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The standard model effective field theory (SMEFT) is a universal way of parametrizing new physics
(NP) manifesting as new, heavy particle interactions with the Standard Model (SM) degrees of freedom,
that respect the SM gauged symmetries. Higher order terms in the NP interactions possibly lead to sizable
effects, mandatory for meaningful phenomenological studies, such as contributions to neutral meson
mixing, which typically pushes the scale of NP to energy scales much beyond the reach of direct searches in
colliders. I discuss the leading-order renormalization of double-insertions of dimension-6 four-fermion
operators that change quark flavor by one unit (i.e., jΔFj ¼ 1, F ¼ strange-, charm-, or bottom-flavor), by
dimension-8 operators relevant to meson mixing (i.e., jΔFj ¼ 2) in SMEFT. Then, I consider
the phenomenological implications of contributions proportional to large Yukawas, setting bounds on
the Wilson coefficients of operators of dimension-6 via the leading logarithmic contributions. Given the
underlying interest of SMEFT to encode full-fledged models at low energies, this work stresses the need to
consider dimension-8 operators in phenomenological applications of dimension-6 operators of SMEFT.

DOI: 10.1103/PhysRevD.110.016006

I. INTRODUCTION

One strategy in searching for signs of new physics
(NP)—namely, phenomena that cannot be accommodated
within the Standard Model (SM)—is the study of observ-
ables that are predicted by the SM to be suppressed, as for
instance in the case of flavor changing neutral currents
(FCNCs) due to the Glashow-Iliopoulos-Maiani (GIM)
mechanism [1]. A different strategy consists in looking
for deviations in observables that are precisely predicted,
such as the observables that contribute to the extraction of
the elements of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix [2,3] in the SM, among which meson mixing
observables, which also fall into the previous category,
play an important role [4,5].
In the SM, since the latter observables must involve,

compared to the initial and final states and momenta of
external legs, the exchange of much heavier degrees of
freedom (e.g.,W, Z bosons), an effective field theory (EFT)
provides at low energies a simpler picture of the underlying
high-energy dynamics, in which Wilson coefficients and
higher-dimensional operators carry the fingerprints of such

heavy particles, a prominent example being Fermi’s contact
interaction. Similarly, EFTs can be used to investigate the
effects of non-SM new heavy degrees of freedom (e.g.,
W0; Z0), that lead to contact interactions among the SM
particles at low enough energies. The latter EFTs consist of
higher-dimensional operators suppressed by some new
large scale ΛNP, typical of the NP extension, that encode
in particular the flavor aspects of the new heavy sector, and
their manifestation in observables that are suppressed in the
SM or in observables that are precisely predicted can
provide clear hints toward the discovery of NP.
The standard model effective field theory (SMEFT)

consists of the whole set of higher dimensional contact
interactions that are consistent with Lorentz and the local
symmetries of the SM, and is particularly useful when a
new, weak interacting sector is considered, in which case
observational effects are dominated by the first terms in
the power series in 1=ΛNP. In the case of operators of
dimension-6, the so-called Warsaw basis [6] is divided into
eight categories, among which we have four-fermions, ψ4,
that will play a central role in the discussion below, see
Table I where we display operators preserving total baryon
number. Explicit on-shell bases for dimension-8 operators
have been built [7,8], among which one identifies operators
involving four fermions, also central to our discussion, see
Table II for a subset of them. Redundant operators are
discussed in Refs. [9,10].

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 016006 (2024)

2470-0010=2024=110(1)=016006(16) 016006-1 Published by the American Physical Society

https://orcid.org/0000-0002-7399-3272
https://ror.org/017xch102
https://ror.org/043nxc105
https://ror.org/043nxc105
https://ror.org/02gfc7t72
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.016006&domain=pdf&date_stamp=2024-07-09
https://doi.org/10.1103/PhysRevD.110.016006
https://doi.org/10.1103/PhysRevD.110.016006
https://doi.org/10.1103/PhysRevD.110.016006
https://doi.org/10.1103/PhysRevD.110.016006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Operators of dimension-8 may have important phenom-
enological effects, and started to be discussed more sys-
tematically in various contexts: EW precision tests and
Higgs measurements [11–20], collider signals [21–28],
lepton flavour violation [29,30], gluonic couplings of
leptons [31–34], electron electric dipole moment [35],
different consequences of causality, analyticity and unitarity
requirements [36–42], triple neutral gauge couplings
[38,43–45], matching [46] andUV completions [25,47–50].
See Refs. [42,51–53] for discussions about the renormali-
zation of single-insertions of operators of dimension-8.

In the case of NP effective operators involving fermion
fields, effects that change flavor by one unit naturally lead
to NP effects that change flavor by two units, which in the
quark sector are efficiently probed by meson mixing. This
is going to be the main interest here, namely, the leading
effect of double-insertions of dimension-6 encoded in
dimension-8 operators. To spell out, the focus is on the
renormalization of such double-insertions, and the phe-
nomenological limits that can thus be set on the Wilson
coefficients of dimension-6 operators. Focusing on the
leading order, we will thus overlook a series of issues
relevant at higher orders. Although here we focus on meson
mixing, a similar discussion would hold for rare decays,
which are loop suppressed in the SM; e.g., see Ref. [54] in
the cases of rare kaon decays.
The leading-order calculation discussed here gives a first

quantitative assessment of the size of contributions to
meson mixing of double-insertions of dimension-6 oper-
ators in SMEFT, and higher-order effects are delegated to
future work. In this respect, the phenomenological impor-
tance of meson mixing observables has triggered higher-
order calculations in some specific extensions of the
SM due to potentially large perturbative QCD corrections,
including: two-Higgs-doublet model [55], supersymmetry
[56], left-right model [57], leptoquark model [58].
Double-insertions of higher-dimensional operators have

been discussed in the literature in relation to other

TABLE I. Four-fermion operators of the so-called Warsaw
basis, where x ¼ u, d; q (l) are weak-isospin doublet quarks
(leptons), and u, d (e) are weak-isospin singlet quarks (leptons).
Flavor or generation indices are omitted; when indicated in the
text (e.g., as in the Wilson coefficient Cledq;fijk) they correspond
to the fields above in that same ordering [i.e., ðlm

f eiÞðd̄jqm;kÞ].

ðL̄LÞðL̄LÞ
Qll ¼ ðlγμlÞðlγμlÞ
Qð1Þ

qq ¼ ðq̄γμqÞðq̄γμqÞ
Qð3Þ

qq ¼ ðq̄γμτIqÞðq̄γμτIqÞ
Qð1Þ

lq ¼ ðlγμlÞðq̄γμqÞ
Qð3Þ

lq ¼ ðlγμτIlÞðq̄γμτIqÞ

ðR̄RÞðR̄RÞ
Qee ¼ ðēγμeÞðēγμeÞ
Qxx ¼ ðx̄γμxÞðx̄γμxÞ
Qex ¼ ðēγμeÞðx̄γμxÞ
Qð1Þ

ud ¼ ðūγμuÞðd̄γμdÞ
Qð8Þ

ud ¼ ðūγμTAuÞðd̄γμTAdÞ

ðL̄LÞðR̄RÞ
Qle ¼ ðlγμlÞðēγμeÞ
Qlx ¼ ðlγμlÞðx̄γμxÞ
Qqe ¼ ðq̄γμqÞðēγμeÞ
Qð1Þ

qx ¼ ðq̄γμqÞðx̄γμxÞ
Qð8Þ

qx ¼ ðq̄γμTAqÞðx̄γμTAxÞ

ðL̄RÞðR̄LÞ þ H:c:

Qledq ¼ ðlmeÞðd̄qmÞ

ðL̄RÞðL̄RÞ þ H:c:

Qð1Þ
quqd ¼ ðq̄muÞϵmnðq̄ndÞ

Qð8Þ
quqd ¼ ðq̄mTAuÞϵmnðq̄nTAdÞ
Qð1Þ

lequ ¼ ðlmeÞϵmnðq̄nuÞ
Qð3Þ

lequ ¼ ðlmσμνeÞϵmnðq̄nσμνuÞ

TABLE II. Dimension-8 operators relevant to our discussion,
where x ¼ u, d. A complete and minimal basis is found in
Ref. [7]. Flavour or generation indices are omitted, see caption of
Table I.

ðL̄LÞðL̄LÞH2

Qð1Þ
l4H2 ¼ ðlγμlÞðlγμlÞðH†HÞ

Qð2Þ
l4H2 ¼ ðlγμlÞðlγμτIlÞðH†τIHÞ
Qð1Þ

q4H2 ¼ ðq̄γμqÞðq̄γμqÞðH†HÞ
Qð2Þ

q4H2 ¼ ðq̄γμqÞðq̄γμτIqÞðH†τIHÞ

ðR̄RÞðR̄RÞH2

Qe4H2 ¼ ðēγμeÞðēγμeÞðH†HÞ
Qx4H2 ¼ ðx̄γμxÞðx̄γμxÞðH†HÞ

ðL̄RÞðL̄RÞH2

Qð3Þ
l2e2H2 ¼ ðleHÞðleHÞ

Qð5Þ
q2u2H2 ¼ ðq̄uH̃Þðq̄uH̃Þ

Qð6Þ
q2u2H2 ¼ ðq̄TAuH̃Þðq̄TAuH̃Þ
Qð5Þ

q2d2H2 ¼ ðq̄dHÞðq̄dHÞ
Qð6Þ

q2d2H2 ¼ ðq̄TAdHÞðq̄TAdHÞ
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problems. Double-insertion of operators of dimension five
have been discussed for instance in Ref. [59], that considers
the lepton number violating dimension-5 Weinberg oper-
ator of SMEFT, and Ref. [60], in the case of a low-energy
EFT respecting EM and QCD local symmetries. The
renormalization of double-insertions of operators of dimen-
sion-5 and -6 by operators of dimension up to 7 in SMEFT
has been discussed in Ref. [61]. The renormalization of
double-insertions of bosonic operators of dimension-6 has
been discussed in Ref. [62], and double-insertions of
fermionic operators mediating lepton flavor violation have
recently been discussed in Ref. [30]. Double-insertions for
gluon fusion in collider processes are discussed in
Refs. [63,64]. We do not consider in this paper the
extension of SMEFT to include new, light degrees of
freedom, such as right-handed neutrinos, that can carry a
Majorana mass term; see, e.g., Ref. [65] for a basis of
operators up to dimension-7.
This paper is organized as follows: in Sec. II we briefly

discuss the basis of operators needed in SM calculations of
meson mixing at the leading order, and extend the dis-
cussion to SMEFT; in Sec. III we specify our discussion in
SMEFT to cases proportional to Yukawa couplings rela-
tively large compared to the Yukawas of external fermion
fields; in Sec. IV we discuss phenomenological implica-
tions when top-quarks in loops are considered, and then
conclude. Appendices A and B contain respectively the
explicit expressions of the anomalous dimensions appear-
ing in the RG equations, and a discussion of the sensitivity
of meson mixing observables to NP.

II. EFFECTIVE OPERATORS IN MESON MIXING
AT THE LEADING-LOG APPROXIMATION

A. Standard model

At low enough energies, heavy degrees of freedom are
integrated out and their dynamics is encoded in the Wilson
coefficients of higher-dimensional operators. One illustra-
tion of the use of an EFT is provided by meson mixing in
the kaon sector in the SM [66–68], which proceeds via box
diagrams at the leading order. Different internal flavors of
the same type (here, up-type) can be combined as a result of
the GIM mechanism, which suppresses SM contributions
to meson mixing. There are three sets of contributions that
are qualitatively very different, and quantitatively impor-
tant, according to the elements of the CKMmatrix V: boxes
involving (I) top- and up- (scaling with ðVtdV�

tsÞ2),1 (II)
charm- and up- (scaling with ðVcdV�

csÞ2), (III) charm-, top-
and up-quarks [scaling with ðVtdV�

tsÞðVcdV�
csÞ].2 At the

matching scale μEW (where W, Z, H, t particles are

integrated out and the first EFT is built from the full
SM), case (I) is reproduced in the EFT by dimension-6
operators that change flavor by two units (jΔFj ¼ 2), and at
the leading order cases (II) and (III) by double-insertions of
dimension-6 operators that change flavor by one unit
(jΔFj ¼ 1), each of which being suppressed by 1=M2

W.
In other words, GIM controls the basis of operators,
eliminating the appearance of dimension-6 jΔFj ¼ 2 oper-
ators in cases (II) and (III) due to the characteristic
dependence on the light quark masses, i.e., m2

c=M2
W ≪ 1

(the up-quark mass can be set to zero); since m2
t =M2

W ∼ 1,
the same does not hold true in case (I). Higher orders from
strong [67–71] and electroweak [72,73] interactions intro-
duce new operators; the basis has also to be extended to
account for 1=m2

c corrections, see Ref. [74] for a recent
reference, and Refs. [75,76]. A further suppression due to
the GIM mechanism is the absence of logarithmic con-
tributions in case (II); in a consequent way, it makes
double-insertions of dimension-6 operators finite in this
case, i.e., the latter do not require renormalization by
dimension-8 operators. GIM does not operate in the same
way in case (III), for which the main contribution is given
by a large logarithm; consequently, GIM does not eliminate
the divergence in double-insertions of dimension-6 oper-
ators, and case (III) requires renormalization by dimension-
8 operators. (The reader will find some more technical
details at the end of Appendix A.)
To describe the resulting mixing of operators quantita-

tively, one must determine the anomalous dimension tensor
γij;n: given a set of Green’s functions with two insertions of
dimension-6 operators (indexed by i, j) one calculates the
counter-terms proportional to dimension-8 operators
(indexed by n), needed to renormalize the divergences
resulting from the double-insertions. Large logarithms are
resummed via the renormalization group (RG) evolution,
see Appendix A:

μ
d
dμ

Cð8Þ
n ðμÞ ¼ Σi;jC

ð6Þ
i ðμÞCð6Þ

j ðμÞγij;n þ ΣmC
ð8Þ
m ðμÞγ̃mn;

ð1Þ

where the superscripts of the Wilson coefficients give the
dimension of the corresponding operator. Solving these RG
equations, the term proportional to two dimension-6
Wilson coefficients carries the logarithm logðμlow=μEWÞ
for some μlow ≪ μEW, consistently reproducing the loga-
rithmic enhancement of case (III) above. The values of the

dimension-8 Wilson coefficients Cð8Þ
n ðμEWÞ are sub-lead-

ing, and the calculation of the anomalous dimension matrix
γ̃mn is not required at the leading order.

B. Beyond the standard model

An analogous picture can be drawn in SMEFT. We
consider a case analog to case (III) above. First of all, we

1Case (I) is the contribution that is largely dominant in
neutral-BðsÞ meson mixing in the SM.

2The same qualitative discussion holds for the different
gathering of contributions considered in Ref. [69].
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consider that the underlying NP sector does not generate
tree or one-loop contributions to dimension-6 jΔFj ¼ 2
operators, and tree contributions to jΔFj ¼ 2 operators of
higher dimension, or at least that these contributions are
highly suppressed.3 Then, we consider that a possible GIM-
like mechanism in the NP sector does not eliminate the
need to renormalize double-insertions of dimension-6
jΔFj ¼ 1 operators (whose Wilson coefficients are taken
to be nonzero, and uncorrelated a priori), i.e., large
logarithms are present, and assumed to be dominant.
Under these assumptions, the leading contribution to
meson mixing is captured by double-insertions of dimen-
sion-6 operators, that require renormalization by dimen-
sion-8 operators. Solving an equation analogous to Eq. (1)
valid in the context of SMEFT results then, when
ΛNP ≫ μEW, in the large logarithm logðμEW=ΛNPÞ.
We stress that the double-insertions under discussion

here depend only on theWilson coefficients of dimension-6
jΔFj ¼ 1 operators. If a particular NP model does not
suffer from GIM-like suppressions that would prevent the
appearance of dimension-6 jΔFj ¼ 2 operators, the bounds
on the scale of NP derived from double-insertions still
provide conservative estimates that are independent of the
Wilson coefficients of dimension-6 jΔFj ¼ 2 operators.
For simplicity, we focus on double-insertions of the same

operator, with the same flavor content. Concrete extensions
of the SM will typically involve more than one effective
operator and a richer flavor structure, and the leading-log
contributions therein could be evaluated via a calculation
similar to the one described below. Furthermore, we focus
on double-insertions of the full set of dimension-6 four-
fermion operators of SMEFT, displayed in Table I. Our
starting point is the Warsaw basis of operators of dimen-
sion-6, and we will not discuss the matching of a particular
model of renormalizable interactions onto that basis.

III. CONTRIBUTIONS PROPORTIONAL TO
LARGE YUKAWA COUPLINGS

For phenomenological reasons, we focus on cases
proportional to relatively large Yukawa couplings com-
pared to the Yukawas of the external fields (which will lead
to sizable contributions as we will see below). For instance,

we focus on the contributions to kaon-meson mixing that
can involve the Yukawas of charm-, bottom- and top-
quarks, as well as of tau-leptons.
Figure 1 shows 1PI Feynman diagrams for double-

insertions of four-fermion operators that can lead to
contributions to meson mixing. Since each insertion is
suppressed by two powers of the NP scale ΛNP, the overall
contributions of these diagrams scale as 1=Λ4

NP. Operators
of the schematic structure ψ4H2 are an obvious candidate to
renormalize the divergences of these diagrams. To full
generality, other dimension-8 operators also show up in the
renormalization program, schematically: ψ4HD, ψ4D2, and
ψ4X, see the basis in Ref. [7]. However, their contributions
to meson mixing are proportional to one or two powers of
the external fermion masses (of the same order of the
external momentum scale), and we will thus neglect their
contributions.
The top two diagrams in Fig. 1 introduce in general the

need for counterterms of the structure ψ4H2, as seen from
the equations of motion (EOMs) of fermion fields resulting
from the SM Lagrangian.4 However, these are suppressed
by the external fermion masses. Therefore, only the bottom
two diagrams in Fig. 1 can lead to contributions propor-
tional to large Yukawa couplings.
In principle, 1PI single-insertions of four-fermion oper-

ators lead to new contributions, see Fig. 2. The reason is
that higher-dimensional operators change the EOMs of the
SM fields [82]. However, EOMs of the scalar field and field
strength tensors cannot change in presence of dimension-6
four-fermion operators at tree level, and when using the
EOMs of fermion fields we end up with contributions to
meson mixing suppressed by the external fermion masses,
as in the previous two paragraphs.

FIG. 1. 1PI diagrams involving double-insertions and four
external fermion legs, represented by solid lines. The Higgs
scalar is represented by a dashed line. Gauge bosons can be
attached to the internal lines in all possible ways.

3For instance, in typical left-right models without the addition
of new fermions beyond right-handed neutrinos, the masses of the
extended (neutral) scalar sector suppress their tree-level contri-
butions to meson mixing, see, e.g., Refs. [57,77]. In models with
leptoquarks, there are no possible tree-level contributions to
meson mixing, and integrating out heavy leptoquarks would
result in single-insertions of dimension-6 jΔFj ¼ 2 operators,
followed by double-insertions of dimension-6 jΔFj ¼ 1 oper-
ators. The double-insertion contributions become leading if a
GIM-like mechanism suppresses the single-insertion terms,
which are otherwise largely dominant due to the lightness of
lepton masses compared to the NP scale; see, e.g., the Inami-Lim
functions in Ref. [78].

4See Refs. [79–81] and references therein for a discussion in
terms of field redefinitions. The use of EOMs is sufficient at the
leading order considered here.
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Basic expressions and explicit anomalous dimensions
describing the mixing of double-insertions into operators of
the structure ψ4H2 are collected in Appendix A. As
discussed in the introduction, a complete and minimal
basis of dimension-8 operators is found in Ref. [7], and as
seen from therein operators having a structure other than
ψ4H2 could also contribute to meson mixing. Namely,
there are independent operators having the structures
ψ4HD, ψ4D2, and ψ4X (D is a covariant derivative and
X is a field strength tensor). Some such dimension-8
operators would in general be needed in phenomenological
studies when discussing, e.g., tau-lepton loops in the
context of charm or bottom physics. The corresponding
analysis extending the scope of the current one is an
ongoing work.

IV. PHENOMENOLOGY OF TOP-QUARKS
IN LOOPS

We focus our phenomenological discussion on contri-
butions to meson mixing in which both internal fermions
running in the loop are top-quarks. The resulting effect is
then proportional to two powers of the Yukawa of the top-
quark. The scope of SMEFT operators is the following, see
Table I

Qð1;8Þ
quqd; Qð1;8Þ

ud ; Qð1;8Þ
qu ; Qð1;8Þ

qd ; Qð1;3Þ
qq : ð2Þ

Since here the internal flavor is a top, below the EW scale
the relevant operators are

Oq1q2
1 ¼ ðq̄α1γμLqα2Þðq̄β1γμLqβ2Þ;

Oq1q2
2 ¼ ðq̄α1Lqα2Þðq̄β1Lqβ2Þ;

Oq1q2
3 ¼ ðq̄α1Lqβ2Þðq̄β1Lqα2Þ;

Oq1q2
4 ¼ ðq̄α1Lqα2Þðq̄β1Rqβ2Þ;

Oq1q2
5 ¼ ðq̄α1Lqβ2Þðq̄β1Rqα2Þ;

Õq1q2
1 ¼ ðq̄α1γμRqα2Þðq̄β1γμRqβ2Þ;

Õq1q2
2 ¼ ðq̄α1Rqα2Þðq̄β1Rqβ2Þ;

Õq1q2
3 ¼ ðq̄α1Rqβ2Þðq̄β1Rqα2Þ; ð3Þ

where L (R) are left- (right-) handed projectors, α, β are
color indices, and flavors are q1; q2 ¼ b, c, s, d, u. Their
hadronic matrix elements are calculated for instance in
Refs. [83,84], which are chirally enhanced in the case
of kaons.
Finally, one sets constraints on the NP Wilson coef-

ficients of the operators in Eq. (2) based on their con-
tributions to different meson mixing observables, namely:
indirect CP violation in the system of kaons, and mass
differences in the systems of BðsÞ-mesons. These observ-
ables are used in the global fit of Ref. [85] and a good
global agreement with the SM is presently obtained.
Although the relevant RGEs in SMEFT are provided in
Appendix A, we do not discuss the mass difference in the
system of kaons nor charm-meson mixing, due to the
underlying difficulty in having precise SM predictions in
these cases in consequence of long-distance effects.
Although our focus is on meson mixing, we also provide
in Appendix A the RGEs relevant for muonium oscillation,
μþe− ↔ μ−eþ (for a recent reference on this topic see
Ref. [86]). We do not include the latter in our discussion
due to the limited sensitivity to the NP scale resulting from
the generated 1=Λ4

NP effect. We exploit the bounds pro-
vided in Refs. [87,88] on generic NP contributions, see
Appendix B. Despite being an effect proportional to a
dimension-8 operator and being generated at one-loop,
given the precision with which these observables are
known, one reaches a sensitivity to multi-TeV NP effects,
see Tabs. III and IV. We work in the basis in which down-
type flavors are mass eigenstates (phenomenological results
for down-type meson mixing are more straightforwardly
assessed in this basis). A certain number of comments is
in order:

(i) Subleading effects above the EW scale may be
numerically relevant if the leading logarithmic term
is not largely dominant, as in any similar study. Their
determination, however, is beyond the scope of this
work. Among the possible effects showing up at
higher order, we mention single-insertions of di-
mension-8 jΔFj ¼ 2 operators and their renormal-
ization by dimension-6 jΔFj ¼ 2 operators.
Higher orders introduce the need for determining
the Wilson coefficients Cð8Þ calculated at the match-
ing scale ΛNP.

(ii) The fit [87,88] is done under the assumption that
NP is only present in contact interactions that change
flavor by two units, while here we analyse the
combined effects of jΔFj ¼ 1 NP operators. In

presence of jΔBj ¼ 1 operators Qð1;3Þ
qq , Qð1;8Þ

ud ,

Qð1;8Þ
qu , Qð1;8Þ

qd there is in particular NP affecting the
interpretation of the extracted values of the unitary
triangle angles β; βs (beyond mixing-induced CP
violation, that is already taken into account in that
fit), namely, tree contributions involving the charm

FIG. 2. 1PI diagrams involving single-insertions and two
external fermion legs, represented by solid lines. The Higgs
scalar is represented by a dashed line. Gauge bosons can be
attached to the internal lines in all possible ways.
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flavor5 (suppressed by off-diagonal elements of the
CKM matrix), and/or contributions similar to the
(gluonic) penguin generated in the SM.6 These
observables play a central role in setting constraints
on the allowed size of NP in jΔBj ¼ 2 [97–99], and
for this reason jΔBj ¼ 1 operators are not included
in Table IV. See also Ref. [100] for a discussion of
the effects of dimension-6 operators in the extraction
of the elements of the CKM matrix. A reanalysis of
the global fit taking into account jΔBj ¼ 1 operators
involving top-quarks will be the subject of future

work, further motivated by the fact that experimental
uncertainties in the extraction of β will be improved.
On the other hand, we provide bounds on NP in the
kaon sector in Table IV, which result in the global fit
of Ref. [87] from jϵKj.

(iii) In the case of the operators shown in Table IV,
single-insertions [77,101–103] at one-loop can lead
to contributions to meson mixing, setting bounds
on jImfVtdV�

tsCgj instead of jImfC2gj, see
Refs. [77,102] where finite terms are discussed, that
contribute in the matching to an effective theory
valid below the EW energy scale. Although these
single-insertions are suppressed by off-diagonal
elements of the CKM matrix, chiral enhancements

in cases Qð1;8Þ
ud and Qð1;8Þ

qd lead to a much better
sensitivity to the NP energy scale compared to

Table IV. In cases Qð1;8Þ
qu , the sensitivity is similar

to the one shown in Table IV. The operators Qð1;3Þ
qq

can contribute to charm-meson mixing (with sup-
pression by off-diagonal elements of the CKM
matrix) [101], which however is challenging to
calculate reliably in the SM. In the case of the
operators shown in Table III, contributions from
finite terms are suppressed by the mass scale of the
external fields, and they are thus negligible.

(iv) Other observables can also constrain the same NP
effective couplings; e.g., many other operators are
radiatively generated through single-insertions,
whose anomalous dimensions at one-loop are found
in Refs. [104–106]. These radiative effects result in
contributions to rare semileptonic transitions, for
instance. However, in particular, K → πν̄ν rates are
presently not known to an experimental accuracy
much better than 100% [107], and the main sensi-
tivity to the NP scale is still achieved by meson
mixing. On the other hand, in the cases of the

operators Qð8Þ
qu and Qð3Þ

qq;f33i, although large theoreti-
cal uncertainties are involved, a much higher sensi-
tivity to the NP scale is likely to be achieved by the
observable ε0=ε (giving the amount of direct CP
violation in the system of kaons) from gluonic

TABLE III. Estimated bounds on the Wilson coefficients of the operators in Eq. (2). The first column indicates the Wilson coefficient
(WC) C being probed at the scale ΛNP, together with its flavor indices (bounds correspond to the combination of the two cases provided,
with no interference present). The three remaining columns give estimated bounds accordingly to the meson system. The flavor indices
with an asterisk correspond to the WC of the operator that has been complex conjugated; in this way we indicate both cases in which the
f flavor comes from a weak-isospin doublet (first cases) or a singlet (second cases).

WC Flavors B (f ¼ 3, i ¼ 1) Bs (f ¼ 3, i ¼ 2) K (f ¼ 2, i ¼ 1)

Cð1Þ
quqd

33fi; ð33ifÞ� jC2j < ð7 TeVÞ−4 jC2j < ð4 TeVÞ−4 jImfC2gj < ð70 TeVÞ−4
f33i; ði33fÞ� jC2j < ð5 TeVÞ−4 jC2j < ð3 TeVÞ−4 jImfC2gj < ð50 TeVÞ−4

Cð8Þ
quqd

33fi; ð33ifÞ� jC2j < ð3 TeVÞ−4 jC2j < ð2 TeVÞ−4 jImfC2gj < ð30 TeVÞ−4
f33i; ði33fÞ� jC2j < ð3 TeVÞ−4 jC2j < ð2 TeVÞ−4 jImfC2gj < ð30 TeVÞ−4

TABLE IV. See caption of Table III for comments. Addition-
ally, the contribution ofQð1Þ

qq;f33i to double-insertions proportional
to the Yukawa of the top-quark squared vanishes at this order.

WC Flavors K (f ¼ 2, i ¼ 1)

Cð1Þ
ud

33fi jImfC2gj < ð30 TeVÞ−4
Cð8Þ
ud

33fi jImfC2gj < ð10 TeVÞ−4
Cð1Þ
qd

33fi jImfC2gj < ð30 TeVÞ−4

Cð8Þ
qd

33fi jImfC2gj < ð10 TeVÞ−4

Cð1Þ
qu

fi33 jImfC2gj < ð30 TeVÞ−4
Cð8Þ
qu

fi33 jImfC2gj < ð10 TeVÞ−4
Cð1Þ
qq

fi33 ¼ 33fi jImfC2gj < ð30 TeVÞ−4
Cð3Þ
qq

fi33 ¼ 33fi jImfC2gj < ð30 TeVÞ−4
f33i ¼ 3if3 jImfC2gj < ð30 TeVÞ−4

5See Refs. [89,90] for a comprehensive discussion of NP
operators mediating b → cc̄s.

6For example, in the SM penguin pollution in the extraction of
β from B0 → J=ψK0 is small, and neglected given current
experimental uncertainties: in particular, the imaginary part of
the top-penguin contribution to the amplitudes scales like λ4, and
is doubly-Cabibbo suppressed with respect to the tree contribu-
tion (independently of the Wolfenstein parametrization), see e.g.
Ref. [91]. However, NP does not have to follow the same
suppression; see e.g. Ref. [92] for a discussion of NP effects
in the decay. Moreover, one cannot exploit SUð3Þ relating B0 →
J=ψK0 to B0 → J=ψπ0 to constrain top-penguins affecting the
former channel [93–96] since NP operators carrying different
flavors are assumed unrelated.
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penguins due to the chiral enhancement involved
[108], similar to the gluonic LR penguin operator
generated in the SM.

We have thus obtained a dominant, or competitive,
clean7 sensitivity to NP effects from double-insertions in
the cases shown in Table III, and the casesQð1Þ

qu;fi33,Q
ð1Þ
qq;fi33

and Qð3Þ
qq;fi33, shown in Table IV. Even in cases where a

higher sensitivity is reached by single-insertions, double-
insertions carry a different dependence on the dimension-6
Wilson coefficients, and can therefore offer a complemen-
tary probe.
Beyond top-quarks in loops, one can also have other

internal heavy flavors in the case of kaon-meson mixing,
namely, charm- and bottom-quarks, and tau-leptons, which
are much heavier than kaons. Given the dependence on
masses lighter than the top, the sensitivity to the NP scale
will drop.

V. CONCLUSIONS

I have discussed effects of a generic heavy NP sector that
are encoded in higher-dimensional operators. More exactly,
I have calculated the renormalization by dimension-8
operators of double-insertions of dimension-6 operators,
where the latter changes flavor number by one unit and the
former by two units. At energy scales much below the
characteristic scale of NP, the effects of double-insertions
are constrained by meson mixing observables, which
receive suppressed contributions from the SM, due to
the GIM mechanism, that are precisely predicted in the
case of many observables. The calculation here discussed
provides the leading-order contribution to meson mixing in
SMEFT when jΔFj ¼ 2 tree-level effects and dimension-6
jΔFj ¼ 2 operators generated at one-loop are absent or
suppressed, and no GIM-like mechanism in the NP sector
operates to eliminate the need for renormalization.
The scope of SMEFT operators considered here extends

to four-fermions of different chiralities, and to semileptonic
operators. I have focused the phenomenological discussion
on tops as the internal flavor in fermionic loops, resulting in
contributions proportional to the square of the Yukawa
coupling of the top. Given the level of experimental
accuracy reached for meson mixing observables, loop-
suppressed double-insertions lead to meaningful and
powerful bounds on NP, displayed in Tabs. III and IV,
probing energy scales much beyond the reach of direct
searches in colliders.
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APPENDIX A: RENORMALIZATION AND RG
EQUATIONS

We consider on-shell renormalization with dimensional
regularization (D ¼ 4 − 2ϵ) and (modified) minimal sub-
traction; Ref. [109] is used to identify UV divergences; we
also employ BMHV scheme to deal with γ5.
Next, we follow closely the discussion of Ref. [68]. It

will be left implicit that the operators being discussed are
the ones of the main text. Up to OðΛ−6

NPÞ terms, the
nonrenormalizable part of the Lagrangian is given by
(sums over repeated indices are left implicit):

Leff;nonren ¼ −
1

Λ2
NP

�
Cð6Þi Z−1

ij þ m2
H

Λ2
NP

Cð8Þi Ẑ−1
ij

�
μΔ

ð6Þ
j Qð6Þ;bare

j

−
1

Λ4
NP

ðCð6Þi Cð6Þj Z−1
ij;n þ Cð8Þm Z̃−1

mn

�
μΔ

ð8Þ
n Qð8Þ;bare

n

þ…; ðA1Þ

where “(6)” and “(8)” are the dimensions of the operators
involved, except when otherwise indicated (namely, the

dimension-8 operators Qð6Þ
q2x2H2 , x ¼ u, d, and their Wilson

coefficients). The Wilson coefficients Cð6Þ and Cð8Þ are
dimensionless (we reserve the typesetting Cð6Þ and Cð8Þ for
the dimensionful ones), and the expressions multiplying the
bare operators are the bare Wilson coefficients. The ellipses
denote counterterms proportional to unphysical operators,
that will be omitted hereafter. Note that on-shell matrix
elements of double-insertions of EOM-vanishing operators
are in principle nonzero, see e.g. Ref. [110]. However, we
consider as our starting point in the main text dimension-6
operators of the Warsaw basis, which we do not replace via
the use of EOMs. Other than its nonrenormalizable part,
Leff;nonren, the full Lagrangian Leff also includes L“SM”,
which is the SM Lagrangian together with counterterms
proportional to SM operators due to the presence of NP
interactions.
Insertions of higher-dimensional operators leading to

Green’s functions relevant for meson mixing are indicated
as (the “SM” part of the Lagrangian is not being explicitly
shown):

�
T exp

�
i
Z

dDxLeff;nonrenðxÞ
��

“SM”

jΔFj¼2

¼ −ihað6Þ þ að8Þi“SM”
jΔFj¼2

ðA2Þ

up to terms OðΛ−6
NPÞ, where7I.e., excluding charm-meson mixing.
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að6ÞðxÞ ¼ 1

Λ2
NP

Σi;jC
ð6Þ
i Z−1

ij μ
Δð6Þ

j Qð6Þ;bare
j ðxÞ ðA3Þ

and

að8ÞðxÞ ¼ m2
H

Λ4
NP

Σi;jC
ð8Þ
i Ẑ−1

ij μ
Δð6Þ

j Qð6Þ;bare
j ðxÞ

þ 1

Λ4
NP

Σm;nC
ð8Þ
m Z̃−1

mnμ
Δð8Þ

n Qð8Þ;bare
n ðxÞ

þ 1

Λ4
NP

Σi;jC
ð6Þ
i Cð6Þj RijðxÞ; ðA4Þ

with

RijðxÞ ¼ Σi0;j0Z−1
ii0 Z

−1
jj0μ

Δð6Þ
i0 þΔð6Þ

j0 Rbare
i0j0 ðxÞ

þ ΣnZ−1
ij;nμ

Δð8Þ
n Qð8Þ;bare

n ðxÞ ðA5Þ

and

Rbare
i0j0 ðxÞ ¼

−i
2

Z
dDyTðQð6Þ;bare

i0 ðxÞQð6Þ;bare
j0 ðyÞ

þQð6Þ;bare
j0 ðxÞQð6Þ;bare

i0 ðyÞÞ: ðA6Þ

In powers of the Yukawa couplings y (possibly different
Yukawa couplings are represented by the same letter y), the
renormalization factors are expanded as (δ is the Kronecker
symbol, with indices omitted):

Z−1 ¼ δþ y2

ð4πÞ2 Z
−1;ð1Þ þ…;

Z−1;ðnÞ ¼ Σn
r¼0

1

ϵr
Z−1;ðnÞ
r þOðϵÞ; ðA7Þ

and similarly for Z̃−1, while Ẑ−1 and the tensor Z−1
ij;n have

perturbative expansions starting at Oðy2Þ.
From the scale independence of the bare coefficients, one

gets (cf. Eq. (1), given in the context of the SM)

μ
d
dμ

Cð8Þn ðμÞ ¼ Σi;jC
ð6Þ
i ðμÞCð6Þj ðμÞγij;n þ ΣmC

ð8Þ
m ðμÞγ̃mn;

ðA8Þ

with in particular

γij;n ¼
y2

ð4πÞ2 γ
ð0Þ
ij;n þ…;

γð0Þij;n ¼
ð2Δy þ Δð6Þ

i þ Δð6Þ
j − Δð8Þ

n Þ
ϵ

½Z−1;ð1Þ
1 �ij;n þOðϵÞ;

ðA9Þ

where Δy ¼ ϵ is the mass dimension of the coupling y,
which satisfies the renormalization group equation
μdyðμÞ=dμ ¼ −ΔyyðμÞ þOðy2Þ. Similarly, Δð6Þ ¼ 2ϵ for
four-fermion operators ψ4, and Δð8Þ ¼ 4ϵ for operators of
the schematic form ψ4H2. To achieve the simple form of
Eq. (A8), we have neglected terms ∝ m2

H indicated in the
right-hand side of Eq. (A1), which is justified in the leading
order being considered here, where Cð8ÞðΛNPÞ is sublead-
ing, see the main text, Sec. II.
The anomalous dimensions γð0Þij;n are then calculated from

the finiteness of the Green’s functions introduced above,
hRijið0Þ in particular (“(0)” indicates the leading order,
shown in Figs. 1 and 2, and “[div]” the divergent parts):

ðybareÞ2
ð4πÞ2 Σn½Z−1;ð1Þ�ij;nhQð8Þ;bare

n ið0Þ;SMjΔFj¼2
½div�

¼ −hRbare
ij ið0Þ;SMjΔFj¼2

½div�: ðA10Þ

Since we focus on the special case in which i ¼ j, γð0Þ is a
matrix.
Finally, at the leading-log approximation:

Cð8Þn ðμEWÞ ¼
y2ðμEWÞ
ð4πÞ2 ln

�
μEW
ΛNP

�

× Σi;jC
ð6Þ
i ðΛNPÞCð6Þj ðΛNPÞγð0Þij;n: ðA11Þ

The scale ΛNP appearing in the logarithm is set to 1 TeV in
the numerical applications in the main text.

1. Explicit expressions for the RG equations

The RG equations are given in the following (the sum
over j, k indices is left implicit):

ð4πÞ2μ d
dμ

Cð3Þ
l2e2H2;fifi

¼ Gledq
a ½lepton� × Sa × Gledq

a × ðY†
dÞ2kj × ðCledq;fijkÞ2 þGlequð1Þ

a ½lepton� × Sa × Glequð1Þ
a

× ðYuÞ2kj × ðCð1Þ
lequ;fijkÞ2 þGle

b × Sb × Gle
b × ðY†

eÞ2kj × ðCle;fkjiÞ2 ðA12Þ
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ð4πÞ2μ d
dμ

Cð5Þ
q2d2H2;fifi

¼Gledq
a ½quark�×Sa×Gledq

a ×ðY†
eÞ2kj×ðC�

ledq;kjifÞ2þGquqdð1Þ
a ×Sa×Gquqdð1Þ

a ×ðYuÞ2kj×ðCð1Þ
quqd;jkfiÞ2

þ Gquqdð1Þ
b ×Sb×Gquqdð1Þ

b ×ðYuÞ2kj×ðCð1Þ
quqd;fkjiÞ2

þ Gquqdð8Þ
b ½singlet�×Sb×Gquqdð8Þ

b ×ðYuÞ2kj×ðCð8Þ
quqd;fkjiÞ2

þ Gqdð1Þ
b ½singlet�×Sb×Gqdð1Þ

b ×ðY†
dÞ2kj×ðCð1Þ

qd;fkjiÞ2

þ Gqdð8Þ
b ½singlet�×Sb×Gqdð8Þ

b ×ðY†
dÞ2kj×ðCð8Þ

qd;fkjiÞ2 ðA13Þ

ð4πÞ2μ d
dμ

Cð6Þ
q2d2H2;fifi

¼ Gquqdð8Þ
a × Sa × Gquqdð8Þ

a × ðYuÞ2kj × ðCð8Þ
quqd;jkfiÞ2 þGquqdð8Þ

b ½octet� × Sb × Gquqdð8Þ
b

× ðYuÞ2kj × ðCð8Þ
quqd;fkjiÞ2 þ Gqdð1Þ

b ½octet� × Sb × Gqdð1Þ
b × ðY†

dÞ2kj × ðCð1Þ
qd;fkjiÞ2

þ Gqdð8Þ
b ½octet� × Sb × Gqdð8Þ

b × ðY†
dÞ2kj × ðCð8Þ

qd;fkjiÞ2 ðA14Þ

ð4πÞ2μ d
dμ

Cð5Þ
q2u2H2;fifi

¼ Glequð1Þ
a ½quark� × Sa × Glequð1Þ

a × ðYeÞ2kj × ðCð1Þ
lequ;jkfiÞ2

þGquqdð1Þ
a × Sa × Gquqdð1Þ

a × ðYdÞ2kj × ðCð1Þ
quqd;fijkÞ2

þGquqdð1Þ
b × Sb × Gquqdð1Þ

b × ðYdÞ2kj × ðCð1Þ
quqd;jifkÞ2

þGquqdð8Þ
b ½singlet� × Sb × Gquqdð8Þ

b × ðYdÞ2kj × ðCð8Þ
quqd;jifkÞ2

þGquð1Þ
b ½singlet� × Sb × Gquð1Þ

b × ðY†
uÞ2kj × ðCð1Þ

qu;fkjiÞ2

þGquð8Þ
b ½singlet� × Sb × Gquð8Þ

b × ðY†
uÞ2kj × ðCð8Þ

qu;fkjiÞ2 ðA15Þ

ð4πÞ2μ d
dμ

Cð6Þ
q2u2H2;fifi

¼ Gquqdð8Þ
a × Sa × Gquqdð8Þ

a × ðYdÞ2kj × ðCð8Þ
quqd;fijkÞ2 þGquqdð8Þ

b ½octet� × Sb × Gquqdð8Þ
b

× ðYdÞ2kj × ðCð8Þ
quqd;jifkÞ2 þ Gquð1Þ

b ½octet� × Sb × Gquð1Þ
b × ðY†

uÞ2kj × ðCð1Þ
qu;fkjiÞ2

þ Gquð8Þ
b ½octet� × Sb × Gquð8Þ

b × ðY†
uÞ2kj × ðCð8Þ

qu;fkjiÞ2 ðA16Þ

ð4πÞ2μ d
dμ

Cð1Þ
l4H2;fifi ¼ Gle

c ½ll� × Sc × Gle
c × ½YeY

†
e�jj × ðCle;fijjÞ2

þ Glu
c ½lepton� × Sc × Glu

c × ½YuY
†
u�jj × ðClu;fijjÞ2

þ Gld
c ½lepton� × Sc × Gld

c × ½YdY
†
d�jj × ðCld;fijjÞ2

þ Glqð1Þ
c ½lepton� × Sc × Glqð1Þ

c × ð½Y†
uYu�jj þ ½Y†

dYd�jjÞ × ðCð1Þ
lq;fijjÞ2

þ Glqð3Þ
c ½lepton� × Sc × Glqð3Þ

c × ð½Y†
uYu�jj þ ½Y†

dYd�jjÞ × ðCð3Þ
lq;fijjÞ2

þ Gll
c × Sc × Gll

c × ½Y†
eYe�jj × ðCll;fijjÞ2

þ Gll
d ½singlet� × Sd × Gll

d × ½Y†
eYe�jj × ðCll;fjjiÞ2 ðA17Þ

ð4πÞ2μ d
dμ

Cð2Þ
l4H2;fifi

¼ Gll
d ½tripletð2Þ� × Sd × Gll

d × ½Y†
eYe�jj × ðCll;fjjiÞ2 ðA18Þ

ð4πÞ2μ d
dμ

Ce4H2;fifi ¼ Gle
c ½ee� × Sc × Gle

c × ½Y†
eYe�jj × ðCle;jjfiÞ2

þGqe
c ½lepton� × Sc × Gqe

c × ð½Y†
uYu�jj þ ½Y†

dYd�jjÞ × ðCqe;jjfiÞ2
þGeu

c ½lepton� × Sc × Geu
c × ½YuY

†
u�jj × ðCeu;fijjÞ2
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þ Ged
c ½lepton� × Sc × Ged

c × ½YdY
†
d�jj × ðCed;fijjÞ2

þ Gee
c × Sc × Gee

c × ½YeY
†
e�jj × ðCee;fijjÞ2

þ Gee
d × Sd × Gee

d × ½YeY
†
e�jj × ðCee;fjjiÞ2 ðA19Þ

ð4πÞ2μ d
dμ

Cð1Þ
q4H2;fifi

¼ Gqe
c ½quark� × Sc × Gqe

c × ½YeY
†
e�jj × ðCqe;fijjÞ2

þGquð1Þ
c ½qq� × Sc × Gquð1Þ

c × ½YuY
†
u�jj × ðCð1Þ

qu;fijjÞ2

þGqdð1Þ
c ½qq� × Sc × Gqdð1Þ

c × ½YdY
†
d�jj × ðCð1Þ

qd;fijjÞ2

þGquð8Þ
c ½qq� × Sc × Gquð8Þ

c × ½YuY
†
u�jj × ðCð8Þ

qu;fijjÞ2

þGqdð8Þ
c ½qq� × Sc × Gqdð8Þ

c × ½YdY
†
d�jj × ðCð8Þ

qd;fijjÞ2

þGlqð1Þ
c ½quark� × Sc × Glqð1Þ

c × ½Y†
eYe�jj × ðCð1Þ

lq;jjfiÞ2

þGlqð3Þ
c ½quark� × Sc × Glqð3Þ

c × ½Y†
eYe�jj × ðCð3Þ

lq;jjfiÞ2

þGqqð1Þ
c × Sc × Gqqð1Þ

c × ð½Y†
uYu�jj þ ½Y†

dYd�jjÞ × ðCð1Þ
qq;fijjÞ2

þGqqð3Þ
c × Sc × Gqqð3Þ

c × ð½Y†
uYu�jj þ ½Y†

dYd�jjÞ × ðCð3Þ
qq;fijjÞ2

þGqqð1Þ
d ½singlet� × Sd × Gqqð1Þ

d × ð½Y†
uYu�jj þ ½Y†

dYd�jjÞ × ðCð1Þ
qq;fjjiÞ2

þGqqð3Þ
d ½singlet� × Sd × Gqqð3Þ

d × ð½Y†
uYu�jj þ ½Y†

dYd�jjÞ × ðCð3Þ
qq;fjjiÞ2 ðA20Þ

ð4πÞ2μ d
dμ

Cð2Þ
q4H2;fifi

¼ Gqqð1Þ
d ½tripletð2Þ� × Sd × Gqqð1Þ

d × ð½Y†
dYd�jj − ½Y†

uYu�jjÞ × ðCð1Þ
qq;fjjiÞ2

þ Gqqð3Þ
d ½tripletð2Þ� × Sd × Gqqð3Þ

d × ð½Y†
uYu�jj − ½Y†

dYd�jjÞ × ðCð3Þ
qq;fjjiÞ2 ðA21Þ

ð4πÞ2μ d
dμ

Cu4H2;fifi ¼ Glu
c ½quark� × Sc × Glu

c × ½Y†
eYe�jj × ðClu;jjfiÞ2

þ Gquð1Þ
c ½uu� × Sc × Gquð1Þ

c × ð½Y†
uYu�jj þ ½Y†

dYd�jjÞ × ðCð1Þ
qu;jjfiÞ2

þ Gquð8Þ
c ½uu� × Sc × Gquð8Þ

c × ð½Y†
uYu�jj þ ½Y†

dYd�jjÞ × ðCð8Þ
qu;jjfiÞ2

þ Geu
c ½quark� × Sc × Geu

c × ½YeY
†
e�jj × ðCeu;jjfiÞ2

þ Gudð1Þ
c × Sc × Gudð1Þ

c × ½YdY
†
d�jj × ðCð1Þ

ud;fijjÞ2

þ Gudð8Þ
c × Sc × Gudð8Þ

c × ½YdY
†
d�jj × ðCð8Þ

ud;fijjÞ2

þ Guu
c × Sc × Guu

c × ½YuY
†
u�jj × ðCuu;fijjÞ2

þ Guu
d × Sd × Guu

d × ½YuY
†
u�jj × ðCuu;fjjiÞ2 ðA22Þ

ð4πÞ2μ d
dμ

Cd4H2;fifi ¼ Gld
c ½quark� × Sc × Gld

c × ½Y†
eYe�jj × ðCld;jjfiÞ2

þ Gqdð1Þ
c ½dd� × Sc × Gqdð1Þ

c × ð½Y†
uYu�jj þ ½Y†

dYd�jjÞ × ðCð1Þ
qd;jjfiÞ2

þ Gqdð8Þ
c ½dd� × Sc × Gqdð8Þ

c × ð½Y†
uYu�jj þ ½Y†

dYd�jjÞ × ðCð8Þ
qd;jjfiÞ2

þ Ged
c ½quark� × Sc × Ged

c × ½YeY
†
e�jj × ðCed;jjfiÞ2

þ Gudð1Þ
c × Sc × Gudð1Þ

c × ½YuY
†
u�jj × ðCð1Þ

ud;jjfiÞ2
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þGudð8Þ
c × Sc × Gudð8Þ

c × ½YuY
†
u�jj × ðCð8Þ

ud;jjfiÞ2

þGdd
c × Sc × Gdd

c × ½YdY
†
d�jj × ðCdd;fijjÞ2

þGdd
d × Sd × Gdd

d × ½YdY
†
d�jj × ðCdd;fjjiÞ2: ðA23Þ

Other dimension-8 operators not shown in Table II (see
Ref. [7] for their complete list) are not considered in the
renormalization of double-insertions; see discussion in
Sec. III.
Note that double-insertions ofQð3Þ

lequ turn out to be finite.
(This is the only case found for which the divergence in
double-insertions at intermediate stages contains a term
proportional to the Levi-Civita symbol.) This contradicts
Ref. [111], that claims a divergence and exploits the
corresponding leading logarithm to constrain the Wilson

coefficient of Qð3Þ
lequ.

In the RG equations above: G correspond to the residue
of the ϵ-pole extracted from the calculation indicated in
Eq. (A10) times the overall factor seen in Eq. (A9) (without
symmetry and group factors), S designate symmetry
factors, and G group factors (subscripts a, b, c, d designate
different topologies). They are given as follows:

Gledq
a ¼ Glequð1Þ

a ¼ Gquqdð1Þ
a ¼ Gquqdð8Þ

a ¼ −4;

Gquqdð1Þ
b ¼ Gquqdð8Þ

b ¼ 2;

Gle
c ¼ Gqxð1Þ

c ¼ Gqxð8Þ
c ¼ Gee

c ¼ Gxx
c

¼ Gll
c ¼ Gqqð1Þ

c ¼ Gqqð3Þ
c ¼ Glqð1Þ

c ¼ Glqð3Þ
c

¼ Gex
c ¼ Glx

c ¼ Gqe
c ¼ Gudð1Þ

c ¼ Gudð8Þ
c ¼ 2;

Gle
b ¼ Gqxð1Þ

b ¼ Gqxð8Þ
b ¼ −16;

Gll
d ¼ Gqqð1Þ

d ¼ Gqqð3Þ
d ¼ Gee

d ¼ Gxx
d ¼ 2; ðA24Þ

Sb ¼
1

2
; Sa ¼

1

2
; Sd ¼ 1; Sc ¼ 1; ðA25Þ

Gll
d ½singlet� ¼ 1

2
; Gll

d ½tripletð2Þ� ¼ 1

2
; Gll

c ¼ 1;

Gqqð1Þ
d ½singlet� ¼ 1

2
; Gqqð1Þ

d ½tripletð2Þ� ¼ 1

2
;

Gqqð1Þ
c ¼ Nc;

Gqqð3Þ
d ½singlet� ¼ 5

2
; Gqqð3Þ

d ½tripletð2Þ� ¼ 3

2
;

Gqqð3Þ
c ¼ Nc;

Glqð1Þ
c ½lepton� ¼ Nc; Glqð1Þ

c ½quark� ¼ 1;

Glqð3Þ
c ½lepton� ¼ Nc; Glqð3Þ

c ½quark� ¼ 1;

Gee
d ¼ 1; Gee

c ¼ 1;

Gxx
d ¼ 1; Gxx

c ¼ Nc;

Gex
c ½lepton� ¼ Nc; Gex

c ½quark� ¼ 1;

Gudð1Þ
c ¼ Nc;

Gudð8Þ
c ¼ 1

4

�
1 −

1

Nc

�
;

Gle
c ½ll� ¼ 1; Gle

c ½ee� ¼ 1;

Glx
c ½lepton� ¼ Nc; Glx

c ½quark� ¼ 1;

Gqe
c ½lepton� ¼ Nc; Gqe

c ½quark� ¼ 1;

Gqxð1Þ
c ½qq� ¼ Nc; Gqxð1Þ

c ½xx� ¼ Nc;

Gqxð8Þ
c ½qq� ¼ 1

4

�
1 −

1

Nc

�
;

Gqxð8Þ
c ½xx� ¼ 1

4

�
1 −

1

Nc

�
; ðA26Þ

and

Gle
b ¼ 1;

Gqxð1Þ
b ½singlet� ¼ 1

Nc
; Gqxð1Þ

b ½octet� ¼ 2;

Gqxð8Þ
b ½singlet� ¼ 1

4

�
Nc −

2

Nc
þ 1

N3
c

�
;

Gqxð8Þ
b ½octet� ¼ 1

2

1

N2
c
;

Gledq
a ½lepton� ¼ Nc; Gledq

a ½quark� ¼ 1;

Gquqdð1Þ
b ¼ 1; Gquqdð1Þ

a ¼ Nc;

Gquqdð8Þ
b ½singlet� ¼ 1

4

�
1 −

1

N2
c

�
;

Gquqdð8Þ
b ½octet� ¼ 1

2

�
Nc −

2

Nc

�
; Gquqdð8Þ

a ¼ 1

2
;

Glequð1Þ
a ½lepton� ¼ Nc; Glequð1Þ

a ½quark� ¼ 1: ðA27Þ
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Everywhere in this paper TA are the SUð3Þ generators,
normalized such that trfTATBg ¼ 1

2
δAB (a different nor-

malization was taken in Ref. [112]). Also, τI are the Pauli
matrices, for which trfτIτJg ¼ 2δIJ.
As one cross-check, doing an independent calculation

we verify the SM [67,68] at the leading order. For the
cancellation of logarithmic terms in case (II) of the SM (see
Sec. II), note that we have two possible internal flavors, up-
and charm-quarks, which is beyond the scope of the
previous expressions, where double-insertions of the same
operator with the same flavor content have been consid-
ered. However, one can easily depict the cancellation in the
following way: since all interactions are left-handed, the
only relevant diagram is the bottom right one in Fig. 1;
there are two contributions from the diagram with two
internal charm-quark lines, and one contribution from each
of the two diagrams with internal up- and charm-quark
lines, where the lines to which the two scalars couple
(representing now insertions of vacuum expectation values)
are the charm-quark ones; the latter contributions carry the
opposite sign with respect to the former ones, which
follows from the use of the unitarity of the CKM matrix,
so the total result vanishes in the end. In case (III) of the
SM, below the EW scale only the latter diagrams, carrying
internal up- and charm-quark lines, are present, so there is
no (super-hard) GIM cancellation in this case. For com-
pleteness, case (I) of the SM only involves internal up-
quarks below the EW scale.

APPENDIX B: SENSITIVITY OF MESON MIXING
TO NEW PHYSICS EFFECTS

Bounds on the size of NP in the neutral meson systemsK
and BðsÞ are discussed in Refs. [87,88] (see also
Refs. [100,113]). There, since these observables are used
in the global extraction of the elements of the CKM matrix
in the SM (the mass differences Δmd;s playing presently a
more relevant role in the fit than the indirect CP violating
quantity jϵKj), the extraction of the elements of the CKM
matrix is redone allowing for NP contamination in the fit:
NP is parametrized under the form

Mi
12 ¼ ðMi

12ÞSM × ð1þ hi × e2iσiÞ; ðB1Þ

and combined bounds on hi and σi are extracted, where the
index i refers to the different neutral meson systems.
Ref. [87] combines contributions from NP in the kaon
system with the top-up (case (I) discussed in Sec. II) set of
contributions from the SM, keeping cases (II) and (III)

unmodified, which is consistent with our discussion in
Sec. IV. The extracted ranges are hd < 0.26, hs < 0.12
[88], and jhK × sinð2σK þ 2ArgðVtdV�

tsÞÞj≲ 0.6 [87]; all
bounds are 95% confidence level intervals. These bounds
constrain NP at the energy scale relevant for the different
observables, namely, ∼MBðsÞ for the BðsÞ mass differences,
and 2 GeV for the indirect CP violating quantity in the
kaon sector. To constrain different kinds of NP at the EW
scale, one introduces the short-distance QCD corrections
collected in Ref. [114], that provide the running and mixing
of jΔFj ¼ 2 four-fermion contact interactions below the
EW scale at the next-to-leading order (NLO). One also
needs the relevant bag parameters, which are taken from
Ref. [83] in the K system, and Ref. [84] for the BðsÞ systems
(both for Nf ¼ 2þ 1þ 1). Light quark masses are taken
from Ref. [115] (Nf ¼ 2þ 1þ 1), see also references
therein. Put together, bounds on NP at the scale μt ¼
mtðmtÞ ¼ 166 GeV follow the following pattern for the
Wilson coefficients C1ðiÞ; C2ðiÞ; C3ðiÞ; C4ðiÞ; C5ðiÞ intro-
duced in the main text, see Eq. (3):

Δmd;s∶ 1∶2∶0.4∶5∶2;

jϵKj∶ 1∶40∶10∶100∶30 ðB2Þ

with respect to bounds on the Wilson coefficient C1ðiÞ (for
instance, the bound on jC4ðBðsÞÞj is about 5 times stronger
than the bound on jC1ðBðsÞÞj); bounds on the latter are

jC1ðBÞj < ð1 × 103 TeVÞ−2;
jC1ðBsÞj < ð3 × 102 TeVÞ−2;

jImfC1ðKÞgj < ð2 × 104 TeVÞ−2: ðB3Þ

The running effects between the NP scale ΛNP and the EW
scale μEW ¼ μt are the concern of the main text. Although
short-distance QCD effects below the EW scale are being
included for NP, we are not including QCD effects above
the EW scale, which are suppressed by a relatively small
strong coupling.
A final comment is in order: in kaon meson mixing we

employ the value of κϵ encoding nonlocal effects of up-
quarks calculated in Ref. [97], compatible with Ref. [116],
and assume that possible NP contamination therein is
small; an exploratory lattice QCD study of this nonpertur-
bative effect has been made in Ref. [117]. The possibility of
NP in direct CP violation in the kaon system is discussed in
the main text.
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[27] Céline Degrande and Hao-Lin Li, Impact of dimension-8
SMEFT operators on diboson productions, J. High Energy
Phys. 06 (2023) 149.

[28] Adam Martin, A case study of SMEFT Oð1=Λ4Þ effects in
diboson processes: pp → W�ðl�νÞγ, J. High Energy
Phys. 05 (2024) 223.

[29] Marco Ardu and Sacha Davidson, What is leading order
for LFV in SMEFT?, J. High Energy Phys. 08 (2011) 002.

[30] Marco Ardu, Sacha Davidson, and Martin Gorbahn,
Sensitivity of μ → e processes to τ flavor change, Phys.
Rev. D 105, 096040 (2022).

[31] Hugh Potter and German Valencia, Probing lepton gluonic
couplings at the LHC, Phys. Lett. B 713, 95 (2012).

[32] Alper Hayreter and German Valencia, Constraining τ-
lepton dipole moments and gluon couplings at the LHC,
Phys. Rev. D 88, 013015 (2013); 91, 099902(E) (2015).

[33] Yi Cai, Michael A. Schmidt, and German Valencia,
Lepton-flavour-violating gluonic operators: Constraints
from the LHC and low energy experiments, J. High Energy
Phys. 05 (2018) 143.

[34] Kingman Cheung, Wai-Yee Keung, Ying-nan Mao, and
Chen Zhang, Constraining CP-violating electron-gluonic
operators, J. High Energy Phys. 07 (2019) 074.

[35] Giuliano Panico, Alex Pomarol, and Marc Riembau, EFT
approach to the electron electric dipole moment at the two-
loop level, J. High Energy Phys. 04 (2019) 090.

[36] Grant N. Remmen and Nicholas L. Rodd, Consistency of
the Standard Model effective field theory, J. High Energy
Phys. 12 (2019) 032.

[37] Grant N. Remmen and Nicholas L. Rodd, Flavor con-
straints from unitarity and analyticity, Phys. Rev. Lett. 125,
081601 (2020); 127, 149901(E) (2021).

EFFECTS OF SQUARED FOUR-FERMION OPERATORS OF THE … PHYS. REV. D 110, 016006 (2024)

016006-13

https://doi.org/10.1103/PhysRevD.2.1285
https://doi.org/10.1103/PhysRevD.2.1285
https://doi.org/10.1103/PhysRevLett.10.531
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1103/PhysRevD.91.073007
https://doi.org/10.1103/PhysRevD.91.073007
https://doi.org/10.1088/1126-6708/2006/10/081
https://doi.org/10.1007/JHEP10(2010)085
https://doi.org/10.1007/JHEP10(2020)174
https://doi.org/10.1007/JHEP10(2020)174
https://doi.org/10.1103/PhysRevD.104.015026
https://doi.org/10.1007/JHEP05(2022)138
https://doi.org/10.1007/JHEP02(2024)134
https://doi.org/10.1007/JHEP07(2018)062
https://doi.org/10.1007/JHEP07(2018)062
https://doi.org/10.1007/JHEP02(2019)123
https://doi.org/10.1007/JHEP02(2019)123
https://doi.org/10.1007/JHEP11(2020)087
https://doi.org/10.1007/JHEP03(2021)001
https://doi.org/10.1007/JHEP03(2021)001
https://doi.org/10.1007/JHEP06(2021)076
https://doi.org/10.1007/JHEP06(2021)076
https://doi.org/10.1103/PhysRevD.104.095023
https://doi.org/10.1103/PhysRevD.104.095023
https://doi.org/10.1007/JHEP12(2021)147
https://doi.org/10.1103/PhysRevD.105.076004
https://doi.org/10.1103/PhysRevD.105.076004
https://doi.org/10.1103/PhysRevD.104.115013
https://doi.org/10.1103/PhysRevD.107.115013
https://doi.org/10.1016/j.physletb.2020.135703
https://doi.org/10.1016/j.physletb.2020.135703
https://doi.org/10.1103/PhysRevD.104.095022
https://doi.org/10.1007/JHEP09(2022)124
https://doi.org/10.1007/JHEP09(2022)124
https://doi.org/10.1007/JHEP10(2022)107
https://doi.org/10.1007/JHEP10(2022)107
https://doi.org/10.1103/PhysRevD.106.055012
https://doi.org/10.1103/PhysRevD.106.036020
https://doi.org/10.1103/PhysRevD.106.036020
https://doi.org/10.1007/JHEP06(2023)149
https://doi.org/10.1007/JHEP06(2023)149
https://doi.org/10.1007/JHEP05(2024)223
https://doi.org/10.1007/JHEP05(2024)223
https://doi.org/10.1007/JHEP08(2011)002
https://doi.org/10.1103/PhysRevD.105.096040
https://doi.org/10.1103/PhysRevD.105.096040
https://doi.org/10.1016/j.physletb.2012.05.052
https://doi.org/10.1103/PhysRevD.88.013015
https://doi.org/10.1103/PhysRevD.91.099902
https://doi.org/10.1007/JHEP05(2018)143
https://doi.org/10.1007/JHEP05(2018)143
https://doi.org/10.1007/JHEP07(2019)074
https://doi.org/10.1007/JHEP04(2019)090
https://doi.org/10.1007/JHEP12(2019)032
https://doi.org/10.1007/JHEP12(2019)032
https://doi.org/10.1103/PhysRevLett.125.081601
https://doi.org/10.1103/PhysRevLett.125.081601
https://doi.org/10.1103/PhysRevLett.127.149901


[38] Jiayin Gu, Lian-Tao Wang, and Cen Zhang, Unambigu-
ously testing positivity at lepton colliders, Phys. Rev. Lett.
129, 011805 (2022).

[39] Quentin Bonnefoy, Emanuele Gendy, and Christophe
Grojean, Positivity bounds on minimal flavor violation,
J. High Energy Phys. 04 (2011) 115.

[40] Mikael Chala, Constraints on anomalous dimensions from
the positivity of the S matrix, Phys. Rev. D 108, 015031
(2023).

[41] Qing Chen, Ken Mimasu, Tong Arthur Wu, Guo-Dong
Zhang, and Shuang-Yong Zhou, Capping the positivity
cone: Dimension-8 Higgs operators in the SMEFT, J. High
Energy Phys. 03 (2024) 180.

[42] Mikael Chala and Xu Li, Positivity restrictions on the
mixing of dimension-eight SMEFT operators, Phys. Rev.
D 109, 065015 (2024).

[43] John Ellis, Shao-Feng Ge, Hong-Jian He, and Rui-Qing
Xiao, Probing the scale of new physics in the ZZγ
coupling at eþe− colliders, Chin. Phys. C 44, 063106
(2020).

[44] John Ellis, Hong-Jian He, and Rui-Qing Xiao, Probing
new physics in dimension-8 neutral gauge couplings at
eþe− colliders, Sci. China Phys. Mech. Astron. 64, 221062
(2021).

[45] John Ellis, Hong-Jian He, and Rui-Qing Xiao, Probing
neutral triple gauge couplings at the LHC and future
hadron colliders, Phys. Rev. D 107, 035005 (2023).

[46] Serge Hamoudou, Jacky Kumar, and David London,
Dimension-8 SMEFT matching conditions for the low-
energy effective field theory, J. High Energy Phys. 03
(2023) 157.

[47] Upalaparna Banerjee, Joydeep Chakrabortty, Christoph
Englert, Shakeel Ur Rahaman, and Michael Spannowsky,
Integrating out heavy scalars with modified equations
of motion: Matching computation of dimension-eight
SMEFT coefficients, Phys. Rev. D 107, 055007
(2023).

[48] John Ellis, Ken Mimasu, and Francesca Zampedri, Di-
mension-8 SMEFT analysis of minimal scalar field ex-
tensions of the Standard Model, J. High Energy Phys. 10
(2023) 051.

[49] Upalaparna Banerjee, Joydeep Chakrabortty, Shakeel Ur
Rahaman, and Kaanapuli Ramkumar, One-loop effective
action up to dimension eight: Integrating out heavy scalar
(s), Eur. Phys. J. Plus 139, 159 (2024).

[50] Hao-Lin Li, Yu-Han Ni, Ming-Lei Xiao, and Jiang-Hao
Yu, Complete UV resonances of the dimension-8 SMEFT
operators, J. High Energy Phys. 05 (2024) 238.

[51] Manuel Accettulli Huber and Stefano De Angelis, Stan-
dard Model EFTs via on-shell methods, J. High Energy
Phys. 11 (2021) 221.

[52] Supratim Das Bakshi, Mikael Chala, Álvaro Díaz-
Carmona, and Guilherme Guedes, Towards the renormal-
isation of the Standard Model effective field theory to
dimension eight: bosonic interactions II Eur. Phys. J. Plus
137, 973 (2022).

[53] Benoît Assi, Andreas Helset, Aneesh V. Manohar, Julie
Pagès, and Chia-Hsien Shen, Fermion geometry and the
renormalization of the Standard Model effective field
theory, J. High Energy Phys. 11 (2023) 201.

[54] Gerhard Buchalla and Andrzej J. Buras, The rare decays
Kþ → πþνν̄ and KL → μþμ− beyond leading logarithms,
Nucl. Phys. B412, 106 (1994).

[55] J. Urban, F. Krauss, U. Jentschura, and G. Soff, Next-to-
leading order QCD corrections for the B0B0 mixing with
an extended Higgs sector, Nucl. Phys. B523, 40 (1998).

[56] Marco Ciuchini et al., Delta M(K) and epsilon(K) in SUSY
at the next-to-leading order, J. High Energy Phys. 10
(1998) 008.
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