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In this work, we have exclusively employed the linear stability analysis at ultrahigh boost on two
well-known stable-causal theories—second-order Müller-Israel-Stewart and first-order Bemfica-Disconzi-
Noronha-Kovtun, to identify the region of parameter space over which they are frame-invariantly stable and
obey causal signal propagation. It has been shown for these two theories that at near-luminal boost, stability
criteria alone can provide the causality constraints on transport coefficients, which are identical to the
asymptotic causality conditions, without actually going to the asymptotic limit of the theories. The analysis
indicates an alternative approach to derive the causality constraints, which is more appropriate for low-
energy effective theories like relativistic hydrodynamics.
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I. INTRODUCTION

Hydrodynamics is an effective theory that describes the
dynamical evolution of the conserved quantities (the state
variables of the system) at low energy, long wavelength
limit [1] and has long served as a powerful tool to study the
collective behaviour of a system [2,3]. Its chronological
development began with ideal hydrodynamics where the
fluid is in its equilibrium state, then subsequently went on
to include dissipative corrections for out of equilibrium
scenarios. These corrections are formulated by a systematic
buildup of gradients on the fundamental hydrodynamic
fields [4]. For each order of hydrodynamic gradient
expansion, the transport coefficients from the underlying
microscopic theory enter the hydrodynamic evolution
equations as a dynamical input of the system interaction.
Based on these foundations, it is possible to derive a

number of alternative hydrodynamic theories following
different approaches. However, a reliable, pathology free
theory needs to guarantee two major benchmark criteria.
First, the signal propagation predicted by the equations of
motion of the theory must be subluminal and second, its
equilibrium state should be stable against fluctuations, i.e.,
the fluctuations must not grow indefinitely with time. Now,
in a number of works it has been established that the group
velocity of the propagating mode exceeding the speed of

light for some frequency range does not violate causality, as
long as it is subluminal at the infinite frequency (wave
number) limit [5,6]. This necessary condition for causality is
called the asymptotic causality condition which has been
widely used to check the causal validity of a hydrodynamic
theory [7–9]. But the conceptual anomaly with this approach
is that the hydrodynamic gradient expansion has been tested
to be a divergent series with factorial growth of large order
corrections indicating a zero radius of convergence [10,11].
Given the situation, an alternate definition of causality is
imperative. On the other hand, the stability of a relativistic
system has been known to behave distinctly depending upon
the observer’s frame of reference [12]. This issue has been
recently addressed in [13,14], where it has been argued that
frame-invariant stability is possible only if the theory respects
causality. The objective of the current work is to employ the
frame invariance of the stability property of a theory to
establish its causality constraints. The nontriviality again
comes from the fact that checking linear stability at arbitrary
reference frames to identify the invariantly stable parameter
space can be a cumbersome job. In this work for two well-
known stable-causal theories, we have demonstrated that the
linear stability analysis in a reference frame boosted to a near
luminal speed can alone provide the stability invariant
parameter space at the spatially homogeneous limit of the
theory and hence can be used to determine the causal domain
of the theory as well. In [15], this identification has been
observed from a kinetic theory derivation of a stable-causal
first-order theory. Here, we show that one can solely use the
low-wave-number stability analysis to produce the exact
results of asymptotic causality in the Müller-Israel-Stewart
(MIS) and Bemfica-Disconzi-Noronha-Kovtun (BDNK)
theories. The analysis presented here serves as a case study
of two most well-known stable-causal theories to show that
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the causality of a theory can be probed without departing
from the small-k domain. Since relativistic hydrodynamics is
a low-energy effective theory, hencewe believe this approach
provides us with a more appropriate definition of causality.

II. BASIC SETUP

In this work, hydrodynamic stability has been analyzed
in a generalized Lorentz frame with an arbitrary boost
velocity for both second-order MIS theory [16–18], and
the recently proposed first-order stable-causal (BDNK)
theory [19–23]. We linearize the conservation equations
for small perturbations of fluid variables around their
hydrostatic equilibrium, ψðt; xÞ ¼ ψ0 þ δψðt; xÞ, with the
fluctuations expressed in the plane wave solutions via a
Fourier transformation δψðt; xÞ → eiðkx−ωtÞδψðω; kÞ, (sub-
script 0 indicates global equilibrium). The background
fluid is considered to be boosted along the x axis with a
constant velocity v, uμ0 ¼ γð1; v; 0; 0Þ with γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
.

The corresponding velocity fluctuation is δuμ ¼
ðγvδux; γδux; δuy; δuzÞ which gives uμ0δuμ ¼ 0 to maintain
the velocity normalization. In the following analysis, we
present the leading order stability analysis (at k → 0 limit)
for both the theories at conformal, charge less limit.

III. CONVENTIONS AND NOTATIONS

Throughout the article, we have used natural unit
(ℏ ¼ c ¼ kB ¼ 1) and flat space-time with mostly posi-
tive metric signature ημν ¼ diagð−1; 1; 1; 1Þ. The used
notations read D≡ uμ∂μ, ∇μ ¼ Δμν

∂ν, σμν ¼ Δμν
αβ∂

αuβ,

with Δμναβ ¼ 1
2
ΔμαΔνβ þ 1

2
ΔμβΔνα − 1

3
ΔμνΔαβ and Δμν ¼

ημν þ uμuν, ϵ≡ energy density, P≡ pressure, uμ ≡
hydrodynamicfour-velocity, τπ ≡ relaxation time of shear-
viscous flow, η≡ shear viscous coefficient, E, θ are first
order field correction coefficients of BDNK theory. From
the constraints of the second law of thermodynamics, η
should always be a positive number [24]. The scaling
notation x̃ denotes x=ðϵ0 þ P0Þ.

IV. IDENTIFYING STABILITY INVARIANT
PARAMETER SPACE FROM ULTRAHIGH BOOST

First, we discuss the case of MIS theory where the
energy-momentum tensor takes the form, Tμν ¼ ϵuμuν þ
PΔμν þ πμν. The conservation of energy-momentum tensor
∂μTμν ¼ 0 and the relaxation equation of shear viscous flow
πμν ¼ −τπΔ

μν
αβDπαβ − 2ησμν together give us the equations

of motion to be linearized. In the transverse or shear
channel, the leading term of the frequency (ω) solution
in wave number k expansion is a single nonhydro non-
propagating mode, ω⊥

MIS ¼ −i=γðτπ − η̃v2Þ. Now the
demand that stability requires the imaginary part of the
frequency to be negative renders the stability criteria
τπ=η̃ > v2 [6]. For sound channel, the leading order

single non-propagating mode turns out to be, ωk
MIS ¼

−ið1 − v2
3
Þ=γ½τπð1 − v2

3
Þ − 4η̃

3
v2�. For the range of boost

velocity 0 ≤ v < 1, the stability condition becomes
τπ=η̃ >

4
3
v2=ð1 − v2

3
Þ. In both the channels, the right-hand

sides of the inequalities for τπ=η̃ are monotonically increas-
ing functions of v within the mentioned range that allow
only positive values of τπ and give the strictest bound for
v → 1. So we infer that the allowed parameter space over
the transport coefficients η and τπ set by stability criteria at
the spatially homogeneous limit (k → 0) for any boost
velocity v, is always a subset of the same for any lower
value of v. Hence, we conclude here that the v → 1 bound
(τπ > η̃ for shear channel and τπ > 2η̃ for sound channel)
provides the necessary and sufficient region in the param-
eter space where the system is stable at the spatially
homogeneous limit for all reference frames (0 ≤ v < 1).
So here we see that, for the MIS theory, checking stability
alone in a reference frame with ultrahigh boost ðv → 1Þ is
sufficient to identify the frame-invariantly stable parameter
space at k → 0 limit.
Next, we discuss the case of BDNK theory for which

the energy-momentum tensor takes the form, Tμν ¼
ðϵþ ϵ1ÞuμuνþðPþP1ÞΔμνþðuμWνþuνWμÞþ πμν, with
the first order dissipative field corrections, ϵ1 ¼ E Dϵ

ϵ0þP0
þ

Eð∂ · uÞ, P1 ¼ E
3

Dϵ
ϵ0þP0

þ E
3
ð∂ · uÞ, Wμ ¼ θ½∇μT

T þDuμ� and
πμν ¼ −2ησμν. The shear channel analysis is identical to
that of MIS theory with the replacement τπ ¼ θ=ðϵ0 þ P0Þ
[21]. However, the situation becomes significantly more
mathematically involved in the sound channel. The
leading order ω solution in k expansion gives rise to the
quadratic dispersion relation aω2 þ bωþ c ¼ 0, with
a¼ γ2½Ẽ θ̃−2

3
Ẽð2η̃þ θ̃Þv2þ 1

9
θ̃ðẼ−4η̃Þv4�, b¼ iγ½ðẼþ θ̃Þ−

1
3
ðθ̃þ Ẽþ4η̃Þv2� and c ¼ ðv2=3 − 1Þ. This dispersion poly-
nomial gives rise to two nonpropagating, nonhydro modes
whose stability has been analyzed using the Routh-
Hurtwitz (R-H) stability test [25]. The stability criteria
constrain the parameter space for BDNK sound channel
through the two following inequalities:

Eθ
�
1 −

v2

3

�
2

−
4

3
ηv2

�
E þ v2

3
θ

�
> 0; ð1Þ

ðE þ θÞ
�
1 −

v2

3

�
−
4

3
ηv2 > 0: ð2Þ

Equations (1) and (2) together necessarily confine the
parameter space within the region,

θ

η
>

4

3

v2

ð1 − v2=3Þ2 ;
E
η
>

4

9

v4

ð1 − v2=3Þ2 : ð3Þ

The right-hand sides of both the inequalities are mono-
tonically increasing functions of v which allow only
positive values of E and θ with lower bounds ranging
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from 0 to η and 0 to 3η, respectively, as v ranges from 0 to 1.
Following these conditions, Fig. 1 shows that the parameter
space where the theory is stable at v → 1 is enclosed within
the same for any lower value of v. So, identical to the
situation of MIS theory, for BDNK theory as well, the
stability condition at v → 1, is a necessary and sufficient
condition for stability to hold at the spatially homogeneous
limit for all possible boost velocities 0 ≤ v < 1.
Given the above analysis for MIS and BDNK theories,

we establish our first key finding here. For relativistic
dissipative hydrodynamic theories like BDNK and MIS,
performing stability analysis at ultrahigh boost velocity
(v → 1) alone suffices to conclude the stability invariance
of the theory. Stability analysis at any other boost velocity
lacks this confirmation. The stable parameter space at
v → 1 is a necessary and sufficient region of the theory
for stability invariance to hold at the spatially homo-
geneous limit.

V. CAUSALITY FROM STABILITY ANALYSIS

In this section, we will prove that only the stability
criteria at v → 1 limit is enough to provide the region of
parameter space over which each of these two theories is
causal. The idea is this: since it has been proven for theories
like MIS and BDNK that the stability conditions at v → 1
identify the region of parameter space where the system is
frame invariantly stable, and since stability invariance
requires the causality properties of the theory to be
respected according to the arguments put forward in
[13,14]; hence the stability constraints at ultrahigh boost
automatically lead us to the causal region of the parameter
space. For MIS theory, the stability conditions at v → 1
limit for the shear and sound channels give us τπ

η̃ > 1 and

τπ
2η̃ > 1, respectively. It can be shown that the expressions on
the left-hand sides of the inequalities for both channels
are functions of the square of respective asymptotic group
velocities vg ¼ limk→∞j ∂ReðωÞ∂k j, ðv2gÞ⊥ ¼ η̃=τπ and ðv2gÞk ¼
4η̃
3τπ

þ 1
3
. These expressions for both the channels finally

reduce to 0 < v2g < 1, and therefore, the stability criteria at
v → 1 boil down to the asymptotic causality condition 0 <
v2g < 1 for the MIS theory in the parameter range η; τπ > 0.
For BDNK theory, the shear channel stability con-

dition at v → 1 gives θ
η > 1, which is again the asymptotic

causality condition 0 < v2g < 1, where v2g ¼ η
θ. Next, for the

BDNK sound channel, we attempt to solve the inequalities
[(1) and (2)] served as stability criteria in a boosted frame.
Stability inequality (1) can be recast as

fð1=v2Þ − x1gfð1=v2Þ − x2g > 0; ð4Þ

where x1, x2 are the roots of the equation

ðEθÞx2 − 2

3
Eð2ηþ θÞxþ 1

9
θðE − 4ηÞ ¼ 0: ð5Þ

Inequality (4) has two possible solutions: x1; x2 <
1
v2 or

x1; x2 >
1
v2. Since jvj ranges from 0 to 1 and hence 1=v2

ranges from 1 to ∞, the second solution turns out to the
unphysical. The first and only physically acceptable sol-
ution then gives us the strictest bound x1, x2 < 1 corre-
sponding to the limit v → 1. Now, incorporation of the
second stability inequality (2) restricts the allowed region to
only positive values of E and θ. This restriction (along with
η > 0) leads to a positive discriminant of (5), which
restricts both the roots of x to be real, among which at
least one root is always positive in our stable parameter
space at v → 1. As it will be explicitly shown in the next
section doing a large k analysis of the theory that the
quadratic equation satisfied by v2g for the BDNK sound
channel is exactly identical to (5), the inequalities (1) and
(2) condense down together to give v2g < 1with at least one
v2g > 0 that produces two subluminal propagating modes.
So, our stability analysis at ultrahigh boost independently
identifies the causal parameter space of the MIS and BDNK
theories, which exactly reproduces the results of asymptotic
causality analysis for the respective theories without going
to the large k limit.

VI. CAUSALITY FROM LARGE k ANALYSIS

Now, let us analyze the situation of causality in the high-
k regime itself and compare how accurately the subluminal
parameter space has been predicted by stability analysis at
ultrahigh boost. At the large k limit, an expansion of the
form ω ¼ vgkþ

P∞
n¼0 cnk

−n is used [8] as a solution of
the dispersion equation from which a polynomial over the
asymptotic group velocity vg can be obtained. Next, we

FIG. 1. Linearly stable parameter space for BDNK sound
channel for different v values.
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check the Schur stability of the polynomial [26] to check if
the roots of these equations are subluminal and, if they are,
then how the parameter space is constrained by them. Any
polynomial PðzÞ of degree d is called “Schur stable” if its
roots lie within a unit disc around the origin of the complex
plane. This can be tested by introducing a Möbius trans-
formation w ¼ ðzþ 1Þ=ðz − 1Þ, which maps the unit disc
about the origin of the complex plane into the left half
plane, i.e., ReðwÞ < 0 if jzj < 1. So, PðzÞ will be Schur
stable if and only if the transformed polynomial of the
same degree QðwÞ ¼ ðw − 1ÞdPðwþ1

w−1Þ is Hurwitz stable.
This method is extremely efficient, especially in cases
where a direct extraction of roots from the polynomial is
too complicated.
For the shear channels, the Schur stability conditions

that can give rise to subluminal, propagating modes are
τπ − η̃ > 0 and τπ þ η̃ > 0 for MIS and θ − η > 0 and θ þ
η > 0 for BDNK. In both cases, the first conditions are
identically the stability conditions obtained at v → 1 and
the second conditions are obvious if the first ones are
satisfied. For the propagating modes of MIS sound channel,
the Schur stability conditions are given by τπ − 2η̃ > 0 and
τπ þ η̃ > 0. Again, the first one is the v → 1 stability
criterion, and the rest is its obvious implication. So, we
conclude that for both the shear channels and the MIS
sound channel, the v → 1 stability region exactly repro-
duces the causal parameter space.
The situation in the BDNK sound channel is compara-

tively quite nontrivial. The v2g values are to be extracted
from the following quadratic polynomial with z ¼ v2g,

PðzÞ ¼ ðEθÞz2 − 2

3
Eðθ þ 2ηÞzþ 1

9
θðE − 4ηÞ ¼ 0; ð6Þ

whose Schur stability needs to be checked to find the causal
parameter space. Its Möbius transformation again turns out
to be a quadratic olynomial,

QðwÞ ¼
�
Eθ
3

− Eη −
ηθ

3

�
w2 þ 2

3
θðηþ 2EÞw

þ
�
4Eθ
3

þ Eη −
ηθ

3

�
¼ 0; ð7Þ

whose Hurwitz stability requires all the three coefficients of
Eq. (7) to be of the same sign, either positive or negative
[along with a positive discriminant of PðzÞ to ensure that all
the nonreal roots of v2g on the complex plane are excluded].
In Fig. 2, the parameter space for which both the roots

satisfy jv2gj < 1 are plotted for both the positive as well as
negative conventions. The regions IA (red, crisscrossed), IB
(blue, crisscrossed) and IC (black, solid filled) are located
within quadrants where both θ and E are of the same sign
and indicate the regions of the parameter space where all
the coefficients of (7) are positive. The regions IIA (yellow,

striped), IIB (green, striped) and IIC (black, solid-filled) are
located within quadrants with θ and E of opposite signs and
denote the convention where all coefficients of (7) are
negative. Together, all of these regions (IA-C, IIA-C)
provide the full causal parameter space given by (6).
Furthermore, the signs of the coefficients of (6) indicate
that the regions IC and IIC bounded by E > 4η;
E < 0;−2η < θ < 0 give −1 < v2g < 0 for both roots
and hence, fail to generate any propagating mode. The
rest of the regions (IA-B, IIA-B) correspond to at least one
0 < v2g < 1 and hence at least two subluminal propagating
modes. The regions IA and IIA cover the parameter space
with the additional constraints E < 0; E > 4η; θ > 0;
θ < −2η, which give us both v2g values between 0 and 1
and hence, four subluminal propagating modes. The
remaining two regions, IB and IIB, belong to the parameter
space constrained by 0 < E < 4η, which corresponds to
−1 < v2g < 0 for one root and 0 < v2g < 1 for the other,
indicating the presence of two nonpropagating modes
besides the existence of the two subluminal propagat-
ing modes.
Now comes a crucial identification; we observe that the

causal parameter space in the first quadrant covered by the
regions IA and IB together exactly agrees with the stable
region at v → 1 and hence, with the frame-invariantly
stable parameter space as well. This can be readily checked
by realizing that the Schur condition from (7), − ηθ

3
− Eηþ

Eθ
3
> 0 is exactly identical to the stability constraint (1) at

v → 1. The other two Schur conditions, θðηþ 2EÞ > 0 and
− ηθ

3
þ Eηþ 4Eθ

3
> 0 along with a positive discriminant

of (6), further restrict the region exclusively to within
the θ > 0; E > 0 quadrant for propagating modes, which
exactly resembles the role played by (2) with v → 1 to

FIG. 2. The subluminal parameter space for BDNK sound
channel from Schur stability.
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define the stable parameter space. So, the entire causal
parameter space obtained from the asymptotic equation (6)
(by Schur convention I, all coefficients > 0) is fully
identified by the stable region at ultrahigh boost depicted
in Fig. 1. In this context, we refer to the results obtained
in [22], where the large wave-number causality constraint is
given solely by region IAwith four subluminal propagating
modes. The analysis there lacks the region IB where two
subluminal propagating modes are present along with two
nonpropagating modes. We duly point out that this lacking
region is stable in every reference frame (Fig. 1), which
invariably identifies this region to respect causality since
covariant stability is possible only for causal systems [13,14].
So, we conclude that, because of the complexity involved, it
is indeed difficult to analytically extract the full causal
parameter space from the large-k dispersion polynomial.
However, themethod of stability analysis at v → 1 presented
in this work is much more effective in pointing out the full
stable and causal parameter space unambiguously.
We finally point out that for regions IIA and IIB, where θ

and E are of opposite signs, the system is unstable in all
reference frames. As mentioned in the stability arguments
of [13], there could be other regions of the parameter space
like IIA and IIB, where causality holds, but the system is
invariantly unstable in all reference frames. The stability
criteria at ultrahigh boost strictly give us the parameter
space where these two theories are causal as well as stable
in all reference frames.

VII. CONCLUSION

We have shown here, for the first time, for two well-
known stable-causal hydrodynamic theories, viz. MIS and
BDNK, an alternate way to derive the region of parameter
space over which the theories are frame-invariantly stable at
leading order in k and necessarily causal. Despite inherent
differences in their construction, our analysis reveals that
linearized stability analysis at ultrahigh boost accurately
leads us to the results of asymptotic causality conditions
under which both the theories are frame-invariantly stable,
without going to the large-k limit. Since the whole analysis
is performed at a low-k limit, this approach liberates us
from going to a nonperturbative high-k regime that seems
outside the domain of validity of a low-energy effective
theory like relativistic hydrodynamics. Moreover, in the
presence of technical nontrivialities in solving the asymp-
totic causality equations, our method of stability check
at v → 1 is more effective and simpler in detecting the
causal parameter space. Although the current analysis has
been carried out for a conformal, chargeless system, the
results presented here do not lack in generality. In [15], a
coarse-grained derivation of a nonconformal, charged,
stable-causal first-order theory indeed shows that the
monotonically decreasing stable parameter space becomes
the strictest bound for v → 1 which singularly gives the
causal parameter space as well.

The findings presented here heavily depend upon the
monotonic behavior of the stable parameter space as a
function of v. The monotonic behavior that exists for these
two most well-known stable-causal theories does not hold
for the relativistic first-order Navier-Stokes theory. This
indicates that this feature could be an important signature
for pathology-free hydrodynamic theories. Further, the
prediction of high-k results from the low-k domain using
ultrahigh boost, as observed here, indicates some possible
connection between the two limiting k regimes of the
theories, which requires further investigation. In Appendix
we have derived our results for a more general class of
hydrodynamic problems and provided intuitive arguments
in support of the current outcome. The causality criteria
considered here are asymptotic causality criteria which are
necessary but not sufficient conditions [27]. A more
rigorous study of causality requires a study of character-
istics [28,29], which will be explored in our future
endeavors. Further, studies related to higher order theories
in a general hydrodynamic frame [30] and comparative
studies between the BDNK and MIS theories [31] are also
in line to be explored in future. Lastly, observing the effects
of the bounds provided in this study to the fluid parameter
space on the numerical hydro simulations [32–34] is
another direction to explore.
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APPENDIX: CAUSALITY CRITERIA
FROM NEAR-LUMINAL STABILITY

FOR A GENERAL HYDRODYNAMIC THEORY

1. Monotonic behavior of stable parameter space
with boost velocity

In the current analysis, the conservation equations
(giving rise to hydrodynamic evolution equations) are
linearized for small perturbations of fluid variables around
their hydrostatic equilibrium. The method gives the
dispersion polynomial in the frequency ðω; kÞ plane as
Fðω; kÞ ¼ 0, whose solution provides the dispersion rela-
tion ω ¼ ωðkÞ that is required for the stability analysis.
Here, we are deriving our results for a general hydro-
dynamic dispersion polynomial (irrespective of shear or
sound channel), which obeys just two assumptions guided
by generic physics requirements. The assumptions are
motivated by the conservation rules (of the number of
fluid modes) and the symmetry requirements and do not
compromise the generality of our method.
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Assumption 1: The total power of any term that contains
k (it can be a term that contains only k or an admixture of ω
and k) must not exceed the largest power of a pure ω term.
Following this criteria, a most general dispersion poly-
nomial must obey

Oω½Fðω; k ≠ 0Þ� ¼ Ojkj½Fðω ¼ ajkj; k ¼ bjkj�; ðA1Þ

with a as a nonzero real scalar constant, b as a real unit
vector and Ox denoting the order of the polynomial in the
variable x.
In Ref. [35], Eq. (A1) has been mentioned as a condition

for causality. We are justifying this assumption from the
point of Lorentz invariance of the number of modes in a
theory. If the right-hand side of (A1) has a larger order than
the left-hand side, then a Lorentz boost of the background
fluid with a velocity v always produces spurious modes,
modes that never appeared in the local rest frame analysis
[7,9]. Given that the number of modes changes with the
arbitrary choice of equilibrium state, it is indicative that the
equations of motion that lead to such a polynomial cannot
constitute a viable theory of viscous hydrodynamics.
Moreover, the solution of these new modes will be
inversely proportional to some powers of v (in the boosted
frame the polynomial variable changes from ω to vω), that
diverges as v → 0 and hence are unphysical. With this
chain of arguments, below we are writing the most general
form of the dispersion polynomial (of order M) for any
arbitrary hydrodynamic theory in the local rest frame of the
fluid:

aMωM þ aM−1ω
M−1 þ � � � þ a2ω2 þ a1ωþ a0 ¼ 0;

with

a0 ¼ a00 þ a10kþ � � � þ aM−2
0 kM−2 þ aM−1

0 kM−1 þ aM0 k
M;

a1 ¼ a01 þ a11kþ � � � þ aM−2
1 kM−2 þ aM−1

1 kM−1;

a2 ¼ a02 þ a12kþ � � � þ aM−2
2 kM−2;

..

.

aM−2 ¼ a0M−2 þ a1M−2kþ a2M−2k
2;

aM−1 ¼ a0M−1 þ a1M−1k;

aM ¼ a0M; ðA2Þ

which in a consolidated form can be written as

XM

n¼0

anðkÞωn ¼ 0; anðkÞ ¼
XM−n

m¼0

amn km: ðA3Þ

The coefficients amn (the subscript n denotes the power of ω
and the superscript m denotes the power of k of the term it
is associated with) are functions of transport coefficients of

the underlying coarse-grained system that set the parameter
space of the theory. We are putting no constraint on the amn
values. They can be both real and imaginary and can have
positive or negative values or even become zero depending
upon the construction of a particular hydrodynamic theory.
Our next step is to boost Eq. (A2) with velocity v and

extract the stability criteria of that boosted polynomial at
the spatial homogeneous limit (k → 0). At k → 0, the
boosted form of Eq. (A2) becomes

ðγωÞM½a0Mð−vÞ0 þ a1M−1ð−vÞ1 þ a2M−2ð−vÞ2 þ � � �
þ aM−2

2 ð−vÞM−2 þ aM−1
1 ð−vÞM−1 þ aM0 ð−vÞM�

þ ðγωÞM−1½a0M−1ð−vÞ0 þ a1M−2ð−vÞ1 þ � � �
þ aM−2

1 ð−vÞM−2 þ aM−1
0 ð−vÞM−1� þ � � �

þ ðγωÞ1½a01ð−vÞ0 þ a10ð−vÞ1� þ ðγωÞ0½a00ð−vÞ0� ¼ 0;

ðA4Þ

with γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. Equation (A4) can again be expressed

in a general form as

XM

n¼0

AnðγωÞn ¼ 0; An ¼
Xn

m¼0

an−mm ð−vÞn−m: ðA5Þ

Since an analytical solution of Eq. (A4) is beyond the
scope, in order to check its stability we take recourse of
R-H stability test [25]. The stability condition requires the
elements belonging to the first column of the Routh array
[includes the coefficients of ðγωÞM, ðγωÞM−1 and determi-
nants involving other coefficients of (A4)] to be of identical
sign, either positive or negative. This leads us to M þ 1
number of inequalities which say that, in order to have a
stable theory, all these elements are either greater or lesser
than zero. So if these elements are expressed as
fiðfamn g; vÞ, for all roots of ω to be stable, we must have
either

fiðfamn g; vÞ > = < 0; ðA6Þ

for all i∈ f1;M þ 1g. At this point, we state our second
assumption.
Assumption 2: The local rest frame dispersion poly-

nomial (A2) only allows even power of jkj ¼
ffiffiffiffiffi
k2

p
, making

it Fðω; k2Þ ¼ 0, i.e., the coefficients amn with an odd m are
zero [36]. This can be simply understood from the fact that,
with k being a vector, only the powers of k2 are allowed in
the scalar dispersion polynomial (A2). As a consequence,
the boosted polynomial (A4) contains only even power of
jvj ¼

ffiffiffiffiffi
v2

p
(also required since v is a vector as well).

These two assumptions lead to the fact that the R-H
stability criteria of (A4) boil down to a set of inequalities
where a power series over v2 is greater or lesser than zero.
To demonstrate the situation we are writing here the
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condition over the first element of the first column of the
Routh array,

a0MðvÞ0 þ a2M−2ðvÞ2 þ � � � þ aM−2
2 ðvÞM−2 þ aM0 ðvÞM > 0:

ðA7Þ

Here,M is considered to be even (oddM conditions can be
similarly extracted where the power of the last term would
be M − 1) and we illustrate the result for the “all positive”
possibility. Now, the left-hand side of inequality (A7) can
be decomposed as

ðv2 − x1Þðv2 − x2Þ � � � ðv2 − xM=2Þ > 0; ðA8Þ

where xl are the roots of the polynomial,

a0M þ a2M−2xþ � � � þ aM−2
2 xM=2−1 þ aM0 x

M=2 ¼ 0; ðA9Þ

and are functions of the amn coefficients only [i.e.,
xl ≡ xlðamn Þ], which are again functions of the transport
coefficients of the system. So, to hold inequality (A8), each
factor ðv2 − xlÞ has to be positive or negative accordingly.
So finally the R-H criteria boil down to a set of inequalities
such that

ðv2 − xlÞ > = < 0 ¼> xlðamn Þ > = < v2: ðA10Þ

So, from (A10) we can see that the stability criteria of any
theory reduces to a set of inequalities where a function of
the fluid parameters is greater or lesser than v2. Clearly, this
indicates a monotonic behavior of the parameter space on
v2, and consequently, at spatial homogeneous limit
(k → 0), the stable parameter space must monotonically
decrease from v ¼ 0 to 1 or from v → 1 to 0, respectively.
So, if we follow the “greater than” possibility (xlðamn Þ > v2)
of (A10), the stability region of parameter space for v → 1
includes the same for any lower value of v turning the
stability condition at v → 1 a necessary and sufficient
condition for stability to hold at the spatially homogeneous
limit for all possible boost velocities 0 ≤ v < 1. Con-
versely, following the “lesser than” possibility, the direction
of monotonicity reverses.
Now, the sign of the inequality in (A10) (that leads to the

direction of monotonicity) suffers from ambiguity. The
reason is that since Eq. (A2) describes the dispersion
polynomial of a possible most general theory, the signs
of the amn coefficients are completely unknown and arbi-
trary. To resolve this ambiguity, we investigate Eq. (A4) at
different boost velocities and provide the following line of
arguments.
At v ¼ 0we observe that for each n, only the coefficients

amn withm ¼ 0 are contributing to the stability analysis. For
a nonzero value of v, all the amn coefficients with evenm are
contributing. If we have a look at Eq. (A2), we can see that
the stability conditions at nonzero v constrain a much larger

number of elements of the parameter space, making the
system of inequalities more restrictive than the ones at
v ¼ 0. In other words, the conditions at v ≠ 0 lay a stricter
bound on the entire parameter space than those at v ¼ 0.
So, it is indicative that the monotonicity over v2 that has
been discussed so far is uniformly restricting the parameter
space from v ¼ 0 to v → 1. This turns the parameter space,
which is stable at near-luminal boost velocity, a necessary
and sufficient region for frame-invariant stability to hold (at
the spatially homogeneous limit), and consequently, iden-
tify the causal parameter space as well [13].
In support of the above discussion, here we are writing

the polynomial equation for asymptotic group velocity vg at
k → ∞ resulting from (A2) for even M:

a0Mðv2gÞ
M
2 þa2M−2ðv2gÞ

M
2
−1þ� � �þaM−2

2 v2g þaM0 ¼ 0: ðA11Þ

In order to have a causal, propagating mode, (A11) must
have real, positive, subluminal roots of v2g, which are the
functions of the amn coefficients of (A11). From Eq. (A2),
we see that these amn are the coefficients of the largest k
power for each an term with n even. Clearly, the conditions
for subluminal roots will involve constraints on these
coefficients. Here, we see that stability conditions for
v ¼ 0 only include the a0M among these coefficients and
cannot able to identify the causal parameter space because
of this nominal overlap. On the other hand, the stability
constraints with nonzero v include all the coefficients of
Eq. (A11). So, the monotonicity over v2 leaves us with the
choice that stability at v → 1 demarcates the causal
parameter space.

2. Connection between stable parameter space
at k → 0, v → 1 and causal parameter space at large k

A mathematical explanation regarding this connection
can be followed here. For that, say for an even M case we
divide Eq. (A7) by ðv2ÞM=2. Being a positive quantity, it will
not alter the sign of inequality and converts (A7) into

a0M

�
1

v2

�M
2 þ a2M−2

�
1

v2

�M
2
−1

þ � � � þ aM−2
2

�
1

v2

�
þ aM0 > 0;

ðA12Þ

which can be decomposed as

�
1

v2
− y1

��
1

v2
− y2

�
� � �

�
1

v2
− yM=2

�
> 0; ðA13Þ

with yl being roots of

a0My
M
2 þ a2M−2y

M
2
−1 þ � � � þ aM−2

2 yþ aM0 ¼ 0: ðA14Þ

Now, in order to hold inequality (A13), each bracketed
quantity on the left-hand side has to be individually positive
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or negative. The only physical choice is the positive
convention, which for each yl leads to

�
1

v2
− yl

�
> 0; yl <

1

v2
; ðA15Þ

which gives the strictest bound at v → 1 such that yl < 1.
Here we make an important observation. We notice that
Eq. (A14) and the polynomial for asymptotic group
velocity (A11) are identical. Consequently, the yl are
the solutions for v2g itself. So from (A15), we can see that
the stability conditions at v → 1 are indeed related to the

causality criteria of the theory (v2g < 1). It is to be noted
here that (A7) is not the only stability condition (it is the
first one of them; there are M more). In the theories that
we have studied in our work—MIS and BDNK—the
other conditions basically set the convention for the
direction of inequalities that cancels any choice of yl
other than (A15). Nevertheless, the structural similarity of
(A11) and (A12) is enough to indicate the connection
between the near luminal (v → 1) stability conditions
at the spatial homogeneous limit (k → 0) and the
causality criteria predicted at the asymptotic causality
limit (k → ∞).
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