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We use functional methods to match the two-Higgs-doublet model with heavy scalars in the
nondecoupling regime to the appropriate nonlinear effective field theory, which takes the form of an
electroweak chiral Lagrangian (HEFT). The effective Lagrangian is derived to leading order in the chiral
counting. This includes the loop induced & — yy and h — Zy local terms, which enter at the same chiral
order as their counterparts in the Standard Model. An algorithm is presented that allows us to compute the
coefficient functions to all orders in 4. Some of the all-orders results are given in closed form. The
parameter regimes for decoupling, nondecoupling, and alignment scenarios in the effective field theory
context and some phenomenological implications are briefly discussed.
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I. INTRODUCTION

Indirect effects of new physics (NP) at colliders can be
consistently described with effective field theories (EFTs),
where the new heavy particles are integrated out. Applying
this approach to electroweak symmetry breaking and
Higgs-boson properties, the nonlinear EFT in the form
of an electroweak chiral Lagrangian (EWChL, also referred
to as nonlinear Higgs-sector EFT, or HEFT) [1-19]
provides us with the most natural framework [20]. It is
economic and general and properly accounts for non-
decoupling effects in the scalar sector. While the EFT is
model independent, matching its parameters to a specific
scenario connects the EFT coefficients to a given UV
theory. Recently, there has been renewed interest in the
two-Higgs doublet model (2HDM) [21] and the treatment
of its properties at the electroweak scale in an EFT
approximation [22-25] (for earlier work see, e.g., [26]).
Our motivation for addressing this topic is essentially
twofold. First, we would like to investigate the description
of the 2HDM in the nondecoupling regime, which corre-
sponds to interesting regions of parameter space. Second,
our analysis exemplifies the structure of the Higgs-EWChL
in the context of the 2HDM as a prototypical extension of
the Higgs sector. In addition, we use functional methods
throughout, which make the calculations rather efficient
and transparent. Exploiting the advantages of the functional
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approach, we go beyond the existing literature in comput-
ing higher terms in the Higgs functions, including some all-
orders results in powers of the Higgs field A4, and an
algorithmic prescription for their general derivation. The
method used in the present study has been developed in
detail in [27], where it was applied to the matching of a
singlet extension of the SM to the nonlinear EFT.

The paper is organized as follows. In Sec. Il we introduce
polar coordinates for the scalar sector of the 2HDM, which
are especially convenient for the matching to the nonlinear
EFT. In Sec. III we perform the matching of the 2HDM in
the nondecoupling regime to the leading-order (LO) chiral
Lagrangian at tree level, integrating out the heavy scalars
by functional methods. The matching calculation is
extended to the one-loop induced & — yy and h — Zy
local EFT operators in Sec. IV. Section V summarizes
important aspects of the 2HDM parameter space with
heavy-scalar masses (of order TeV), including the decou-
pling, nondecoupling, and alignment regimes. Some phe-
nomenological implications are discussed in Sec. VI,
before we conclude in Sec. VII. Appendix A contains
the solution Hy(h) of the LO equations of motion (EOM)
for the heavy-scalar field H to all orders in &, Appendix B
shows the one-loop matching for 7 — yy and h — Zy to all
orders in 4, and Appendix C provides explicit expressions
for the parameters of the 2HDM scalar potential.

I1. 2HDM SCALAR SECTOR
IN POLAR COORDINATES

The scalar sector of the 2HDM consists of two complex
doublets H; and H,, both in the fundamental representation
of the weak gauge group SU(2) and with weak hypercharge

Published by the American Physical Society


https://orcid.org/0000-0002-5237-0287
https://orcid.org/0000-0002-6225-6103
https://orcid.org/0000-0003-1194-4798
https://ror.org/05591te55
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.016015&domain=pdf&date_stamp=2024-07-17
https://doi.org/10.1103/PhysRevD.110.016015
https://doi.org/10.1103/PhysRevD.110.016015
https://doi.org/10.1103/PhysRevD.110.016015
https://doi.org/10.1103/PhysRevD.110.016015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

BUCHALLA, KONIG, MULLER-SALDITT, and PANDLER

PHYS. REV. D 110, 016015 (2024)

Y = 1/2. It is convenient to define the conjugate doublets
H, = io,H:, with n = 1, 2, and the matrix fields

Sy = (H,, Hy). (1)
The Lagrangian of the scalar sector can then be expressed as

1
Ls= 3 (D,SKD*S,) =V, (2)

where (- - -) denotes the trace, a sum over n is understood,
and V is the potential to be discussed below. Following
[28], the matrix fields S, can be written in polar coor-
dinates as

1
S, =UR,, R,=—|(v, + h,)1+iC,o,p,l 3
Sl mtsiCan) ()

Here 6, =2T,, a =1, 2, 3, are the Pauli matrices, and
U = exp(2ip,T,/v) is the matrix of the electroweak
Goldstone bosons, where v = 246 GeV is the electroweak
vacuum expectation value (VEV). The VEVs of the two
Higgs doublet fields are v»; and wv,, respectively, with
vt + 03 = 0%, and

C, = —%E —sing. G :v—vlzcosﬂ. (4)

Using the decomposition in (3), the 8 real degrees of
freedom in the complex doublets H,, are expressed through
the eight real fields ¢,, p,, and h,. The electroweak
quantum numbers of §,, and U imply that the covariant
derivative reads
D,® =0,® +igW,®—igB,®T; for® =S, U, (5)

where W¥ = W4T, and B* are the gauge fields of SU(2),
and U(1),. It follows from (3) that

D,R, = d,R, +igB,[T5,R,]. (6)

Consequently, &, , and p5 are electroweak singlets, whereas
p1, are singlets of SU(2);, but charged under U(1),.
Hence,

Dyhn = aﬂhn and Dypa = 0uPa =+ g/BﬂgabSPb' (7)
Fora = 1,2, this can also be written in terms of the eigenstates
p* of charge and hypercharge (with Q = ) = +1) as

. 1 .
Dp* = 0,p* £igB,p*.  p*=—(p1 FTip). (8)

V2

Inserting (3) into (2), the kinetic term becomes

‘CS,kin = <D/4S;r1DﬂSn>

==

(D UTD*U) (v, + hy)* + papal

1 1

Eaﬂh,,()”hn + EDﬂpaD”pa

+ <iUTD/4UTa>[€abcpr#pc

+ Cn(paa#hn - Dﬂpahn)]' (9)

+

The potential in (2) can be written as [28]

m2 . m2,
14 :#<Slsl> +%<S552> —m},(S}S,)
A 2 A .
+§1<5751>2 +§2<S;~92>2 +Z3<STSI> (83S2)

+44(S18:P.) (S1S2P_) +2((S18:P1 ) +(815:P_)%)
(10)

in terms of the matrix fields S, from (1). P, = (1 +03)/2
are projection operators. Here we assume invariance under
S; = =81, S, = S,, softly broken by m?,, and CP invari-
ance, so that all parameters in (10) are real.

When S, is expressed as in (3), the Goldstone field U
disappears from the potential V in (10), which becomes a
function of h,, and p,. The VEVs v, , are defined such that
terms linear in £, , vanish. The terms quadratic in the fields
are diagonalized by p*, p;, and by h and H, which are
related to i, by

()= (GG
]’l2 Sy Cqy h
Here and in the following, we define cos¢ =c, and
sing = s, for generic angles ¢. The mass eigenstates of
the scalar sector are then given by £, identified as the
observed Higgs at mj; = 125 GeV, and the additional
scalars H = H,, H* = +ip*, and Ay = —p5.

The eight parameters of V in (10), m3,, m3,, m3,,
A, ..., 45, can be traded for the VEVs, the particle masses,
the Higgs mixing angle, and the soft breaking term:

U]’ 1]27 mhv MO EMHO’
My = My-, My EMA”v Sas m%z (12)
or, equivalently,
v, tanff =t5 = vy/vy, my, My, My,
2
My, Chuys m? =1z 13
A p—a S/JC/)' ( )
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Dropping an irrelevant additive constant, the potential finally takes the form

1 1 1
V=-mih*+ 5M%H2 +M}HH™ + EM,%Ag —d\h® — dyh*H — dshH? — dyH? — dshH"H~ — dghA} — d;HH" H~

2

— dgHA} — 7h* — 2,03 H — 23h*H? — z4hH? — zsH* — zgh?HYH™ — 2;hHH "H™ — zgH*H"H™ — z9(H"H™)?

— 210M*Af — 211 hHAG — 21, H? A — 23 H T H™Af — 214A;).

The coefficients can be found in Appendix C.

The scalar sector couples to fermions through Yukawa
interactions. We assume a type-II Yukawa sector given by
the Lagrangian [21]

Ly=—q H\Y dgp—q HyY ,ug—¢ H Y eg +He., (15)

where q; = (u;,d;)" and ¢, = (v, e,)" are the left-
handed doublets and ug, dg, ep the right-handed singlets.
The latter may be collected into gz = (ug,dg)’ and
£r = (vg,eg)’. We suppress generation indices, which
are understood for the fermion fields in (15). £y can be
written in terms of the matrix fields S, in (3) as

Ly=—=q.YaS1P_qr — qLY S2Prqr — €1.Y . S1P_Cg
+ H.c. (16)

III. TREE-LEVEL MATCHING IN THE
NONDECOUPLING REGIME

The full Lagrangian of the 2HDM can be written as
Lowpm = Lo + Lskin =V + Ly, (17)

where the scalar sector is represented by Lg iy, V, and Ly
from (9), (14), and (16), and L, denotes the unbroken
Standard Model (SM),

1 1

1
Ly = _E <G;wGM > D) <W/41/Wﬂ > - ZBWB”

+qLiDq, + €,iD¢] + ugiDug
+ dgibdy + egiDey. (18)

In terms of the model parameters in (12) and (13) the
nondecoupling limit is defined by the hierarchy

v~mh~ﬁ1<<M0,MH,MA~MS (19)

with 745 and cj_, of order unity in general. To leading order,
all terms in the effective Lagrangian that are unsuppressed
by the heavy scale M [of order (M )°] have to be retained.

The procedure of integrating out the heavy scalars at tree
level in the nondecoupling scenario has been described in
detail in [27]. It consists of the following steps:

(14)

(i) The EOM is solved to obtain the heavy field Hy(h)
to LO in the heavy-mass limit, O(M%). This requires
the LO terms in the full-theory Lagrangian of order
M3. A closed-form solution for H(h) is derived in
Appendix A. The O(M3)-Lagrangian contains the
heavy fields A, and H* only at quadratic order or
higher. Contributions with only internal lines from
these fields, therefore, cannot arise at tree level.
Integrating them out at tree level and to LO then
implies Ay = H* = 0.

(i) The EOM solutions Hy, = Hy(h) and Ag = H* =0
are inserted into the Lagrangian (17). The O(M3)-
terms cancel and an expression of O(M9) in the
heavy-mass expansion is obtained.

(iii) The field redefinition

ﬁ:AhMH(dHT(;(”)zds (20)

is performed to achieve a canonically normalized
kinetic term for the Higgs field . For notational
convenience we will drop the tilde in the end,
taking i — h.
Proceeding in this way, the effective theory takes the
form of an electroweak chiral Lagrangian at chiral dimen-
sion two, £ = Ly + Ly, With

2
1
Luna = (DU DHUY(1 + Fy(h)) + 3 9,h"h = V(h)
_ © () I
p— u _ P
e e () o
_ = ) (\"
=) Jup
+QL<Md+;Md (v) > -4r
_ ) RV
+7L (Me +> MY (—) >UP_£R + H.C} :
n=1 v
(21)
where
S20 ) h 2
Fy(h)=2 2
RSN ESIC
453, h\3
~32 ﬂ—a(;) o (22)
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V(h) =

2,2 2
TP W P
2 v fro

205 oCpia { m?\1 (13
Szﬂ m%l v

1 gl i
+ [4 4[;2/3 <6( = 12¢3(p1.0) = 19¢4a) = (1 = 2e35¢25 = 3c4q) mﬁﬂ < >

2 2
Cﬁ—aSZa

3
2555

Cah  Cpy sc,

M, +3 M <%) ~ M, {1 4 Cal
n=1

2
Spv 2 S5Cp

The mass matrices M 4 are related to the Yukawa matrices
in (16) through

The expressions for the charged leptons, M, and ME”), are
similar to those for the down-quark case.

Our method reproduces the results of [25] and gives
several new expressions, the cubic coefficient of F;, the
coefficient of 4> in V(h), and the fermionic couplings.
More generally, the procedure summarized at the beginning
of Sec. III, together with the all-orders expression for
Hy(h) in Appendix A, defines an algorithm to extend the
tree-level matching to all orders in /.

M, =2

7§YuSﬁ, Md:

A. Other Yukawa interactions

Besides the type-Il Yukawa interactions discussed
above, there are three other possibilities without tree-level
flavor changing neutral currents. Conventionally, these are
given by

(1) Type-I
L=-g.Y48$P_qr —qrY,S2P qr
—£,.Y,S,P_tkg. (27)
(i) Type-X (lepton-specific)
L=-g.YqS$P_qr —qrY 2P qr
—£,Y,S,P_tg. (28)
(iii) Type-Y (flipped)
L=-g.YqS$1P_qr—qrY,S2P qr
—7,.Y,S,P_tg. (29)

h) 2 Cﬂ a s%a

Sqgh  Cp_qa sy c2

h\2 cp_q
7]> + /}{sza(z 2(1_

h
[C/;Jra +3¢p30 — (2¢p1a +3C3p-q + 11cp_3,) } <; + - } (23)

. } (24)

h
2s -2
6 2/,’( $20 — CZa [3 (1})
h\3
1 +2C2a f/} <’[})

. (25
6 szﬂ + } )

Using the results of the matching for the type-1I 2HDM, it is
straightforward to find the matching for the other Yukawa
structures. For example, in the type-I model, all terms
depend only on S5, so the matching will have the same form
as the up-type terms of the type-II 2HDM. As a result, we
find for the type-I1 2HDM

0 n "
Mu.d,e + Z M,(,L[)i,e (;)
n=1

coh  cpgsic, (M\2
:Mu,d.e|:1+_ﬁ 2 <>

v

Cﬂ a s%a
2s 1-

with M, 4. = vY, 4.55/ /2. It is straightforward to obtain
similar expressions for the type-X and type-Y models.

IV. NONDECOUPLING EFFECTS AT ONE LOOP

The procedure of integrating out the heavy scalars can be
extended to one loop using functional methods [29]. The
most important effects at this order are the local operators
inducing h — yy and h — Zy transitions, because they are
loop suppressed in the SM. The EFT corrections are then at
the same loop order as the leading contributions. In the
2HDM, the contributions to h — yy and h — Zy due to
the heavy sector come from charged scalars H* within the
loop, or equivalently from the real fields p;, in (3). To
obtain the one-loop contributions with internal p; from
functional integration, the Lagrangian in (2) has to be
expanded to quadratic order in these fields. The quadratic
piece takes the form

1 .
Eg.)z = EpiAijpjv A=-D*-My-Y, (31)
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where

DY = 0'5;; + XVe;; = (0" + X¥) V.. =Y6; (32)

ijs ij = Yoij,
with i,je€{1,2}, ¢;; the two-dimensional Levi-Civita

symbol, and

Xt = eAt + L (1-242) 2,
ZCW

—Y = d5h + d7H + Z6h2 + Z7l’lH + ZSHZ. (33)

Here e is the electromagnetic coupling, sy = sin @y, cyy =
cos Oy, with the Weinberg angle 0y, A the photon, and Z
the Z-boson field. Performing the Gaussian integration of

exp(i [ d4x£/(,2,2) over p; gives the effective Lagrangian [29]

iXN1 [ d*p /[2ip-D+D*+7V\"
Lop=—=) — . (34
2;n/<2n>4<( o) ) e

In a weakly coupled model of the heavy sector, a generic
matrix ¥ scales at most with the first power of M. The
series in (34) will then converge and only a finite number of
terms will contribute to any given order in the 1/My
expansion. By contrast, in the present nondecoupling
scenario we have ¥ ~ M%, which is of the same order as
the denominator p> — M?,. Therefore, an infinite number of
terms in the sum over n contributes at a given order in the
1/M; expansion. However, higher powers of ¥ come with
higher powers of &, since ¥ = O(h") in the field expan-
sion. As a consequence, the infinite series generates a
Higgs-function F(h) that accompanies an EFT operator
O, as it is characteristic for the Higgs-electroweak chiral
Lagrangian. At any given order in A", the operator
coefficient is well-defined and calculable.

Following this reasoning, we can extract the terms of
interest here from (34). These contain two factors of the
field strength X s

Xt = [D+, DY);; = X™e;; (35)

corresponding to four covariant derivatives D, along with
powers of ¥. Neglecting contributions with three or more

powers of &, we need to include terms of order ¥ and ¥2.
The result is given by

30272 Loy = ——— (VX X X, X"
T Leff 12M%{< uv >+40M411{< v >
1 ~a
—((YX,,)?), 36
gonit (PP 30

which simplifies to

X

i

Loy = Ex,4 = 19222

xXw Iy Y2
{W ey + (’)(h3)} . (37
H H

Using (33) and eliminating H in favor of 4, we obtain

e? w o, L= 255 »
Lyx4= 62 A A — A7 | Fx(h), (38)
_Spah 1 [ $20 5 h\?
Fy(h) = 6 ;_E<sﬂ—a+gcﬁ—a >
+O(h?) (39)

withA,, =0d,A, - 0,A,, Z,, = d,Z, —0,Z,. We note that
the field redefinition of &, needed to make its kinetic term
canonically normalized, plays no role for Fy through
order h?.

The first term ~% in Fy(h) agrees with the result of [25],
the term ~A? is new. Employing the procedure described
above, it is straightforward to extend the calculation of Fy
to higher orders in A. As discussed in Appendix B, in the
alignment limit cz_, = 0 the function F, to all orders in A,
takes the simple form

1 h
Fx(h)==In( 14— 40
d=gin(1+7) (40)
corresponding to the well-known low-energy theorems [30].

A. Custodial symmetry breaking

The scalar potential in (10) contains the custodial-
symmetry violating term [21]

AVesp = (As — 24)(S]S,T3)2.

When integrating out the heavy scalars, this term generates
the two-derivative operator

Eﬁl = ﬂ] 1}2<UTDMUT3>2

but only at the one-loop level. The coefficient is directly
related to the parameter T of oblique electroweak correc-
tions, f; = aT/2, with « the fine structure constant. One
finds, up to a factor of order unity, that [21]

Ay — A5
1672

M3 - Mp,
167202

Pr~

In accordance with the phenomenological requirement of
approximate custodial symmetry, L4 cannot be a leading-
order effect. Therefore, the difference 4, — A5 must be a
weak coupling of O(1) and carries chiral dimension two.
Ly, is then counted as a next-to-leading-order (NLO) term
of chiral dimension four, consistent with | being small as a

016015-5
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loop factor 1/167% [12]. The general analysis of such NLO
effects is beyond the scope of the present paper.

V. PARAMETER SPACE AND THE
DECOUPLING LIMIT

For the construction of a low-energy EFT, we consider
the phenomenologically viable scenario where the masses
of the new scalar degrees of freedom in the 2HDM are
taken to be much larger than the electroweak scale, i.e.,

MS~M07MH’MA>>mh~U' (41)

Depending on the numerical values of the parameters, we
can discern two basic scenarios, corresponding to weak and
strong coupling, respectively. They are given by
(i) Nondecoupling regime' (strong coupling, nonlinear
EFT)

1 < || <1622,

my~v~im<Mg = cpo=0(1). (42)

While cj_, is a priori unconstrained in this regime,
we will also consider the case cs_, < 1, referred to
as the nondecoupling regime with (quasi)alignment.
We also note that the model with m = 0, the Z,
symmetric 2HDM without soft breaking, has no
decoupling limit [31-34].

(i) Decoupling regime2 (weak coupling, linear EFT)

my~v<Lim~Mg=cy_, <1, (43)

In the strong-coupling case, we require the 1; to be
somewhat below the nominal strong-coupling limit Mg ~
47w corresponding to |4;| & 1672, Otherwise, a description
of the heavy-scalar dynamics in terms of resonances would
no longer be valid. To be more precise, the magnitude of the
couplings is constrained by perturbative unitarity [35—41].
For loop corrections to the constraints, see Refs. [42-44].
Generally speaking, these give much stronger bounds,
namely |4;| <4z Furthermore, the couplings are con-
strained such that the potential is bounded from below
and that the symmetry breaking vacuum is the global
minimum of the potential. For the 2HDM with (softly
broken) Z, symmetry, the necessary and sufficient con-
ditions on the couplings read [45-49]

lAlthough not stated explicitly, this limit was used to derive
nondecoupling effects in [25].

This limit has been studied extensively in [31]. The model we
consider in this work is simpler because of an additional, softly
broken, Z, symmetry S; — —S;.

420, 30, Ay >—ik
Ay + Ay = |As| = =/ A4y (44)

To satisfy these bounds, the absolute values of the cou-
plings have to be taken large uniformly, which limits the
possible mass splitting between the heavy scalars.
Especially the perturbative unitarity constraints severely
restrict the possible parameter space of the nondecoupling
regime. Nevertheless, masses of Mg <1 TeV are still
possible for m ~ v, which clearly fulfills the power count-
ing of the nondecoupling scenario.

In the decoupling regime, all NP effects are suppressed
by powers of the heavy-mass scale Mg as formalised by
the Appelquist-Carazzone decoupling theorem [50].
Several EFT matching calculations have been performed
in the decoupling limit (see, e.g., [24,51,52]). A decoupling
regime automatically implies the alignment limit c;_, = 0,
where the h-couplings approach their SM values [31]. An
explicit calculation gives

4
v
Gy = Ws%ﬂ[/ll — Xo 4 cop(Ay + A = 2235))?

+ OS5 /i) (45)

with Ayys =13 + 44 +1s. When m > v, this indeed
approaches zero. As mentioned above, there is no similar
relation in the nondecoupling regime, and thus, cs_, is
unconstrained a priori.

To illustrate the two regimes discussed above, we take
the hH3-coupling d3, given in Appendix C, as an example.
In the nondecoupling regime, My~ Mg > m,, m, so
dy = O(M%), whereas in the decoupling regime, the
masses and parameters of the model scale as

M3, M3, M3 = in? + O(v?),
my =O0(?),  cpq =0 /m?), (46)

leading to

2
d3 = —% — US%:C/Z),(X] + 12 - 2/1345) + O(U3/ﬁ12). (47)

Evidently, all heavy-mass dependence has canceled.
Similar calculations show that this cancellation works
for all d; and z;. It is now easy to see that all nondecoupling
effects vanish in the decoupling regime. Obviously, all tree-
level nondecoupling effects vanish in the decoupling limit,
since they are all proportional to cs_,. Also the anomalous
hyy and hZy couplings disappear as the ratios d;/M?% and
zi/M? go to zero in the limit Mg — oo.
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TABLE I. LO matching results for the 2HDM. ¢, is the same
for all up-type quarks (u, c, t), and ¢, is the same for all down-
type quarks (d, s, b) and charged leptons (e, u, 7).

Tree level Loop level
Sp—a
cy Sp-a ¢y e
Cy Sp_q + cﬂ_atl;l Cyz 1253, $p-a
swew 6
Cq Sﬂ—a_cﬂ—at[f Cg 0

VI. PHENOMENOLOGICAL CONSIDERATIONS

The simplest way to confront the nondecoupling effects
of the 2HDM with experiment is by using a global HEFT
fit. Such a fit has been performed using LHC runs 1 and 2
data [53], where the authors fit the couplings of the HEFT
Lagrangian in the form

1 h _h
L = 2cy <mWW;W_” + 5m§Z,,Z”> o chmv,y/y/;

W

P L

1672 7 M T len? TFTRT

2
gs N

+@C9<G”UGM >; (48)

with w € {t,b,c, 7, /4}.3 Our matching results are given in
Table I. The strongest constraint is derived from the Higgs—
vector boson coupling

cy = 1.01 +£0.06 = 55, = 0.95, (49)

where the given error corresponds to the 68% probability
interval. This motivates the (quasi)alignment limit as it
constrains cg_, < 1.

Applying the above bound to the anomalous Higgs-
photon coupling, we find

¢, €[0.16,0.17). (50)

This coupling is particularly important, as it is bounded
from below in the alignment limit. We see here that this is a
direct consequence of the bound on the Higgs-vector boson
coupling. From the global HEFT fit, the bound on ¢, is
given by

¢, = 0.05 +0.20, (51)

which is consistent with the matching prediction.
Nevertheless, with more data from the LHC, it is plausible
that the limits on ¢, could be sufficiently improved to
exclude the nondecoupling regime experimentally. Local

The couplings to the lighter fermions are so small that they are
not included in the fit.

couplings with more than one Higgs in (38) and (39), such
as hZAWA”’“, could in principle be probed at a photon
collider [54] in a process like yy — hh.

Aside from using an EFT approach, there is a large
amount of literature using global fits for the 2HDM
directly. Depending on the structure of the Yukawa inter-
actions, these fits can give much stronger bounds on s;_,
than the global HEFT fit (see, e.g., [55,56]). However, a
detailed analysis lies beyond the scope of this work.

VII. CONCLUSIONS

We presented a systematic derivation of the EFT at the
electroweak scale for the 2HDM in the nondecoupling
regime. In this regime, the EFT takes the form of an
electroweak chiral Lagrangian (nonlinear EFT). Our dis-
cussion follows closely the detailed discussion given in [27]
for the nondecoupling regime of the SM extension with a
heavy-scalar singlet. The scalar sector of the 2HDM is
written in polar coordinates, with a nonlinear representation
of the Goldstone fields, which facilitates the use of functional
methods that we employ throughout. An algorithmic pro-
cedure is given, by which the LO EFT Lagrangian can be
worked out to arbitrary order in the Higgs field 4. We confirm
previous results for the EFT Higgs couplings and extend the
derivation to additional terms. The main results are displayed
in (21)—(25), (38), and (39). Some all-orders expressions are
given in closed form (Appendixes A and B). We derive the
LO EFT Lagrangian, including the fermionic Yukawa
interactions and the loop-induced local terms for z — yy
and h — Zy. As already pointed out in [25,57], the latter
terms have interesting nondecoupling effects that survive in
the alignment limit. Those are still compatible with present
data. They could be discovered or ruled out in future
measurements of anomalous Higgs-boson couplings.

Note added. Recently, the article [58] appeared on arXiv.
It also addresses the HEFT matching of models with
extended scalar sectors and partially overlaps with our
results on the 2HDM.
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APPENDIX A: EXACT SOLUTION FOR H,(h)

The LO term for H is calculated from the equations of
motion at O(M%). In particular, we can set HX = A = 0 in
this approximation. As a result, retaining only O(M3)
terms the Lagrangian simplifies to

A A
EM:—mﬂdﬁ—m§2¢%—51¢?—52¢3—/1345¢%¢%’ (A1)
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where ¢2 = (v, + h,)?/2 and
M? M2 e
A= ZOCZ’ A= ZOSZ’ /13455/134—/144-,15:_206'&6'&’
v? szc
7 K 4
M? SaCaSp M2 SaCaCs
mﬁx?O(*%) mgz_—f<s§+% |
(a2)

After expressing 4, and h, through s and H, the two fields
take the form

1
¢l = 7(6‘/}1} + CaH - Sah)7

V2
1
=— (530 + s, H + c,h). A3
b2 \/5( 5 ) (A3)
By defining the combination
Ca Sa
R? =27 + =43, (A4)
p Sp
the Lagrangian (A1) can be rewritten as
¢ Mp
‘CM = 7 (S(IS/; + C{IC/)))R2 - WR“ (AS)

At this point we can solve the EOM by analogy to the
heavy singlet model studied in [27]. By direct comparison
to the results in the appendix of [27], we can identify

¢ =S, ¢y —> b,
5= VE  sa— Vo,
which exactly reproduces the corresponding terms of the

heavy singlet model. The solution to the EOM is then
given by

v— f,

MO —)M, (A6)

2 .2
v+t s
H, (h) = R
Sa Ca

Sp Cp

Sa . Ca) (SaCa | SaCa)p2
1_<§+Cﬂ)<sﬂ+%)h_l

X — 5 (A7)
(v+ (- 26)n)
Y/j C/;
This expression fulfills
v? v?
R? = > (5a8p + CoCp) = ?cﬁ_a, (A8)

which, when inserted back into the Lagrangian (AS5), shows
that the O(M?%)-terms cancel up to a constant. Furthermore,
the solution starts at O(h*) with coefficients that are
functions of s,, c,, g, and Cpe Note that the combination

SaCa | SaCa >
?—l— p =—Cp_all =2¢5_, +2¢p_4Sp_ac0t(2B)]  (A9)

vanishes in the alignment limit. Then, the square root in
(A7) reduces to 1, which gives Hy(h) = 0. As a result,
all tree-level nondecoupling effects vanish in the align-
ment limit.

APPENDIX B: ONE-LOOP MATCHING
OF h"X,,X* TO ALL ORDERS IN n

When calculating the one-loop EFT contributions of the
form h"X,, X", we noted that, since ¥ = O(M3%), the
series does not converge. Therefore, to calculate the full
Higgs function associated with the operator X, X", we
need all coefficients C,, of the expression

Lo D Z C, ("%, %"). (B1)

In writing the above, we made essential use of the fact that
¥ « 1 and thus commutes with X**. This is, however, a
special case. In general, ¥ does not commute, giving more
possible operator structures for each n.

To derive an all-orders result for the C,,, we start from the
general expression for the one-loop effective Lagrangian
given in (34). We now use a slightly adapted form of a trick
explained in the appendix of [59]: We evaluate expression
(34) in the special configuration dﬂf(l, = dﬂf/ = 0, allowing
us to drop all derivatives. In this case
(B2)

D/,(A? - [)A(ﬂ,é], X

w = [ XL,

where G is any matrix valued function of ¥ and X 4~ In the
final expressions, we can express everything through D,
and X > Tegaining the general result.

In our special case, we are only interested in the terms
of the form ¥"X Wf(’““, which contribute to the h"yy
nondecoupling effects. Setting [Xﬂ, ¥] = 0 automatically
removes all terms of the form D, Y.

In this way, it is easy to evaluate all terms from (34) with
four derivatives (four factors of X ,) and n factors of ¥, which
reduce to the terms of interest due to the formal gauge

invariance of the functional integral. Finally, we obtain

1 . (_l)n vny  Yuv
*Ceff = Z 12n <Y XWX# >

32x° — Mar
X, X" Y(h)

=2 _In(1+—2). B3
19272 n( +M%,) (B3)

The first two terms in the sum over n agree with those given
in [29], and the third and fourth terms agree with those
given in [60], in the special case that ¥ and X L commute.
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The second expression in (B3) represents the full Higgs
function after taking

= —dVh—dV Hy(h) = 2Vn> = 2V hH,(h)
— 2 Ho(h)?

Y(h)
(B4)

and expressing & in terms of the canonically normalized
Higgs field &, h = h(h), through the inverse of the function
hi(h) defined in (20). Here d.” is the O(M2) part of ds, and
similarly for the other coefficients, and H (%) is the function
derived in Appendix A.

In the alignment limit ¢4_, = 0, the Lagrangian in (B3)
can be given in closed form to all orders in A. In
this case, Hy(h) vanishes and Y in (33) reduces to
Y/M?% = 2h/v + (h/v)*>. Then (B3) takes the form of
(38) with the function Fyx(h) given by (40).

APPENDIX C: PARAMETERS
OF THE 2HDM POTENTIAL

The full scalar potential is given in (14). In this section
we give all coefficients of the potential in terms of the input
parameters

v, my, Mo, MH? MA, ﬁ’l, tﬂ’ Cﬁ_a. (C])
The cubic couplings read
"2
vd, = cé_a(rhz — M) (Sp_q + Cp_g COL(2B)) — Thsﬁ_a, (C2)
vd, = /32_“ [(2mj, + MG = 3m?)(1 = 2¢5_, + 25p_aCpq cOU2B)) — ?], (C3)
_Yp-a 2 ) _n2 =2
vdy = (MG + my, = 3m) (1 = 2¢5_, + 255_oCp_y cOU(2B)) + 7], (C4)
MZ
vdy = s%_a(ﬁlz - M%)(C/}—a — Sp-a COt(zﬂ)) - TOCﬁ—a’ (CS)
52 ), My =2 2
vds = 2sp_, | > — My — > + 2¢4_, cot(2p) (m* — myj), (Co)
m2
vdg = 54 <ﬁ12 - M3 - 7h> + cy_q cot(2p)(m? — m3), (C7)
2 , Mg 2 _ =0
vd; = 2cp_ | M* — My — ER + 255_, cot(2p) (Mg — m”), (C8)
2 , M3 2 _ =0
vdy = cy_o| M* — My — > + 54_q cOt(2p3) (Mg — m?), (C9)
and the quartic couplings are given by
2 mj, C/23—a 2 =2 4 2 2 \2p02
vz = —?+T[4sﬁ o (=3 +4cy_Jmy — (1= 2¢5_,)° M
+4cp_aSp_acot(2f)(2m* — (14 2¢5_)my — (1 = 2¢5_, ) MG)
+4cj_cot? (28) (m* — cj_gmj; — 55 ,Mg)], (C10)
s —(lc —a —
2z, =L 2ﬁ (1 =2¢5_o)[my + MG = 2¢5_ (MG — mj) — 2im?]
+ C/23—(1 COt(zﬂ) [I’I’l%(l + 20%5—(1 - 4C73—(1) + 2M%(1 - 3C/2} a + 202’—(1)
m? (=3 + 4(:%,_(1)] + 202_0,313—«1 cot?(2B) M3 — in* — c/, (M%—m3)], (C11)
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1
V273 = 1 (2 =12¢5_, 4+ 12¢5_)m® 4 (1 = 2¢5_,) (=1 = 3¢j_, + 6¢5_g)my 4 (=2 + 9¢j_, — 6¢5_, ) M)

+ 2¢p_aSp_q cOt(2B)((6 — 126‘%_(1)1’7/12 +(-1- 6C/3—(1 + IZCﬁ_(l)mh—i—(—S + 186/}_(1 - 120/,_{1)M(2))

—|—12(:/2}_as/2}_a cot?(2p) (im* — s/zj_aM(z) - c%_am%l)],

Sp—aCp—a _
vzy = L0 (= 26 ) — 3MG + 265 (M3 — m}) + 2]

+ 55 COU2P) M}y (25, — 4cy_,) +MG(1 = 6¢j_, +4cj ) +m* (=1 +4cj )]
+ 2¢p_aS)_gCOC (2B)[MG — m* — ¢, (MG — mj)],
1
UZZS = g [4‘;‘%—(10/2)’—01’/712 - s%}—a(l - 2C§—a>2m% - C,%}—a(:; - ZC%—(I)ZM%
+4cp_aS)_q c0t(2B)(=2m* + (=1 4 2¢5_, )mj; + (3 = 2¢5_, )M5)
+4sj_, cot(2B) (M = MG + cj_o (M —mj))],

(C12)

(C13)

(C14)

1 _ _
V226 = 5 [255_,(m* = M) —mj, + ¢, (1 = 2¢5_, ) (MG — mj) + 2¢p_o5p_q cOU2B) (2m* — my — MG + 3¢5, (MG — mj))

2
+ 46/3_(1 cot?(2p) (im? — sf,_aM% - ci_am%)],

V227 = CpgSpoa(2m* = 2ME — (1 = 2¢5_,) (MG — my)) + 2 cot(26) (MG — in* + 2¢5_,i* + cj_ M5(=4 + 3c5_,)

+ C[)’—rlmh(2 3Cﬂ—(1)) + 4Cﬂ asﬂ a C0t2(2ﬂ) (M2 7 2 C/23—(1(M% - m%z))’

1
Ung ==

5 l=mi 4 o (2(m* = M) + (MG —mi) (=3 +2¢}_,))

+2p_aSp-a COU2P) (=2/m* = 2mj, +4MG —3cj_ (MG —m3)) +4s;_,cot® (28) (m* — Mg+ cj_, (MG —m}))],

1 _

vz = 3 (=55 _ o1y, = MG 44 Ot (2P) CpyS po (MG — mj;) + 4 cOt*(2f) (n* — MG + cj_o (MG — m}))],
1 _

UZZIO = Z [25[2}—01(”12 _M124) mh(l + C[J’ —a 2Cﬂ a) + C[J’ aM2(1 - 26 a)

+ 20548 p-q COU2B) (2% — mj — M + 3cj_o (Mg — mj)) + 4cj_, cot®(2p) (m* — sj_ MG — cj_,m})].

1 _

UZZII = E [Cﬂ—asﬂ—a(zmz - ZMEK + (2612}—(1 - 1)(1‘/1(2) - m%))
+2cot(2B)(MF — i + 2¢}_,m* + c;_ M3(—4 + 3c5_,) + ci_omi (2 = 3c5_,))
+ 4Cp_ySp_q O (2) (MG — in* — C/} o(MG = m3))],

V22 = 1 [—m? + cé_a(2ﬁ12 +3m3 —2M3 — 3M3) + ZCz_a(M(Q) —m3)
+ 2048 p-q COL(2P) (4MG — 2mj, — 2m* = 3¢ (MG — mj))
+ 45/23_{1 cot?(28)(m* — M3 + C/Z}_{I(M% -m3))],
1 _
V223 =407, = 2[ sﬂ oM = C5_ MG +4cot(2B) oy S po (MG —m3) +4cot?(2) (m* — MG+ c[%_a(M(Q) —m3))].
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In the alignment limit (c4_, — 0) the coupling constants
simplify to

2 2
Udlz—ﬂ, ’[}dzzo’ Ud3:ﬁ12_M%_%,
2 2
2
vds = 2m* — 2M3, — m3, yd6:ﬁ12_M%_%,
1 M2_ )
dy :5d7 =dy :COt(Zﬂ)(Oivrn), (C23)
m? m2
1}211:__h’ UZZZ—O, vz == mZ—M(Z)——h ’
8 2
2
m
vz = _2—M%1—7h,
z (M3 —m?)
242372211:C0t(2ﬂ)0T,
1 B m2
vzzlo:—z(Mi—m )_Th’

dzs =23 =29 =22 =213=4214

2 (MZ m2)

= —2cot?(2p) (C24)
21}

It is also useful to express the parameters of the potential
in the original form of (10) in terms of the physical
parameters in (C1). The relations read

1 $2a
mi, :sﬁmz—i(caM2+s§ mj,) = 2ﬁ (Mo mj),  (C25)
1 552
2 - M2 2.2 /_aMz_ 2, 26
m3, = cjm’ 2(sa + camy,) — ) S2ﬂ( 5—my), (C26)
1 _
A= a0 (AM3 + sim? — s/%mz), (C27)
V]
1
A = o (saMG + camy, — czim?), (C28)
p
1 2 _ g2y Sa e
b=— oMy —m> 22 (M2 -m2)),  (C29)
v 2/3
1 _
I _

<

The absence of a decoupling limit for 7 = 0 is obvious
from these formulas.
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