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We analyze the influence of a massive photon in the dispersive interaction between two atoms in their
fundamental states. We work in the context of Proca quantum electrodynamics. The photon mass not only
introduces a new length scale but also gives rise to a longitudinal polarization for the electromagnetic field.
We obtain explicitly the interaction energy between the atoms for any distance regime and consider several
particular cases. We show that, for a given interatomic distance, the greater the photon mass the better it is
the nonretarded approximation.
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I. INTRODUCTION

Neutral but polarizable atoms with no permanent multi-
poles placed in vacuum will still interact with each other.
This can be understood from the Heisenberg uncertainty
principle which enforces dipole fluctuation even in states
where the expectation value of the dipole operator vanishes.
These forces are the so-called dispersive interactions [1–5].
They are responsible for several phenomena not only in
physics, but also in chemistry, biology and many other
areas of science. For instance, they explain why noble gases
condensate. Besides, since dispersive forces strongly
depend on the polarizabilities of the atoms/molecules
involved, which in turn scale with the volumes of such
atoms/molecules, these forces explain why the temper-
atures of condensation of noble gases are greater for the
larger atoms (with helium having the smallest and so on).
By the same argument, dispersive forces may become
dominant in macromolecules interactions. Increase atten-
tion are being given to these forces since they are
responsible for the cohesion between different layers of

the van der Waals heterostructures, materials obtained by
stacking different 2d materials and which display fascinat-
ing properties [6]. There is still an intense research going
also from the quantum field theory perspective [7–18]. In
biology, they are responsible for the softness of our skin
and explain the remarkable adhesion of geckos on the walls
of our houses [19]. We can go even further with more
bizarre examples, like the important role of dispersive
forces in the generation of the high electrostatic potentials
occurring during the storms, among others [20,21].
Differently from other kinds of intermolecular forces,
dispersion forces are always present due to the ubiquity
of Heisenberg uncertainty principle.
We can think of dispersive forces as a consequence of the

exchange of virtual photons between the atoms. In Maxwell
electrodynamics in vacuum, photons are massless, and this
is responsible for some important features of these forces,
such as the long range character of the interaction.
However, under certain circumstances, photons may
acquire an effective mass due to shielding mechanism.
One example arises in colloidal systems. When two atoms
interact within an electrolyte solution, the potential gen-
erated by the atoms ionize the solution and when the
potential is not very strong—that is if the atoms are not very
close to each other—we may treat the interaction within the
linearized Poisson-Boltzmann equation [22]. In this sce-
nario the Maxwell field in the solution behaves as a free
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Proca effective electromagnetic field, with the photon mass
being given by the inverse of the Debye wavelength.
Similar mechanisms arise in metals, or inside waveguides.
Indeed, in many situations, a gas of photons between
conducting plates may be thought of as a massive bi-
dimensional photon gas [23]. Such an effective photon
mass affects not only real, but also virtual photons, and thus
will have consequences for dispersive interactions. In fact,
a recent work [24] has also shown that the dispersive
interaction between two atoms inside a plane capacitor is
screened due to non-additive effects, in a way that can be
effectively described by endowing photons with a mass
inversely proportional to the separation between capacitor
plates. Also, electric as well as magnetic condensates may
lead to effectively massive gauge fields and can be used to
investigate superconductivity, confinement in QCD, and an
holographic duality scenario to explain the metal-insulator
transition in condensed matter [25–28].
Even in vacuum, a tiny, yet nonvanishing, photon mass is

also present in scenarios of physics beyond the standard
model [29,30]. Moreover, these Yukawa-type corrections
appear in axion physics and modifications of Newtonian
gravity. Casimir effect experiments can be used to impose
bounds on these Yukawa parameters [31–33]. However
small it may be, a finite mass for the photon changes a lot
our physical picture of the world. Indeed, as pointed out
in [34], the above bounds may not be correct depending
upon the microscopical origin of the mass. For example, if
it appears from the Higgs mechanism, it is possible for
large-scale fields to be effectively Maxwellian, and in this
case astrophysical observations will be insensitive to the
mass of the photon.
Many different observations place very stringent

bounds for the photon mass. The most rigorous restric-
tions come from astrophysical observations, which put an
upper bound of 10−27 eV to the mass of the photon [35].
Particle properties, such as the anomalous magnetic
moment of the electron, also place strict limits on its
mass [36]. Interestingly, some mass bound for photons
can be obtained using Schuman resonances [37]. In
Ref. [38] another terrestrial experiment was proposed,
in which the longitudinal mode of photons would be
measured to restrict the mass of the photon. Two com-
prehensive reviews, written by the same authors almost
40 years apart, can be found in [39,40].
Ultimately, dispersive interactions akin to van der Waals

forces are to be expected in any theory with Abelian vector
bosons, as is the case in some models of nuclear physics. In
that context, vector mesons have a considerable mass in
vacuum, which are not protected by the global symmetries
linked to these particles. In particular, short-range repulsion
between nucleons due to the exchange of massive omega
vector mesons plays an important role in the structure of
both nuclei and neutron stars [41–43]. In fact, the interplay
between attractive interactions mediated by scalar mesons

and repulsive interactions, mediated by such vector mes-
ons, are thought to be the mechanism behind nuclear
saturation [44,45]. The omega meson couples to baryon
charge, while mesons in general—composed of a valence
quark-antiquark pair—should display fluctuations of the
dipole moment of baryon number density. Therefore,
omega meson exchange should lead to dispersive forces
between mesons. Recently, the coupling of omega mesons
to pions and sigmas has been proposed as a mechanism to
explain the speed of sound peak expected in ultra-dense
nuclear matter [46]. Dispersive van der Waals forces within
the context of quantum chromodynamics have been pre-
viously explored in the literature [47,48].
The simplest description of massive vector mesons is

given by Proca electrodynamics, in which gauge invariance
is explicitly lost [49]. While, in some applications, a more
fundamental description may be provided by other for-
mulations, which might preserve gauge symmetry, such as
the Higgs mechanism or the Stueckelberg action, Proca
electrodynamics can be motivated as a simplified version of
these formulations, obtained, for instance, by treating extra
fields (e.g., the Higgs field) as static, uniform backgrounds.
The investigation of dispersive forces mediated by massive
photons also raises interesting conceptual questions. For
instance, what is the nature of the limit in which the photon
mass is taken to zero? The disappearance of the longi-
tudinal polarization could raise the possibility of a discon-
tinuous transition to Maxwell theory, whereas a continuous
transition seems to always be found. Yet, the precise
dependence of van der Waal forces on the mediator mass
near this limit will be revealing of how sensitive these
forces are to small photon mass in scenarios beyond the
standard model. In the context of the Casimir effect this
discussion has revealed surprising subtleties. It was initially
predicted that the zero mass limit would be singular due to
the longitudinal modes [50], which was subsequently
disproved [51,52] by showing that in the zero mass limit
these modes decouple from matter and the plate becomes
transparent to them. In this way only transversal modes
contribute to the Casimir attraction between plates assuring
that this limit is well behaved. Furthermore, understanding
dispersive interactions mediated by massive photons may
also furnish new insights into Maxwell electrodynamics.
For example, a photon mass breaks the degeneracy between
the group, phase and signal propagation velocities, present
in standard electrodynamics. This will enable us to verify
which one plays the dominant role in the physics of
dispersive forces.
In this work we employ Proca electrodynamics to

investigate the effects of a finite photon mass on the
dispersive interaction between two atoms. This subject
has recently got renewed interest in the search for signa-
tures of physics beyond standard models [53]. In this
paper we employ a Hamiltonian originally proposed by
Milonni [1] and show that it is possible to analyze the Proca
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dispersive interaction within first order perturbation theory.
Afterward we analyze the short distance limit, known as the
nonretarded regime. We study this limit by two comple-
mentary approaches. In Sec. II we evaluate the interaction
energy without quantizing the electromagnetic field, while
in Sec. III we reobtain the results of Sec. II by taking the
appropriate limit of the full quantum electrodynamics
treatment. By doing so, we are able to address the question
of when it is necessary to quantize the electromagnetic
showing that it leads to a weaker condition for the
interatomic distance. In other words, a photonic mass
extends the range of validity of the nonretarded regime.
We leave Sec. IV for our final remarks.

II. LONDON-PROCA INTERACTION

Let us consider two atoms, A and B, held at positions rA
and rB, respectively and for convenience let us define
R ¼ rB − rA. Throughout this paper we shall assume the
magnitude of the distance R to be much larger than the
typical size of the atoms, enabling us to employ the electric
dipole approximation. Hence, dispersive forces arise from
correlations between the fluctuating dipoles in each atom.
In the London regime, we consider the field generated by
the atomic dipoles as electrostatic. This is a good approxi-
mation when the atoms are close to each other, and in the
next section we employ a full quantum electrodynamics
calculation in order to establish the precise condition R
must satisfy. In the dipole approximation, the interaction
Hamiltonian describing the coupling between the atoms is
given by

Hint ¼ −dA ·EBðrAÞ; ð1Þ
where dA denotes the electric dipole operator of atom A and
EBðrAÞ stands for the electrostatic field created by the
dipole B at the position of atom A. The electrostatic field
EB depends upon the dipole operator of atom B, dB, and is
given by (see Appendix A)

EBðrAÞ ¼ −
e−μR

R3
ðμRþ 1ÞdB

þ e−μR

R5
ðμ2R2 þ 3μRþ 3ÞðdB ·RÞR; ð2Þ

where μ≡mcðℏÞ−1 > 0, with m denoting the photon mass
in Proca electrodynamics. Substituting the last equation
into the Hamiltonian (1) we obtain

Hint ¼
e−μR

R3
ðμRþ 1ÞdA · dBþ

−
e−μR

R5
ðμ2R2 þ 3μRþ 3ÞðdA ·RÞðdB ·RÞ: ð3Þ

Notice that this Hamiltonian is symmetric under the
exchange A ↔ B as it should—the interaction does not

depend on which atom we choose as the source of the
electric field in Eq. (1). Denoting the ground state of atom j
by j0ji, the fact that the atom does not possess permanent
electric dipole means that h0jjdjj0ji ¼ 0. Therefore, per-
turbation theory applied to the above Hamiltonian vanishes
at first order. At second order we have

UNR ¼ −
X

r≠0;s≠0

h0A0BjHintjrsihrsjHintj0A0Bi
ℏðωr0 þ ωs0Þ

ð4Þ

where we denote the excited states of atoms A and B by jri
and jsi, respectively. We assume that the atomic ground
state is nondegenerate, as usual. Choosing the Z-axis
parallel to R we may rewrite Eq. (3) to obtain

Hint ¼
e−μR

R3
½ðμRþ 1ÞðdxAdxB þ dyAd

y
BÞ

− ðμ2R2 þ 2μRþ 2ÞdzAdzB�: ð5Þ

Substituting Eq. (5) into Eq. (4) we obtain

UNR ¼ −Λ
e−2μR

9R6
pðμRÞ; ð6Þ

where

pðξÞ ¼ 6þ 12ξþ 10ξ2 þ 4ξ3 þ ξ4 ð7Þ

and Λ > 0 is a constant depending only on the atomic
internal structure, given by

Λ ¼
X

r≠0;s≠0

jd0r
A j2jd0r

B j2
ℏðωr0 þ ωs0Þ

: ð8Þ

In the last expression we assume an isotropic response
of atoms, which enables us to make the replacement
h0jdmjIihIjdnj0i ¼ jd0Ij2δmn=3 for each atom. We empha-
size that, in principle, Λ depends on μ, since the photon
mass also affects the fields inside the atoms. Nonetheless,
assuming μa ≪ 1, where a is the atom size, we can
consider the atom structure to be independent of μ, and
suppose that μ affects only the intermolecular interaction.
We shall assume this to be the case henceforth.
As expected, if μ ¼ 0 we reobtain London’s formula,

hereafter denoted by ULondon. For μR ≪ 1, the leading
corrections to the London potential are given by

U ¼ ULondon

�
1 −

1

3
ðμRÞ2 þOðμ4R4Þ

�
; ð9Þ

and hence we see that a small μ weakens the interaction, as
could be expected, since the field produced by each
fluctuating dipole becomes exponentially damped with
distance. Notice that the linear term is not present, which
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could be anticipated by Eq. (2), since the Proca correction
for the dipole electric field is already of order μ2, as the
reader may verify. In the regime μR ≫ 1, on the other hand,
the interaction between atoms is exponentially suppressed.
In Fig. 1 we plot the interaction energy normalized by the
usual London interaction as a function of the dimensionless
parameter μR.
Equation (6) reproduces exactly the interaction energy of

two atoms interacting inside a colloidal system [22],
justifying the use of Proca electrodyamics as an effective
theory for these systems. Within this effective scenario the
intraatomic field is Maxwellian and thus Λ is not dependent
on μ. This means that the ratio UNR=ULondon depends only
on the colloidal properties which defines μ and not on the
atoms partaking in the interaction.
Before closing this section, we follow [54] (see

Sec. VII.6) and rewrite Λ in the form

Λ ¼ 9

4π

Z
∞

−∞
αAðiχÞαBðiχÞdχ; ð10Þ

where αj denotes the dynamical polarizability of atom j,
defined by

αjðωÞ ¼
2

3

X
I≠0

ωI0jd0I
j j2

ℏðω2
I0 − ω2Þ : ð11Þ

Since the intermolecular interaction is due to the correlation
between induced dipoles, the polarizability is a key concept
to the physical understanding of the intermolecular inter-
action. Equation (11) illustrates the dispersive character of
the interaction, expressed by the dependence of the atomic
response αj on the frequency of the external perturbation.
As we shall see in the next section, the polarizability is the
most convenient starting point for analyzing the interatomic
interaction within quantum electrodynamics.

III. QUANTUM FIELD THEORY APPROACH

A. The complete potential

When retardation effects in the electromagnetic inter-
action are relevant, we must include into the description of
our physical system the mediator of the interaction between
the atoms, namely, the electromagnetic field. And since
dispersive forces have a quantum nature, we must quantize
this field [1]. In this section we obtain the dispersive
interaction between two atoms in the framework of Proca
QED for any distance regime. For simplicity, we consider
the atoms inside a perfectly conducting cube of volume V,
to be taken to infinity after performing the calculation. The
electric field operator in Proca QED is given by [55]

E0ðr; tÞ ¼
X
kλ

h
EðþÞ

0;kλ þEð−Þ
0;kλ

i
ð12Þ

with

EðþÞ
0;kλ ¼ i

X
kλ

�
2πℏωk

V

�
1=2

fλϵkλakλeiðr·k−ωktÞ ¼ Eð−Þ†
0;kλ ;

ð13Þ

where akλ and a†kλ are the usual annihilation and creation
operators for the mode with wave vector k and polarization
λ, ωk ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2

p
, ϵkλ are the three unitary polarization

vectors, with λ ¼ 1, 2 denoting transversal polarizations,
while λ ¼ 3 corresponds to the longitudinal one, not
present in Maxwell electrodynamics. Choosing ϵkλ to be
normalized requires the introduction of the factor

fλ ¼
�
1 λ ¼ 1; 2
cμ
ωk

λ ¼ 3;
ð14Þ

The interaction between the atoms can be described by the
interaction Hamiltonian introduced by Milonni [1] [see
specially his Eq. (3.73)], namely

Hint ¼ −
1

2

X
kλ

αAðωkÞ½E0;kλðrAÞ þ EB;kλðrAÞ�2; ð15Þ

where E0;kλ is given in Eq. (12) and EB;kλ is the
electromagnetic field created by the dipole induced in
atom B by the vacuum field, given by (see Appendix A)

Eð�Þ
B ðrA;ωÞ ¼

e∓ikR

R5
ð−k2R2 � 3ikRþ 3Þ

�
dð�Þ
B ðωkÞ ·R

�
R

þ e∓ikR

R3
ðR2ω2

k ∓ ikR− 1Þdð�Þ
B ðωkÞ; ð16Þ

where the superscript (�) follows the same convention as

decomposition (12). The dipole operator dð�Þ
B ðωkÞ inhabits

the field Hilbert space and is given by

FIG. 1. Interaction energy in the nonretarded regime divided by
the London-van der Waals potential as a function of the
dimensionless radius parameter μR.
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dð�Þ
B ðωkÞ ¼ αBðωkÞEð�Þ

0;kλðrBÞ: ð17Þ

Physically, Hamiltonian (15) can be interpreted in the
following way: it is the energy of a dipole induced in
the atom A due to the field acting in it. This field is the
superposition of vacuum electromagnetic field with the
electric dipole field generated by atom B. This latter dipole
is also not permanent but instead induced by the vacuum
field according to Eq. (17). The interaction energy comes
from a first order perturbation calculation, this being the
convenience of employing this Hamiltonian. The dominant
order for the interaction comes from the terms involving
αAαB which are given by

Hint ¼ −
1

2

X
kλ

αAðωkÞ½E0;kλðrAÞ ·EB;kλðrAÞ

þEB;kλðrAÞ ·E0;kλðrAÞ�: ð18Þ

Its expected value yields the interaction energy

Utotal ¼ −
X
kλ

αAðωkÞαBðωkÞgijðRÞ

× h0jfEi
0;kλðrAÞ; Ej

0;kλðrBÞgj0i; ð19Þ

where

gijðRÞ ¼ Re

�
e−ikR

R3
ðR2ω2

k − ikR − 1Þδij

þ e−ikR

R5
ð−k2R2 þ 3ikRþ 3ÞRiRj

�
: ð20Þ

From Eqs. (12) and (13) we obtain

Utotal ¼ −Re
X
kλ

�
2πℏωk

V

�
αAðωkÞαBðωkÞ

× gijðRÞf2λðϵkλÞiðϵkλÞjeik·R: ð21Þ

Substituting Eqs. (14) and (20) into the previous equation,
we obtain, after some straightforward algebra,

Utotal ¼ −
ℏ

4π2R3
Re

Z
d3kαAðωkÞαBðωkÞωke−ikReik·R

×

�	
2ω2

kR
2

c2
− 2ik − 2 − k2R2sin2θk

þ 3ikRsin2θk þ 3sin2θk




þ c2μ2

ω2
k

	
ω2
kR

2

c2
− ikR − 1 − k2R2cos2θkþ

þ 3ikRcos2θk þ cos2θk


�
; ð22Þ

where we have defined θk as the angle between k̂ and R,
and took the continuum limit V → ∞. Defining x≡ kR
and performing the angular integrals, the interaction
energy reads

Utotal ¼
−ℏc
πR7

Z
∞

0

dxxαAðωkðxÞÞαBðωkðxÞÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þðμRÞ2

p
×fð2x4þ2x2ð2ðμRÞ2−5Þþ3ððμRÞ4þ2ÞÞsinð2xÞ
þ4xðx2−3Þcosð2xÞg; ð23Þ

At this point it is important to make a self-consistent check
of our results and reobtain as a particular case the result
with usual QED. In fact, by taking the μ → 0 limit we re-
obtain the well known result for the interaction energy
within Maxwell QED [see Eq. (3.85) of [1]].
Integrating by residues in the complex k plane, we may

transform the integration in Eq. (23) into an imaginary k
one, thus exchanging oscillatory terms by evanescent ones
and recasting that equation in a form amenable to numerical
integration (see details in Appendix B). By expressing our
results in terms of the imaginary frequency ω ¼ i cR ζ (with
ζ∈R) we obtain

Utotal ¼
−ℏc
2πR7

Z
∞

0

dζ
�
e−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2þðμRÞ2

p
f
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ2 þ ðμRÞ2
q �

× αA

�
i
c
R
ζ

�
αB

�
i
c
R
ζ

��
; ð24Þ

where

fðξÞ ¼ 6þ 3ðμRÞ4 þ 12ξþ ð10 − 4ðμRÞ2Þξ2
þ 4ξ3 þ 2ξ4: ð25Þ

The mass of the photon has a crucial role in the calculation,
since it introduces a cut due to the square root in the
dispersion relation ωk ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2

p
.

B. Qualitative discussion

A striking feature of Eq. (24) concerns the relevant
physical scales. Pure dimensional analysis shows the
existence of three timescales, corresponding to three typical
frequencies: c=R, cμ, and the dominant atomic transition
frequency ω0. Nonetheless, an inspection of the integrand
of Eq. (24) reveals that for the dispersive interaction only
two scales are involved: ω0, which is present in the
polarizability functions and

ωF ∼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R2
þ μ2

r
: ð26Þ

which is contained in the field functions f and the decaying
exponential. Let us now employ these scales in order to
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determine the values of ζ which dominate the integral in
Eq. (24). Equation (11) shows that the atoms become
transparent (αA;B ≈ 0) at large imaginary frequencies,
ðc=RÞζ ≫ ω0, suppressing large values of ζ. The field
modes are also suppressed for high frequencies—this is the
main advantage of the rotation in the complex plane
discussed in Appendix B. This yields to an exponential
attenuation, cutting off ðc=RÞζ ≫ ωF in Eq. (24). These
frequencies correspond to large wave vectors k ≫ R−1

which oscillate a large number of times between atoms
A and B, leading to a decorrelation between the field at
positions rA and rB after superposing a continuum of
modes. The interplay between large-frequency transpar-
ency and large-wave number decorrelation leads to two
opposite asymptotic regimes, which we discuss below.
These frequencies correspond to large wave vectors

k ≫ R−1 which oscillate a large number of times between
atoms A and B, which, upon superposing a continuum of
modes, leads to decorrelation between the field at position
rA and the atomic dipole at position rB. The interplay
between large-frequency transparency and large-wave
number decorrelation leads to two opposite asymptotic
regimes, which we discuss below.
When ω0 ≫ ωF, the contribution of the high frequency

in integrand (24) is suppressed by decorrelation in
the response of the field before atomic high-frequency
transparency sets in. Therefore, interatomic dipole-dipole
correlations are limited by the retardation of the electro-
magnetic field. Moreover, from Eq. (11), one may approxi-
mate αðωÞ ≈ αð0Þ, where the latter denotes the static
polarizability. Physically this is due to the fact that in this
regime the atom easily follows the much slower field
oscillations. In other words, in this regime the correlation
between the atomic dipoles are limited by the delay in
electromagnetic interaction. This case is denominated the
retarded limit, known as the Casimir-Polder regime in the
case of Maxwell electrodynamics. Note that in Proca QED
this regime is possible only for small masses μ ≪ ω0=c.
In the opposite limit, ω0 ≪ ωF, large values of ζ are

suppressed due to high-frequency transparency before
field-decorrelation or retardation effects become relevant.
We can therefore approximate the imaginary frequency to
be ζ ≈ 0 for the field—that is, everywhere in the integrand
of Eq. (24) except in the polarizabilities. In this case we
may treat the electromagnetic field in the electrostatic
approximation, thus recovering the results of Sec. II, as
we shall explicitly confirm in Sec. III D. From Eq. (26) we
see that the nonretarded regime applies to a wider range of
frequencies in Proca than in Maxwell electrodynamics,
since the condition for R is weaker. In particular, if
μc ≫ ω0 we are always in the nonretarded limit, regardless
of distance. Naturally, however, for R ≫ μ−1 the interaction
is exponentially suppressed and thus very weak.
By defining the phase velocity vpðkÞ≡ ωðkÞ=k ¼

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ μ2=k2Þ

p
, the nonretarded regime can be written

as ω0R ≪ vðkfieldÞ where kfield ¼ 1=R (with an analogous
expression for the retarded regime). In this way, the
condition defining each regime in Proca QED is the same
as in the Maxwellian case as long as in the latter we
substitute c by the phase velocity of the photon evaluated at
the wave number 1=R. Nonetheless there are now remark-
able differences. In Maxwell, tγ ¼ R=c is the time it takes
to a photon to travel the distance separating the atoms and
corresponds to the retardation time of the interaction.
Therefore, the nonretarded condition means that tγ must
be much smaller than the atomic typical timescale 1=ω0,
representing the dipole’s fluctuation time. No such simple
interpretation holds in Proca, since due to dispersion there
is not a single retardation time describing the interaction
and the phase velocity cannot be interpreted as the velocity
of propagation of the electromagnetic wave. Indeed, phase
velocity is superluminal in Proca electrodynamics. This
poses no paradox since we are dealing only with virtual
photons and not with any information propagation. The key
concept here is that the photon mass increases the photon
frequency for every wavelength and thus retardation effects
are less relevant in Proca electrodynamics than in the
Maxwellian case, since it is the slower dynamics which is
more relevant to limit the dipole-dipole correlation. We
now turn to the detailed calculation which supports the
above statements.

C. Retarded regime (ωf ≪ ω0)

In this regime, we may substitute the atomic polar-
izabilities given in Eq. (11) by their static values αðω ¼ 0Þ.
With this approximation, the integral (24) takes the form

URet ¼
−ℏc
2πR7

αAð0ÞαBð0Þ

×
Z

∞

0

dζe−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2þðμRÞ2

p
f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ ðμRÞ2

q �
: ð27Þ

After performing the integration we are left with

URet ¼ −
ℏcαAαB
4πR7

f8ðμRÞ2ððμRÞ2 þ 3ÞK0ð2μRÞ
þ ð2ðμRÞ5 þ 31ðμRÞ3 þ 24ðμRÞÞK1ð2μRÞ
þ 22ðμRÞ2K2ð2μRÞg; ð28Þ

where KνðxÞ are the modified Bessel functions of the
second kind.
As μR → 0, the term ðμRÞK0ð2μRÞ in Eq. (28) becomes

subdominant, while, using KαðxÞ ∼ ΓðαÞ
2

ð2xÞα, valid for
α > 0, we see that the term inside the brackets becomes
∼ð24þ 22Þ=2 ¼ 23, thus reobtaining the famous result by
Casimir and Polder [56] hereafter denoted UCP. Working
out the next term in the small mass limit μR ≪ 1 we obtain
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U ¼ UCP

�
1 −

15ðμRÞ2
46

�
þO½ðμRÞ4�: ð29Þ

As we had obtained for the nonretarded regime, the first
correction is of order ðμRÞ2 and weakens the interaction.
This is due to the fact that the mass increases the frequency
for every wave vector, thus weakening the correlation
between the atoms. This behavior is illustrated in Fig. 2
where we plot the Casimir-Polder retarded energy normal-
ized by the Casimir-Polder result in terms of μR.
In the opposite limit, μR ≫ 1, we have an exponential

decay given by the asymptotic form of the modified Bessel
functions,

U ¼ −
ℏcαAð0ÞαBð0Þμ9=2

4π1=2R5=2 e−2μR
�
1þO

�
1

μR

��
ð30Þ

The previous result shows that, for a given distance
between the atoms, their interaction potential decreases
exponentially with the mass of the photon, as expected,
since the quantum fluctuations of the field are drastically
suppressed as the photon mass increases. Note also the
fractional power law dependence with the distance between
the atoms. This fact resembles somehow the correction to
the Coulomb interaction which appears in the so called
Uehling potential (see [57] for more detail). In the last case,
the electron loop in the vacuum polarization Feynman
diagram introduces the electron mass scale (me) into the
problem and leads, for large R (R ≫ 1=me), to a correction
to the Coulomb potential which is suppressed exponentially
with meR and which falls with the distance with the same
fractional power law that we have obtained for a massive
photon.
In Fig. 3 we plot the exact interaction energy given by

Eq. (24) normalized byURet written in Eq. (28) for identical
two level atoms as a function of ω0R, where ω0 denotes the
atomic transition frequency. This is done by assuming that
only a single term is present in the polarizability defined in

Eq. (11). Notice that the Casimir-Polder approximation
overestimates the interaction energy, which is expected
since the static polarizability is higher than the dynamical
one far from resonance (which is always the case in the
retarded regime). Another striking feature is that the higher
the transition frequency is, for a fixed distance, the worse
the retarded approximation becomes, along the lines dis-
cussed in the previous subsection.

D. Nonretarded regime (ωf ≫ ω0)

Here we take the opposite limit and, as discussed in
Sec. III B, we take the zero frequency limit for the field
degrees of freedom, setting ζ ¼ 0 in Eq. (24), thus
obtaining for interaction energy in the nonretarded regime
the expression

UNRðRÞ ¼
−ℏce−2μR

2πR7
pðμRÞI; ð31Þ

where p is defined in Eq. (7) and

I ¼
Z

∞

0

dζαA

�
iζc
R

�
αB

�
iζc
R

�

¼ 4

9ℏ2

X
r;s≠0

jd0rA j2jd0rB j2
Z

∞

0

dζωr0ωs0�
ω2
r0 þ R2ζ2

c2

��
ω2
s0 þ R2ζ2

c2

�

¼ 2πR
9ℏc

Λ; ð32Þ

where Λ is defined in Eq. (8).
Substituting the result in Eq. (32) into Eq. (31) we

reobtain Eq. (6) of Sec. II. Therefore, in Proca we see that
when the retardation of the electromagnetic field can be
neglected we do not need to quantize the electromagnetic
field, as it is also true in Maxwell. Nonetheless, in Proca we
have an extra subtlety worth mentioning. In Sec. II we did
not quantize the classical degrees of freedom for the field,

FIG. 2. Interaction potential normalized by the Casimir-
Polder potential UCP as a function of the dimensionless radius
parameter μR.

FIG. 3. Complete interaction energy Utotal, normalized by the
retarded interactionUR, as a function of ω0R=c, for identical two-
level atoms with transition frequency ω0R for different values of
the photon mass.
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so that the quantum fluctuations came entirely from the
atomic dipole fluctuations. In particular, since we are in
the electrostatic regime (ω ¼ 0), the field produced by the
fluctuating dipoles is evanescent. In Sec. III on the
other hand, our Hamiltonian (18) contained only field
fluctuations with the atomic dipoles being induced by
them, as in Eq. (17). Here we have only propagating
modes for the fields, which requires frequencies greater
than μc, in marked contrast with the previous calculation.
Nevertheless, as we have demonstrated in this section, the
results of the electrostatic treatment of Sec. II are contained
in the full quantum electrodynamics analysis. This is
physically expected since we can choose whether we
consider the interatomic interaction as fluctuating dipoles
which generates electric field or the other way around,
with the vacuum electromagnetic fluctuations playing the
leading role. We could as well start from a democratic
Hamiltonian which involved fluctuations of both degrees of
freedom but then we would have to perform a tedious 4th
order perturbation theory calculation [53].
The ratio between the full result from Eq. (24) for

identical two-level atoms and the interaction energy in the
nonretarded approximation is shown as a function of μR in
Fig. 4. We note that, as μc=ω0 increases, the nonretarded
regime extends to larger values of ω0R=c, but the inter-
action energy itself becomes more strongly suppressed
for R≳ c=ω0.
The attentive reader may have noticed the similarity

between Figs. 1 and 2, which show the ratio between
the massive and massless interaction energies, UðμRÞ=
UðμR ¼ 0Þ, evaluated in the nonretarded and the retarded
approximations, respectively. As shown in Fig. 5, the curves
for this ratio as a function of the dimensionless parameter μR
are indeed remarkably similar for both regimes, even though
the two approximations correspond to opposite limits. In the
particular casewhere μR ≪ 1, this can be readily verified by
comparing Eqs. (9) and (29), since the coefficients of the

quadratic correction in μR differ by less than 1% [58].
This happens because for a given interatomic distance, the
ratio UtotalðμRÞ=UtotalðμR ¼ 0Þ, evaluated from Eq. (24) is
very nearly independent of the transition frequency ω0.
Indeed, by varying ω0 between 10−4c=R and 104c=R for
every distance we obtain the gray band depicted in Fig. 5
connecting the retarded curve (which is the limit for
ω0 → ∞) with the nonretarded curve (corresponding to
the ω0 → 0 limit).

IV. CONCLUSIONS AND FINAL REMARKS

In this paper we have derived the dispersive interaction
energy between two polarizable atoms, with no permanent
dipole moments, within Proca electrodynamics for any
distance regime. We emphasize that we employed a very
convenient Hamiltonian, introduced in Ref. [1], which
allows for a first order perturbative calculation.
We have found that, despite the inclusion of an extra

energy scale corresponding to the photon mass, dispersive
interactions within Proca electrodynamics are still marked
by the existence of no more than two asymptotic regimes,
corresponding to the London and Casimir-Polder limits of
Maxwellian electrodynamics. A timescale consisting of
interatomic distance over phase velocity may be used to
distinguish between these two regimes, but, in contrast to
Maxwell’s theory, the nonlinear relationship between
frequency and wave number in the massive case prevents
its unambiguous physical interpretation as a retardation
time. This is due to the fact that the phase velocity is both
frequency-dependent and superluminal in the massive
theory. We have computed closed-form analytical expres-
sions that approximate the dispersive interaction energy in
the retarded and nonretarded regimes and presented a
detailed discussion on their differences with respect to

FIG. 4. Complete interaction energy Utotal, normalized by the
nonretarded regime interaction UNR, as a function of ω0R=c for
different values of the photon mass. In this analysis, atoms A and
B are considered to be identical two-level systems of energy
gap ω0.

FIG. 5. Ratio between the interaction energies for massive
and massless QED, as a function of the dimensionless radius
parameter μR for two regimes: the nonretarded (blue dashed
line) and the retarded (purple dot-dashed line) approxima-
tions. The gray band visible on the inset displays the
curves UtotalðμRÞ=UtotalðμR ¼ 0Þ for ω0 in the range
10−4c=R − 104c=R.
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the case of a massless photon. Our results reveal an
enhancement of the nonretarded regime, which extends
over a broader range of interatomic distances in the
presence of a photon mass.
We have also shown that the effects of the photon mass

weaken the interaction energy. More strikingly, we have
shown that, for a given interatomic distance, this weaken-
ing is very similar for both the retarded and the nonretarded
regimes. This means that the mass correction is nearly
independent of the atomic transition frequency. As a
perspective, it would be interesting to explore if this still
holds beyond the atomic scenario, analyzing for instance
the Casimir-Proca force between dielectric media.
Our results should be relevant not only to beyond the

standard model physics scenarios, but also for any theories
or effective descriptions featuring massive vector bosons
or an effective photon mass. An effective photon mass
may emerge, for instance, inside electrolyte solutions,
metals or waveguides [23,24]. Other massive vector bosons
can be found in effective descriptions of nuclear matter,
such as relativistic mean-field models of nuclear inter-
actions [41–45]. In the nuclear context, the possible
polarization of mesons into a baryon-number dipole could
lead to new couplings with vector mesons, with potentially
interesting phenomenological consequences [46].
We hope our findings will inform future investigations

on potential observable effects of a finite, albeit small,
photon mass [53]. Because bounds on the mass of the
photon are rather small, the detection of a photon mass via
van der Waals interactions would be far from trivial.
Nonetheless, possible implications of the finite-mass mod-
ifications in the condensation of gases and other physical
phenomena could potentially prove more revealing of the
photon mass then the van der Waals interaction energy in
itself. It would be interesting to explore this possibility in
future work.
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APPENDIX A: THE PROCA ELECTRIC
DIPOLE FIELD

In this appendix we obtain the Proca field generated by
an electric dipole, following an alternative approach to the
one presented in Ref. [59]. We work in the Fourier
frequency domain, but keep the dependence in spatial
variables. With this choice the potential quadrivector ðϕ;AÞ
satisfies in Proca electrodynamics the equation

�
∇2 þ ω2

c2
− μ2

�
AμðrÞ ¼ −

4π

c
jμðrÞ; ðA1Þ

which can be readily solved with the aid of the Green
function satisfying

�
∇2 þ ω2

c2
− μ2

�
Gðr; r0;ωÞ ¼ −4πδðr − r0Þ; ðA2Þ

whose solution is given by

Gðr; r0;ωÞ ¼ e∓ikjr−r0j

jr − r0j ; ðA3Þ

where we have defined k ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

c2 − μ2
q

and the minus (plus)

sign refers to the solution with (positive) negative fre-
quency. For the purposes of this paper, we need only
propagating frequencies ω > μc for these are the only ones
present in the vacuum electromagnetic field. The Proca
field produced by a dipole follows from solving Eq. (A1)
with

jμ ¼ ð−cdðωÞ · ∇δðr − r0Þ;−iωdðωÞδðr − r0ÞÞ; ðA4Þ

which corresponds to a current 4-vector of a point dipole
[60] dðωÞ at position r0. Hence, the potentials are given by

ϕðr;ωÞ ¼ dðωÞ · ∇0Gðr; r0;ωÞ; ðA5Þ

Aðr;ωÞ ¼ −
iω
c
dðωÞGðr; r0;ωÞ: ðA6Þ

Hence, the Proca electric field for a dipole is given by

Eiðr;ωÞ ¼ djðωÞð∂i∂j þ δijω
2ÞGðr; r0;ωÞ; ðA7Þ

where we have employed ∂
0
j ¼ −∂j, which is valid since

G—given in Eq. (A3)—is a function only of r − r0. By
evaluating the derivatives present in the previous equation
we obtain Eq. (16) of the main paper. Finally, the
electrostatic case is obtained by taking the static limit
ω → 0, which is equivalent to take k ¼ ∓ μ. The choice of
the sign is made to comply with the boundary condition
G → 0 for r → ∞. With this choice, Eq. (16) furnishes
Eq. (2) of Sec. II.
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APPENDIX B: THE INTEGRAL OF SEC. III

In this appendix we will explicitly calculate integrals of
the form

I ¼ A
Z

∞

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ½PsðxÞ sinð2xÞ þ PcðxÞ cosð2xÞ�;

ðB1Þ

where A is some real constant, PsðxÞ is a real odd function
and PcðxÞ is a real even function with no branch cuts.
Those integrals are clearly divergent on the UV regime, so
we will need to perform it on the extended complex plane.
The first step is simply to use the parity of the integrand

to write the above integral as

I ¼ A
2
Re

Z
∞

−∞

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ½PcðxÞ − iPsðxÞ�e2ix: ðB2Þ

We then move to the complex plane, defining a complex
variable z such that Re z ¼ x, so that integral (B2) lies on
the real z line. The above integrand has two branch cuts on
the complex plane (one running from x ¼ iy to x ¼ i∞ and
the other running from x ¼ −iy to x ¼ −∞), as shown in
Fig. 6. To apply the residue theorem, we avoid these branch
cuts, by employing the contour shown in Fig. 6. We choose
to close the contour on the upper half plane, so that the
segments C�

R on this figure evaluate to zero at complex
infinity. The only parts of the contour that are nonzero are I,
uþ and u−, and the residue theorem implies that

Z
I
gðzÞdzþ

Z
uþ

gðzÞdzþ
Z
u−

gðzÞdz ¼ 0; ðB3Þ

where

gðzÞ ¼ P̃ðzÞe2izffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p ðB4Þ

and

P̃ðzÞ ¼ PcðzÞ − iPsðzÞ: ðB5Þ

The branch cut is chosen such that the square root has
positive imaginary part on the right side (the u− line) and
negative imaginary part on the left side (the u− line). Hence,Z

uþ
gðzÞdz ¼ A

2

Z
y

∞

ðiduÞ
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − y2

p P̃ðiuÞe−2u

¼ −
A
2

Z
∞

y

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − y2

p P̃ðiuÞe−2u ðB6Þ

andZ
u−

gðzÞdz ¼ A
2

Z
∞

y

ðiduÞ
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − y2

p P̃ðiuÞe−2u

¼ −
A
2

Z
∞

y

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − y2

p P̃ðiuÞe−2u ðB7Þ

¼
Z
uþ

gðzÞdz ðB8Þ

So that integral I becomes

I ¼ −ARe
Z

∞

y

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − y2

p P̃ðiuÞe−2u: ðB9Þ
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