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Convergence of three different expansion schemes at finite baryon chemical potentials, including the
conventional Taylor expansion, the Padé approximants, and the T 0 expansion proposed recently in lattice
QCD simulations, have been investigated in a low energy effective theory within the functional
renormalization group approach. It is found that the convergence of the T 0 expansion and the Padé
approximants is consistent with the conventional Taylor expansion, within the expansion orders
considered in this work. Furthermore, we find that the consistent regions of the three different expansions
are in agreement with the convergence radius of the Lee-Yang edge singularities.
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I. INTRODUCTION

Knowledge of the QCD phase structure, and in particu-
lar locating the critical end point (CEP), has been widely
discussed during the past few decades. Both experimental
and theoretical studies have made significant progress. On
the experimental side, the Beam Energy Scan (BES)
program at the Relativistic Heavy Ion Collider (RHIC)
have measured the high order cumulants of net-proton
distributions [1–5], which are thought of as ideal probe to
detect the CEP. On the theoretical side, lattice QCD
simulations are employed to calculate the equation of
state [6–8] and baryon number fluctuations [9–13] at
vanishing chemical potentials. However, lattice simula-
tions are limited to imaginary and vanishing chemical
potential due to the sign problem. On the other hand, the
first principles functional approaches, such as the func-
tional renormalization group (fRG) [14–18] and Dyson-
Schwinger equation (DSE) [19–22], do not suffer from the
sign problem and allow us to do direct calculations at real
chemical potentials. Recently, the functional approaches
have shown convergent estimates for the location of CEP
in the phase diagram, which is in a small region of
μB ∈ ð600; 650Þ MeV with μB=T > 4 [14,19,21]. In the
region of large baryon chemical potentials, errors of
calculation resulting from truncations in the functional

methods might increase sizably, which have to be con-
trolled carefully via, e.g., comparison with lattice QCD
and functional QCD of improved truncations. For recent
reviews, see, e.g., [23–27].
In the past few years, lots of efforts have been made to

extend lattice QCD results into finite chemical potentials.
In [9,28], the Taylor expansion method is employed to
extend the equation of state and the baryon number
fluctuations into nonzero chemical potential. Due to the
negative values of both χB6 and higher order susceptibili-
ties [10–12], the pressure and baryon-number density with
the Taylor expansion method show nonmonotonic behav-
ior at μB=T ≳ 2.5 [28], which implies the Taylor expansion
method becomes less reliable in this region. Note that the
reliability of Taylor expansion can be improved by
including increasingly higher orders, while the radius of
convergence of the series can not. One can use the
reliability region of increasingly higher orders to estimate
the convergence radius of expansion. It is generally
believed that the convergence radius of the Taylor expan-
sion is limited by singularities in the complex plane of
chemical potentials, such as the Lee-Yang edge singular-
ities [29–34] and the Roberge-Weiss transition singular-
ities [35]. Besides, the Padé resummation [36–39] and
other resummation method [33,40] are also investigated
widely, and a sign reweighting method, which allows for
direct simulations at real baryon densities, is also proposed
in [41–43].
In [44], the Wuppertal-Budapest Collaboration has

proposed a T 0 expansion scheme, which extrapolates the
pressure and baryon number density at imaginary and
vanishing chemical potentials to those at real ones. The
rescaling coefficients are related with Taylor expansion
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coefficients. So in other words, they also provide a
resummation scheme of the Taylor expansion coefficients.
Since the statistical errors of χB1 ; χ

B
2 at imaginary chemical

potentials are quite small in lattice QCD simulations, the
statistical errors of the extrapolation are well controlled.
Recently, the expansion scheme was generalized with the
strangeness neutrality condition [45].
Nonetheless, the convergence radius of the T 0 expansion

scheme is still unclear. In this work, we investigate the
convergence radius of the new expansion scheme and
compare it with the Taylor expansion and the Padé
resummation. The Polyakov-loop extended quark-meson
(PQM) model is employed, which can well describe the
chiral symmetry breaking/restoration and confinement/
deconfinement phase transitions. Baryon number fluctua-
tions obtained in this effective theory are in good agreement
with lattice QCD results [46–48].
This paper is organized as follows: In Sec. II, the

Polyakov-loop extended quark-meson model within the
fRG approach at real and imaginary chemical potential is
introduced. In Sec. III, we briefly review the expansion
scheme and give the formulas of higher-order generalized
susceptibilities. In Sec. IV, we give the numerical results.
The summary and conclusion are given in Sec. V.

II. TWO-FLAVOR POLYAKOV-LOOP EXTENDED
QUARK-MESON MODEL

We employ the two-flavor Polyakov-loop extended
quark-meson model within the functional renormalization
group approach [46–52], which is a QCD low energy
effective theory. The Euclidean effective action reads

Γk ¼
Z
x

�
Zq;kq̄½γμ∂μ − γ0ðμþ igA0Þ�qþ

1

2
Zϕ;kð∂μϕÞ2

þ hkq̄ðT0σþ iγ5T⃗ · π⃗ÞqþVkðρÞ− cσþVglueðL; L̄Þ
�
;

ð1Þ

with a four-dimensional integral
R
x ¼

R 1=T
0 dx0

R
d3x.

Here, T, μ are the temperature and the quark chemical
potential, respectively. The baryon chemical potential
reads μB ¼ 3μ. The meson field reads ϕ ¼ ðσ; π⃗Þ and
VkðρÞ denotes a chiral symmetric effective potential with
ρ ¼ ϕ2=2. The chiral symmetry is explicitly broken by the
linear sigma term −cσ. A0 denotes the gluon background
field. LðA0Þ is the traced Polyakov loop, and L̄ðA0Þ is its
conjugate, which are defined as

LðxÞ ¼ 1

Nc
hTrPðxÞi; L̄ðxÞ ¼ 1

Nc
hTrP†ðxÞi; ð2Þ

with

PðxÞ ¼ P exp

�
ig
Z

β

0

dτA0ðx; τÞ
�
; ð3Þ

and P is the path ordering operator. The Vglue denotes the
glue potential, which is a function of the traced Polyakov
loop L and L̄.
In this work, we adopt the local potential approximation

(LPA), where the dependence of the wave function
renormalizations and Yukawa coupling on the renormal-
ization group (RG) scale is neglected, i.e., Zq=ϕ;k ¼ 1;
∂khk ¼ 0. We choose the ultraviolet cutoff scale kUV ¼
700 MeV, the initial potential VUVðρÞ ¼ λ1ρþ λ2ρ

2=2
with λ1 ¼ 4822 MeV2, λ2 ¼ 5.7. Moreover, one has the
Yukawa coupling h ¼ 6.5 and the explicitly chiral sym-
metry breaking coefficient c ¼ 1.7 × 106 MeV3, fixed
by fitting the physical observables in the vacuum:
fπ ¼ 92 MeV, mq ¼ 300 MeV, mπ ¼ 135 MeV and
mσ ¼ 500 MeV. The parametrization of the Polyakov
loop potential is used as same as that in [47].
We proceed with the flow equation of VkðρÞ, which reads

∂kVkðρÞ ¼
k3

4π2
½3lðBÞ0 ðmπÞ þ lðBÞ0 ðmσÞ − 4NcNfl

ðFÞ
0 ðmfÞ�:

ð4Þ

Here, Nc ¼ 3, Nf ¼ 2, and lðB=FÞ0 are bosonic/fermionic
loop functions, which can be found in [46,47,53]. Note
that when the chemical potential is purely imaginary, the
fermionic distribution functions are complex valued. The
antifermionic distribution function is the complex con-
jugate of the fermionic one, and thus, we are left with a real
fermionic loop function,

lðFÞ0 ðmfÞ ¼
k
3E

ð1 − nfðL; L̄Þ − n̄fðL̄; LÞÞ

¼ k
3E

½1 − 2ReðnfÞ�; ð5Þ

which ensures that the effective potential and physical
observables are real valued. Whereas, if the chemical
potential is a general complex number, the imaginary part
of the fermionic loop function would be nonzero.
The chiral pseudocritical temperature of PQM model,

which is determined by the location of peak of j∂mf=∂Tj, is
Tc ¼ 215 MeV at μB ¼ 0. Following [47], we use the
scale matching between the Nf ¼ 2 PQM model and the
Nf ¼ 2þ 1 QCD,

T
ðNf¼2þ1Þ
QCD ¼ cT

ðNf¼2Þ
PQM ð6Þ

μB
ðNf¼2þ1Þ
QCD ¼ cμB

ðNf¼2Þ
PQM ; ð7Þ

with
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c ¼ Tc
ðNf¼2þ1Þ
QCD

Tc
ðNf¼2Þ
PQM

¼ 156 MeV
215 MeV

¼ 0.726: ð8Þ

The continuous crossover becomes increasingly sharper
with the increase of the baryon chemical potential, and
j∂mf=∂Tj finally diverges at the CEP, that allows us to
locate the CEP with TCEP ¼ 40 MeV, μBCEP

¼ 667 MeV
after the rescaling. Note that the temperature of the CEP
TCEP, obtained here in the PQM model with the LPA
truncation, is smaller than that obtained in the first principles
functional QCD [14,19,54]. This is also observed in other
calculations in low energy effective models, e.g., [33,52,55].
This defect has been circumvented in QCD-assisted low
energy effective theories; see [47,48] for more relevant
discussions. The CEP in QCD is a second-order phase
transition point and belongs to the Ising-like Zð2Þ univer-
sality class [56]. Various susceptibilities are divergent at the
CEP. The CEP can also be connected to the Lee-Yang edge
singularity at the real axis of the complex plane of baryon
chemical potential [33].

III. EXPANSION SCHEME

The generalized susceptibilities of the baryon number are
defined as ith order derivatives of the normalized pressure,

χBi ¼ ∂
i

∂μ̂B
i

p
T4

; ð9Þ

with μ̂B ¼ μB=T. We numerically calculate the generalized
susceptibilities up to 10th order in this work, and an
algorithmic differentiation technique for higher-order
derivatives calculation is proposed in [36,57].
The Taylor expansion of the pressure is given as

pðT; μ̂BÞ − pðT; 0Þ
T4

¼
X
n¼1

1

ð2nÞ! χ
B
2nðT; 0Þμ̂2nB : ð10Þ

In the following, we will introduce another two expan-
sion schemes, i.e., the Padé approximants and T 0
expansion.

A. Padé approximants

We introduce the Padé approximants to reconstruct the
pressure as a function of μ̂2B,

P½m; n�≡ pðT; μ̂BÞ − pðT; 0Þ
T4

¼
Pn=2

i¼1 ai · μ̂
2i
B

1þPm=2
j¼1 bj · μ̂

2j
B

: ð11Þ

Here, the coefficients ai, bi are determined by solving the
equations,

∂
iP½m; n�
∂μ̂B

i ¼ χBi : ð12Þ

In this work, we mainly consider P½4; 2�, P½4; 4� and P½6; 4�,
which correspond to reconstructing the first 6th, 8th, and
10th order susceptibilities, respectively. Explicit expressions
of P½m; n� are given in the Appendix. The generalized
susceptibilities are ith order derivatives of the Padé approx-
imants of the pressure with respect to μ̂B. One can also
calculate the Padé approximants of ith order susceptibilities,
but we would not do it, since they are not our main concerns
in this work. Moreover, the poles of the Padé approximants
can be used to estimate the convergence radius of Taylor
expansion, e.g., the poles ofP½n; 2� and P½n; 4� are related to
the ratio estimator and Mercer-Roberts estimator [35,39],
respectively, which are given by

rratioc;2n ¼
���� ðnþ 1Þðnþ 2ÞχB2n

χB2nþ2

����
1
2

; ð13Þ

rMR
c;2n ¼

����
�

χB2nþ2χ
B
2n−2

ð2nþ 2Þ!ð2n − 2Þ! −
�

χB2n
ð2nÞ!

�
2
�����

1
4

×

����
�

χB2nχ
B
2nþ4

ð2nÞ!ð2nþ 4Þ! −
�

χB2nþ2

ð2nþ 2Þ!
�

2
�����

−1
4

: ð14Þ

B. T0 expansion scheme

Recently, a relation between the baryon number density
nBðμ̂BÞ at finite chemical potentials and the quadratic
baryon number fluctuation χB2 ðμ̂B ¼ 0Þ at vanishing chemi-
cal potentials has been proposed by the Wuppertal-
Budapest Collaboration [44], which reads

χB1 ðT; μ̂BÞ
μ̂B

¼ χB2 ðT 0; 0Þ; ð15Þ

with

T 0 ¼ Tð1þ κB2 ðTÞμ̂2B þ κB4 ðTÞμ̂4B þ κB6 ðTÞμ̂6B
þ κB8 ðTÞμ̂8B þOðμ̂10B ÞÞ: ð16Þ

Here, κB2nðTÞ are expanding coefficients of different orders.
In Fig. 1, we show the χB1 =μ̂B as a function of temperature

with real and imaginary baryon chemical potentials in the
range of jμ̂Bj ≤ 7π=8. Obviously, one arrives at χB1 =μ̂B ¼ χB2
at μ̂B ¼ 0. As we can see, for a fixed value of μ̂B, either real
or imaginary chemical potential, χB1 =μ̂B always increase
with the temperature monotonically, which is a necessary
condition for the rescaling relation in Eq. (15). For a fixed
temperature, the ratio χB1 =μ̂B also increases with μ̂2B monoto-
nously. The calculated results in Fig. 1 also indicate that the
expansion method is only suitable for the temperature
around the phase transition [44], i.e., T ∈ ½80; 220� MeV
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for this work, because the ratio χB1 =μ̂B becomes flat at low or
high temperatures. Furthermore, at large jμ̂Bj, the shape of
χB1 =μ̂B becomes different from that of χB2 ðμB ¼ 0Þ, which
implies that the rescaled temperature and expansion scheme
may no longer work in that region.
The coefficients κB2n can be calculated by fitting the

results at zero and imaginary chemical potentials. In Fig. 2,
we show the rescaled temperature T 0ðT; μ̂BÞ, which is
defined in Eq. (15), as a function of μ̂2B. We choose several
original temperatures in the range of T ∈ ½108; 196� MeV.
The dots denote the results calculated directly from the fRG
approach at both the imaginary and real chemical potentials.

The red bands stand for the polynomial fitting of fRG data at
zero and imaginary chemical potentials, cf. Eq. (16), which
are also extrapolated into the regime of real baryon chemical
potentials. More specifically, the bands are determined by
fitting the results of Imμ̂B ∈ ½0; jμ̂Bjmax�. The upper bound
jμ̂Bjmax is varied in the range of [2.0, 2.4] MeV, in order to
investigate errors of the fitting, denoted by the width of
bands. The comparison between the extrapolation of fitting
at imaginary chemical potentials and the direct fRG results
at real chemical potentials constitutes a nontrivial test. One
can see that the agreement in the region of jμ̂2Bj≲ 6, that is
jμ̂Bj≲ 2.5, is very well, while there is some difference
beyond this regime.
The coefficients κB2n can also be calculated from the

Taylor expansion coefficients. With the Taylor expansion
(10), we arrive at

χB1 ðT; μ̂BÞ
μ̂B

¼
X
n¼1

1

ð2n − 1Þ! χ
B
2nðT; 0Þ · μ̂2n−2B : ð17Þ

Comparing (17) with (15) and (16), one obtains the relations
between the two sets of expansion coefficients, which are
shown in (A4) through (A11) in the Appendix. Obviously,
in the new expansion scheme, the coefficients κB2n encode
the information of χB2 � � � χB2nþ2 as well as 1 � � � nth order
temperature derivatives of χB2 at vanishing chemical poten-
tial. For lattice QCD, it is a numerical challenge to precisely
calculate the nth order temperature derivatives of χB2 . On the
other hand, it is feasible for lattice QCD to obtain the
coefficients κB2n by fitting χB2 at several imaginary chemical
potentials with Eq. (16) and calculate the temperature
derivatives of χB2 in turn [44].
In Fig. 3, the coefficients calculated from the fitting of

imaginary chemical potentials and the Taylor expansion
coefficients in (A8) to (A10) are presented. Obviously, the
results obtained from two different methods agree with
each other very well. Our results are also comparable with
the lattice results [44], in the range of 0.015≲ κB2 ≲ 0.03
with a slight increase in the regime of high temperature,
while the high-order coefficients κB4 amd κB6 are very close
to zero. In the following, we use the coefficients calculated
from the Taylor expansion coefficients and ignore the
errors.
In this expansion scheme, the pressure reads

pðT; μ̂BÞ − pðT; 0Þ
T4

¼
Z

μ̂B

0

dμ̂0Bχ
B
1 ðT; μ0BÞ

¼
Z

μ̂B

0

dμ̂0Bμ̂
0
Bχ

B
2 ðT 0; 0Þ: ð18Þ

The first three order generalized susceptibilities are given as

χB1 ðT; μBÞ ¼ μ̂Bχ
B
2 ðT 0; 0Þ; ð19Þ

FIG. 1. Ratio χB1 =μ̂B as a function of the temperature with real
(blue) and imaginary (red) baryon chemical potentials, which
coincides with the quadratic fluctuation χB2 exactly at μ̂B ¼ 0.

FIG. 2. Rescaled temperature T 0 defined in Eq. (15) as a
function of μ̂2B. The original temperature T is chosen in the
range of [108, 196] MeV at the interval of 14.5 MeV. The dark-
red dots and blue dots stand for results at imaginary and real
chemical potentials, respectively. The red bands denote the
extrapolation of Eq. (16) from the imaginary to real chemical
potentials.
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χB2 ðT; μBÞ ¼ χB2 ðT 0; 0Þ þ μ̂B
∂χB2 ðT 0; 0Þ

∂T 0
∂T 0

∂μ̂B
; ð20Þ

χB3 ðT; μBÞ ¼ 2
∂χB2 ðT 0; 0Þ

∂T 0
∂T 0

∂μ̂B

þ μ̂B

�
∂
2χB2
∂T 02

�
∂T 0

∂μ̂B

�
2

þ ∂χB2
∂T 0

∂
2T 0

∂μ̂B
2

�
: ð21Þ

IV. NUMERICAL RESULTS

We plot the pressure and the first three order generalized
susceptibilities at several temperatures around the pseu-
docritical temperature (Tc ¼ 156 MeV) in Fig. 4, which
are calculated from the Taylor expansion, the Padé approx-
imants, as well as the T 0 expansion. The full results from
fRG are also plotted for comparison. In order to make a
meaningful comparison, we only show results using the
first eight order generalized susceptibilities, i.e., the Taylor
expansion up to 8th order, the Padé approximantP½4; 4� and
the T 0 expansion of κB6 order. For the pressure, all expansion
schemes of different types converge well, and there is only
a slight divergence between the full calculated results and
the expansion results for μ̂B ≳ 3.5. For the generalized
susceptibilities, the consistent region becomes smaller with
the increase of μB=T, which is μ̂B ≲ 3.0, 2.0, 1.5 for
χB1 ; χ

B
2 ; χ

B
3 , respectively.

In order to investigate the errors of different expansion
schemes in detail, we show the relative difference of χB2
between the expansion results and full results in the plane
of T and μ̂B in Fig. 5. Subplots in the first line denote the
results obtained with the expansion up to the order of
OðχB6 Þ, and those in the second and third lines to OðχB8 Þ,

OðχB10Þ, respectively. It is found that with the increase of the
expansion order, the convergence is improved mildly. For
the Taylor expansion, one can see an alterant structure at
large μ̂B, that is related with the oscillatory structure of the
highest order susceptibility. The results of T 0 expansion of
order Oðκ4Þ are always smaller than the full results, while
the structure becomes a bit complicated for the orders
Oðκ6Þ and Oðκ8Þ. Note that the numerical accuracy of T 0
expansion of Oðκ8Þ is constrained by numerical precision
of χB2

ð4ÞðTÞ. The sharp inconsistent lines in the plot of
P½6; 4� are caused by the poles of the Padé approximant
P½6; 4� at T ¼ 146, 157, 175 MeV.
The convergence radius near the critical temperature, i.e.,

T ∈ ð140; 180Þ MeV, is smaller than that in the regimes of
high or low temperature. Roughly speaking, the conver-
gence radius is about μ̂B ∼ 2 for χB2 in the vicinity of chiral
phase transition. A simple explanation is as follows. At low
temperature, the system tends towards hadron resonance
gas, i.e., χB2n=χ

B
2 ¼ 1 for n ≥ 1, and at high temperature, it

tends towards the Stefan-Boltzmann limit, i.e., χB2n=χ
B
2 ¼ 0

for n ≥ 3. Both cases give rise to an infinite convergence
radius. Whereas in the proximity of the chiral phase
transition, the high order susceptibilities oscillate, and the
convergence radius is a finite value.
Strictly speaking, the convergence radius of an expan-

sion can only be defined when it is expanded to infinite
orders. In our case, it implies that we have to know the
information on the baryon susceptibilities of infinite orders.
As we have mentioned above, the convergence radius of the
expansion schemes might be constrained by singularities
in the complex plane of chemical potential. Here, we
consider the Lee-Yang edge singularities, whose conver-
gence radius is given from scaling analysis in [29]

Rconv ¼
���� zcz0

�
mphys

l

mphys
s

� 1
βδ

−
T − T0

c

T0
c

����
1
2 1ffiffiffiffiffi

κ2
p : ð22Þ

Here, mphys
l =mphys

s ¼ 1=27, and β, δ are critical exponents,
and we use fRG results with LPA truncations in [56], i.e.,
β ¼ 0.3989, δ ¼ 4.975. The curvature of chiral phase
boundary is found to be κ2 ¼ 0.0184 in our low energy
effective theory. Note that κ2 here is different from the
coefficients in (16), more details about the curvature of
phase boundary can be found, e.g., [14,47]. The critical
temperature in the chiral limit T0

c ¼ 142.6 MeV is obtained
from fRG calculation in [58]. The scaling variable zc ¼
jzcjei

π
2βδ with jzcj ¼ 1.665 and z0 ∈ ½1; 2� are suggested

in [29]. With the inputs above, one could estimate the
convergence radius of Lee-Yang edge singularities via (22).
The locations of Lee-Yang edge singularities can also be
calculated [33,59]. Moreover, the Roberge-Weiss critical
end point is associated with Lee-Yang singularities [23,60],
which is located at μRWq ¼ i π

3
T, i.e., μ̂RWB ¼ iπ [49,61]. The

FIG. 3. Coefficients in Eq. (16) as functions of the temperature.
The markers denote the results obtained from the fitting of
imaginary chemical potentials, and the solid lines stand for those
calculated Taylor expansion coefficients in Eqs. (A8) through
(A10). The bands indicate lattice results in [44].
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Roberge-Weiss phase transition temperature is found to be
TRW ¼ 164 MeV in our calculations.
In Fig. 6, we show the lines of relative errors 10% for the

Taylor expansion, the Padé approximants and the T 0

expansion of χB2 in the plane of T and μ̂B, and compare
them with the Lee-Yang edge singularities estimated
above. The left and right plots correspond to the expansion
order of OðχB8 Þ and OðχB10Þ, respectively. The Mercer-
Roberts estimator rMR

c;6 is also shown in the right plot of
Fig. 6. The convergence region of the T 0 expansion
becomes small at high temperatures, that has been
explained in Sec. III B. The sharp inconsistent region of

Padé P½6; 4� are caused by the poles of P½6; 4� at T ¼ 146,
157, 175 MeV, which are also reflected in the Mercer-
Roberts estimators rMR

c;6 . It should be noted that the sharp
decrease of estimator convergence radius at several dis-
crete temperatures is nonphysical. We take the ratio
estimator as an explanation, i.e., Eq. (13). The χBn for n ≥
6 would become zero at several values of temperature,
while χBnþ2 at those temperature are nonzero, that will
cause the convergence radius of the estimator decreases
quickly to zero. This always occurs when one calculates
the ratio estimator of high order susceptibilities, which,
however, can be got rid of by considering next order

FIG. 4. Comparison between the direct calculations of the pressure and the first three order generalized susceptibilities and those with
the Taylor expansion, Padé approximants and the T 0 expansion, as functions of the baryon chemical potential divided by the temperature
μB=T at three different values of temperature (different columns).
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susceptibilities at those temperatures. Ignoring the results
of the three values of temperature, one finds that the
consistent region of the Padé approximant P½6; 4� agrees
with that of the Taylor expansionOðχB10Þ. It is found that all
expansion schemes have almost the same convergence
region around the critical temperature, and they consist
with the Lee-Yang edge singularities. The Roberge-Weiss
phase transition singularity is also located within this

region. Comparing the left and right plots in Fig. 6, one
finds that the convergence region is a bit enlarged by
including higher order expansions. Furthermore, we find
that the relative error estimates of different expansion
schemes are consistent with Lee-Yang edge singularities,
while the Mercer-Roberts estimator is not. This might
attribute to the fact that our expansion order is still not high
enough.

FIG. 5. Relative errors of different expansion schemes for χB2 in the plane of T and μ̂B.

FIG. 6. Lee-Yang edge singularities and relative errors of different expansion schemes up to the order ofOðχB8 Þ (left panel) andOðχB10Þ
(right panel) for χB2 in the plane of T and μ̂B. The Mercer-Roberts estimator rMR

c;6 is also shown in the right panel.
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V. CONCLUSION

In this work, the convergence of different expansion
schemes at finite baryon chemical potentials, including the
conventional Taylor expansion, the Padé approximants, and
the T 0 expansion proposed recently in lattice QCD simu-
lations, have been investigated in a low energy effective
theory within the fRG approach. This is facilitated by the
full results of baryon number fluctuations at both real and
imaginary chemical potentials, directly calculated in our
approach.
We employ two different methods to calculate the

expanding coefficients of T 0 expansion, i.e., fitting the T 0
at imaginary chemical potentials or using relations between
the expanding coefficients of T 0 expansion and those of
Taylor expansion. These two methods provide us with
consistent results, which are also comparable to lattice
simulations.
The pressure is obtained within the three different

expansion schemes all up to the expanding order Oðμ8BÞ,
from which we calculate the baryon number fluctuations of
first three orders, i.e., χB1 , χ

B
2 , χ

B
3 . The pressure and the

fluctuations of first three orders are found to be consistent
with the full results within the regions μB=T ≲ 3.5, 3.0, 2.0,
1.5, respectively. The consistent region near the critical
temperature is smaller than those at high or low temperature.
We also compare the results obtained with the expansion
order up toOðμ6BÞ,Oðμ8BÞ, andOðμ10B Þ, which indicates that
it could enlarge a bit the consistent region by including
higher-order expansions. It is found that the T 0 expansion or
the Padé approximants would hardly improve the conver-
gence of expansion in comparison to the conventional
Taylor expansion, within the expansion orders considered
in this work. Furthermore, We also estimate the singularities

in the complex plane of chemical potential, arising from the
Lee-Yang edge singularities and Roberge-Weiss phase
transition. The consistent regions of the three different
expansions are in agreement with the convergence radius
of the Lee-Yang edge singularities.
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APPENDIX: EXPRESSIONS OF THE PADÉ
APPROXIMANTS AND T0 EXPANSION

In this Appendix, we show the expressions of the Padé
approximants and T 0 expansion up to the order of OðχB10Þ.

1. Padé approximants

By solving Eq. (12), we arrive at

P½4; 2� ¼ 60χB2 χ
B
4 μ̂

2
B þ ð5ðχB4 Þ2 − 2χB2 χ

B
6 Þμ4B

120χB4 − 4χB6 μ̂
2
B

; ðA1Þ

P½4;4� ¼ 

2520χB2 ð−5ðχB4 Þ2þ 2χB2 χ

B
6 Þμ̂2B− 30ð35ðχB4 Þ3

− 28χB2 χ
B
4 χ

B
6 þ 3ðχB2 Þ2χB8 Þμ4B

�

5040

× ð−5ðχB4 Þ2þ 2χB2 χ
B
6 Þþ 60ð14χB4 χB6

− 3χB2 χ
B
8 Þμ̂2Bþð−28ðχB6 Þ2þ 15χB4 χ

B
8 Þμ̂4B

�−1; ðA2Þ

P½6; 4� ¼ 

5040χB2 ð28χB6 2 − 15χB4 χ

B
8 Þμ̂2B þ 420ð2χB10χB2 χB4 þ 28χB4 χ

B
6
2

− 15χB4
2χB8 − 6χB2 χ

B
6 χ

B
8 Þμ4B þ ð70χB10χB4 2 − 28χB10χ

B
2 χ

B
6 þ 392χB6

3

− 420χB4 χ
B
6 χ

B
8 þ 45χB2 χ

B
8
2Þμ6B

�

2ð5040ð28χB6 2 − 15χB4 χ

B
8 Þ

þ 840ðχB10χB4 − 3χB6 χ
B
8 Þμ2B þ ð−28χB10χB6 þ 45χB8

2Þμ4BÞ
�−1; ðA3Þ

where the expression of P½4; 4� is also shown in [39].

2. T0 expansion

Comparing (17) with (15) and (16), one obtains the
relations between the two sets of expansion coefficients,

χB4 ðTÞ
3!

¼ ∂χB2
∂T

TκB2 ðTÞ; ðA4Þ

χB6 ðTÞ
5!

¼ ∂χB2
∂T

TκB4 ðTÞ þ
1

2!

∂
2χB2

ð∂TÞ2 T
2ðκB2 ðTÞÞ2; ðA5Þ

χB8 ðTÞ
7!

¼ ∂χB2
∂T

TκB6 ðTÞ þ
1

2!

∂
2χB2

ð∂TÞ2 T
2ð2κB2 ðTÞκB4 ðTÞÞ

þ 1

3!

∂
3χB2

ð∂TÞ3 T
3ðκB2 ðTÞÞ3; ðA6Þ
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χB10ðTÞ
9!

¼ ∂χB2
∂T

TκB8 ðTÞ þ
1

2!

∂
2χB2

ð∂TÞ2 T
2ð2κB2 ðTÞκB6 ðTÞ

þ ðκB4 ðTÞÞ2Þ þ
1

2

∂
3χB2

ð∂TÞ3 T
3ðκB2 ðTÞÞ2κB4 ðTÞ

þ 1

4!

∂
4χB2

ð∂TÞ4 T
4ðκB2 ðTÞÞ4: ðA7Þ

Then, the coefficients in turn can be solved order by order,

κB2 ¼ χB4
6TχB2

0 ; ðA8Þ

κB4 ¼ 3ðχB2 0Þ2χB6 − 5χB2
00ðχB4 Þ2

360TðχB2 0Þ3
; ðA9Þ

κB6 ¼ 

105ðχB2 00Þ2ðχB4 Þ3 − 63χB2

00ðχB2 0Þ2χB4 χB6 − 35χB2
000

× χB2
0ðχB4 Þ3 þ 9ðχB2 0Þ4χB8

�

45360ðχB2 0Þ5T

�
−1; ðA10Þ

κB8 ¼ −


2625ðχB2 00Þ3ðχB4 Þ4 þ 35ðχB2 0Þ2ð5χB2 ð4ÞχB4 4 − 54ðχB2 00Þ2ðχB4 Þ2χB6 Þ

− 1750χB2
00χB2

ð3ÞχB2
0ðχB4 Þ4 þ 9χB2

00ðχB2 0Þ4ð20χB4 χB8 þ 21ðχB6 Þ2Þ
þ 630χB2

ð3ÞðχB2 0Þ3ðχB4 Þ2χB6 − 15ðχB2 0Þ6χB10
�

5443200ðχB2 0Þ7T

�
−1: ðA11Þ

Here, the prime, e.g., χB2
0, denotes the derivative with respect to the temperature.
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