the chiral
field Σ, the vacuum expectation value (VEV) of which
spontaneously breaks the chiral symmetry. Then, we have
proven that the first-order interactions cannot reproduce
the correct mass ordering of octet baryons in the ground
state, mN < mΛ ∼mΣ < mΞ. We also showed that the
inclusion of the second-order Yukawa interactions can
generate the correct mass ordering of the ground-state
baryons. However, in the excited states, the mass ordering
appears to be incorrect for the wide domain of model
parameters which we have exhaustively explored. This
indicates that models made only of baryons with good
diquarks, even after including the Yukawa interactions up
to the second order, misses some qualitative features of the
baryon spectra.
In the present analysis, we include the ð3L; 3̄RÞ, ð8L; 1RÞ,

and ð3L; 6RÞ (and L ↔ R) chiral representations and
construct the Yukawa interactions based on the quark
diagram as in Ref. [40]. We will show that the mass
ordering of the excited states is correctly reproduced within
the reasonable range of parameters; the problem found in
Ref. [40] is solved. Furthermore, we study the composition
of chiral representations in the ground and excited baryons.
We found that the ground states are dominated by the
representations of ð3L; 3̄RÞ and ð8L; 1RÞ made of good
diquarks. This finding is consistent with the conventional
arguments in the hadron spectroscopy. Meanwhile, the
excited baryons contain the substantial component of
ð3L; 6RÞ with bad diquarks. This finding is rather new;
discussions on bad diquarks in our paper should not be
confused with the mass splitting between the baryon octet
and decuplet (e.g., the N − Δ splitting), for which diquarks
offer simple explanations. Instead, our work addresses
diquarks for the mass splitting between the ground and
excited states within the baryon octet; here the utility of
diquarks has not been established.
This paper is structured as follows. In Sec. II, the chiral

representations of ð3L; 3̄RÞ þ ð3̄L; 3RÞ, ð3L; 6RÞ þ ð6L; 3RÞ,
and ð8L; 1RÞ þ ð1L; 8RÞ for octet baryons are defined. In
Sec. III, we construct an effective Lagrangian for baryons
including first-order Yukawa interactions. In Sec. IV,
we perform numerical fit of baryon spectra. Section V is
devoted to the summary.
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II. MODEL CONSTRUCTION

In the chiral SUð3ÞL × SUð3ÞR symmetry, there are so
many chiral representations for baryons. To keep only a
minimal set of necessary fields, we first consider the quark
substructure for each representation and then choose
baryon fields which are supposed to be relevant from
low to intermediate energies. We further include the parity
doublet structure to consider the chiral-invariant mass.
The chiral representations of quarks under chiral

SUð3ÞL × SUð3ÞR symmetry are written as

ðqLÞl ∼ ð3L; 1RÞ ∼ ðuL; dL; sLÞl; ð1Þ

ðqRÞr ∼ ð1L; 3RÞ ∼ ðuR; dR; sRÞr; ð2Þ

where the indices l ¼ 1, 2, 3 and r ¼ 1, 2, 3 are for SUð3ÞL
and SUð3ÞR symmetries, respectively. Since a baryon
can be expressed as a direct product of three quarks, the
possible combinations are ðqLÞ3; ðqLÞ2qR; qLðqRÞ2, and q3R.
It is sufficient to consider the following possibilities for the
chiral representations of baryons:

qL × ðqL × qL þ qR × qRÞ
∼ ð1L; 1RÞ þ ð8L; 1RÞ þ ð8L; 1RÞ

þ ð10L; 1RÞ þ ð3L; 3̄RÞ þ ð3L; 6RÞ ð3Þ

and L ↔ R. The octet baryons are included in ð3L; 3̄RÞ,
ð8L; 1RÞ, and ð3L; 6RÞ, which are illustrated in Fig. 1.
Following Ref. [38], in the framework of the parity doublet
model we introduce the corresponding baryon fields ψ , χ,
and η and its parity doubling partners ψmir, χmir, and ηmir as

ψL ∼ ð3L; 3̄RÞ; ψmir
L ∼ ð3̄L; 3RÞ; ð4Þ

χL ∼ ð8L; 1RÞ; χmir
L ∼ ð1L; 8RÞ; ð5Þ

ηL ∼ ð3L; 6RÞ; ηmir
L ∼ ð6L; 3RÞ: ð6Þ

Here the indices L and R in the subscripts of ψ , χ, and η
represents the chirality in Uð1ÞA, e.g., γ5ψR;L ¼ �ψR;L.
The right-handed fields are also defined in the similar
way. Under the parity transformation (P) and the charge

conjugation (C), these fields transform as

Ψl;r!P γ0Ψr;l; Ψmir
l;r !P − γ0Ψmir

r;l ;

Ψl;r!C Cðψ̄ r;lÞT; Ψmir
l;r !C − CðΨ̄mir

r;l ÞT; ð7Þ

for Ψ ¼ ψ, χ, η with C ¼ iγ2γ0. This assignment for the
parity is called the mirror assignment.
The irreducible representations of chiral SUð3ÞL×

SUð3ÞR, ψ , χ, and η, are not generally irreducible repre-
sentations of the flavor SUð3ÞV¼LþR. Here we briefly look
at how ψ, χ, and η can be expressed in terms of the
conventional flavor SUð3ÞV, as we will eventually consider
the chiral SSB, SUð3ÞL × SUð3ÞR → SUð3ÞV .
The field ψL ∼ ð3L; 3̄RÞ can be written as

ðψLÞaᾱ ¼
δaᾱffiffiffi
3

p Λ0L þ ðBψLÞaᾱ; ð8Þ

where a ¼ 1, 2, 3 are for the fundamental representations in
SUð3ÞL and ᾱ ¼ 1, 2, 3 for the antifundamental represen-
tations in the SUð3ÞR. The Λ0 is the flavor singlet Λ, while
B is the flavor octet

Bψ ¼

0
BB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− −1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 −2ffiffi
6

p Λ

1
CCA

ψ

: ð9Þ

We can repeat similar assignments for χL ∼ ð8L; 1RÞ,

ðχLÞab̄ ¼ ðBχLÞab̄; ð10Þ

where Bχ has the same matrix structure as Bψ . The indices
b̄ ¼ 1;…; 3 represents 3̄L. We note that Bψ and Bχ trans-
form differently in SUð3ÞL × SUð3ÞR but show the same
transformation under the flavor SUð3ÞV ; in models having
only the SUð3ÞV symmetry, they are degenerate. Finally,
the field ηL ∼ ð3L; 6RÞ can be labeled as

ðηLÞða;αβÞ ¼
1ffiffiffi
6

p ðϵαaγδβb þ ϵβaγδαbÞðBηLÞbγ ; ð11Þ

FIG. 1. Quark contents for three baryon representations: (a) ð3L; 3̄RÞ þ ð3̄L; 3RÞ, (b) ð8L; 1RÞ þ ð1L; 8RÞ, and (c) ð3L; 6RÞ þ ð6L; 3RÞ.
The gray shaded diquark indicates the flavor-antisymmetric representation, while the yellow shaded area indicates the symmetric one.
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with Bη having the same structure as Bψ ;χ . We can write the
right-handed fields in the same way.
For mirror fields, we just exchange the index for the

Uð1ÞA to get the same assignment rules. For example, the
field ψmir

R ∼ ð3L; 3̄RÞ can be written as

�
ψmir
R

�
a
ᾱ ¼

δaᾱffiffiffi
3

p Λ0R þ �
Bmir
ψR

�
a
ᾱ: ð12Þ

We list chiral transformation properties for the ψ , η, and χ
fields as

ψL → gLψLg
†
R; ψR → gRψRg

†
L; ð13Þ

ηL → gLηLg
†
R; ηR → gRηRg

†
L; ð14Þ

χL → gLχLg
†
L; χR → gRχRg

†
R: ð15Þ

In the mirror assignment, the fields ψL and ψmir
R follow

the same transformation under the SUð3ÞL × SUð3ÞR,
i.e., ψL → gLψLg

†
R and ψmir

R → gLψmir
R g†R. This allows the

mass term tr½ψ̄Lψ
mir
R �, which is invariant under

SUð3ÞL × SUð3ÞR.
The introduction of the mirror fields enables us to write

the mixing terms as

Lm0
¼ −mψ

0 tr
�
ψ̄Rψ

mir
L − ψ̄Lψ

mir
R

�þ H:c:

−mχ
0tr

�
χ̄Rχ

mir
L − χ̄Lχ

mir
R

�þ H:c:

−mη
0tr

�
η̄Rη

mir
L − η̄Lη

mir
R

�þ H:c: ð16Þ

The parameter mψ ;χ;η
0 corresponds to the chiral-invariant

masses of the ψ , χ, and η fields, respectively. Note here that
the ψ and χ fields contain flavor-antisymmetric diquarks
which are called good diquarks, while the η field contains
flavor-symmetric diquark are called bad diquarks. We
assume that baryons in representations including “good”
diquarks are lighter than those including “bad” diquarks,
so the chiral-invariant mass for each baryon field should
follow mη

0 ≳mψ
0 ∼mχ

0. For simplicity, in this paper, we
set mψ

0 ¼ mχ
0.

III. QUARK DIAGRAM FOR YUKAWA
INTERACTION

In this section we study the mass spectra of octet baryons
in a model with first-order Yukawa interactions. The
Yukawa interaction contains the coupling to the σ fields
whose condensation breaks the chiral symmetry. In the
standard linear σ model nucleon masses arise from the σ
condensate.
For writing the Yukawa interactions, we introduce a

3 × 3 matrix field M expressing a nonet of scalar and
pseudoscalar mesons made of a quark and an antiquark.
The representation under SUð3ÞL × SUð3ÞR is

M ∼ ð3; 3̄Þ: ð17Þ

We can then construct the chiral-invariant Yukawa inter-
action terms at the first order ofM for several combinations
of ψ ;ψmir; χ; χmir; η; ηmir fields. In the following, we list the
possible Yukawa interactions at first order using a way
based on the quark diagrams developed in Ref. [40].
We first consider the Yukawa interaction between

ð3; 3̄Þ þ ð3̄; 3Þ representations. We show the corresponding
quark diagram in Fig. 2. In this figure, the scalar field M
couples to a quark qR in the good diquark included in the
ð3L; 3̄RÞ representation. After the chiral flipping, the
ð3̄L; 3RÞ representation is formed. The same is true after
exchanges of L and R. We then construct the chiral-
invariant term at the first order in M as

Lψ ¼ g1
�
ϵabcϵ

αβσðψ̄RÞaαðMÞbβðψLÞcσ þ H:c:
�

þ g2
�
ϵabcϵαβσðψ̄mir

R ÞαaðMÞβbðψmir
L Þσc þ H:c:

�
; ð18Þ

where the ϵijk is the totally antisymmetric tensor.
We next consider the case only with ð3; 6Þ þ ð6; 3Þ

representation. The corresponding quark diagram is shown
in Fig. 3. As shown in this figure, the M field couples
to the a quark in the bad diquark included in the ð6L; 3RÞ
representation, forming another bad diquark in the ð3L; 6RÞ
representation. The resultant Lagrangian is written as

Lη ¼ g3ððη̄1rÞðab;αÞðMÞaβðη1lÞðb;αβÞ þ H:c:Þ
þ g4ððη̄mir

r Þða;αβÞðM†Þαbðηmir
l Þðab;βÞ þ H:c:Þ: ð19Þ

For the Yukawa interactions between ψ and η, the matrix
M couples to a quark qL in the good diquark included in the
ð3̄L; 3RÞ representation. After the chiral flipping the (3, 6)
representation is formed as shown in Fig. 4. The chiral-
invariant Lagrangian at the leading order in M is con-
structed as

FIG. 2. Yukawa interaction between ð3; 3̄Þ and ð3̄; 3Þ baryon
fields.
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Lψη ¼ y1
�
ϵabcðψ̄RÞaαðMÞbβðηLÞðc;αβÞ þ H:c:

�
þ y3

�
ϵαβσðψ̄mir

R ÞaαðMÞbβðηLÞðc;αβÞ þ H:c:
�
: ð20Þ

For the Yukawa interactions between ψ and χ, a spectator
quark qL in ð3L; 3̄RÞ representation couples to M and flips
the chirality to form the representation ð1L; 8RÞ as shown in
Fig. 5. The relevant Lagrangian is written as

Lψχ ¼ y2tr
�
ψ̄RM†χL þ H:c:

�
þ y4tr

�
ψ̄mir
R Mχmir

L þ H:c:
�
: ð21Þ

Here we have to emphasize that, at the first order in M,
there are no Yukawa interactions that couple χL and χR
fields. This is because the χ field contains three valence
quarks with all left-handed or right-handed so that Yukawa
interactions with χ should include three quark exchanges
that flip the chirality of three quarks.
Finally, we consider the Yukawa interaction between

ð3L; 6RÞ and ð1L; 8RÞ representations. The relevant quark
diagram is shown in Fig. 6 and the Lagrangian is written as

Lηχ ¼ y5
�
ϵασρðη̄lÞða;αβÞðMÞaσðχrÞβρ þ H:c:

�
þ y6

�
ϵacdðη̄mir

l Þðab;αÞðM†Þαcðχmir
r Þbd þ H:c:

�
: ð22Þ

Now, the total Lagrangian for the Yukawa interactions at
first order in M is expressed as

L ¼ Lψ þ Lη þ Lψη þ Lψχ þ Lηχ þ Lm0
: ð23Þ

We should note that the Lagrangian for the Yukawa
interactions completely agrees with the one provided
in Ref. [38].

IV. NUMERICAL FITTING

In the previous section, we have constructed the Yukawa
interactions at the first order in the scalar M field based on
the quark-line diagrams. In this section, we fit the Yukawa
couplings to the existing mass spectra of baryons.

FIG. 5. Yukawa interaction between ð3̄; 3Þ and (8, 1) baryon
fields.

FIG. 6. Yukawa couplings between (3, 6) and (1, 8) baryon
fields.

FIG. 3. Yukawa interaction couplings between (3, 6) and (6, 3)
baryon fields.

FIG. 4. Yukawa interaction between (3, 6) and ð3̄; 3Þ baryon
fields.
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We take the mean field approximation in which the
meson field M is replaced with its mean field as hMi ¼
diagðα; β; γÞ. In the following analysis we assume the
isospin symmetry by taking α ¼ β. It is convenient to
introduce a unified notation for the chiral representations
of baryons as Ψi ¼ ðψ i; ηi; χi; γ5ψmir

i ; γ5ηmir
i ; γ5χmir

i ÞT with
i ¼ N;Λ;Σ;Ξ. We then calculate the mass terms of baryons
in the form of

L ¼
X

i¼N;Λ;Σ;Ξ
Ψ̄iM̂iΨi; ð24Þ

where the M̂iði ¼ N;Λ;Σ;ΞÞ are the mass matrices for
baryons. As an example, the mass matrix for nucleon is

MN ¼

0
BBBBBBBBBBBB@

g1α − 3y1ffiffi
6

p α −y2α mψ
0 0 0

g3
2
α − 3y5ffiffi

6
p α 0 mη

0 0

0 0 0 mχ
0

−g2α
3y3ffiffi
6

p α y4α

− g4
2
α 3y6ffiffi

6
p α

0

1
CCCCCCCCCCCCA

;

ð25Þ

where we omit the lower triangular part of the matrix MN ,
which is understood from the fact thatMN is the symmetric
matrix ðMNÞT ¼ MN .
Diagonalizing this 6 × 6 matrix M̂i, we obtain six mass

eigenvalues. We focus on the first four states of baryons in
this research, as the remaining two states completely come
from predictions with large ambiguity. We determine the
VEVs of the meson field M from the decay constants of
pion and kaon as

2α ¼ fπ; 2γ ¼ 2fK − fπ: ð26Þ

In Table I, the input values of fπ and fK are shown together
with the determined values of α and γ.
We determine the model parameters based on the follow-

ing procedure: First we fix chiral-invariant masses,mψ ¼ mχ

and mη as given and later examine different values of
ðmψ ; mηÞ. Then we have ten Yukawa couplings gi¼1–4

and yi¼1–6 to be used for fitting. Using 12 mass values in
Table II as inputs, we determine ten Yukawa coupling
constants by minimizing the following error function:

fmin ¼
X12
i¼1

�
mtheory

i −minput
i

δmi

�2

; ð27Þ

where errors δmi are taken as δmi ¼ 10 MeV for the
ground-state baryons and δmi ¼ 100 MeV for the excited
baryons. For the ground-state baryons, the masses are
known to high precision, with uncertainties usually less
than 1 MeV. Setting δmi ¼ 10 MeV for these states ensures
that we can well reproduce the ground-state masses after
considering the theoretical error. For the excited states,
the mass uncertainties are generally larger, ranging from
a few MeV to over 100 MeV, depending on the state and
the quality of the experimental data. By setting δmi ¼
100 MeV for all excited states, we allow for more flexi-
bility in fitting these masses, reflecting the greater uncer-
tainties in their experimental values.
The 12 baryon states we have chosen are listed in the

Particle Data Group (PDG) with reasonable confidence
level. The other 12 states not listed in the PDG are the
predictions of the present model. For these states we
demand the Gell-Mann-Okubo mass relation to the follow-
ing accuracy:

X
i

jΔGO;ij < 100 MeV; ð28Þ

where

ΔGO;i ¼
mi½N� þmi½Ξ�

2
−
3mi½Λ� þmi½Σ�

4
; ð29Þ

with i indicating the octet generations as in Table II. This
condition reflects the mass difference between up, down,

TABLE I. Physical inputs of the decay constants for pion and
kaon [44], and the VEVof the meson field hMi ¼ diagfα; α; γg.

fπ 93 MeV
fK 110 MeV
2α fπð¼ 93 MeVÞ
2γ 2fK − fπð¼ 127 MeVÞ

TABLE II. Physical inputs for the baryon masses belonging to four SU(3)-flavor octets.

Mass inputs for octet members (MeV)

JP N Λ Σ Ξ

m1∶ 1=2þ (ground state) Nð939Þ: 939 Λð1116Þ: 1116 Σð1193Þ: 1193 Ξð1318Þ: 1318
m2∶ 1=2þ Nð1440Þ: 1440 Λð1600Þ: 1600 Σð1660Þ: 1660 Ξð?Þ:
m3∶ 1=2− Nð1535Þ: 1530 Λð1670Þ: 1674 Σð1750Þ: 1750 Ξð?Þ:
m4∶ 1=2− Nð1650Þ: 1650 Λð1800Þ: 1800 Σð?Þ: Ξð?Þ:
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and strange quarks and should remain useful even for the
mass difference of excited states. The error 100 MeV is
chosen to allow for some deviation from the exact Gell-
Mann–Okubo relation, considering that our model includes
SU(3) symmetry breaking effects and that the baryon
masses themselves have uncertainties. The 100 MeV tol-
erance is a rough estimate of the scale at which we expect
these breaking effects to be relevant. We simply reject
parameter sets which strongly violate this condition.
In Fig. 7, we show the resultant mass spectrum together

with the Gell-Mann-Okubo relation with errors, where the
error is determined by requiring fbestmin < 1 for mψ ¼ mχ ¼
700 MeV and mη ¼ 1000 MeV. The red line shows the
experimental values as inputs. The black line is drawn by

accumulating spectra from all parameter sets satisfying
fbestmin < 1 and hence reflects the global aspect of our
analyses. We find that all the baryon masses below
2 GeV are reproduced well. We emphasize that such a
good fit was not possible in the previous research in
Ref. [40], where the ð3; 3̄Þ þ ð3̄; 3Þ and ð8; 1Þ þ ð1; 8Þ
representations are used to construct a chiral-invariant
Lagrangian up to second-order Yukawa interactions, while
the ð3; 6Þ þ ð6; 3Þ representations are assumed to be
integrated out. In particular, the mass hierarchy between
Σ and Ξ cannot be correctly reproduced, indicating that the
baryon dynamics is not well saturated by just ð3; 3̄Þ þ
ð3̄; 3Þ and ð8; 1Þ þ ð1; 8Þ representations. In contrast, the
current analyses manifestly including the ð6; 3Þ þ ð3; 6Þ

FIG. 7. Masses of octet baryons for the chiral-invariant mass mψ ¼ mχ ¼ 700 MeV and mη ¼ 1000 MeV. The red lines show the
experimental values with their assigned uncertainties (δmi), while the black lines show the model predictions for parameter sets
satisfying fmin < 1, where fmin is the minimum value of the test function f defined in Eq. (27). This condition selects scenarios that
reproduce the known baryon masses within an average deviation of 1 standard deviation. (a) Ground state (b) First excited state
(c) Second excited state (d) Third excited state (e) Fifth excited state (f) Sixth excited state
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FIG. 8. Numerical results for the probability to find representations with good diquarks, jcψ j2 þ jcψmir j2 þ jcχ j2 þ jcχmir j2, for each
combination of ðmψðχÞ; mηÞ. (a) Nucleons (b) Λ baryon (c) Σ baryon (d) Ξ baryon.

FIG. 9. Numerical results for the probability to find representations with (a), (b) good and (c), (d) bad diquarks, jcψ j2 þ jcψmir j2 þ
jcχ j2 þ jcχmir j2 and jcηj2 þ jcηmir j2, respectively, for a typical choice of ðmψðχÞ; mηÞ. The sign in the brackets indicates the parity.
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representation correctly describe the mass hierarchy
between excited Σ and Ξ states. This should be natural
simply because the ð6; 3Þ þ ð3; 6Þ representations with bad
diquarks have more correlations with excited states;
attempts to fit excited states without ð6; 3Þ þ ð3; 6Þ repre-
sentations affect fits to the other states, making the previous
global analyses problematic. We also make some predic-
tions about the mass of the second excited state of Σ and the
excited states of Ξ below 2 GeV.
Next, we examine the composition of each representa-

tion for a baryon state. For instance, for a nucleon,

jNi ¼ cψ jψi þ cχ jχi þ cηjηi þ � � � þ cηmir jηmiri; ð30Þ

where the flavor wave function is normalized to hNjNi ¼ 1.
We examine the probability to find light representations,
jcψ j2 þ jcψmir j2 þ jcχ j2 þ jcχmir j2, in a nucleon. Shown in
Fig. 8 in color are the probability to find jψi and jχi states in
the ground states (N, Λ, Σ, Ξ) for given ðmψ ; mηÞ. The
quality of fit (measured by fbestmin) is not always good for some
domain of ðmψ ; mχÞ, and such domains with fbestmin ≥ 1 are
marked with crosses and are omitted from our analyses. The
best fit for given ðmψ ; mχÞ suggests that the ground states are
well dominated by the ð3; 3̄Þ þ ð3̄; 3Þ and ð8; 1Þ þ ð1; 8Þ
states including good diquarks.
We also examine how robust the dominance of ð3; 3̄Þ þ

ð3̄; 3Þ and ð8; 1Þ þ ð1; 8Þ states is by studying the variance

around the best fit. In Fig. 9, we accumulate the results on
composition coming from all the parameter sets satisfying
fbestmin < 1. The ground to the fifth excited states are displayed
for ðmψ ; mηÞ ¼ ð600; 800Þ MeV and (900, 1200) MeV.
The results show that the dominance of ð3; 3̄Þ þ ð3̄; 3Þ
and ð8; 1Þ þ ð1; 8Þ states is a robust conclusion. In Fig. 9,
we also examine the fraction of the ð6; 3Þ þ ð3; 6Þ repre-
sentation η. The overall tendency is that the fraction gently
grows with the excitation levels. These trends are consistent
with conventional arguments based on diquark classifica-
tions in the hadron spectroscopy.

V. SUMMARY AND DISCUSSION

In this work, we constructed an SUð3ÞL × SUð3ÞR
invariant parity doublet model based on the quark diagram.
In our model, the ð3L; 3̄RÞ þ ð3̄L; 3RÞ, ð3L; 6RÞ þ ð6L; 3RÞ,
and ð1L; 8RÞ þ ð8L; 1RÞ representations are manifestly
included to describe baryon octet states from the ground
states to excited states. We used χ2 fitting to determine
ten parameters in our model to 12 physical inputs and
calculated the mass spectra for hyperons with masses
smaller than 2 GeV. The mass spectra are well reproduced,
as shown in Fig. 7. Also, we obtained the mixing ratio for
different representations. For the ground state, the results
show that, for all the reasonable combinations of ðmψ ; mηÞ,
the ψ and χ fields are dominant, indicating the fact that
the ground state is well saturated by ð3; 3̄Þ þ ð3̄; 3Þ and

FIG. 10. Numerical results of σ dependence of nucleon mass for each combination of ðmψðχÞ; mηÞ. We choose the best fitted value for
each combination of (mψðχÞ; mη). (a) Result for the first four states with fixing mη ¼ 1000 MeV. (b) Result for the first four states with
fixing mψ ¼ 700 MeV. (c) Result for the fifth and sixth states with fixing mη ¼ 1000 MeV. (d) Result for the fifth and sixth states with
fixing mψ ¼ 700 MeV.
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ð8; 1Þ þ ð1; 8Þ representations. This is consistent with
considerations based on diquarks.
Our new model has improved the mass ordering problem

in the previous analyses, but unfortunately there arises
another problem concerning the strength of the Yukawa
couplings. We close this paper by mentioning this problem
and call for further studies.
The Yukawa couplings for reasonable fits are found to

be large compared to those used in our previous analyses
for the two-flavor case. The magnitude of ten Yukawa
couplings are Oð10–30Þ, and both positive and negative
signs are possible. Our experience for two-flavor analyses
indicates that the sum and the difference between the
Yukawa couplings are responsible for the average and mass
splitting of the positive and negative parity nucleons. To
explain the mass splitting of ∼500 MeV, the couplings
cannot be too small for any chiral-invariant masses. What
we have not understood is why Yukawa couplings in the
three-flavor case become larger than the two-flavor case by
a few factors.
Our three-flavor model contains more representations

than the two-flavor model, and it might be possible that,
after diagonalization to get physical baryon spectra, the
physical baryons have a smaller Yukawa coupling, because
the Yukawa couplings for the original fields have alternat-
ing signs. To check this possibility, we estimate the Yukawa
coupling between σ and physical nucleons obtained after
diagonalization. For this purpose we compute ∂mN=∂σ.
In Fig. 10, we show the σ dependence of nucleon mass

for different generations. The value of σ dependence
of nucleon mass are listed in Table III. For each combi-
nation of mψðχÞ and mη, we choose the best fitted param-
eters to reproduce the mass spectrum of each nucleon.
In Figs. 10(a) and 10(b), we show the σ dependence of the
first four states for two sets of ðmψðχÞ; mηÞ, (600, 1000),
and (800, 1000) MeV. Increasing σ from 0 to fπ , positive
parity states show nonmonotonic behavior, while negative

parity states grow monotonically. This behavior is consis-
tent with SU(2) PDM in Ref. [45]. Next, we vary mψ

with mη fixed to 1000 MeV [Fig. 10(a)]. For the first four
states, increasing mψ reduces ∂mN=∂σ or the Yukawa
coupling to σ, since mψ explains the majority of mN .
We also varied mη with mψ fixed to 700 MeV [Fig. 10(b)]
and found that the first four states are very insensitive to the
details of mη.
For the other two highest excited states, we found the

masses increase almost linearly as a function of σ. This
seems odd to us, as we expected that the highly excited
states would decouple from the chiral symmetry breaking.
We guess that the overall mass scale for these states should
be discussed in the context of other mechanisms such as
stringy excitations seen in the Regge trajectories.
To summarize, our model for SUð3ÞL × SUð3ÞR

improved the description of mass ordering associated
with the flavor difference, but we found that the size of
Yukawa couplings are still problematic. It is surprising to us
that imposing the SUð3ÞL × SUð3ÞR symmetry [not just
SUð3ÞV] introduces, besides many possible baryonic rep-
resentations, several unexpected issues in constructing a
Lagrangian in the linear realization of chiral symmetry.
There still seem to be some missing elements, and we leave
those problems for future study.

ACKNOWLEDGMENTS

B. G. is supported by JST SPRING Grant
No. JPMJSP2125. B. G. would like to take this opportunity
to thank the Interdisciplinary Frontier Next-Generation
Researcher Program of the Tokai Higher Education and
Research System. M. H. is supported by JSPS KAKENHI
Grants No. JP20K03927 and No. JP23H05439. T. K. is
supported by JSPS KAKENHI Grants No. 23K03377 and
No. 18H05407, and also by the Graduate Program on
Physics for the Universe (GPPU) at Tohoku University.

TABLE III. σ dependence of nucleon masses at vacuum.

ðmψðχÞ;mηÞ (MeV) (600, 1000) (800, 1000) (700, 800) (700, 1000)

j∂mN=∂σj [G.S] 16.09 16.02 16.04 16.41
j∂mN=∂σj [Nð1440Þ] 20.06 19.31 19.55 19.78
j∂mN=∂σj [Nð1535Þ] 13.99 12.23 13.16 13.16
j∂mN=∂σj [Nð1650Þ] 16.13 13.86 14.89 15.15
j∂mN=∂σj [Nð5thÞ] 17.43 17.90 17.21 17.70
j∂mN=∂σj [Nð6thÞ] 30.72 37.56 29.59 33.34
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