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Tensor loop reduction via the Baikov representation and an auxiliary vector
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In this paper, we introduce a simple and efficient approach for the general reduction of one-loop
integrals. Our method employs the introduction of an auxiliary vector and the identification of the tensor
structure as an auxiliary propagator. This key insight allows us to express a wide range of one-loop
integrals, encompassing both tensor structures and higher poles, in the Baikov representation. By
establishing an integral-by-parts relation, we derive a recursive formula that systematically solves the
one-loop reduction problem, even in the presence of various degenerate cases. Our proposed strategy is
characterized by its simplicity and effectiveness, offering a significant advancement in the field of one-loop

calculations.
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I. INTRODUCTION

Accurate calculations of higher-loop corrections play a
crucial role in achieving precision physics at the Large
Hadron Collider and future colliders. These calculations are
essential for accurately predicting particle interactions and
interpreting experimental data. However, the evaluation of
loop integrals becomes increasingly challenging as the loop
order and complexity of the integrals rise. In particular, the
presence of intricate tensor structures and propagators
raised to high powers introduces significant computational
difficulties.

In recent years, remarkable progress has been made
in both the computation and the understanding of the
analytic structures of scattering amplitudes. Various
powerful techniques have emerged to address the reduction
of loop integrals at both the integrand and integral levels.
Integration-by-parts (IBP) relations have proven to be
highly effective in simplifying loop integrals by rela-
ting them to simpler master integrals [1-7]. Passarino-
Veltman reduction [8] and Ossola-Papadopoulos-Pittau
reduction [9-11] provide alternative approaches to simplify
loop integrals, while unitarity-based methods [12-22]
exploit the cutting equations to derive compact forms of
loop integrals. Intersection number techniques [23-29]
have also emerged as powerful tools for the reduction of
loop integrals.
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Several recent studies [30-33] have investigated these
general one-loop integrals by contracting the loop momen-
tum # with an auxiliary vector R. Let us consider the one-
loop r-rank tensor integral with n propagators

Iﬂl ..... /4,:/ ddf fﬂl...fﬂ"
" T )i P, Dy
2

where the ith inverse propagator is D; = (¢ — g;)* — m?,

with g; = >~,_; p; and ¢; = 0. By introducing an auxiliary
vector R¥,

(1.1)

di¢ (2¢-R)"
i(”)d/2 H?:l D, .

(1.2)

11(1r) = Zrlﬁ]"me "'Rﬂr — /

One can recover Eq. (1.1) by applying differential operators
of R to the above expression,

1 d d g
“rrare T aRe " (1:3)

The introduction of R facilitates a more concise expression
and enhances the efficiency of reduction in previous studies,
such as [32,34-38] for one-loop integrals and [31,39] for
higher loops. This technique can be combined with other
methods, including differential operators [30-32], the
syzygy equation in Baikov representation [37,40-51], and
IBP in projective space [33]. In this paper, we introduce a
simple approach that combines differential operators with
respect to R and the IBP relation in Baikov representation.
Baikov representation provides a systematic way to express
loop integrals in terms of a set of master integrals. After
introducing an auxiliary vector and recognizing the tensor
structure as a new propagator with negative power, we can
establish a simple recursive relation for the reduction of
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general one-loop integrals. This approach proves to be
particularly advantageous in handling degenerate cases,
where other methods face challenges.

One can certainly avoid introducing an auxiliary vector
since the tensor structures of the n-point one-loop tensor
integrals (1.1) are explicitly known from [52]. What
remains are the single scalar integrals with shifted values
of the propagator powers and the space-time dimension,
which can be addressed using the recurrence relations
outlined in [53]. The introduction of R serves to contract
the tensor structure and ensure conciseness in the expres-
sion. However, it should be noted that this does not imply
superiority over other approaches. The primary objective of
this paper is to investigate an alternative method to avoid
dimension shifting. We demonstrate the effectiveness and
simplicity of our approach through several illustrative
examples, including the reduction of tadpole, bubble,
triangle, and pentagon integrals.

The rest of this paper is organized as follows: In Sec. II,
we provide a review of two methods for tensor reduction:
differential operators and syzygy equations. In Sec. III, we
provide a detailed outline of our method and derive the
general result for the reduction of one-loop integrals.
Section IV presents a comprehensive set of examples,
showcasing the application of our approach to various types
of integrals. Finally, in Sec. V, we summarize our findings,
discuss the implications of our method, and provide an
outlook for future research in this area. The paper ends with
an Appendix. In the Appendix, we present the results for
the pentagon integral and compare the computation times
of FIRE6 and our method.

II. REVIEW OF TWO METHODS

In this paper, we mainly consider the one-loop r-rank
tensor integral with n propagators

d r

1= /MW'RL_. (2.1)
' i(x)* T, DY’

In this expression, a, = {a,a,,...,a,} represents the
power list of the n propagators. The introduction of the
auxiliary vector not only simplifies the reduction process
but also helps us address the higher-pole case. One can see
any general tensor structure can be recovered by applying
differential operators of R on the standard expression. For
example,

/ di¢ - K

(3)
T T (7 g =y 00 ol

(2.2)

The more general case of tensor reductions for higher poles
can be addressed by employing differential operators of m?,

d't (20-R) a1 d'¢ (2¢-R)"
/ i(x)* 11, Dy (U(a’”f) >/ i(m) > [Tiey D;
(2.3)

One can notice that any differential operator of mass can lift
the power of the associated propagator by 1. Given the
reduction results for the scalar integral class 1, _»), where
{a; = 2} indicates all propagators’ power a; = 1 except
a; =2, one can solve the general problem of reducing
tensor integrals with higher poles. Therefore, for the sake of
simplicity, we will focus solely on the integrals with simple

poles and scalar integrals with single quadratic propagators,

ie., 19 = Yl Lo} and Iy, ). Specifically, the standard

scalar integrals 1, = 1’(10)'

A. Reduction by differential operators

In this subsection, we provide a review of utilizing
differential operators for tensor reduction. In the original
works [34,35], the authors note that there are two types of
differential operators which can lower the rank r:

P
2 =2 T=p 2 %
o> T ool T RN ORY

Di=gq;-

It is straightforward to determine the actions of these
operators,

r—1)

D-IS,’> - S rlir,;,_l) + (m] + ql - mz)l( ,

! n;l

T1) =4r(r = Ominy ™ + ar(r= )12, (2:5)

where 7 indicates that the ith propagator has been removed.

We know that I can be reduced to master integrals,
ZC
nb n:b

where b is the subset of {1,2,...,

(2.6)

n}. In a straightforward

approach, given the results for the integrals 7 ,(,:I<)n, the

expressions for C,(:—)>n~ﬁ~ can be determined by solving
()

the n partial differential equations in (2.5), with the
property

o 9
D, =2 =
S0i 3 9500 + ;su 9o,
2 n—1

d 0 Jd o0
/ZHIZI)a +4S0002 +4IZ 0i =

aso, aSOO

n—1 n—1

+ ; 0s0, 6s0/

i=1

(2.7)
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where
soo=R-R, so;=R-qir1, Sij=9qiy1-qjs1» VL,
j=1,...n (2.8)

However, a more efficient approach exists. The key idea
utilized in [34] is to expand the reduction coefficients based
on their tensor structure

C(’)/\ — E
n;bl n—1
2a +ZI< 1 ap=

By substituting this expansion into the n partial differential
equations, one can derive n recursion relations for the

{ao ..... HS } (2.9)

expansion  coefficients c' b'}'"’”” ')(r). Moreover, these

recursion relations can be solved through an iterative
approach. Finally, by collecting all expansion coefficients,
one can compose the desired reduction coefficients.
Regarding degenerate cases, these can be addressed
through singularity analysis, as shown in [32].

Gl k) = (ki K)o =

nxn

B. Reduction with syzygy in Baikov representation

For the one-loop integrals in Baikov representation
[54-59], we denote the inverse propagators and integral as

20=02¢-R), z;=(-gq)*-m? i={1,2,...,n},
~(d=n—1)/2
10— 0 __ K
(47)"20((d = n)/2)

a4 — ay.as....a,}
x/d”“zg({Z})(d_nj)/ZZS’
c H?:l Zi!

where the prefactors (K involving the external momenta)
do not depend on {z} and can be ignored for our
subsequent discussions. The G({z}) is another Gram
determinant, which depends on both the loop momentum
and the external momenta,

(2.10)

Introducing the syzygy module [37] and considering the IBP relation

0= / d”“zi [azﬂ (Pa —Z6Q{Z} o ﬂﬂ
= - 12

gl

where P, are polynominals of z,,. It should be noted that the
power of G is dependent on the dimension d; therefore, to
avoid dimension shifting in the reduction coefficients, it is
advantageous to select P, judiciously to satisfy the syzygy
equation.

n

Z (Paazag) + Pn+1g =0.

a=0

(2.14)

Another consideration is that the term b;z; ! P; may increase
the power of the ith propagator, which is undesirable.
To preclude this, we require P; to be divisible by z;. With
these constraints in place, one can identify solutions to
the syzygy equation by searching for syzygy modules
<0ZOQ, ....0, G,G) subject to the requirement (P)=
(Py, Py, ..., P,) = {(dy,di, ...,d,), where

Pa G+ (0, P+ rzg'P

G({z}) = detG(%,q5,...,q,, R). (2.11)
Here, the Gram matrix G is defined as
ky-ky ky-ky ky -k,
ky-ky ky-ky ky - k,
_ (2.12)
kn'kl kn'k2 kn'kn
~ ng{z}((d—2)—n—2)/2
— bizi 1P,‘>g 0 " b; 5 (213)
i=1%j
dl = {ZI,O, ...,0,0, 0}
d, ={0,0,...,2,,0,0}
dy ={0,0,...,0,1,0}
d,.1 ={0,0,...,0,0,1} (2.15)

I1I1I. COMBINED METHOD

Differential operators and syzygy equations both require
extensive algebraic computation. While solving the syzygy
equation is typically straightforward at the one-loop level,
our objective is to explore a reduction method that does not
rely on this approach. Instead, we aim to develop a method
that can be applied more generally, starting with the
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one-loop case as a preliminary step. We introduce a simple
approach that combines differential operators with respect
to R and the IBP relation in Baikov representation. First, we
examine the elements of the Gram matrix given in (2.12).
The Gram matrix contains elements that represent the
Lorentz invariant products of loop momenta, external
momenta, and auxiliary vectors. Specifically, the matrix
elements are constructed from scalar products of the form
£-¢,0-q;, R, q;-qj, q; - R, and R - R, where

f‘f:m%—FZ], f‘R:Z()/27

1
£-q;=(mi—mi+z -2z —q;).

: (3.1)

It is evident that the variables {z} only appear in the first
column and row of matrix G, indicating that G must be a
quadratic expression of {z}. To simplify the expressions,
we introduce the notation

n n
g = gooZ% + Z g()iZ()Z,' + goZo + Z gijZ,'Zj
i=1

i<j

+ Z Gizi +G.. (3.2)
i=1

Since only Gy, Gy, and G, are associated with singularities,
we will focus exclusively on presenting their specific
results,

Goo = = 34t [G({} hromesymes)

Go = —det[G({z} = 0)ppypy). G = detG({z} =0).

(3.3)
where #; Ik indicates removing the ith and jth rows as well
as the /th and kth columns. In addition, the {z} = 0is to set

72,=0, Y a=0,1,...,n. We consider the following
integral relation derived from the IBP:

O_Adnﬂza“ [QGZ})”‘"‘”/@({Z}) <6 ]

i=1Zi
:/d”HZ[(d_nzanOg—l—(r—1)g>
c 2

xGifp e .

n
i=1%i

(3.4)

To prevent the power of the function G from changing when
differentiating, we append an additional factor of G [60].
Since z, is independent of the propagators, taking the
derivative d, does not increase the power of the propa-
gators. We substitute (3.2) into it and omit the summation
symbol. Recall that any z; represents a certain propagator
and z, represents the tensor structure; it is then direct to
recognize the equation as a reduction relation at the integral
level as below,

r d—
(r—l—l—d—n)goolﬁl)—I—(r—l-i— 2n)
x (Go1 ™ + Gl T) 4 (r = )G ™ + G

+G,1"P) =o0. (3.5)

nsij

For the case i # j, the integral / @5 simply represents the
nij
subsector with two different propagators removed.

However, when i = j, special care must be taken to keep
z; in the numerator of / (r;Z). The terms, except for the first
niij

one, have lower rank than the initial / Ef). Hence, with the
seed scalar integrals, we can use this relation to construct
r-rank tensor integrals. To enable the recursion relation
to progress smoothly, it is critical to properly handle this
i = j case. One approach is to transfer the propagator z;
to the differential operator directly using the fact that
P < dg-0g,1-q; xq,-0g. Since the reduction result of
the subsector is assumed to be known, one can easily apply
it to any differential operators. Alternatively, we can write
Z; as

(zi—zip1) Y21 =26 (qip1 — i) + fiivn +Zipr, (3.6)
with n+1=1,f;;=m; —m} + q; — q;. There is only
one linear term in ¢, so only one differential operator 9y is
needed. The z;, | term that appears can be canceled by the
denominator. Applying this logic leads to the simplified
result

Jr2 /ddf(zf’R)U_z) Zi
i i(m)"/? [Ti-1 22
_ /ddﬂz’/ﬂ‘R)(r_z) 20 (qiv1 —qi) + fiir1 +Zig
a i(”)d/z H,’;:l,j;éi Zj
(gi1— i) aR/ddf(zf'R)<r_l) 1
a r—1 i(m)? H?:l,/;ei Zj
+/ddf(2f'R>(r_2) fiit
i(ﬂ'>d/2 H;‘I:I,j;&izj
die(26-R)\ 7,
/ i(z)? H;‘l:l.j;éi Zj
_ (gi1=91) Ok N e I
r—1 m m nsi,i+1
(3.7)

Plugging the expression into (3.5), we obtain

Au )+ By 0+ G 1 4B, 1T
+C, "V +C AP =0,

n,rii . =
hon It piij
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where the coefficients are C = (r — 1)gc, Cn "= (r — 1)(gi _|_fl.’i+1gl.j),
nr (I‘— 1 +d_n)g007 (39) C””J (r_ 1)(g”+5”+1g”) (311)
d— In fact, all degenerate cases are captured by Gy, Gy, and
B,, = ( )go, G., as we discuss below. For the nondegenerate case
Goo # 0, dividing (3.8) by the prefactor A, , and introduc-

ing simplified notations, we can derive the recursion

(r)

d—
Bn,r;f = (7‘ -1+ )QOz + gll(ql+l ql) : aRv (310) .
2 relation that governs [,

1 . .
(B;_,IE,’ Vi Coti 4B, ) 4 C, +ZC A1<’A2>>. (3.12)

nrij opij

As we can see, when Gy, = 0, i.e., A, ,, Eq. (3.12) is no longer applicable. We can divide both sides of (3.8) by B, , and
shift » — 1 to r, resulting in the following expression:

r -1 r— r—
IEE> = (Cn,r+llgl ) +Bnr+ll nii +Cn r+ll n;i +ZC AI( ’\])>' (313)

Bn,r+l nr+1ij i

Setting r = 0 leads all C,, to vanish, as evident from (3.11). This implies that 7, is no longer a master integral.

When the conditions Gy, = 0 and G, = 0 are satisfied, meaning that A, , = 0 and B, , = 0, the previous recursion
relation is no longer valid. To address this breakdown, we can divide both sides of (3.8) by the prefactor C, , and perform a
shift by replacing r — 2 with r. This gives the result

(n__~I N (Ga
I, = Cn’r+2 (Bﬂ,r-k—Z;iIn;? n r+21 n;l + Z nr+2; ,] n z]) (314)

Then we turn to discuss the reduction for the higher-pole case I, _,,. To lift the power of propagators, one can consider

using 0, ; then we translate z;’s appearing in the numerator to the differential operators of R acting on the standard tensor

integrals / Sf) that we have obtained. A little difference here is that there is no need to introduce z; anymore. The scalar one-

loop integral in Baikov representation without tensor structure is

1
]{1 1 = Cn(d)K—(d—n)/Zédnzgscalar<{z})(d—n—1)/27’ (315)

..... n
i=1%i

where the Gram determinant is G*4% ({z}) = detG (¢, py, ..., pr). Analogous to (3.4),

0= / anaZi |:gscalar({Z})(d—n—l)/2gscalar({z}) nl :|
c [Tz
_ scalar
_ / dnz[(d ’;+ 1aZigscalar g )gscalar({z}) (d—n-1)/ %:| . (316)
C

i=1%i

Based on the definition of G(Z, ¢, ..., q,), we know that G54 ({z}) is a quadratic expression of {z},

gscalar — Z gsca.larzjzk + Zg;calarzj + gicalar. (317)
J<k J
Plugging this into (3.16),
H+I{a 2}—|—HI +anl{a 0}—|—Z Hnjl{a—0}+H Al{a 2a:—1}+H I{a[—2a/ 0}) 0. (318)
J#
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Paralleling the approach in (3.7),

I{a,-:2,aj:—
Plugging this into (3.18),

1y = fjil{g=2.a,=0y + I{a;=0y + (qi —

H I{a 2}—|—H[ +anl{a 0}+Z H +H )I{a =0}

+ (fjiHiJrf\, + H;J.})I{a,-:zﬁajzo} + Hit,\_(
nijj > nJjj

where the coefficients are

) d—n
HH— — __(scalar H =
n gc ’ n D)
) d—n
i+ lar N —
Hn;]' B _gsicaa ’ Hn;j B 2

The recursion relation displayed in (3.20) demonstrates that
higher-pole integrals Iy, >y can be expressed in terms of
the master integral /,,1(,_o, and lower-sector integrals

) aRIiaé—2a =0} (319)
J#i
a;) - Ol{y) 5, o)) =0, (3.20)
- 1 scals scals
=T Hy = (d-n)G,
1 r i r
o e (3.21)
njj
|
In the above equation, we have the coefficients
d+r—2
Al,r = —T, Cl,r = (r — 1)m%S00. (45)

1 {a=2.a,=0}> whose values are known from previous recur-
sion relations.

IV. EXAMPLES

The upcoming tadpoles and bubbles subsections will
present step-by-step calculations exemplifying our
approach. By walking through specific examples, we
aim to demonstrate the utilization of the method in practice
for computing integral families of interest.

A. Tadpoles

In this subsection, we examine the reduction of tensor
tadpoles while considering the simplest case. To begin, let
us explicitly define the propagators involved,

7 =2 —m3, 70 =2¢-R. (4.1)
We can express the polynomial G in the Baikov represen-
tation as follows:

2
+
g:det<m1 “

4.2
20/2 S00 ( )

_ 2
= ——+ 50021 + SpoM7.

20/2 Z%
4

Using this expression, we can compute the derivative of G
with respect to zq as

G 2

. 4.3
aZO 2 ( )

Consequently, we can rewrite the integrand of (3.4) as

2

(Al 2+ Cl ,—2—+C, ,.iz5—2> G312 =0. (4.4)
2 ;

The last term in the equation is zero, as there are no
propagators in it. As a result, we obtain the following
relation:

o 4(r — 1)misg 12

4,
1 d+r—2 1 ( 6)

Consequently, the final result for / gr)

0 r = odd,
7 — , o
1 2" (r=1)!'!m{R

mll r = even.

can be summarized as
(4.7)
The results for nonstandard tadpole integrals can be

obtained through momentum shifting

2¢-R)"
e

oK ((2¢42K)-R)"
/ddf pps

_Z( )2R K)“ /d%’%.

To elucidate the methodology, we consider r =1 as an
example,

(4.8)

2¢ - R

(4.9)

016013-6



TENSOR LOOP REDUCTION VIA THE BAIKOV ... PHYS. REV. D 110, 016013 (2024)

B. Bubbles

Bubbles are the simplest case involving singularities. The explicit propagators are given by

7 =22 —mj, 2= (¢ —qp)* —m3, 0 =2¢-R.

The polynomial G in the Baikov representation is defined as

mi 4z —(m}—mi+s+21-22)/2 2/2
G=det| —(mi—m3+ s +21—2)/2 St So1
20/2 So01 S00

The derivative of G with respect to z; is given by
azog = —501(’”% - m% + 511+ 21 — 22) — 281120
Substituting this expression into (3.4), we obtain

O = N O A N = ) A e O A1)

N

2 2,r5i% 27 2.rij 2.7
. . -2 -2 . . . .
To derive expressions for / (=) and 1= >, we utilize (3.6) to write z; and z, in the following form:
2:11 222

zy=mi—mi—s +20-q;+2=2+m}—mi—s; +q,- Ok,
=mi—ms+s1, =20 qp+2 =2 +mj—m3+s;,—¢0
Zp = my—my T Sy q> T2 =2 My —my 811 — g2 Orlp-

Substituting these equations in, we can express the terms / =2 and 122 as follows:
211 222

(r=2) 2 2 (r=2) q> - aR (r-1) (r=2)
I = - - I . — 1. .=,
211 (3 = my = s11) ST (r—1) 21 * 212

(r-2) ) ) (r=2) 4927 O0R ,(r=1) = ,(r-2)
I = — — I - I - Vi .

Then we can get the bubble version of (3.12),

(r) _ -1 — 4(r=1) __4(r=2) ~_ (r-1) < )
Iy = IE(AZrIz FAGLTT AL L AT,

Next, we provide a detailed expression for (3.3)

G({z}) paps = det( sy ), G({z} = Oy = det<_§<m‘ +my—sy) O )

S11 So1
mi —(mi—m3 +s11)/2 0
G({z} = 0) = det| —(m} —m3 +511)/2 S11 So1
0 So1 S00
The specific components of G are given by
1
Goo = —1511,
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1
gozi(m%—m%+s“)s01, (421)
1
G, = 2 ((m% - m%)zsoo - (Zm% + 2’"% — 811)S11800 + 4m%5(2)1)v (4.22)
1 1
Go1 = 5501, Goo = —5501, (4-23)
1 2 2 2 1 2 2
gl :—E«I’Yl] —mz—Sll)Soo+2S01), gzzi(ml —m2+s11)s00, (424)
1 1 1
g = —18007 G = 58007 Gy = —Zsoo- (4-25)
Then we give the explicit expression of (4.18),
d+2r—4)(m? —m3 +s11)So1 (r1 r—1 -
Igr):( ) ! . s Igr ) [((2’”%+2m%—511)s11S00—(m%—m%)2500—4m%5(2)1)1(2r )

(d+r=3)s (d+r=3)s
r=2
+ (m? —m3 + sll)soolg;i ) 4 ((m3 —m3 +3s11)s00 — 4531

(d+2r—4)so; + 50092 * Or
(d+r—3)S11

(r=2)
2;i ]

(r-1) (r=1)
(IZ;T - IZ;Q ) (426)

Clearly, we can reduce Igr) to I, and 1,; through repeatedly applying (4.26),

1Y) =1+ Cls + ColLy. (4.27)
Here are the expressions for C,, C,5, and C,; for different values of r:
i r=1
cl) 2501(m%—m%+511)’ (4.28)
S11
(1) _ Sor (1) So1
Ci=—, Ci=—-——. 4.29
=y &5 811 (4.29)
) r=2
2 02)\2 _ 22 22_ _d2 422
ng) _ ((mi —m3)* — 1, (2m{ + m22 511)) (511500 — dsg;;) 4 Mo , (4.30)
(1 —d)sy, St
C(22 — (m%_m%—'—sll)(sllsoo_ds(%l) (4 31)
> (d—1)s}
o) _ (=mi 4 mi+s10)(s11500 = dsgy) +4(d = Dsuisy (4.32)
2.1 _ 2 : :
(d—1)s3,
(i) r=3
c® — (=(m3 = 511)* = m} + 2m3m7) (m} — m3 + 511)s01 (3511500 — (d + 2)s5;)
? (d—1)s},
2mi(mi —m3 + 511)501((d = 4)s5; + 3511500) (4.33)
(d = 1)s7, ’ .
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0 — ((m3 = s11)? + m} — 2m3m?)sq, (3511500 — (d + 2)s3,) 3 2mis; ((d* —2d +4)s3, + 3(d = 2)s11500)
23 (d—1)s3, (d - 1)ds?, ’
(4.34)
o) _ Sa(=4(d - Dm3siy + dm} — 2dmimi + dm3)((d + 2)sg) — 3511500)
4l (d—1)ds3,
n so1(4(d — 1)dmis, 55, + dst ((Zd — 10)s5; + 3511500)) ' (4.35)
(d —1)dsy,
1. g00=0

In this subsection, it is important to note that the I(Zr) integrals discussed here are modified versions that have been

adjusted to the same limit. As we can see, when Gy, = 0, i,e., A, , = 0, Eq. (4.18) is no longer applicable. We can divide
both sides of Eq. (4.13) by B, , = 0 and shift » — 1 to r, resulting in the following expression:

r -1 r—1 r r—1
Ig) = 82 i (CZ,rJrlIé ) + Bz,r+1;?lg;;? + Cn,r+1;?lg;§ ))
r 2 22 2.2 701 2 2 (r=1) 2 2 2y g(r=1)
= (d+2r —2)(m? — m2)sqs [(("ﬁ —m3) s + 4misg ) — (my — mZ)SOOIZ;Q — ((m3 = m{)se0 — 4S01)]2;1 }
1 2
_(d+2r=2)501 + 50092 O (1) _ ;) (4.36)
_ 2 _ 2 2:.1 22)° ’
(d+2r = 2)(m7 —m3)so

Itis evident that r = 0 can be computed, which implies that /, can be represented in terms of /, 5 and /1, ;. Consequently, /,
does not appear in the final result, and we have

(37
Next, we provide the specific expressions for C,.; and C, 5 for different values of r:
i r=0
1 1
Coi=——5—, Cos =—5——, 4.38
21 m? — m 22702 ol (4.38)
() r=1
c\) — 2501 ((d = 2)m3 — dmj) c\) — 4sgim7 (4.39)
> d(mi—mz)* 2 d(mi—m3)r '
(i) r=2
o _ M2 = 4w} 4 d(d + 2wt + (d = 2)dmd)sh _ 4mdseo
zl d(d+2)(m? —m3)? dm?} —dm3’
c___ 3mishy s (4.40)

22 d(d+2)(m} —m3)®  dm? —dm}’

2. goo =0 and go =0

There is still another pole m; = m, = m. In this case, B, , = 0. By dividing both sides of (4.13) by C, , = 0 and shifting
r —2 to r, we obtain the following expression:
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" _ -1 S (r1) N

I _m(BZ,r+2;ilz;§ +C",r+24i12;?)
dsor + 50092 Or /,(r+1) _ ,(r+1) Lo
=S = L) =S @4

In this scenario, I,.; is equal to /,.5. Therefore, the final
result can be expressed as

1 = iy

o (4.42)

Now we provide the specific expressions for C,; for
different values of r:

i) r=0
d-2
Gy = S (4.43)
) r=1
(1) _ (d =2)s01
Cz;i =22 (4.44)
(i) r=2

c? 2 <&
1

2; m

3 + 3S00> (445)

Interestingly, high-pole tadpole integrals can be found
using the r = 0 integral. Specifically, when the momentum
q>» — 0 and mass m, — m;, the second bubble propagator
7, degenerates into z;. In other words, the bubble integral
transforms into a higher-pole tadpole integral, i.e.,
I11y = Iy Applying (4.43) with g, = 0 then yields a
recurrence relation directly connecting the higher-pole
bubble integral to the tadpole base case

d-2

When r is odd, iy = 0, which can follow from (4.7).

fa} ™
Specifically,
-
{2} =0. (4.47)
When r is even,
) 2"(r—1)!!miR"
1{1} (d+r=2){d- 2>”I{1} (4.48)

Arbitrary powers of the tadpole propagator z; can be
generated by repeatedly applying the differential operator
dm%. For example,

(r) Zr_l(r - 1)!!mf_2Rr
I =
& @ r=2)11/(d-2)!

(I”I{]} + 2m%1{2}) (449)

Substituting (4.46) into it gives

0 24 (r = 1)!tmi2R"

2T d+r=2)1/(d-2)! (r+d=2)lp).

(4.50)

3. Det Q=0
As stated in [33], detQ =0 is also a degenerate case
where Q;; = (mi +m7 — (g; — ¢7))/2). But it cannot be
well handled in our algorlthm; we can use their scalar
reduction result as an input to get the tensor reduction. In a
bubble integral detQ = 0 gives s, = (m, & m;)?. Take
the s;; = (m, + m,)? as an example [Eq. (4.21) in [33]],

d-2 .
2(d = 3)my(my + my) !

d-2 .
2(d = 3)my(my +my) *%

12:

_|_

(4.51)

Substitute the above equation into (4.28) and (4.29),
) _ (d=2)m; + (d = 3)mj)s0y I
? (d =3)my(my + m;)? =l

Sot
1,5, 4.52
=3+ mp 452

which is consistent with [33]. Similarly,

2
/2 _

(1) (1
= N+ NS,
2 (d=3)(d - )my(my +m,)? ( 2if2d TV 23)

(4.53)

1
N = (d=2)s3,[(d = 1)m} + (d = 3)m3]
+ (d = 3)my[2(d — 1)m 5, + mysoo(my + my)?],

N = mymy[(d = 3)sg0(my + my)? + 252, (4.54)

2;2

4 1{21} andI{ZI}
For clarity, we calculate / 2.1} using (3.20),
Héﬂ{ll} +Hol 1y +Hylo0y + [( 25 T H )I{l 0}

+ ((m3 —mf + %)H]t\ + HH)I{zO}

- H1 e Ol =0. (4.55)

(o))
Based on the results derived in the preceding section,

d-=2

Iooy = Y (4.56)

) _
1), =0.
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We can get the final result of 7y, ),

/ H, / H, ; (Hz;i + H?zz (m —m3 + Sll)H;;@ + H;Z d— 2>I
{20y = Ty T g oy T {1.0}
Hy* Hy* H* H* 2m3
(d =3)(mi —mj3 = s1)) d-2 (2—d)(mi +mj = s51)
= 1 + 1 + I oy, 4.57
2R g fon SnIHL* (10} (4.57)
where the second equality holds since we have used the coefficient expression
1
HiJr = Z(—2m%(m% + sll) + (m% - S]])z + m?),
1 2—-d
sz—z(d—3)(m%—m%—sl1), Hg;i:T,
1 d-3 1
H;; ) (=mi +m3 —sn), Hz;i =71 H;;’;z =1 (4.58)
The results of applying 6m% on [ ?1)1 } can be derived using Eqgs. (4.27)—(4.29),
(1 Soi sor(mi —m3 + s11) sord—2
1 =—1 1 —— 10 4.59
py =y, fon t . 21 =5 2 L) (4.59)

Plugging (4.57) into it,

O sor[s11((d = 4)(m3 — s11) —2m3) + (d = 2)((m7 — m3)* — m3sy,)] It
{21} — 4s,1H£+ {1,1}

+(d—2)801(m%_m%+511)1 +(2—d)s01(m%—m§—s11)1
451]Hé+ 0.1y 4-SHH;1L {1.0}-

(4.60)

C. Triangles

The preceding subsections provided detailed and specific computations for the tadpole and the bubble. Consequently, in
what follows, the step-by-step calculations will be omitted for brevity. Unlike tadpoles and bubbles, triangles involve
integrals where two propagators have been removed. Using Eq. (3.8), we can get the triangle equation,

A3,r151r) + B3.rlgr_l) + CS,rIgr_Z) + B3,r;?lgf?_l> + Cn,r;?lg?_2> T 203 »/-;I;rf_\?) =0. (4'61)
- o iy T B

Since only Gy, Gy, and G, are associated with singularities, we will focus exclusively on presenting their specific results.
The other coefficients in the reduction formula do not contribute to singular configurations and hence will be omitted for
brevity,

1

Goo = 1 (51152 = S%z)’ (4.62)
1, 2 2
Go = 5 (mi(s12 = $22) = m3815 + sp2(m5 — 511 + 512))So1
1
+§(m%(S12 - Sn) + m%s” - m%Sm +s1812 — 311522)502, (4-63)
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1
G. = —mistys00 + 1 (3,831 + (m}(s01 — s02) — m3sor + m3sg2)? + 57, (55, — $22500))
522
4 (m?soo + m%(2501 ($01 + So2) — 2’”%Soo) + zm%sgl + mésoo - 2’"%%1502)

+—=((m3 — m3)s55800 + (mtsgg — m}(m3so9 + m3sgy — 4501502) + m3m3se))

s12

2
1 2 2 S12 2 2 1,

+ S 5522(’"2300 + m3500 = So1502) + o ((m7 — m3)s00 + $22500) — 752250

N
— % (m?SOO + m%<2502(5‘01 + 302) — 2m§500) + 2m%s(2)2 + mgSOO - 2}’7’%801302). (464)

First, the case of Gy, # 0 will be considered. Following a procedure analogous to that applied to the bubble, the final result
for the triangle can be derived as

W=+ 3 it 30 cl )
i=123 \<Siciey Fij

The specific coefficients for different values of r are as follows:

G r=1
ng _ % 7
i 2Goo
C(l) _ S12501 — 511502’ C(Q _ S128502 — $22501 ’
4G 32 4G
(1 (522 = s12)801 = (512 = $11)S02
Cyi = iGo, : (4.66)
) r=2

In this case, the analytic expressions are unwieldy, so a numerical solution will be adopted. To facilitate a
comparison with prior results from [33], the parameters are set as d =4, {mi,m}mi}={i11

20350
_ (1 5 7t 343 _
{512,811, 802} = {§5.5. 5 + 553> Where 1 = 4G,

c® _ —1573040s — 47647242353, + 1084364190s0,50; — 59612637552,
3 2519080200¢
5618(49S01 - 65S02)2
o), 4.67
17738523075¢* +0() ( )
(2) 530S00 + 247875‘%1 - 5200S02S01 - 38025.5%2 53(49S01 - 65502)2 0
Cr= - O(1), 4.68
33 35490¢ 699744512 +0(5) ( )
(2) —24015‘%1 + 6370S02S01 - 4225S(2)2 0
= ). 4.6
C3;23 3185¢ +0() (4.69)
1. g00 =0
There are many viable options to satisfy the condition Gy, = 0; without loss of generality, we impose the constraint
S = s%z /$2>. As with the bubbles, in this subsection I(3r) represents the modified version of the integral. Using (3.13), the
final result for I§r> is
1=+ Y ¢l -~ (4.70)
L 3i 3 3y ij '
i=123 1<i<j<3 =&

The coefficients for different values of r are as follows:
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i r=0
€3 = mi(s12 = $2) = mgslzsi m3sy, = §T, + S12522 (471)
Csp = mi(s12 — $2) — m’g’»‘slzszj M3y — 57, + $1252 (472)
Csp = mi(s1y = $2) — mgslzz;s’l;%szz — 51, + 51252 (4.73)

(i) r=1
- 169(5684632(;18;4972595%2) - % (495, — 6550,). 74)

where we use the same parameter sets as those in the r = 2 case discussed in the Sec. IV C.

2. goo =0 and go =0

Under the imposed constraint s,; = s2,/s,,, Gy and G, take the forms

(m3(s12 — $20) = M3s12 + m3s20 — 57, + 512522) (512502 — $22501)

Gy = R 4.75
: = (4.75)
N
— ¢ , 4.76
Ge 4(=m3 +m3 + 512)*(—=m? + m3 + 515)? (4.76)
where
N, = ((mf —m3 = s12)s01 + (m3 — mi + 512)502)* ((my 4 my)(my —m3) = s15)
X ((my = my)(my +ms3) = s15)((my —my)(my —ms3) = s15)((my + my) (my +mz) = s1). (4.77)

To satisfy G, = 0, we set

2 2 2
M58y — M8y + 87,
Sy = — B B . (478)
my—m; =S

Clearly, utilizing alternative constraints is also valid, as the underlying algorithm remains unchanged. The final result for

1 gr) can be expressed as

1= 3" g+ > vl - (4.79)

=123 I<icj<3 Y

The coefficients for different values of r:

i r=0
Cor— (3 —d)(mi —m3 — s15)(mi — m3 — s15)((m3 — mi)(m3 — m}) — s1,)s01
3 D3;§ '
Cizy = (d —2)(m} —m3 —S12>(m%—m%—512)’ (4.80)

D3;2A3
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where

D3 = ((mf = m3 = s12)s01 + (m3 — mi + 512)502) ((my + my)(my — m3) = 515)
X ((my —my)(my +m3) = s15)((my —my)(my —m3) = s12)((my +my)(my +m3) = s51,),
Dyyy = ((my + my)(my — m3) — s12)((my — my)(my + m3) — s12)

X ((my —my)(my —m3) = s15)((my + my)(my +mz) = s15). (4.81)

Specific results for rank r > 1 are omitted here in the interest of brevity, but the computational procedure remains

unchanged. As is evident from (4.62) and (4.63), setting g3 = O results in both Gy, and G, vanishing. In this case, the
coefficients for different values of r are as follows:

i r=0
1 1
C31__m2—m%’ C3;§—m%_m§’ G5 =0,
C3;2A3 =0, Cs;fs =0, C3;1‘2 =0, (4.82)
) r=1

o) (m} —m3 + s511)(2m7 —m3 — m3 + s11)50,
= PRV . 35
(m m3) S11 ’

(mi 4+ m3 —2m3 — sy;)(—m3 + m3 + s11)s0;

(m% - m%)zsu '

c (=2m7 + m3 + m3 — s11)s01

— c (mi —2m3 + m3 + 2s11)s01
¥ (mi —m3)s1, ’ 0 (mi —m3)si, ’
24 2 _om2 —
Cyhy = g+ = 2, ~ Su1)son, (4.83)
’ (my —m3)%sy

The results of integrals with a tensor structure in the examples examined herein match those derived in [33].

3. Det Q=0
5

Analogous to the bubble, using the scalar result in [33], we set the parameters as {m},m}, m}} ={3.4.53%

1
— [5 7 3552 g’m}’
{511,812, 0} = {7,13,5915 >

21
I3 = T1577a =4y 4225(d = D1y, = T80(d = 2) L3y +455(d = )15

+402(d — 3)13;1 —592(d - 3)I55 + 130(d — 3)153]. (4.84)
Substitute the above equation into (4.66),
7
1
1V = 0@ —%) [—4225(d — 2)(1250; — 65502) 15,5 + 780(d — 2)(1250; — 65502) .13

- 455(d - 2)(12S0| - 65S02)13;j3 —|— 130((37d - 160)S0] —|— 65S02)I3;§
+2(65(692 — 247d)s0y + 3552501 )55 — 2((2045d — 5768)s01 + 65(667 — 217d)son) 53], (4.85)
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4. 1{2’1’1}
The integral I, 1, is evaluated using (3.20)

H} 1{211}+H31{111}+H311{011}+ZKH3,+H )I{a,_o}
j=23

1
+ ((m% R AL H;;)I{alzz,a,:m ~H%q;- aRlﬁa{:z,aI_ZO}} =0. (4.86)
Noting that the specific integrals 1 {a1=2.a,=0} and / iil)l 24,0} follow from the corresponding bubbles section,

Iy = C§i3l{1,l,l} + Z C J{a =0} T ZC Al{al—O a,=0}> (4.87)
=123 i#j 3-3i

where the coefficients are

(d—4)[(m% = 512) (811 = 2812 + 52) + m%(sl2 —s11) + m%(sl2 — 52)]

Cits= ~ :
373 4BL*
cl+ _(d=3)(s11 = 2512+ 522)
331 4B%+ ’
C1+ = N3—>3;§
3232 A(mt = 2m2(m3 + s5p) + (M3 — 52)?)BYT
clt = N3—>3;§
3-33 4(’”? =2m}(m3 + s11) + (m3 —51,)*)By"
v (d=2)(mi(sn = s12) + misiy — S (m3 — 511+ 512))
35312 4(mt —2m3(m3 + s55) + (M3 — 535)?)By" ’
1+ (d=2)(mi(s1) — s12) + m3s1p — 511 (m3 — 520 + 512))
3-313 4(mf = 2mi(m3 + s11) + (m3 = 511)*) By ’
i N, .5
clt == 4.88
35323 D~ ( )
32323
where
T 2 > oy 1 2 4
Bj =5 (520 = 812)(=m3s1) — mim3) + 1(511 — 2515 + 530)(=2mis1y + mi + 511522)
1
‘|‘Z (misy —2m3m3s s + 2mim3(s1o — s11) + m3syp(m3 — 2511 + 2512)),
Ns_ 35 = (3 = d)snl(m3 — mi)(=m3 + m3 + s11) + 2s512(m] + m3 — $2) + $o(—=mf — m3 = 2m3 + 511 + 52)].
Ny 33=0- d)sy[(mi = m3)(=m3 4+ m3 = 535) + 2515(m7 + m3 = s11) + 511 (=m7 = 2m35 —m3 + 511 + 53],
N3_}3;5§ = (d=2){[(m} = m3)> + 57| (522 = m} — m3)s2 + 2512(m7 — m3)[m§ + m3(m3 — 51,)°
= mi(mi + m3)(m3 + sp)] + 51, [2m3(m} — m3)s12 + 3(m3 + m3) s (m3 = s0)
+ 522(1’”%(37}1% - m% + 2512 - 2522) + 4m%.§12 + 522(5'22 - 2512)) + (m% - m§)3]
+s1 [(3’"%(’"% + m3) m1(m2 3m3))s22 (m% + m%)((m% - m§)3 + 332)
+ (2m{ = 3m3 — 3m3 + dm3m3)spom? + 3595 (m3 + m3)(m — m3m3)
+ 512(2mi((m3 = 520)* = 2m5(m3 + 590)) + 4m3(m3 — s3,)* = 2m)]},
30303 = 8mi((my = my)? = s11)((my + my)? = s11)((my = m3)? = 535)((my + m3)* = 535) B (4.89)

The integrals with higher poles presented in the tadpoles, bubbles, and triangles sections are consistent with [36].
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V. SUMMARY AND OUTLOOK

This work has demonstrated a unifying framework that
synergizes the Baikov representation and IBP relations to
uniformly reduce one-loop integrals with arbitrary tensor
structures and high poles. Although our recursion formula
includes a term with dp, this poses little difficulty given the
simplicity it provides in avoiding tedious algebraic manip-
ulations. Most importantly, one can easily and consistently
treat various degenerate cases appearing in our method. The
degeneracy of detQ = 0 in [33] may not be immediately
apparent using our method. However, it is worth noting that
our degenerate origin, represented by Gy, and G, does not
vanish, and our recursion relation remains valid. Although
their tensor reduction cannot be effectively handled by our
algorithm, we can utilize their scalar reduction result as an
input to obtain the tensor reduction.

To restore the general tensor structure in the tensor
reduction of L-loop integrals, it is necessary to introduce L
auxiliary vectors. In contrast to the one-loop case, the
inclusion of ISPs such as ¢;-R; and ;- p; becomes
necessary. We refer to the ISP 7; - R; as R-ISP as they
emerge in the momentum representation. In general, we can
derive L recursion relations by considering differentiation
with respect to the L R-ISPs." However, these relations
alone are insufficient due to the presence of ISPs in 0, G(z)
and G(z), where zp; = Z; - R;. Unfortunately, there is no
established method for handling these terms effectively.
One approach is to translate these terms into differential
operators acting on the auxiliary vectors. Consequently,
unlike in the one-loop case, we obtain differential equations
instead of pure recursion relations. To solve the tensor
reduction problem, one can consider expanding the reduc-
tion coefficient based on its tensor structure, which leads
to L recursion relations. Next, we introduce a linear
combination of propagators in the numerator by applying
differential operators. This gives rise to N recursion
relations, where N is the number of propagators.
Assuming that there are E independent external momenta,
if L+ N < @ + EL, we can consider applying 9., to
generate additional required recursion relations. In this
way, we can ultimately solve the tensor reduction problem.
However, it should be noted that redundancy may arise
when the number of ISPs is large compared to the number
of extra recursion equations needed.

To illustrate this process, let us consider the sunset
diagram as an example. We introduce two auxiliary vectors,
R; and R,, which results in more ISPs involved in the
Baikov representation, namely, Z; - p, £5 - p, £ - R,, and
?5 - Ry. There are five tensor structures involving R; and
Ry, ie., R3,R3, R - Ry, R, - p, and R, - p. The sunset has
exactly two R-ISPs and three propagators. We are fortunate

'In the subsequent discussion, unless explicitly indicated, the
term “ISP” refers to ISPs other than R-ISPs.

enough to solve the reduction problem by utilizing a set of
L + N =5 recursion relations which are derived through
the loop-by-loop reduction and constructing propagators
[31]. Here, we can simply make use of the IBP relations
generated by 9. :

During the reduction process, one may come across terms
in the numerator that involve zigp and z;. The presence of
terms involving z; allows for a reduction of the integral to a
known sector with a lower topology. On the other hand,
handling the terms containing zjp is relatively straightfor-
ward, as they can be readily translated into differential
operators acting on R; and R,. So finally we obtain two

partial differentials of the standard integral / gri?) The
remaining three recursion relations are obtained by con-

structing propagators in the numerator through the appli-
cation of three differential operators:

(5.1)

O, " Og, Og, * Og,» OR, * OR,- (5.2)

It is easy to find

Or, -0 11 = 4ri(r = 1) [m%l(fi,_lz'rZ) + Igi,_lzm} ’
ry,r ry,r—2 ri,r—2

Og, 'aRzlg,i.IZ) =4ry(r, = 1) [mglg.ll,lz ) +I§.(]),12 )} ,

ry,r ri—1,r,—1
Og, 'aRzI(l,ll,lz) =2rin, {1(1’;,13_21_% - (P2 + m% + m% - m%)

X 157111“_”} +2ryp O 1YY

(r=1.r2)

+2rp-og,1ig (5.3)

To convert the aforementioned differential equations into
recursion relations, one can expand the reduction coeffi-

cient CY"" in I(ﬁ:?) =37, )1, based on the

tensor structure of R; and R,,

C) = el (R (R (R, - Ra)
{}
X (R~ p)*(Ry- p)™, (54)
with
21/1+l/3+l/4:r1, 2U2+IJ3 + VU5 =15 (55)

The five recursion relations of the expansion coefficients

c,‘f;(fz‘y’;ﬁi%, as explicitly discussed in [31], provide a com-

plete solution for the tensor reduction of integrals with the
sunset topology. For higher-loop tensor integrals with
L+ N < @ + EL, one can initially generate L + N
recursion relations using a similar approach. Subsequently,

the remaining recursion relations needed for these cases can
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be obtained from IBPs generated by taking derivatives with
respect to other ISP parameters. As can be anticipated,
higher loops will inevitably result in high-degree poly-
nomials. As previously discussed, it is necessary to convert
all ISPs in the numerator (excluding the R-ISPs) into
differential operators. This transformation can lead to a
series of complex partial differential equations with high-
order derivatives. In principle, these intricate calculations
can be delegated to a computer. However, we must actually
resolve the linear equations for the expansion coefficients.
Indeed, the method encounters challenges as the total rank
r1 + r, (in the case of two loops) and the number of
external momenta increases. This leads to a rapid prolif-
eration in the number of linear equations involved in the
reduction process. Improvement for this method for higher
loops is left for future research and exploration.
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APPENDIX: PENTAGON

In this Appendix, we will provide an additional illus-
trative example of a pentagon. For simplicity, we will
give the numerical result. Let us begin by setting

up the numerical framework: s;; = 5.5 :#,sn 5
1 2 2 2 3

S14 =335522 =739,923 = 37:524 = 37,533 = 37,534 — 43, and

§4q = 3433409242718675-83000033617460458808681  \yith 1 — G,

4 = 48244934730591561 — Y00-

The definition of s;; remains consistent w1th the previous
formulation:

@ r=1
W Ngl)(48324393052s01 — 8639840884465, + 1984130693427 503 — 1318419772377 504) Lo, (A1)
> 10943679594784982799533787019183236¢ '
o) _ —483243930525(; + 8639840884465, — 1984130693427 + 1318419772377 54 + O (A2)
557 226835825478808676¢ ’
where
Ngl) = 165198902691154 + 5487075499569992m? + 1768334514951836m3
—31615769748504478m3 + 7260529446457421 1m3 — 48244934730591561m?. (A3)
(i) r=2
In this case, we additionally assume that all m; are equal, denoted as m; = m, and we take d = 6 to avoid excessive
complexity,
o _ 6822669362590342075877462929 N o), (Ad
3 199606871788855342210689989043865390630389905266939420595767572386161 '
82599451345577 N\
cl = - 2 7+ 00, (AS)
53 827472864886215336096756770932755381383603943518512¢
@)
Coi = o), A6
545 380016026464966029473624813316¢ +0() (A6)
where
N?) = (483243930525, — 8639840884465, + 19841306934275)3 — 131841977237 7504 )°. (A7)

The time required to obtain the results for the tensor rank of a pentagon is presented in Table I. The parameter setting
remains the same as for the case of r = 1, without any constraints on the values of m; and d. Our method is a simple
Mathematica program, while the FIRE6 algorithm is executed in parallel using a total of ten computing threads. It is
evident that our method offers significantly faster computational efficiency than directly solving the IBP

relations does.
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We can also give the symbolic result for the pentagon
using our algorithm. Setting all of the mass equal to zero,
we find that the times for » = 1 and 2 are about 6 and 15 s,
respectively,

TABLE 1. The consuming time for different ranks of our
method vs FIRE6. To expedite the reduction process, we made
the decision to set m; = m, = my and my = ms during the
reduction process in FIRE6.

r=1 r=2 r=3
N N
Cgl) _ %’ C<12 _ fIS) ’ (A8) Our method 6s 16 s 39 s
) 55 Dl FIRES 60 s 180 5 557 s
where
Né‘) = 504[513(511 (523524 — 522534) + 512522534 — 2512523544 + 512524533 + 514522523 — 533))
+ 511 (512(523534 — 524533) + S14(520533 — 553) + 525 (524533 = $23534 + 533534 — S33544)
+ 533544 — 523504533) + 512533 (512534 + $12544 — $14520 + 514823) + 573520 (544 — 524)]
+ 502[514 (511 (523534 — 524533) + 512533(534 — 544) + 513(=2520534 + $23544 + 524533))
+ 513544 (512(534 = $33) + 513(522 = 524)) + 511534(534 (522 = 512) + 524(513 — 533))
+ 511544 (533 (512 = 520 + 523 + $24) — $23(513 + 534)) + 574533 (522 — 523))]
+ 503514 (511 (523524 = 520534) + S12(522534 + 523544 — 2524533) + 513522 (524 — Sua))
+ 511544 (=512523 + $20(513 + 523 — 533 + 534) — $23504) + 574520 (533 — 523)
+ 511524(534 (512 = $22) — 513524 + 524533) + S12544(512(533 — 534) + 513(524 — 522))]
+ 501 [514 (522523534 — 522533 (524 + 534 — S44) + 523(524533 — 523544))
+ 544(512533 (520 — 523 — $24) + 512523534 — S1352(823 — 533 + 534) + 513523524)
+ 511(522(534 = 533544) + 523(523544 — 2524534) + 534533)
— (513524 — 512534) (524533 — 322534)]’
NQ'S) = —504[511 (533 = $22533) + 577533 = 2512513523 + 573522] + S03[511523524 — 511522534
+ 572534 = $12513524 = S12514523  S13514522) + 502[511523534 = 511524533 + 512514533
— 513(812534 + 514523) + 573524) + 01512524533 — 512523534 + $13522534 — 513523524
+ 514(523 = $22533)]
Dé” = S44(—511520533 + 511533 + 51,533 — 2812513503 + 5713520) + 51152053, — 2511523524534
+ 511534533 — 512534 + 2514(512(523534 — $24533) + 513(523524 — $22534))
+ 2512513824534 — $T3554 + 574(522533 — $33). (A9)
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