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We consider a setup to detect stimulated photon-photon scattering using high-power lasers. Signal
photons are emitted from an overlap of the incoming intense laser pulses focused in vacuum from three
sides. We derive and justify a general approximate analytical formula for the angular distribution and total
yield of such signal photons in terms of the parameters of the incoming pulses, including their intensity,
carrier frequencies, durations, focusing, polarizations, mutual orientation and overlap. Using the obtained
formula a parametric study of the signal is carried out and optimization is performed.
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I. INTRODUCTION

From the modern perspectives, strong electromagnetic
fields modify quantum fluctuations in a vacuum, changing
its properties. This is called vacuum polarization and is
described by the Heisenberg-Euler effective action [1,2]

S ¼
Z

d4x

�
F
4π

þ α

360π2E2
c
ð4F2 þ 7G2Þ þ � � �

�
; ð1Þ

where F ¼ ðE2 −H2Þ=2 and G ¼ E ·H are the electro-
magnetic field invariants, Ec ¼ m2c3=ðeℏÞ ¼ 1.3 ×
1016 V=cm is the critical field, and α ¼ e2=ðℏcÞ is the
fine structure constant. Here m is the electron mass, e
is the magnitude of the electron charge, c is the speed of
light in vacuum, and ℏ is the reduced Planck constant.
Expression (1) is valid for fields weaker than the critical
field Ec and varying slowly over the Compton length and
over the Compton time. The terms additional to the action
of classical electromagnetism called radiative corrections
are of quantum nature. We consider only the leading
radiative correction called the four-wave mixing and given
explicitly in Eq. (1), since for laser fields under consid-
eration the higher-order terms are about ∝ 10−6 times
smaller.
Radiative corrections in Eq. (1) bring additional non-

linear terms to Maxwell equations. In a variable field these
terms act as sources for a detectable emission of real

photons from polarized vacuum. In quantum language and
when considering only the main four-wave interaction
corrections, such radiation is associated with the process
of elastic photon-photon scattering [3–8]. Significant devi-
ations of the coefficients from the values given in Eq. (1), if
exceed the accuracy of the supposed approximations, may
indicate a new physics, in particular, the contribution of
axionlike components of dark matter. Up to date, the effect
of real photon-photon scattering has been never observed
directly [9–15].
Theoretical analysis of three-pulse experimental

schemes for detecting photon-photon scattering was started
quite long ago [16–18]. The supplement of a third pulse
stimulates the scattering process, enhancing the feasibility
of the effect in comparison with earlier two-pulse schemes.
However, the early works ignored the real structure of the
fields of the focused laser pulses, which were represented
just as plane monochromatic waves, allowing one at best
only to estimate the magnitude of the effect. The most
interesting development of these works was the invention
of more favorable collision geometries, for which the signal
photons to be detected were better separated from the initial
pulses in direction and frequency [13,19,20]. Furthermore,
the geometric factors were obtained in Refs. [19,20] for
arbitrary linear polarization of the pulses.
More recent advance of the three-pulse schemes was

inspired by the progress of high-power lasers that would
make experimental detection of the effect feasible. In
particular, the structure of the focused pulsed field was
refined by applying the Gaussian beam model [21,22]. At
the same time, using more sophisticated field models did
not allow one to carry out all calculations analytically, so
that the final signal distributions could be calculated only
numerically for some particular accepted values of the
parameters [23–25]. Some authors considered collision
schemes involving a larger number of pulses [26,27].
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Their advantage is a richer set of potentially detected
signals, but the distributions become less clear and more
difficult to read off.
Here we advance the consideration of three-pulse

schemes for detecting photon-photon scattering by deriving
an analytical formula for the total yield of the signal
photons. The formula takes into account realistic structure
of the laser fields and contains the dependence on the full
set of parameters (peak power, duration, focusing width,
polarization) of each of the pulses. In addition, it applies to
any geometry of the collision setup.
The paper is organized as follows. In Sec. II we review

the basic calculation formulas and the model of a focused
Gaussian beam with an arbitrary polarization. In Sec. III
the most general form geometry of a three-pulse collision
scheme is considered and a universal analytical formula
for the signal photons yield is obtained. Thereafter,
using the obtained formula, in Sec. IV the dependence
of the signal on the key parameters is obtained for a
specific example collision scheme and, thereby, the
conditions maximizing it are discussed. In Sec. V we
conclude. The appendixes include the discussion of the
parameters of a Gaussian pulse in terms of the character-
istics of real lasers and the decryption of the (rather
complicated) expressions encountered in the derived
analytical formulas.

II. FORMALISM

A. Number of emitted photons

As follows from Eq. (1), an external electromagnetic
field induces the vacuum sources

ρ¼−divP; j¼ 1

c
∂P
∂t

− rotM; ð2Þ

where the polarization P and magnetization M of the
vacuum in the same approximation as Eq. (1) are deter-
mined by the expressions

P ¼ α

180π2E2
c
ð4FEþ 7GHÞ;

M ¼ α

180π2E2
c
ð4FH − 7GEÞ: ð3Þ

In the considered case of stimulated scattering, follow-
ing [28–31], the average number of signal photons
emitted in a narrow frequency range ðω;ωþ dωÞ can
be found by dividing the energy emitted by sources (2) in
this spectral interval, calculated according to classical
electrodynamics [32], by the photon energy ℏω. Hence,
for the average total number of emitted signal photons,
we find

N ¼
Z

dΩk̂

4π

Zþ∞

0

ω3dω
πℏc3

×

����
Z

d4x
�
k̂ × Pþ k̂ × ðk̂ ×MÞ�eikx����2: ð4Þ

Here and below, we use a standard abbreviation for the
scalar product in Minkowski space:

kx≡kμxμ ¼ωðt− k̂ ·r=cÞ; kμ ¼ωð1; k̂Þ=c: ð5Þ

The integrand in Eq. (4) determines the average spectrum
and angular distribution of the signal. Since signal
photons are emitted in a coherent state, the uncertainty
in their actual number is of the order of ΔN ≃

ffiffiffiffi
N

p
.

B. Focused laser pulse model

In what follows we consider the emission of signal
photons from an overlap of a number of colliding focused
laser pulses. The field of the lth pulse propagating along the
direction k̂l, can be represented as

ELl ¼ReðELl
s e−iklxÞ; HLl ¼ReðHLl

s e−iklxÞ; ð6Þ

where ωl is the carrier frequency of the pulse and ELl
s ðt; rÞ

andHLl
s ðt; rÞ are complex vector envelopes, slowly varying

compared to the oscillating factor. For simplicity, all the
pulses are considered Gaussian [21,22], so that for a pulse
propagating along the axis z (k̂l ¼ êz) and passing the
center of the focus at the origin at t ¼ 0, the corresponding
complex vectors ẼLl

s ðt; rÞ and H̃Ll
s ðt; rÞ have the form

ẼLl
s ¼ ϵlAle

iφ0;l ; H̃Ll
s ¼ êz × ẼLl

s ; ð7Þ

where ϵl ¼ ðcos θl; eiδl sin θl; 0Þ is the normalized complex
polarization vector [33], φ0;l is the carrier-envelope phase,

Alðt; rÞ ¼
A0;l

κl
exp

�
−ϕ2

k;l −
ϕ2⊥;l

κl

�
; ð8Þ

and

ϕk;l ¼ alωlðz=c − tÞ; ϕ⊥;l ¼ Δlωl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
=c;

κl ¼ 1þ iϕz;l; ϕz;l ¼ 2Δ2
lωlz=c: ð9Þ

In Eqs. (8) and (9) the amplitude A0;l is determined by
the peak power Pl of the pulse, and the dimensionless small
parameters al ≪ 1 and Δl ≪ 1 characterize the duration τl
of the pulse and its focal width wl in comparison with the
wave period and wavelength λl ¼ 2πc=ωl, respectively
(see Appendix A for details).
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The expressions for envelopes of an arbitrarily directed
pulse are constructed by appropriate shift and rotation:

ELl
s ðt; rÞ ¼ Ml · Ẽ

Ll
s
�
t − tl;M−1

l · ðr − rlÞ
�
;

HLl
s ðt; rÞ ¼ Ml · H̃

Ll
s
�
t − tl;M−1

l · ðr − rlÞ
�
; ð10Þ

where the rotation matrices Ml in the selected coordinate
system ðêx; êy; êzÞ are determined by the actual directions
of the pulses:

Mlðk̂lÞ ¼
�
êz × k̂l

jêz × k̂lj
;
k̂l × ðêz × k̂lÞ

jêz × k̂lj
; k̂l

�−1
: ð11Þ

III. ANALYTICAL FORMULA FOR
THE NUMBER OF SIGNAL PHOTONS

Equation (4) is our starting one. The internal (spatio-
temporal) integral is four-dimensional within infinite limits,
in case of moderate focusing and long pulse duration (as
compared to the wavelength and period, respectively) with
a rapidly oscillating integrand. Thus its direct numerical
evaluation by standard methods repeated for different
values of parameters is challenging in terms of both the
required computational resources and time. However, the
method described below allows one not only to circumvent
this difficulty by significantly simplifying and optimizing
calculations, but also to derive an approximate analytical
formula applicable in a wide range of parameters.

A. Isolation of fundamental harmonics

We assume that laser pulses fLlg collide coherently, so
that the electric and magnetic fields in the region of their
overlap are coherent superpositions of their individual
fields:

E¼
X
l

ELlðt;rÞ; H¼
X
l

HLlðt;rÞ: ð12Þ

Consider separately the integral
R
d4xPeikx contained in

Eq. (4) [the below consideration holds also for the integral
of magnetization

R
d4xMeikx and, hence, for the whole

integrand in Eq. (4)]. Taking into account Eqs. (6) and (12),
the integrand is represented as a sum of harmonics
oscillating at constant frequencies:Z

d4xPeikx ¼ α

180π2E2
c

Z
d4x

X
l1;l2;l3

Gl1l2l3 ; ð13Þ

where the factor Gl1l2l3 contains a product of the com-
plexified fields of the pulses Ll1 , Ll2 and Ll3 or their
complex conjugates. For example,

G3
12 ¼ p3

12A1A2A�
3e

−iðk1þk2−k3−kÞx; ð14Þ

where

p3
12 ≡ eiðk1þk2−k3Þx ∂

3

∂A1∂A2∂A�
3

ð4FEþ 7GHÞ ð15Þ

is a constant vector determined by the propagation direc-
tions and polarizations of the pulses (see Appendix B) and
the upper index “3”means that the field of the third pulse is
taken complex conjugate.
Contributions of such harmonics to the integral in

Eq. (13) is suppressed due to their fast oscillation in space
and time, unless the argument of the overall rapidly
oscillating exponential factor vanishes. This corresponds
to fulfillment of the energy-momentum conservation law.
Hence the values of the frequency ω and propagation
direction k̂ that provide such an equality determine the
maxima of the spectral and angular distributions of the
emitted photons.
Let us classify the harmonics by their type. Single-pulse

harmonics Glll, Gl
ll, Gll

l , and Glll are absent in the
expansion (13) due to the vanishing of the field invariants
F and G for the field of each pulse (6) in our approxi-
mation. Two-pulse harmonics Gl1l1l2 , Gl2

l1l1
, Gl1

l1l2
, Gl1l2

l1
,

Gl1l1
l2

, and Gl1l1l2 þ l1 ↔ l2 also contribute to (13), but the
argument of their oscillating factor either cannot vanish at
all, or the maxima of the distributions of the radiated
photons coincide in direction and frequency with either one
of the initial pulses, thus making their experimental
detection hardly possible. For this reason, three-pulse
harmonics Gl1l2l3 , G

l2l3
l1

, Gl1l3
l2

, Gl1l2
l3

, Gl1l2l3 , Gl1
l2l3

, Gl2
l1l3

,

and Gl3
l1l2

are of most interest; moreover, only the last three
of them are such that the argument of the oscillating
factor can ever vanish (as the remaining transitions are
forbidden by conservation laws). Therefore, as most other
authors [13,16,17,20,23–25,34], in the sequel we focus on
three-pulse collision schemes. Radiation of vacuum polar-
ized by more than three pulses is also possible, but up to
first order in α under consideration [see Eq. (1)] [26,27] is
described by a combination of distributions for three-pulse
schemes.

B. Geometry of three-pulse
collision schemes

First assume that all the three pulses are simultaneously
focused precisely at the origin (tl ¼ 0, rl ¼ 0) of the
Cartesian coordinate system with the unit vectors êx, êy
and êz. It is convenient to choose the direction of êz making
the same acute angles with the directions of the pulses k̂1,
k̂2 and k̂3. Let us direct êx so that the vector k̂3 lies in the
first quadrant of the plane xz; see Fig. 1. Then the directions
of the pulses can be set with three parameters as follows:
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k̂j ¼
�
βcosφj;β sinφj;

ffiffiffiffiffiffiffiffiffiffiffiffi
1−β2

q 	
; j∈f1;2g; ð16aÞ

k̂3 ¼
�
β; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q 	
; ð16bÞ

where φ1 and φ2 are the azimuth angles of the vectors k̂1

and k̂2 and 0 ≤ β ≤ 1 is the sine of the polar angle of each
direction. In order to exclude from consideration the
collision schemes differing by reflection in the xz plane,
we restrict the angle φ1 to 0 ≤ φ1 ≤ π. Note that β ¼ 0
corresponds to the case of codirectional pulses and β ¼ 1 to
the case of all pulses propagating in the same plane.
The frequency ωs and the direction k̂s of the signal

photon are fixed by the conservation law

kμ1 þ kμ2 ¼ kμ3 þ kμs ; ð17Þ

where kμl ¼ ðωl;klÞ, l∈ f1; 2; 3g; kμs ¼ ðωs;ksÞ. The zero
component of Eq. (17) corresponds to energy conservation
in photon-photon scattering and determines the frequency
of the signal photon

ωs ¼ ω1 þ ω2 − ω3: ð18Þ
The z component of Eq. (17) reads

ωsk̂s;z ¼ ðω1 þ ω2 − ω3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
: ð19Þ

By comparing it with Eq. (18), we find k̂s;z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
, so

that the direction of the signal photon can be sought in a
form similar to Eq. (16a):

k̂s ¼ ðβ cosφs; β sinφs;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
Þ: ð20Þ

With account for Eq. (20), the remaining components of
Eq. (17) take the form

ω1 cosφ1 þ ω2 cosφ2 ¼ ω3 þ ωs cosφs;

ω1 sinφ1 þ ω2 sinφ2 ¼ ωs sinφs: ð21Þ

Conditions (21) determine the azimuthal angle φs of the
signal photon, also imposing a restriction on the frequen-
cies and directions of the initial pulses. Note that, since
Eqs. (21) do not contain the parameter β, any combination
of the parameters satisfying Eqs. (21) defines a set of
collision schemes differing by β, for 0 ≤ β ≤ 1.
Since we are interested in optimizing the direction of

propagation of the signal photon, consider the angles α1,
α2, and α3 (0 ≤ α1; α2; α3 ≤ π) that the pulses make with
k̂s. Based on Eqs. (16) and (20), we find

sin αj ¼ 2β

���� sinφj − φs

2

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2sin2

φj − φs

2

r
;

sin α3 ¼ 2β

���� sinφs

2

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2sin2

φs

2

r
; ð22Þ

where j ¼ 1, 2.
A conceivable optimization target is making the

deviation of the propagation direction of signal photons
from all the incoming pulses as much as possible. To that
end, it is enough to maximize the expression

S ¼ minðsin α1; sin α2; sin α3Þ ð23Þ

under the constraints (21). The closer S to unity, the better
angular separation of the signal. Finding a global maximum
of S in the most general setting is a difficult task and
requires a separate consideration. Assuming additionally
that the incoming pulses are the harmonics ωl ¼ νlω0 of a
certain fundamental frequency ω0 ¼ 2πc=λ0, the resulting
(at least local) extrema of S are shown in Table I. Note that
scheme no. 8 does not maximize S and is included for the
sake of comparison as it has been extensively studied in the
literature [20,24,25,34]. Despite that all other listed
schemes maximize angular separation S of the signal, they
might have certain features unpleasant for experimental
realization, such as head-on collision of some of the pulses
(schemes no. 2, 5, 10, and 14), or that the frequency of
signal photons coincides to some of the frequencies of the
incoming pulses (schemes no. 1–6), or that higher than
second harmonics are involved (schemes no. 11–16).
Therefore in what follows we mostly have in mind scheme
no. 7, which is very similar to scheme no. 8 in terms of
geometry1 (slightly differing only in β) but provides better
angular separation and twice more signal photons; see
Sec. IV C. As for scheme no. 9, it provides slightly less
angular separation but slightly stronger signal than scheme

FIG. 1. A characteristic view of the collision scheme in the
selected coordinate system. The blue arrows indicate the propa-
gation directions of the initial pulses, and the green arrow
represents the signal photon. The figure corresponds to the
geometry of scheme no. 7 in Table I.

1While in scheme no. 8 all initial pulses are orthogonal to each
other, in scheme no. 7 they all make the same angle arcsinð4=5Þ
with the line of propagation of the signal photons.

A. V. BEREZIN and A. M. FEDOTOV PHYS. REV. D 110, 016009 (2024)

016009-4



no. 7. Otherwise it is fundamentally no worse than scheme
no. 7 and may also be of interest for further studies.
Table I presents only a restricted list of possible schemes

involving not higher than third integer harmonics of the
fundamental frequency. Such schemes are most convenient
for implementation, as they require only a single source of
coherent radiation and maintain energy losses at acceptable
level. Note that the number of signal photons in the last
column in Table I assumes equal powers of all incoming
pulses, but in a realistic experiment one should additionally
take into account energy losses for frequency conversion.

C. Integrated signal

Let us derive general formulas without specification of
particular collision scheme. Without loss of generality
consider the harmonic G3

12. The corresponding number
of signal photons is given by

Ns ¼
Z

dΩk̂

4π

Zþ∞

0

ω3dω
πℏc3

����C
Z

d4xA1A2A�
3e

iðk−ksÞx
����2; ð24Þ

where

Cðk̂Þ ¼ k̂ × p3
12 þ k̂ × ðk̂ ×m3

12Þ; ð25Þ

and vector m3
12 is defined similarly to Eq. (15) as

m3
12 ≡ eiðk1þk2−k3Þx ∂

3

∂A1∂A2∂A�
3

ð4FH − 7GEÞ ð26Þ

(see Appendix B for the explicit expression).

The inner integral over spacetime in Eq. (24) can be
taken analytically using the infinite Rayleigh length
approximation (IRLA) [25]. In doing so, we neglect the
deviation of κl from unity in Eq. (9) (thus replacing
κl → 1). This approximation is natural, since the region
of three-pulse interaction is determined by the characteristic
pulse focusing width ∝ c=ðΔω0Þ, which is much smaller
than the Rayleigh length ∝ c=ðΔ2ω0Þ. Using IRLA, the
inner integral in Eq. (24) becomes Gaussian, so that we find

Ns ≈
�
αA0;1A0;2A0;3

90πE2
c

�
2 c3

ℏω4
0 detM

×
Z

dΩk̂

Z þ∞

0

dνν3jCj2 expð−BTM−1BÞ; ð27Þ

where ν ¼ ω=ω0 and the dimensionless column vector

Bðν; k̂Þ ¼ �
ν − νs;−ðνk̂ − νsk̂sÞ

�
T ð28Þ

depends on the state of the emitted signal photon,
νs ¼ ωs=ω0, and

Mpq ¼
�

c
ω0

�
2 ∂

2

∂xp∂xq
X3
l¼1

ϕ2
l ðt;M−1

l rÞ; ð29Þ

ϕ2
l ðt; rÞ≡ ϕ2

k;l þ ϕ2⊥;l; ð30Þ

is dimensionless matrix of coefficients depending on the
parameters al and Δl (for an explicit expression see
Appendix B).
Using Eqs. (27) and (28), we obtain an analytical

expression for the angular distribution of the energy Ws

TABLE I. Extrema of S [see Eq. (23)] for given pulse frequencies ωl ¼ νlω0 with νs ¼ ν1 þ ν2 − ν3.

ν1 ν2 ν3 νs φ1 φ2 φs β S Ns
a

1 1 1 1 1 π=2 3π=2 π
ffiffiffiffiffiffiffiffi
2=3

p ð≈0.816Þ ffiffiffi
8

p
=3ð≈0.943Þ 3.03 × 105

2 1 2 1 2 π π=3 2π=3 1 0.866 1.39 × 106

3 2.30 3π=2 3.82 0.954 0.784 1.45 × 106

4 1.86 4.49 3.66 0.955 0.708 2.00 × 106

5 1 2 2 1 0.680 π 1.91 1
ffiffiffi
8

p
=3ð≈0.943Þ 1.00 × 106

6 0.876 5.25 4.38 0.933 0.727 2.38 × 105

7 2 2 1 3 2π=3 4π=3 π 2=
ffiffiffi
5

p ð≈0.895Þ 0.800 1.20 × 106

8 2π=3 4π=3 π
ffiffiffiffiffiffiffiffi
2=3

p ð≈0.816Þ ffiffiffi
5

p
=3ð≈0.745Þ 5.67 × 105

9 1.55 3.58 2.75 0.942 0.705 1.82 × 106

10 π 1.23 2.46 1 0.629 2.68 × 106

11 2 2 3 1 π=3 5π=3 π 0.756 0.990 1.00 × 105

12 1.19 5.43 2.79 0.820 0.952 1.79 × 105

13 1.13 5.83 1.93 0.994 0.712 2.99 × 105

14 2 3 1 4 π 1.46 2.30 1
ffiffiffi
5

p
=3ð≈0.745Þ 1.84 × 106

15 2.86 4.63 3.80 0.971 0.722 1.83 × 106

16 1.40 3.24 2.71 0.988 0.501 3.61 × 106

aFor parameters Pl ¼ 50 PW, νlal ¼ 0.0284, νlΔl ¼ 0.159, ω0 ¼ 2πc=λ0, λ0 ¼ 910 nm and linear polarizations either θl ¼ π=4 or
θl ¼ 3π=4 [see Sec. IV B for details on the optimal choice of polarizations].
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transferred to signal photons. Multiplying the integrand of
Eq. (27) by the photon energy ℏω, we arrive at

dWs

dΩk̂
¼

�
αA0;1A0;2A0;3

90πE2
c

�
2 jCj2c3
ω3
0 detM

×
Zþ∞

0

dνν4 expð−BTM−1BÞ: ð31Þ

The column vector B (28) can be conveniently consid-
ered as a combination

B ¼ νBk − νsBs ð32Þ

of the vectors

Bk≡ ð1;−k̂ÞT; Bs≡ ð1;−k̂sÞT; ð33Þ

so that the argument of the Gauss exponential can be
represented as

−BTM−1B ¼ −c1ν2 þ c2ν − c3; ð34Þ

where

c1 ¼ BT
kM

−1Bk;

c2 ¼ νsðBT
kM

−1Bs þ BT
sM−1BkÞ;

c3 ¼ ν2sBT
sM−1Bs:

With the introduced notations, evaluation of the integral
in Eq. (31) results in

dWs

dΩk̂
¼

�
αA0;1A0;2A0;3

360πE3
c

�
2 jCj2�2μð10þ μ2Þ þ ffiffiffi

π
p ð12þ 12μ2 þ μ4Þ�1þ erfðμ=2Þ�eμ2=4�e−c3

2c5=21 detM
×
c3E2

c

ω3
0

; ð35Þ

where μ ¼ c2=
ffiffiffiffiffi
c1

p
. The corresponding signal energy

distribution for scheme no. 7 from Table I, combined with
distributions for the incoming pulses, is shown in Fig. 2,
where it is clear that the signal, though much weaker, is
nevertheless well separated from them.
Let us come back to the total number of the emitted

signal photons. As already discussed, the integrand in
Eq. (27) has a sharp peak at ν ¼ νs and k̂ ¼ k̂s. Therefore,
the integrals over the states of the emitted signal photon can
be taken approximately using the saddle-point method.
Passing inEq. (27) to thevariables ðν; θ;φÞ of the spherical

coordinate system,wehave k̂¼ðcosφsinθ;sinφsinθ;cosθÞ
and after evaluating the integrals to the lowest order obtain

Ns ≈
�
αA0;1A0;2A0;3

90E2
c

�
2

×
βðνscÞ3jCðk̂sÞj2ffiffiffi

π
p

ℏω4
0 detM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðMT

BM
−1MBÞ

p ; ð36Þ

where the matrix

MB ¼
�
∂B
∂ν

;
∂B
∂θ

;
∂B
∂φ

�
T
����
ν¼νs

θ¼arcsinβ
ϕ¼ϕs

ð37Þ

is given explicitly in Appendix B.
Finally, we rewrite Eq. (36) in terms of peak powers of

the pulses using Eq. (A5), thus arriving at

Ns ¼ N0

βðν1ν2ν3Δ1Δ2Δ3Þ2ν3sCs

detM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðMT

BM
−1MBÞ

p ; ð38Þ

where the following notations are introduced:

N0≡ 1ffiffiffi
π

p
�
32α

45

�
2ω2

0P1P2P3

ℏc6E4
c

; Cs≡ jCðk̂sÞj2: ð39Þ

The quantity N0 establishes the overall magnitude of the
signal, whereas the remaining dimensionless factors in
Eq. (38) are scheme-specific corrections.

D. Case of nonideal collision of the pulses

In deriving Eq. (38) we assumed that the centers of all
colliding laser pulses are simultaneously passing through
the origin and that their propagation directions satisfy the
conservation laws Eq. (17). However, since such a perfect
adjustment can hardly be achieved in practice, let us now
refine Eq. (38) for the case of shifted centers and directions
of momenta of the pulses:

tl ≠ 0; rl ≠ 0; kl→ k̃l¼ klþδkl: ð40Þ

Such changes obviously maintain the inner four-
dimensional integral in Eq. (24) Gaussian in the IRLA,
so that it can still be taken analytically. An analog of
Eq. (27) takes the form
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Ñs≈
�
αA0;1A0;2A0;3

90πE2
c

�
2 c3

ℏω4
0detM̃

×
Z

dΩk̂

Zþ∞

0

dνν3
����Cexp

�
−
B̃TM̃−1B̃

2
−
γ

2

�����2; ð41Þ

where

M̃pq ¼
�

c
ω0

�
2 ∂

2

∂xp∂xq
X3
l¼1

ϕ2
l ðΔtl;ΔrlÞ; ð42Þ

γ ¼
X3
l¼1

X3
p;q¼0

xpl x
q
l
∂
2ϕ2

l ðΔtl;ΔrlÞ
∂xpl ∂x

q
l

; ð43Þ

Δtl¼ t− tl; Δrl ¼
�
Mlð ˆ̃klÞ

�−1
· ðr− rlÞ; ð44Þ

xp and xpl are contravariant components of four-vectors
x ¼ ðt; rÞ and xl ¼ ðtl; rlÞ, respectively, and vector B̃
contains two corrections to B:

B̃ðν; k̂Þ ¼ Bðν; k̂Þ þ δBk − iδBx; ð45Þ

the first one due to the change in the directions of the pulses

δBk ¼
�

c
ω0

�X3
l¼1

δkl ð46Þ

and the second one due to space and time shifts of their
centers

δBx
p ¼

�
c
ω0

�
∂

∂xp
X3
l¼1

ϕ2
l ðΔtl;ΔrlÞ

����
t¼0
r¼0

: ð47Þ

Substituting Eq. (45) into Eq. (41), we find

Ñs≈
�
αA0;1A0;2A0;3

90πE2
c

�
2 c3

ℏω4
0 detM̃

exp
�ðδBxÞTM̃−1δBx− γ

�

×
Z

dΩk̂

Zþ∞

0

dνν3jCj2 exp�−ðBþ δBkÞTM̃−1

× ðBþ δBkÞ�: ð48Þ

Note that the corrections due to a shift of the focal
centers of the pulses are contained in Eq. (48) exclusively in
the first exponential factor in front of the integral.
Further general analytical consideration of the expres-

sion (48) is extremely bulky as the saddle point moves due
to shifts in the directions of the pulses. Such a calculation
is easier performed for particular cases using computer
algebra.

IV. RESULTS

Let us study the total number of signal photons in
dependence on the parameters of a collision scheme. Due to
the presence of a large number of parameters in Eq. (38), it
is worth restricting consideration to the most interesting
special cases in Table I. Namely, let us consider in more
detail scheme no. 7, which is more favorable in terms of
angular separation of signal photons than the conventional
scheme no. 8. These two schemes are specified by the

FIG. 2. Angular distribution Eq. (35) of the total energy of the signal photons in joule (dimmer peak at about N64°, E180°) compared
to the energy distributions in initial pulses (brighter peaks; see Appendix A) on a decimal logarithmic scale for scheme no. 7. All the
three incoming pulses are polarized linearly (δl ¼ 0) with θl ¼ π=4; other parameters: Pl ¼ 50 PW, νlal ¼ 0.0284, νlΔl ¼ 0.159,
ω0 ¼ 2πc=λ0, and λ0 ¼ 910 nm.
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following parameter values:

ν1 ¼ ν2¼ 2ν3 ¼ 2; 2φ1¼φ2 ¼
4π

3
; φs ¼ π: ð49Þ

In this case, specified also to coinciding durations and focal
widths and linear polarizations of the pulses

νlal ¼ a; νlΔl¼Δ; δl¼ 0; ð50Þ

Eq. (38) takes the form

Ns¼N0

Δ5Cs

6
ffiffiffi
3

p
β2aðβ2a2þð2−β2ÞΔ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3β2a2þð4−3β2ÞΔ2

p ;

ð51Þ

Csjδl¼0 ¼
9β8

2048

�
1251þ 145 cos

�
2ðθ1 − θ2Þ

�
− 816 cos

�
2ðθ1 þ θ2Þ

�þ 515
�
cosð2ðθ1 − θ3Þ

�
þ cos

�
2ðθ2 − θ3Þ

��
− 229

�
cos

�
2ðθ1 þ θ3Þ

�
þ cos

�
2ðθ2 þ θ3ÞÞ

��
: ð52Þ

In what follows, for definiteness we focus on the
particular parameter values λ0 ¼ 910 nm and 2P1 ¼
2P2 ¼ P3 ¼ 50 PW, such that N0 ¼ 7 × 105. This roughly
corresponds to the parameters opted for the XCELS
facility [35] with account for typical conversion effi-
ciency of second harmonics generation ∼50% [36–38].
Since the dependence on these parameters in Eq. (38) is
trivial, rescaling of our results for other facilities is
straightforward.
As for other parameters, the adopted values a ¼ 0.0284

and Δ ¼ 0.159 correspond to pulse duration τ ¼ 17 fs (so
that FWHM of the pulse energy distribution is equal to
20 fs) and focal width w ¼ λ0 (see Appendix A).

A. Accuracy of approximations in dependence
on pulse width and duration

To obtain Eq. (38) we applied the IRLA along with the
saddle-point method. Now let us explore the accuracy of
the result by comparing Eq. (38) with direct numerical
evaluation of the integral. The results of such comparison
given in Fig. 3 show that the saddle-point method is a
weaker approximation than IRLA, for which the error
scales as Δ2. Therefore, to refine the result, one first needs
to take into account the longitudinal component of the field
in the pulse model, linear in Δ. Without taking this into
account the total error does not exceed 4% in the considered
range of parameters. In view of the above, all further
consideration will be based on the obtained analytical
formula.

B. Dependence on pulses polarization

Let us investigate the dependence of the factor Cs on the
pulses polarization in scheme no. 7. Consider first the case
of linear polarization (52). The dependence on the polari-
zation angles θl is shown in Fig. 4. In particular, (52) attains
maximum

maxCsjδl¼0 ¼
�
63

16

�
2

β8 ≈ 15.5β8 ð53Þ

at θl ¼ π=4 or θl ¼ 3π=4. It turns out that these polariza-
tion angles actually maximize the signal for all the schemes
in Table I.
We note that in general the parameter β factors out

in the expression for Cs, which, in this case, has a
maximum

maxCs ¼
�
33

8

�
2

β8 ≈ 17.0β8 ð54Þ

FIG. 3. The total number of signal photons and its relative error for collision scheme no. 7 calculated using analytical formula (38), as
well as using numerical calculation along with IRLA, against numerical evaluation without approximations versus the pulses duration
(left) and focusing width (right). Parameters: θl ¼ π=4, δl ¼ 0, Δ ¼ 0.159 (left), and a ¼ 0.0284 (right).
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at ðθl; δlÞ ∈ fðπ=4; π=2Þ; ð3π=4; 3π=2Þg or ðθl; δlÞ ∈
fðπ=4; 3π=2Þ; ð3π=4; π=2Þg; i.e. the maximum is attained
for circular identically oriented polarizations of the pulses.
This maximum, however, only slightly exceeds Eq. (53).
Dependence of the factor Cs on the ellipticities δl is shown
in Fig. 5.
The same analysis applies to the dependence on polari-

zation for scheme no. 8.

C. Dependence on scheme planarity

Let us study the dependence of the number of signal
photons on the parameter β of the collision geometry. This
parameter is the sine of the polar angle of the directions of
both the initial pulses and signal photons; thereby, it sets the

planarity degree of the collision geometry. Recall that
schemes no. 7 and 8 differ only by the value of β. The
dependence of the number of signal photons on β is shown
in Fig. 6. The number of signal photons increases with β, as
it also follows from Eqs. (48) and (52). At the same time,
the number of signal photons in scheme no. 7 is 2.15 times
greater than in scheme no. 8. Further increase in β, though,
leads to an increase in the number of signal photons and
worsens spatial separation between the signal and the initial
pulses. For example, at β ¼ 1 the direction of the signal
photons is opposite to the third pulse.

D. Dependence on widths difference of the pulses

The dependence of the signal on the focusing width of
the third pulse for different values of the focusing width of
the second pulse and fixed focusing width of the first pulse
is shown in Fig. 7.
It follows that the magnitude of the signal is mainly

determined by the least focused pulse: the smaller its
focusing width, the stronger the effect. As long as the
pulse focusing widths remain commensurable, strengthen-
ing the focusing of any of the pulses leads to an increase in
the number of signal photons; otherwise, further focusing
of the most focused pulse only weakens the effect. Thus,
the overall effect is optimized by strongest possible focus-
ing of all the pulses, keeping their focusing commensurable
but not necessarily precisely the same.

E. Comparison with previous studies

In comparing formula (38) with the results of previous
studies there are a number of difficulties related to different
choices of a model for the laser pulses and the discrepancies
on the definitions of its parameters. For example, Ref. [20]
considered scheme no. 8 but for simplicity with flattop
profiles of the overlapping pulses. Therefore, a literal

FIG. 4. Dependences of the polarization factor Cs for collision
scheme no. 7 with β ¼ 2=

ffiffiffi
5

p
in the case of linear polarizations

(δl ¼ 0) on the polarization angle θ3 of the third pulse for different
values of the polarization angle θ2 of the second pulse for the fixed
value θ1 ¼ π=4 of the polarization angle of the first pulse.

FIG. 5. Dependences of the polarization factor Cs for collision
scheme no. 7 with β ¼ 2=

ffiffiffi
5

p
on the ellipticity δ1 of the first pulse

(θ1 ¼ π=4) for different values of the ellipticity δ2 of the second
pulse (θ2 ¼ π=4) for a fixed polarization δ3 ¼ 3π=2, θ3 ¼ π=4 of
the third pulse.

FIG. 6. Dependence of the number of signal photons (48) on
the parameter β of the collision geometry. Black solid and dashed
lines correspond to schemes no. 7 and 8, respectively. Parameters:
a ¼ 0.0284, Δ ¼ 0.159, θl ¼ π=4, and δl ¼ 0.
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comparison of the number of signal photons is hardly
possible. Nevertheless, for parameters λ0 ¼ 800 nm,
5P1 ¼ 5P2 ¼ P3 ¼ 0.5 PW, and cτl ¼ 10 μm, optimal
linear polarizations (53) and assuming the focus width is
half of the spatial interaction region wl ¼ λ0, we get 0.067
signal photons which agrees well with 0.07 photons in
Ref. [20]. More important is the agreement in dependence
on the parameters of the pulses. In particular, the depend-
ence on the duration τ and focusing width w, which from
our Eq. (51) in case a ≪ Δ under consideration reads

Ns ∼
Δ2

λ20a
∼

τ

λ0w2
; ð55Þ

agrees with Eq. (8) in Ref. [20] if one assumes that τ ∼ L
and w ∼ λ0. As for the dependence (52) on the polarization
angle, our Fig. 4 up to a horizontal shift and vertical stretch
coincides to the upper panel in Fig. 2 of Ref. [20].
Later works have already used the Gaussian beam model

which up to the notation is the same as (7)–(9). However,
Ref. [25] does not indicate explicitly the relationship
between the amplitude and power of the pulses, as well
as the assumed polarization angles of the incoming pulses,
so that it is impossible to accurately restore the setup. For
parameters λ0 ¼ 910 nm, Pl ¼ 25 PW, τl ¼ 30 fs, and
wl ¼ 5 μm and optimal linear polarizations (53) we obtain
3200 signal photons, as opposed to 760 in Ref. [25]. On the
other hand, we also observe that IRLA overestimates the
number of signal photons (see Fig. 3).
In Ref. [31], the authors also use the Gaussian beam

model but carefully indicate all the required pulse param-
eters. Setting λ0 ¼ 800 nm, 2A0;1 ¼ 2A0;2 ¼ A0;3 ¼
8.26 × 10−3Ec (these amplitudes correspond to the energies
6.25=6.25=25 J chosen in Ref. [31] with account for the
connection given there and the application of different

system of units for the fields, which effectively leads to an
additional factor

ffiffiffiffiffiffi
4π

p
), τl ¼ 12.5 fs (after bisection due to

different notations), wl ¼ λ0 and optimal linear polariza-
tions (53), we arrive at 1.23 photons, which is about twice
less than 2.42 photons as indicated in Ref. [31].

F. Accounting for nonideal setting
of the experiment

Nonideal settings include nonperfect spatial and tempo-
ral matching of the incoming pulses and imperfection of the
vacuum in the overlapping region. The former can be
estimated using Eq. (48).
The relative decrease in the signal photons yield due to a

mismatch of the focal centers of the incoming pulses is
shown in Fig. 8. For definiteness we perturb scheme no. 7

FIG. 7. The dependence of the number of signal photons in scheme no. 7 on the focusing parameter Δ3 of the third pulse for different
values of the spatial focusing parameter Δ2 of the second pulse and fixed value Δ1 ¼ 0.005 (left) and Δ1 ¼ 0.05 (right) of the focusing
parameter of the first pulse. Other parameters: a ¼ 0.0284, θl ¼ π=4, and δl ¼ 0.

FIG. 8. The ratio Ñs=Ns ¼ exp ððδBxÞTM−1δBx − γÞ of the
numbers of signal photons for the cases of a displaced focal
center of the third pulse [see Eq. (48)] and exact convergence in
scheme no. 7. Parameters: a ¼ 0.0284 and Δ ¼ 0.159.
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assuming deviation of pulse L3 either in focal center or in
propagation direction.
Since for the assumed parameters the length of the pulses

is much greater than their focal width (a ≪ Δ), as expected,
the effect is least sensitive to the mismatch in time overlap
but most sensitive to the accuracy of spatial overlap.
The reduction of the number of signal photons due to a

shift in the direction of propagation of the third pulse is
shown in Fig. 9. Here the effect is much more sensitive to
the changes of the polar angle of k̂3 than to the azimuthal
one. This can be understood by that a change in the polar
angle necessarily leads to the violation of the equality (19),
thereby violating the four-momentum conservation law,
whereas for a change of the azimuthal angle, the con-
servation laws (21) remain satisfied with the direction of
emission of signal photons shifted correspondingly.
The closest in magnitude competitor to photon-photon

scattering is Compton scattering of laser pulses by residual
electrons. To reduce the corresponding noise, it is enough
to ensure a sufficiently low pressure in the vacuum
chamber. A rough estimate of the required vacuum purity
can be obtained by the requirement that the residual
electron current je ¼ env (where n and v are the residual
electron density and velocity) is smaller than the vacuum
current (2). This way the pressure should obey

p ≤ 10−6 mbar ð56Þ

for sufficient suppression of the effect.

V. CONCLUSION

The paper examines experimental setup for detecting
real photons emitted in a three-pulse collision due to

photon-photon scattering. Our approach is based on an
approximate analytical formula for the signal photons
yield. This formula is derived assuming the Gaussian beam
model by isolating the weakly oscillating contribution
corresponding to the fulfillment of energy-momentum
conservation law, applying the IRLA and using the sad-
dle-point method. The resulting formula includes the
dependence on the geometry of the collision and on the
set of parameters for each pulse, such as power, arbitrary
polarization, and focusing duration and width parameters.
Though it looks extremely complicated in a general setting,
it proved to be immensely useful for the analysis and
optimization. We estimate its relative error as not exceeding
4% in a wide range of parameters. In principle, our
approach admits further generalizations, e.g. on higher
number of interacting pulses and by taking into account
next to leading orders in the mentioned approximations.
However, we have shown that the main inaccuracy should
come from the nonparaxial corrections to the used
pulse model.
One of the goals of the paper was optimization of the

collision scheme. We demonstrate that the closer the
arrangement of the incoming pulses to a single plane,
the stronger the signal for fixed other parameters. At the
same time, there exists an optimal planarity in terms of
angular separation of the signal. We propose a number of
collision schemes that maximize angular separation
between the signal and the incoming pulses. One of them
is close to the one that was extensively studied in the
literature but provides better angular separation and
stronger signal. We analyzed this new scheme in detail.
In particular, we have confirmed strong dependence on
polarization of the pulses and identified their circular
polarization as the optimal one. We have showed that
the signal is stronger for stronger focused pulses with
commensurable widths.
We have also studied the effect of nonideal settings. For

realistic settings, it turns out that the precision of spatial
overlap of the incoming pulses is more crucial than of their
temporal overlap. Also, it is important to direct the pulses
so to maintain the planarity of the scheme. The purity of the
required vacuum roughly corresponds to the parameters of
the vacuum chambers installed at the state-of-the-art laser
facilities.
For definiteness, the particular numerical estimates were

mostly made for the parameters of the XCELS project [35].
However, general formulas should apply to planning any
experiment of this kind based on three-wave collision.
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APPENDIX A: RELATIONSHIP BETWEEN
THE PARAMETERS OF THE
GAUSSIAN PULSE MODEL

Let us express the parameters a,Δ, and A0 of our focused
laser pulse model (7)–(9) in terms of conventional ones.
Parameter a can be expressed in terms of pulse duration τ

by comparing the temporal envelope shape:

exp ð−a2ω2t2Þ≡ exp

�
−
t2

τ2

�
: ðA1Þ

From (A1) we get

a ¼ 1

ωτ
¼ λ

2πcτ
: ðA2Þ

It is natural to express parameter Δ similarly to (A1) and
(A2) in terms of focusing width w, which leads to

Δ ¼ c
ωw

¼ λ

2πw
: ðA3Þ

Parameter A0, which is proportional to the beam ampli-
tude, can be expressed in terms of peak power P or total
energy W of the pulse. Gaussian beam power

c
8π

Z
dxdyRe

�
ẼL

s × ðH̃L
s Þ�

�
z

¼ c3A2
0e

−2a2ω2ðt−zÞ2

16Δ2ω2
ðA4Þ

attains maximum P at its center z ¼ t; hence,

A0 ¼
4Δω
c

ffiffiffiffi
P
c

r
¼ 4

w

ffiffiffiffi
P
c

r
: ðA5Þ

On the other hand, the total beam energy

W ¼ c
8π

Z
dtdxdyRe

�
ẼL

s × ðH̃L
s Þ�

�
z

¼
ffiffiffi
π

p
c3A2

0

16
ffiffiffi
2

p
aΔ2ω3

; ðA6Þ

therefore,

A0 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π

r
aΔ2ω3W

c3

s
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π

r
W

cτw2

s
: ðA7Þ

Note also that the angular distribution of the total energy
of the Gaussian beam

dW
dΩ

¼
�
cR2

8π

Z
dtReðẼL

s × ðH̃L
s Þ�Þz

�����
z≈θR;
R→∞

ðA8Þ

has the form

dW
dΩ

¼ Pe−θ
2=Δ2

2
ffiffiffiffiffiffi
2π

p
aΔ2ω

¼ We−θ
2=Δ2

2πΔ2
; ðA9Þ

where θ is the polar angle of the coordinate system.

APPENDIX B: EXPLICIT FORM OF THE
VECTORS p3

12 AND m3
12 AND

MATRICES M AND MB

Components of the complex vector p3
12 in terms of the

polarization vectors ϵl ¼ ðϵl;x; ϵl;y; 0Þ (in reference frames
of the pulses) and geometry parameters of the scheme are
given by

p3
12;x ¼ β2

�
2ϵ�3;yð4ðϵ1;xϵ2;x − ϵ1;yϵ2;yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
þ 7ϵ1;yϵ2;x sinφ1 − 4ϵ1;xϵ2;y sinφ1

− cosφ2ðð7ϵ1;xϵ2;x þ 4ϵ1;yϵ2;yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
þ ð7ϵ1;yϵ2;x − 4ϵ1;xϵ2;yÞ sinφ1

	
− 4ϵ1;yϵ2;x sinφ2 þ 7ϵ1;xϵ2;y sinφ2

− 4ϵ1;xϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1 sinφ2 þ 4ϵ1;yϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1 sinφ2 þ cosφ1

�
−
�
ð7ϵ1;xϵ2;x þ 4ϵ1;yϵ2;yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q 	
þ 2ð5ϵ1;xϵ2;x þ 6ϵ1;yϵ2;yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cosφ2 þ ð4ϵ1;yϵ2;x − 7ϵ1;xϵ2;yÞ sinφ2Þ

	
þ ϵ�3;x

�
−14ðϵ1;yϵ2;x þ ϵ1;xϵ2;yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
þ 2ð4ϵ1;yϵ2;x − 7ϵ1;xϵ2;yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cosφ1

þ 17ðϵ1;yϵ2;x þ ϵ1;xϵ2;yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cosðφ1 − φ2Þ − 14ϵ1;yϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cosφ2

þ 8ϵ1;xϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cosφ2 þ 3ϵ1;yϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cos ðφ1 þ φ2Þ þ 3ϵ1;xϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cos ðφ1 þ φ2Þ

þ 2ð4ϵ1;xϵ2;x þ 7ϵ1;yϵ2;yÞðsinφ1 þ sinφ2 − sin ðφ1 þ φ2ÞÞÞ
	
=16; ðB1Þ
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p3
12;y ¼ β2

�
ϵ�3;xð4ϵ1;yϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1 − 7ϵ1;xϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1 − cosφ2

�
4ϵ1;xϵ2;x þ 7ϵ1;yϵ2;y

þ ð4ϵ1;yϵ2;x − 7ϵ1;xϵ2;yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1

	
− 7ϵ1;yϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ2 þ 4ϵ1;xϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ2

þ cosφ1

�
−4ϵ1;xϵ2;x − 7ϵ1;yϵ2;y þ 2ð6ϵ1;xϵ2;x þ 5ϵ1;yϵ2;yÞ cosφ2 þ ð7ϵ1;yϵ2;x − 4ϵ1;xϵ2;yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ2

	
þ 4ðϵ1;xϵ2;x − ϵ1;yϵ2;yÞð−1þ sinφ1 sinφ2ÞÞ þ ϵ�3;yðð4ϵ1;yϵ2;x − 7ϵ1;xϵ2;yÞ cosφ2

þ cosφ1ð−7ϵ1;yϵ2;x þ 4ϵ1;xϵ2;y þ 10ðϵ1;yϵ2;x þ ϵ1;xϵ2;yÞ cosφ2Þ − 7ϵ1;xϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1

− 4ϵ1;yϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1 − 7ϵ1;xϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ2 − 4ϵ1;yϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ2

þ 7
�
ϵ1;yϵ2;x þ ϵ1;xϵ2;yÞð−1þ sinφ1 sinφ2Þ þ 7ϵ1;xϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sin ðφ1 þ φ2

	
þ 4ϵ1;yϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sin ðφ1 þ φ2ÞÞ

	
=8; ðB2Þ

p3
12;z ¼ −β3

�
ϵ�3;x

�ð7ϵ1;yϵ2;x − 4ϵ1;xϵ2;yÞ cosφ1 þ ðϵ1;yϵ2;x þ ϵ1;xϵ2;yÞð−10þ 7 cos ðφ1 − φ2Þ
�

þ ð−4ϵ1;yϵ2;x þ 7ϵ1;xϵ2;yÞ cosφ2Þ þ ϵ�3;yð−2ð5ϵ1;xϵ2;x þ 6ϵ1;yϵ2;yÞ þ ð7ϵ1;xϵ2;x
þ 4ϵ1;yϵ2;yÞ cosφ1 þ 4ð−ðϵ1;xϵ2;xÞ þ ϵ1;yϵ2;yÞ cos ðφ1 − φ2Þ þ ð7ϵ1;xϵ2;x þ 4ϵ1;yϵ2;yÞ cosφ2Þ

�
=8: ðB3Þ

Similarly, for m3
12 we have

m3
12;x ¼ β2

�
−2ϵ�3;xð4ð−ðϵ1;xϵ2;xÞ þ ϵ1;yϵ2;yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
þ 4ϵ1;yϵ2;x sinφ1 − 7ϵ1;xϵ2;y sinφ1

− cosφ2ðð4ϵ1;xϵ2;x þ 7ϵ1;yϵ2;yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
þ ð4ϵ1;yϵ2;x − 7ϵ1;xϵ2;yÞ sinφ1Þ − 7ϵ1;yϵ2;x sinφ2 þ 4ϵ1;xϵ2;y sinφ2

þ 4ϵ1;xϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1 sinφ2 − 4ϵ1;yϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1 sinφ2 þ cosφ1ð−ðð4ϵ1;xϵ2;x þ 7ϵ1;yϵ2;yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
Þ

þ 2ð6ϵ1;xϵ2;x þ 5ϵ1;yϵ2;yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cosφ2 þ ð7ϵ1;yϵ2;x − 4ϵ1;xϵ2;yÞ sinφ2ÞÞ

þ ϵ�3;yð14ðϵ1;yϵ2;x þ ϵ1;xϵ2;yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
þ 2ð7ϵ1;yϵ2;x − 4ϵ1;xϵ2;yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cosφ1

− 17ðϵ1;yϵ2;x þ ϵ1;xϵ2;yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cos ðφ1 − φ2Þ − 8ϵ1;yϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cosφ2 þ 14ϵ1;xϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cosφ2

− 3ϵ1;yϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cos ðφ1 þ φ2Þ − 3ϵ1;xϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
cos ðφ1 þ φ2Þ

þ 2ð7ϵ1;xϵ2;x þ 4ϵ1;yϵ2;yÞðsinφ1 þ sinφ2 − sin ðφ1 þ φ2ÞÞÞ
	
=16; ðB4Þ

m3
12;y ¼ β2

�
ϵ�3;yð7ϵ1;yϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1 − 4ϵ1;xϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1 − cosφ2ð7ϵ1;xϵ2;x þ 4ϵ1;yϵ2;y

þ ð7ϵ1;yϵ2;x − 4ϵ1;xϵ2;yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1Þ − 4ϵ1;yϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ2 þ 7ϵ1;xϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ2

þ cosφ1ð−7ϵ1;xϵ2;x − 4ϵ1;yϵ2;y þ 2ð5ϵ1;xϵ2;x þ 6ϵ1;yϵ2;yÞ cosφ2 þ ð4ϵ1;yϵ2;x − 7ϵ1;xϵ2;yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ2Þ

− 4ðϵ1;xϵ2;x − ϵ1;yϵ2;yÞð−1þ sinφ1 sinφ2ÞÞ þ ϵ�3;xðð−7ϵ1;yϵ2;x þ 4ϵ1;xϵ2;yÞ cosφ2

þ cosφ1ð4ϵ1;yϵ2;x − 7ϵ1;xϵ2;y þ 10ðϵ1;yϵ2;x þ ϵ1;xϵ2;yÞ cosφ2Þ þ 4ϵ1;xϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1

þ 7ϵ1;yϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ1 þ 4ϵ1;xϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ2 þ 7ϵ1;yϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sinφ2

þ 7ðϵ1;yϵ2;x þ ϵ1;xϵ2;yÞð−1þ sinφ1 sinφ2Þ − 4ϵ1;xϵ2;x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sin ðφ1 þ φ2Þ

− 7ϵ1;yϵ2;y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sin ðφ1 þ φ2ÞÞ

	
=8; ðB5Þ
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m3
12;z ¼ β3ðϵ�3;yðð−4ϵ1;yϵ2;x þ 7ϵ1;xϵ2;yÞ cosφ1 þ ðϵ1;yϵ2;x þ ϵ1;xϵ2;yÞð−10þ 7 cosðφ1 − φ2ÞÞ

þ ð7ϵ1;yϵ2;x − 4ϵ1;xϵ2;yÞ cosφ2Þ þ ϵ�3;xð−2ð6ϵ1;xϵ2;x þ 5ϵ1;yϵ2;yÞ þ ð4ϵ1;xϵ2;x þ 7ϵ1;yϵ2;yÞ cosφ1

þ 4ðϵ1;xϵ2;x − ϵ1;yϵ2;yÞ cosðφ1 − φ2Þ þ ð4ϵ1;xϵ2;x þ 7ϵ1;yϵ2;yÞ cosφ2ÞÞ=8: ðB6Þ

Components of symmetric matrix M in terms of the parameters al and Δl and geometry parameters of the scheme read

M11 ¼ 2ðν21a21 þ ν22a
2
2 þ ν23a

2
3Þ;

M22 ¼ 2ðν21Δ2
1 þ ν22Δ2

2 þ ν23Δ2
3 − β2ðν21ðΔ2

1 − a21Þcos2φ1 þ ν22ðΔ2
2 − a22Þcos2φ2 þ ν23ðΔ2

3 − a23ÞÞÞ;
M33 ¼ 2ðν21Δ2

1 þ ν22Δ2
2 þ ν23Δ2

3 − β2ðν21ðΔ2
1 − a21Þsin2φ1 þ ν22ðΔ2

2 − a22Þsin2φ2ÞÞ;
M44 ¼ 2ðν21a21 þ ν22a

2
2 þ ν23a

2
3 þ β2ðν21ðΔ2

1 − a21Þ þ ν22ðΔ2
2 − a22Þ þ ν23ðΔ2

3 − a23ÞÞÞ;
M12 ¼ −2βðν21a21 cosφ1 þ ν22a

2
2 cosφ2 þ ν23a

2
3Þ;

M13 ¼ −2βðν21a21 sinφ1 þ ν22a
2
2 sinφ2Þ;

M14 ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
ðν21a21 þ ν22a

2
2 þ ν23a

2
3Þ;

M23 ¼ −β2ðν21ðΔ2
1 − a21Þ sinð2φ1Þ þ ν22ðΔ2

2 − a22Þ sinð2φ2ÞÞ;

M24 ¼ −2β
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
ðν21ðΔ2

1 − a21Þ cosφ1 þ ν22ðΔ2
2 − a22Þ cosφ2 þ ν23ðΔ2

3 − a23ÞÞ;

M34 ¼ −2β
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
ðν21ðΔ2

1 − a21Þ sinφ1 þ ν22ðΔ2
2 − a22Þ sinφ2Þ: ðB7Þ

Matrix MB in terms of the geometry parameters of the scheme reads

MB ¼

0
BBBBB@

1 0 0

−β cosφs −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
νs cosφs βνs sinφs

−β sinφs −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
νs sinφs −βνs cosφs

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
βνs 0

1
CCCCCA: ðB8Þ
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