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It is commonly understood that the strong magnetic field produced in heavy ion collisions is short-lived.
The electric conductivity of the quark-gluon plasma is unable to significantly extend the lifetime of the
magnetic field. We propose an alternative scenario to achieve this: with finite baryon density and spin
polarization by the initial magnetic field, the quark-gluon plasma behaves as a paramagnet, which may
continue to polarize the quark after fading of the initial magnetic field. We confirm this picture by
calculations in both quantum electrodynamics and quantum chromodynamics. In the former case, we find a
splitting in the damping rates of probe fermions with an opposite spin component along the magnetic field.
In the latter case, we find a similar splitting in damping rate of the probe quark in quark-gluon plasma in
both high and low density limits. The splitting provides a way of polarizing strange quarks by the quark-
gluon plasma paramagnet consisting of light quarks, which effectively extends the lifetime of the magnetic
field in heavy ion collisions.
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I. INTRODUCTION

The observations of spin polarization in Λ-hyperons in
heavy ion collision experiments have revealed quark-gluon
plasma (QGP) as spin polarized matter [1]. The polarization
is attributed to vorticity of QGP coming from initial orbital
angular momentum in off-central collisions [2]. Theories
based on spin-vorticity coupling have been developed in
the past few years [3–7], giving satisfactory explanation of
global spin polarization [8–12]. However, the spin-vorticity
coupling alone predicts an equal polarization for both Λ
and anti-Λ, while experiments have found splitting of
polarizations for Λ and anti-Λ, with the splitting more
prominent at low energy collisions. Different mechanisms
have been proposed to understand the splitting, including
spin-magnetic coupling [13–15], mean-field effect [16],
direct flow effect [17], helicity vortical effect [18], etc.
While the mechanism of spin-magnetic coupling gives

the correct sign of polarization splitting, it is generally
expected that it cannot provide sufficient magnitude
because the lifetime of the magnetic field is short so that
the remaining magnetic field at freeze-out may be tooweak.
Indeed, recent studies suggest the magnetic field alone
cannot explain the splitting at low energy [14,15]. The

evolution of the magnetic field has been studied using
evolution of in-medium electromagnetic fields [19,20]. In
order to have a long lifetime for the magnetic field, one
needs to have large electric conductivity for the QGP
medium, which is not favored by lattice studies [21–24].
Anisotropic conductivity in magnetized QGP has been
considered in different approaches, including lattice [25],
holography [26,27], and kinetic theories [28–35]. However,
the situation does not improve significantly at phenom-
enologically relevant strength of the magnetic field. Other
methods of constraining the strength of the magnetic field
experimentally have been discussed in [36].
Most previous studies have treated QGP as a spinless

fluid, which does not develop magnetization under an
external magnetic field. Indeed, this is true for charge
neutral QGP, in which the spin polarization due to spin-
magnetic coupling cancels among positive and negative
charge carriers. However, the cancellation is incomplete in
a charged QGP, leading to nonvanishing magnetization.
This is most clearly seen in the strong magnetic field limit,
where the fermionic degrees of freedom are dominated by
lowest Landau levels (LLLs), see Ref. [37] for a recent
review. The magnetization by the LLL leads to net spin
polarization in a charged QGP.1 In particular, positively
charged QGP relevant for heavy ion phenomenology
corresponds to a paramagnet.
Recently, the magnetic susceptibility of charge neutral

quantum chromodynamics (QCD) matter has been studied
on the lattice in the weak magnetic field limit [38–40], see
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1QGP produced at low energy collisions has net baryon charge.
It is also electrically charged for two-flavor QGP.
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also [41] for a study of charged QCD matter. The matter is
found to be a paramagnet in the high temperature phase and
a diamagnet in the low temperature phase. Here we
consider instead charged QGP in the strong magnetic field
limit. With net charge, we can loosely regard magnetization
as spin polarization like in ordinary magnetic materials.
The strong magnetic field limit is merely a technical
simplification. With the apparent equivalence of magneti-
zation and polarization in mind, we shall refer to charged
QGP as a paramagnet2 and explore its role in dynamics of
spin polarization.
We will propose the following picture for magnetic field

induced polarization dynamics in heavy ion collisions:
while the magnetic field due to spectators in heavy ion
collisions decays quickly, the strong magnetic field can
convert the charged QGP consisting of light flavors into a
paramagnet. The QGP paramagnet continues to polarize the
strange quarks produced at a later stage in QGP evolution.
The polarization is realized as a splitting of damping rates
for strange quarks with opposite spin component along the
magnetic field, which dynamically favors strange quarks
with a negative spin component.
The paper is organized as follows: in Sec. II, we review

photon self-energy in charged fluid consisting of LLL
states and calculate the resummed photon propagator. We
shall find an antisymmetric component unique to charged
fluid, which is essential for polarization dynamics. In
Sec. III, we consider a probe fermion in the paramagnet
and find a splitting in the damping rates of the probe
fermion with opposite spin component along the magnetic
field. It provides a mechanism for polarizing the probe
fermion. In Sec. IV, we extend the analysis to probe quarks
in charged QGP. This case is complicated by the self-
interaction of gluons, which gives rise to completely
different dispersion of gluons. Nevertheless, we find the
similar mechanism exists for probe quarks. We also discuss
implications for heavy ion phenomenology. Section V is
devoted to conclusions and a discussion of future
directions.
We define ϵ0123 ¼ þ1, Pμ ¼ ðp0;pÞ, σμ ¼ ð1; σÞ, and

σ̄μ ¼ ð1;−σÞ.

II. PHOTON IN A PARAMAGNET

In this section, we study the dynamics of a photon in
charged magnetized plasma. The case for charge neutral
plasma has been studied extensively in literature, see
Refs. [37,42,43] and references therein. We shall focus
on the difference in charged magnetized plasma. On
general ground, charged magnetized plasma consisting
of spin one-half matter is also spin polarized with

nonvanishing magnetization. It is known that medium with
magnetization is gyrotropic [44], which is characterized by
a polarization tensor with purely imaginary off-diagonal
components. It leads to splitting of right- and left-handed
electromagnetic waves. We shall see this is also true with
the paramagnet. We will first present photon self-energy in
charged magnetized plasma, which is then used to deter-
mine the dispersion of electromagnetic waves. We will also
calculate the resummed photon propagator to be used in
Sec. III.

A. Photon self-energy in charged magnetized plasma

We will use the real time formalism of finite temperature
field theory in the ra basis [45]. The fields in the ra basis
are related to the counterpart on the Schwinger-Keldysh
contour by

Ar ¼
1

2
ðA1 þ A2Þ; Aa ¼ A1 − A2: ð1Þ

The correlators in the ra basis are defined as

Dμν
raðxÞ ¼ hAμ

rðxÞAν
að0Þi;

Dμν
arðxÞ ¼ hAμ

aðxÞAν
rð0Þi;

Dμν
rr ðxÞ ¼ hAμ

rðxÞAν
rð0Þi;

Dμν
aaðxÞ ¼ hAμ

aðxÞAν
að0Þi: ð2Þ

The correlators in the Schwinger-Keldysh basis are given by

Dμν
11ðxÞ ¼ θðx0ÞhAμðxÞAνð0Þi þ θð−x0ÞhAνð0ÞAμðxÞi;

Dμν
22ðxÞ ¼ θð−x0ÞhAμðxÞAνð0Þi þ θðx0ÞhAνð0ÞAμðxÞi;

Dμν
21ðxÞ ¼ hAμðxÞAνð0Þi;

Dμν
12ðxÞ ¼ hAνð0ÞAμðxÞi; ð3Þ

corresponding to time-ordered, anti-time-ordered, greater,
and lesser correlators, respectively. From (1), we can relate
correlators in the two basis as

Dμν
raðxÞ ¼ 1

2
ðDμν

11ðxÞ −Dμν
22ðxÞ −Dμν

12ðxÞ þDμν
21ðxÞÞ;

Dμν
arðxÞ ¼ 1

2
ðDμν

11ðxÞ −Dμν
22ðxÞ þDμν

12ðxÞ −Dμν
21ðxÞÞ;

Dμν
rr ðxÞ ¼ 1

4
ðDμν

11ðxÞ þDμν
22ðxÞ þDμν

12ðxÞ þDμν
21ðxÞÞ;

Dμν
aaðxÞ ¼ Dμν

11ðxÞ þDμν
22ðxÞ −Dμν

12ðxÞ −Dμν
21ðxÞ: ð4Þ

Using the explicit representations in (3) and θðx0Þ þ
θð−x0Þ ¼ 1, we easily find

2In fact, the magnetic susceptibility vanishes because the
thermodynamic potential is linear in the magnetic field in the LLL
approximation. The vanishing of susceptibility is due to cancel-
lation between spin and orbital angular momentum contributions.

LIHUA DONG and SHU LIN PHYS. REV. D 110, 016004 (2024)

016004-2



Dμν
raðxÞ ¼ θðx0Þh½AμðxÞ; Aνð0Þ�i≡ −iDμν

R ðxÞ;
Dμν

arðxÞ ¼ θð−x0Þh½AμðxÞ; Aνð0Þ�i≡ −iDμν
A ðxÞ;

Dμν
rr ðxÞ ¼ 1

2
fAμðxÞ; Aνð0Þg;

Dμν
aaðxÞ ¼ 0; ð5Þ

with Dμν
R ðxÞ and Dμν

A ðxÞ being retarded and advanced
correlators, respectively.
In the Schwinger-Keldysh basis, the vertices can be

obtained from the interaction terms in the Lagrangian
Jμ1ðxÞA1;μðxÞ − Jμ2ðxÞA2;μðxÞ. We can convert the current
density J1=2 to Jr=a with a definition parallel to (1) to arrive
at the interaction terms JμaðxÞAr;μðxÞ þ JμrðxÞAa;μðxÞ. The
photon self-energy in the ra basis is simply the correlators
of current density defined as follows:

Πμν
arðxÞ ¼ hJμrðxÞJνað0Þi;

Πμν
raðxÞ ¼ hJμaðxÞJνrð0Þi;

Πμν
aaðxÞ ¼ hJμrðxÞJνrð0Þi: ð6Þ

Note that we use the ra labeling from the A fields forΠ as is
done conventionally. In particular, Πrr instead of Πaa
vanishes identically.
Now we focus on photon self-energy in charged mag-

netized plasma. The retarded self-energy is defined similar
to (5) with A → J. The results for neutral magnetized
plasma in LLL approximation have been calculated using
both field theory [46] and chiral kinetic theory [47]. The
inclusion of the antisymmetric part in charged magnetized
plasma has also been made using field theory [30] and
chiral kinetic theory [48,49], with the results in momentum
space quoted below,

Παβ
R ¼ −

e3B
2π2

q23u
αuβ þ q20b

αbβ þ q0q3ufαbβg

ðq0 þ iϵÞ2 − q23

þ ie2μ
2π2

�
q0ϵαβρσ þ u½αϵβ�λρσqTλ

�
uρbσ; ð7Þ

where we have defined AfαBβg ¼ AαBβ þ AβBα and
A½αBβ� ¼ AαBβ − AβBα. In (7), B is the magnetic field
and μ is the chemical potential for the fermion number.
For simplicity, we consider medium consisting of a single
species of fermion carrying positive electric charge. uμ is
fluid velocity and bμ is the direction of the magnetic
field. qμT ¼ bμðq · bÞ þ qμ − uμðq · uÞ corresponds to spa-
tial components ofq perpendicular tobμ. The first termof (7)
is symmetric in indices with the pole coming from the chiral
magnetic wave [50] in the LLL approximation. The second
term is antisymmetric and purely imaginary. It comes from
the Hall effect arising from the current along the drift
velocity in charged plasma [48,49]. This can be confirmed
in field theory [30] and in magnetohydrodynamics [51].

If wework in the local rest frame of the plasma, and point the
magnetic field in the z direction so that bμ ¼ ð0; 0; 0; 1Þ
when uμ ¼ ð1; 0; 0; 0Þ, both [30,51] give Πxy

R ¼ ine
B q0 for

qT ¼ 0. In the LLL approximation, we can express the
electric charge density ne in terms of electric chemical
potential μe ¼ eμ and susceptibility χ ¼ eB

2π2
as

ne ¼ μeχ ¼ eμ eB
2π2

, which agrees with (7). The origin of
the antisymmetric component implies that (7) is valid on a
timescale longer than the relaxation time τR such that the
Hall current can establish. This imposes an ultraviolet (UV)
cutoff on q0 with q0 ≲ 1=τR. Beyond the cutoff, the Hall
current has no time to develop, leading to no antisymmetric
part in the self-energy.

B. Electromagnetic wave in magnetized plasma

We proceed to find the polarization modes for the photon
by solving the Maxwell equations in the magnetized
plasma. We start with the Maxwell equations in coordinate
space,

ð∂2ημν − ∂
μ
∂
νÞAν;r ¼ jμr ¼ −i

Z
d4yΠμν

arðx; yÞAν;r: ð8Þ

Using (5) with A → J, we can determine the following
correlator in the ra basis:

Πμν
arðxÞ ¼ −iΠμν

R ðxÞ: ð9Þ

Working in momentum space and taking the Coulomb
gauge ∇ · A⃗ ¼ 0 in the local rest frame of the plasma, we
can express the Maxwell equation as

Q2Aμ − q0A0Qμ − Πμν
R Aν ¼ 0: ð10Þ

The polarization modes for the photon can be obtained
from the solutions of q20. For pedagogical purposes, we first
solve (10) for neutral plasma μ ¼ 0, in which we obtain

q20¼ B̃þq2þOðB−1Þ; Ai¼−
A0qiTq0

B̃
; A3 ¼

A0q2Tq0
B̃

;

q20¼ q2; A0 ¼A3 ¼ 0; qiTAi¼ 0; ð11Þ

with B̃ ¼ e3B=2π2 and i ¼ 1, 2 labeling directions
perpendicular to b. The first one is a gapped mode and
the second one is lightlike.3

Turning to the charged plasma, we can get three roots of
q20, corresponding to three polarization modes of the photon
as follows:

3In the special case when qT ¼ 0, the first mode disappears and
the second mode becomes two degenerate ones, as the photon
does not feel the magnetic field. We are not interested in this
trivial case.
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q20¼ B̃þq2;

q20¼
1

2

�
μ̃2þq2⊥þ2q23−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ̃2q23þðq2⊥þ μ̃2Þ2

q �
≡x21;

q20¼
1

2

�
μ̃2þq2⊥þ2q23þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ̃2q23þðq2⊥þ μ̃2Þ2

q �
≡x22; ð12Þ

with μ̃ ¼ e2μ=2π2 and q2⊥ ¼ q21 þ q22. The first mode is the
same gapped one as the neutral case. The second and third
correspond to the space- and timelike low energy modes,
respectively. The origin of the low energy modes is most
clearly seen in the neutral limit where the two modes reduce
to q20 ¼ q23 and q20 ¼ q2, respectively. The former corre-
sponds to Landau damping, which arises from energy
exchange between the photon and LLL states. In the
massless limit we consider, Landau damping appears as
a pole instead of a cut [52]. The latter corresponds to
photon dispersion in vacuum. The effect of finite density
medium is to shift the two poles. The actual propagating
modes are only the first and third ones in (12). One may
expect to have three propagating modes rather than two due
to collective motion in plasma [53]. Note that the self-
energy (7) contains no explicit temperature dependence,
suggesting the medium is more like a Fermi sea rather than
a plasma. It follows that the number of propagating modes
matches that of the vacuum.We shall elaborate on this later.
Let us take a close look at the low energy modes in the

phenomenologically motivated limit

μ̃ ≫ q∶ x21 ≈
q23q

2

μ̃2
; x22 ≈ μ̃2: ð13Þ

Now we argue that the mode x2 actually lies outside the
applicable region of (7) by making an estimate of τR. Note
that τR is governed by dynamics perpendicular to the
magnetic field, which is realized through the 2 → 2 process
]29 ]. We can estimate τR as τ−1R ∼ e4μFððeBÞ1=2=μ; T=μÞ

for some dimensionless function F. Regarding μ ∼ T, we
easily find x2 ≫ 1=τR. Meanwhile, the condition x1 ≲ 1=τR
for mode x1 leads to q ≲ ðμ̃=τRÞ1=2 ∼ eμ̃ ≪ μ̃, which is
consistent with our assumption in (13). To gain further
insights, we plug (12) into (10) to solve for Aμ. In the same
limit μ̃ ≫ q, we obtain

q20 ¼ x21∶
A1

A0

¼ iðq2qþ iq1jq3jÞ
q2⊥q

μ̃;

A2

A0

¼ −
iðq1q − iq2jq3jÞ

q2⊥q
μ̃;

A3

A0

¼ q3
jq3jq

μ̃: ð14Þ

The physical interpretation of this mode is most transparent
if we focus on the regime q3 ≫ q⊥, that is a photon
propagating almost along the magnetic field. We have then
A1

A2
≃ −i from (14). This is analogous to one of the circular

polarizations in vacuum, but with the dispersion modified
by the charged medium. This parity breaking mode will

play an important role in polarizing probe fermions just as a
paramagnet polarizes an ordinary metal.

C. Resummed photon propagator

In the previous section, we have obtained the photon
polarizationmodes by solving theMaxwell equations. These
modes contain pole and Landau damping (also a pole in
massless limit) contributions to the spectral function of the
photon. In this section, we will derive the resummed photon
propagator and extract the spectral function, from which we
will find both pole and Landau damping contributions.
We start with the following bare photon propagators

Dar
μνð0Þ, D

ra
μνð0Þ, and Drr

μνð0Þ in the Coulomb gauge in thermal

equilibrium,

Dar
μνð0ÞðQÞ ¼ i

ðq0 − iϵÞ2 − q2

�
PT
μν þ

Q2uμuν
q2

�
;

Dra
μνð0ÞðQÞ ¼ i

ðq0 þ iϵÞ2 − q2

�
PT
μν þ

Q2uμuν
q2

�
;

Drr
μνð0ÞðQÞ ¼ 2πsgnðq0ÞδðQ2Þ

�
1

2
þ fγðq0Þ

�

×

�
PT
μν þ

Q2

q2
uμuν

�
; ð15Þ

with sgnðq0Þ being the sign function and fγðq0Þ being
the Bose-Einstein distribution function fγðq0Þ ¼
1=ðexpðq0=TÞ − 1Þ. The structures PT

μν and
Q2

q2 uμuν corre-

spond to transverse and longitudinal components of
the propagator, respectively. The transverse projection

operator PT
μν is defined as PT

μν ¼ Pμν −
PμαPνβQαQβ

−Q2þðQ·uÞ2 with

Pμν ¼ uμuν − ημν being the projection operator orthogonal
to fluid velocity. In the fluid’s rest frame, we have

PT
00 ¼ PT

0i ¼ PT
i0 ¼ 0;

PT
ij ¼ δij −

qiqj
q2

: ð16Þ

Using the definitions (2) and (6) and the couplings
JμaðxÞAr;μðxÞ þ JμrðxÞAa;μðxÞ, we may express the propa-
gators up to first order in the self-energy as

�
Drr Dra

Dar 0

�
μν

¼
�Drr

ð0Þ Dra
ð0Þ

Dar
ð0Þ 0

�
μν

−
�Drr

ð0Þ Dra
ð0Þ

Dar
ð0Þ 0

�
μα

×

�
0 Πra

Πar Πaa

�
αβ
�Drr

ð0Þ Dra
ð0Þ

Dar
ð0Þ 0

�
βν

: ð17Þ

By iteration, we deduce that the resummed propagators
satisfy the following equations:
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�
Drr Dra

Dar 0

�
μν

¼
�Drr

ð0Þ Dra
ð0Þ

Dar
ð0Þ 0

�
μν

−
�Drr

ð0Þ Dra
ð0Þ

Dar
ð0Þ 0

�
μα

×
�

0 Πra

Πar Πaa

�
αβ
�
Drr Dra

Dar 0

�
βν

: ð18Þ

The component form of the above reads

Dra
μν ¼ Dra

μνð0Þ −Dra
μαð0ÞΠ

αβ
arDra

βν;

Dar
μν ¼ Dar

μνð0Þ −Dar
μαð0ÞΠ

αβ
raDar

βν;

Drr
μν ¼ Drr

μνð0Þ −Dra
μαð0ÞΠ

αβ
arDrr

βν

−
�
Drr

μαð0ÞΠ
αβ
ra þDra

μαð0ÞΠ
αβ
aa

�
Dar

βν: ð19Þ

The resummed propagators can be solved by inverting the
following matrix equations:

�
δα

μ þDra
αβð0ÞΠ

βμ
ar

�
Dra

μν ¼ Dra
ανð0Þ;�

δα
μ þDar

αβð0ÞΠ
βμ
ra

�
Dar

μν ¼ Dar
ανð0Þ;�

δα
μ þDra

αρð0ÞΠ
ρμ
ar

�
Drr

μν ¼
�
Drr

ανð0Þ −Drr
αβð0ÞΠ

βσ
raDar

σν

−Dra
αβð0ÞΠ

βσ
aaDar

σν

�
: ð20Þ

We first invert the first two equations to obtain Dra
μνðQÞ and

Dar
μνðQÞ, and then use the results to invert the last equation

to obtain Drr
μν. Note that our knowledge about the self-

energy from the LLL approximation should be viewed as
leading terms in the limit B → ∞. It follows that we should
also keep only the leading terms in the resulting resummed
propagators, which gives the following results:

Dra
μνðQÞ ¼

�
1

ðq0 þ iϵÞ2 − x21
þ 1

ðq0 þ iϵÞ2 − x22

�

×
AμνðQÞμ̃þ SμνðQÞ

ðq20 − x21Þ þ ðq20 − x22Þ
;

Dar
μνðQÞ ¼ Dra

νμð−QÞ;

Drr
μνðQÞ ¼ −2iπsgnðq0ÞðSμνðQÞ þ AμνðQÞμ̃Þ

�
1

2
þ fγðq0Þ

�

×

�
δðq20 − x21Þ
q20 − x22

þ δðq20 − x22Þ
q20 − x21

�
: ð21Þ

Here Aμν and Sμν are the antisymmetric and symmetric
tensors defined, respectively, as

AμνðQÞ¼−
q0
q2

�
q0u½μϵνλρσ�qλTu

ρbσ −q23ϵμνρσu
ρbσ

þq3b½μϵνλρσ�qλTu
ρbσ

�
;

SμνðQÞ¼ ið−gμνðq20−q23Þ−q23uμuν−q20bμbν−bfμuνgq0q3Þ

þ i
q2

ðufμqνgq30þbfμqνgq20q3Þ

þ i
q4

qμqνðq2q23−q20ðq2þq23ÞÞ: ð22Þ

Clearly, the low energy modes found in Sec. II B are
present as poles of Dra

μνðQÞ and Dar
μνðQÞ. The gapped mode

in Sec. II B is invisible after the limit B → ∞ is taken in the
resummed propagator. From the definition (2), it is easy to
show that Drr

μνðQÞ is Hermitian. This is indeed satisfied by
the corresponding expression in (21) with real symmetric
and purely imaginary antisymmetric components.

III. PROBE FERMION IN A PARAMAGNET

We consider a probe fermion interacting with the
medium. We choose an unmagnetized probe fermion.
This is motivated by heavy ion phenomenology: with
the quick decay of the magnetic field, the strange quarks
produced at later stage are not spin polarized and can only
interact with the medium. We shall consider the high
density limit μ̃ ≫ q. In this case the medium is like a
paramagnet, which is able to polarize the probe fermion.
We will corroborate the picture with calculations of damp-
ing rates of probe fermions. For simplicity, we take the
probe fermion to be massless.

A. Resummed fermion propagator and damping rate

A probe fermion interacting with the medium will have a
modified dispersion, with the damping rate given by the
imaginary part of the pole in the resummed retarded
propagator. The procedure of deriving the resummed
propagator is similar to that in Sec. II C. We start with
the bare fermion propagators in the ra basis,

Sarð0ÞðPÞ ¼
iP

ðp0 − iϵÞ2 − p2
;

Srað0ÞðPÞ ¼
iP

ðp0 þ iϵÞ2 − p2
;

Srrð0ÞðPÞ ¼
�
1

2
− feðp0Þ

�
2πsgnðp0ÞPδðP2Þ; ð23Þ

with fe being the Fermi-Dirac distribution function
feðp0Þ ¼ 1=ðexpðp0=TÞ þ 1Þ. For the probe fermion, we
set fe ¼ 0. The resummation equation for the retarded
propagator is analogous to its counterpart in (20),

SraðPÞ ¼ Srað0ÞðPÞ − Srað0ÞðPÞΣarðPÞSraðPÞ: ð24Þ
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The self-energy in (24) is defined by the Fourier transform
of the following:

ΣarðxÞ ¼ hηrη̄ai; ð25Þ

Sra ¼
i

Pþ iΣar
; ð26Þ

where we have dropped the iϵ assuming the self-energy Σar
already shifts the pole of p0 from the real axis. Since both
the medium and probe fermions are chiral, the self-energy
also preserves the chiral symmetry with the following
decomposition:

Σar ¼ Vμγ
μ þAμγ

5γμ; ð27Þ

with Aμ and Vμ being the vector and axial vector, respec-
tively. The decoupling of left- and right-handed components
ismanifest in the chiral representation ofDiracmatrices,with
the following explicit denominator of (26):

Pþ iΣar ¼
� ðPμ þ iVμ − iAμÞσμ
ðPμ þ iVμ þ iAμÞσ̄μ

�
:

ð28Þ

This allows us to treat left- and right-handed components
separately as

SRra¼
i

ðPμþ iVμ− iAμÞσμ
¼ iðPμþ iVμ− iAμÞσ̄μ

ðPþ iV− iAÞ2 ;

SLra¼
i

ðPμþ iVμþ iAμÞσ̄μ
¼ iðPμþ iVμþ iAμÞσμ

ðPþ iVþ iAÞ2 : ð29Þ

It is clear that the effect of self-energy is to shift the momenta
of left- and right-handed components respectively. The
coefficient A encodes the splitting between left- and right-
handed components. At finite charge density, the medium is
spin polarized. We suggest in Sec. II B that the Landau
damping mode is parity breaking. Thus, we expect splitting
between left- and right-handed components.
Now we present explicit calculation of the self-energy.

Figure 1 shows one of the self-energy diagrams in the ra
basis. The other diagram with ra labelings of fermion and
photon exchanged does not give rise to damping because
the temperature factor expected in the damping rate cannot
enter with the fermion being not thermally populated. The
corresponding self-energy contribution is given by4

ΣarðPÞ ¼ e2
Z

d4Q
ð2πÞ4 γ

μSrað0ÞðP −QÞγνDrr
μνðQÞ: ð30Þ

B. Damping in a paramagnet

Now we evaluate the self-energy in the high density limit
μ̃ ≫ q. We have shown in Sec. II B that only the Landau
damping mode survives in this limit. We then evaluate the
integrals with (23) and (21) taking contribution from
q20 ¼ x21 only. We calculate separately antisymmetric and
symmetric contributions to be denoted as ΣA

ar and ΣS
ar. The

antisymmetric contribution reads

ΣA
arðPÞ ¼

e2

ð2πÞ3
Z

d4Qsgnðq0Þ
ðP −QÞ2 þ iϵðp0 − q0Þ

�
1

2
þ fγðq0Þ

�

×
�
δðq20 − x21Þ
q20 − x22

þ δðq20 − x22Þ
q20 − x21

�

× γμðP − =QÞγνAμνðQÞμ̃: ð31Þ

We first deal with γμðP − =QÞγνAμνðQÞ by using the
following relation:

γμγaγν ¼ gμαγν − gμνγα þ gανγμ − iϵμανβγ5γβ: ð32Þ

Only the last antisymmetric term contributes when con-
tracted with Aμν, giving

γμðP − =QÞγνAμνðQÞ ¼ −iðP −QÞαϵμανβγ5γβAμνðQÞ

¼ 2i
q2

ðq20f1 þ q0f2Þ ð33Þ

with

f1¼ðp⊥ ·q⊥−q2Þγ5γ3−p3γ
5q⊥ ·γ⊥;

f2¼p0q23γ
5γ3þp0q3γ5q⊥ · γ⊥þq3γ5γ0ðq2−p ·qÞ; ð34Þ

being the coefficients of even and odd powers of q0. The
perpendicular vectors are defined as p⊥ ¼ ðp1; p2Þ and
similarly for q⊥ and γ⊥.
We proceed by making several approximations: First, the

self-energy induces only a small correction to the
dispersion, so for the purpose of finding the damping rate
of an on-shell probe fermion we may set P2 ¼ 0. Second,
the Landau damping mode is nearly static, allowing us to
approximate 1

2
þ fγðQÞ ≃ T

q0
. Third, combining the on-shell

condition and q0 ≪ q ≪ p0, we approximate the denom-
inator of fermion propagator as

1

ðP −QÞ2 þ iϵðp0 − q0Þ
≃
1

2

1

ðp · qþ iϵp0Þ
; ð35Þ

dropping Q2 ≪ 2P ·Q and q0p0. Then, (31) can be
written as

4With our definition (25), the interaction vertex is −e instead of
−ie. The factor i2 ¼ −1 appears in the resummation equation (24).
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ΣA
arðPÞ ¼ −

ie2T
ð2πÞ3μ̃

Z
d3q

q2ðp · qþ iϵp0Þ

×
Z

dq0
q0

δ

�
q20 −

q23q
2

μ̃2

�
sgnðq0Þðq20f1 þ q0f2Þ:

ð36Þ

We proceed with the integral of q0 first. Since f1 and f2 are
independent of q0, the integral receives contribution from
the integrand even in q0 as

Z
dq0
q0

δ

�
q20 −

q23q
2

μ̃2

�
ϵðq0Þðq20f1 þ q0f2Þ

¼ f1

Z
dq0δ

�
q20 −

q23q
2

μ̃2

�
q0sgnðq0Þ ¼ f1: ð37Þ

The remaining integrals are evaluated using the residue
theorem. The details can be found in the Appendix. We
quote the final results here. To be specific, we take p0 > 0
to arrive at the following results:

ΣA
arðPÞ ¼ −ic1γ5γ3 þ ic2γ5p⊥ · γ⊥ þ c3γ5γ3; ð38Þ

with

c1 ¼
e2TqUV
4πμ̃

�
1−

jp3j
p

�
; c2 ¼

e2TqUV
4πμ̃

�
1−

jp3j
p

�
p3

p2⊥
;

c3 ¼
e2Tq2UV
8πμ̃jp3j

; ð39Þ

where qUV is the UV cutoff for q, which can be taken as
qUV ∼ eμ̃ based on the discussion below (13).
The calculation of the symmetric contribution proceeds

similarly. We simply quote the final result, collecting
details in the Appendix. For p0 > 0, we have

ΣS
ar ¼ γ0d1 þ ip⊥ · γ⊥d2 þ iγ3d3; ð40Þ

with

d1 ¼
e2T
4π

p0 ln
qUV
qIR

p
; d2 ¼

e2T
4π

qUV
p2⊥

�
1 −

jp3j
p

�
;

d3 ¼
e2T
4π

qUV
p

sgnðp3Þ; ð41Þ

where qIR is the infrared (IR) cutoff of q⊥. We will discuss
the meaning of the IR cutoff shortly.
Now we can take Σar ¼ ΣA

ar þ ΣS
ar and compare with

(27) and (29) to obtain damping rates of left- and right-
handed components, respectively. We find it more instruc-
tive to obtain the contributions to the damping rate from ΣA

ar

and ΣS
ar, respectively. In fact, if we keep linear order in ΣA

ar

and ΣS
ar, the corresponding shifts of the poles from the

vacuum counterpart are additive. The imaginary part of the
shift gives the damping rate. We first consider contribution
from ΣA

ar. Using (27) and (29), we easily find the poles
given by

L∶ p0 ≃ pþ c2p2⊥
p

−
c1p3

p
−
ic3p3

p
¼ p −

ic3p3

p
;

R∶ p0 ≃ p −
c2p2⊥
p

þ c1p3

p
þ ic3p3

p
¼ pþ ic3p3

p
: ð42Þ

We can see ΣA
ar causes the shifts of poles with opposite sign

for both real and imaginary parts. The real part would lead
to the chiral shift discussed in [54], but vanishes when
explicit expressions for c1 and c2 are used. The imaginary
part gives the following damping rates:

ΓL ≃
c3p3

p
¼ e2Tq2UV

8πμ̃p
sgnðp3Þ;

ΓR ≃ −
c3p3

p
¼ −

e2Tq2UV
8πμ̃p

sgnðp3Þ: ð43Þ

The cases with Γ < 0 are unstable. These include right-
handed components with p3 > 0 and left-handed compo-
nents with p3 < 0. The implication is interesting: Because
of spin-momentum locking, both cases have a positive
spin component along the direction of the paramagnet.
Interaction with the paramagnet tends to polarize the probe
fermion by amplifying these modes. In contrast, left-
handed components with p3 > 0 and right-handed compo-
nents with p3 < 0 have Γ > 0. They both have a negative
spin component along the direction of the paramagnet and
are damped out. This provides a mechanism to polarize the
probe fermion.
Now we turn to the symmetric contribution. This

contribution leads to identical shifts for the left- and
right-handed components,

p0 ≃ pþ p2⊥d2
p

þ p3d3
p

− id1 ¼ pþ e2T
4π

qUV
p

− id1: ð44Þ

The corresponding damping rate is given by

Γ ¼ d1 ¼
e2T
4π

p0 ln
qUV
qIR

p
: ð45Þ

It depends on both UV and IR cutoffs. While the UV
cutoff is set by qUV ∼ eμ̃, the IR cutoff is fictitious. The
appearance of the logarithmic divergence is not new.
By using the resummed photon propagator, we have
softened the

R
dq=q3 IR divergence typical in Coulomb

scattering into a logarithmic one. The persistence of loga-
rithmic divergence indicates the corresponding damping is
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nonexponential in time, which can be obtained with more
sophisticated resummation [55]. Since we are mainly
concerned with the splitting in damping rates, we shall
not attempt further resummation as in [55].
Combining the contributions from antisymmetric and

symmetric parts, we obtain a slightly modified picture: a
probe fermion interacting with the medium will generically
be damped. This is because the damping rate from the
symmetric contribution is parametrically larger than the
counterpart from the antisymmetric contribution: d1 ∼
e2T ≫ c3jp3j

p ∼ e6Tμ
p using qUV ∼ eμ̃. However, with the

medium being like a paramagnet, modes with a positive/
negative spin component along the direction of the para-
magnet have smaller/larger damping rate, thus interaction
tends to polarize the probe fermion. This occurs at a
timescale t ∼ ΔΓ−1 ∼ p

e6Tμ
. One may worry that, at this

timescale, the probe fermion has been damped out com-

pletely because of the hierarchy d1 ≫
c3jp3j
p . This can still

have physical consequence. If the probe fermion is con-
tinuously produced in the medium, the number density can
be maintained despite damping by the medium, but the
polarization mechanism from the splitting of damping rates
always works. We will extend the analysis to QGP case in
the next section, where we will see the splitting of damping
rates can be parametrically enhanced, making the polari-
zation dynamics more efficient.

IV. PROBE QUARK IN A PARAMAGNET
OF QGP

Now we extend the analysis to a probe quark in charged
QGP. A new feature in this case is that gluon self-energy
receives an additional contribution from gluon self-inter-
action. It follows that the dispersions we obtain from
solving Maxwell equations no longer apply. We will
identify low energy modes by finding the resummed gluon
propagator and use it to calculate the splitting of damping
rates for the probe quark.

A. Gluon propagator in charged QGP

We follow the procedure in Sec. II C. The gluon bare
propagator in the Coulomb gauge is the same as (15) except
for additional color structures,

DAB;ar
μνð0Þ ¼ δABDar

μνð0Þ;

DAB;ra
μνð0Þ ¼ δABDra

μνð0Þ;

DAB;rr
μνð0Þ ¼ δABDrr

μνð0Þ: ð46Þ

We have used capital letters for color indices and the
color structure is diagonal δAB. The gluon self-energy is
given by

Πμν;AB
R ¼

�
−
g2eB
2π2

q23u
μuν þ q20b

μbν þ q0q3ufμbνg

ðq0 þ iϵÞ2 − q23

þ ig2

2π2
μ

2

�
q0ϵμνρσ þ u½μϵν�λρσqTλ

�
uρbσ

− Pμν
T ΠT − Pμν

L ΠL

�
δAB; ð47Þ

with ΠT=L being the transverse/longitudinal components
from the gluon loop. The explicit expressions in the hard
thermal loop (HTL) regime are as follows:

ΠT ¼ m2ðx2 þ ð1 − x2ÞxQ0ðxÞÞ;
ΠL ¼ −2m2ðx2 − 1Þð1 − xQ0ðxÞÞ; ð48Þ

where m2 ¼ 1
6
Ncg2T2 is the thermal mass and Nc is the

number of colors. The Legendre function Q0 is defined as
Q0ðxÞ ¼ 1

2
ln j xþ1

x−1 j − iπ
2
θð1 − x2Þ. The symmetric compo-

nents of (47) have been extensively discussed in [56]. The
antisymmetric component is obtained by a straightforward
generalization of the calculations in [30] for a single species
of quark carrying positive electric charge qf > 0, with μ
being the chemical potential for quark number density. The
overall factor 1

2
comes from color trace in the fundamental

representation tr½tAtB� ¼ 1
2
δAB. The physical interpretation

is the chromo-Hall effect. Imagine applying a chromo-
electric field in color direction A perpendicular to the
magnetic field. The quarks carrying both electric charge qf
and effective chromocharge ḡ will develop a drift velocity

vA ¼ ḡEA

qfB
where the chromoelectric force and ordinary

Lorentz force reaches a balance. This gives rise to a
chromocurrent along the drift velocity

JA ¼ ḡρvA ¼ ḡ2EA

qfB
χμ ¼ ḡ2EAμ; ð49Þ

where we have used χ ¼ qfB. To arrive at (47), we need to
fix the effective chromocharge. This is most easily done in
double line basis for color [57], in which the gluon color
index is represented as A ¼ ij and quark color indices are
represented by i and j. The color matrices in fundamental
representation are given by

tijkl ¼
1ffiffiffi
2

p
�
δikδ

j
l −

1

Nc
δijδkl

�
: ð50Þ

It is most easily understood in the large Nc limit, in which
the color indices of gluons and quarks are locked.
Naturally, the corresponding quarks lead to chromocurrent
in the same color direction as the chromoelectric field with
the effective charge ḡ ¼ 1ffiffi

2
p g, thus the factor 1

2
is perfectly

accounted for.
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Since the color structure is trivial in both bare propagator
and self-energy, we can simply ignore it and then use (19)
to obtain the resummed gluon propagator. We assume the
following hierarchy: eB ≫ T2, eB ≫ μq and expand to
leading order in B−1. The resulting resummed propagator

contains both symmetric and antisymmetric parts. The
symmetric part exists in the absence of μ. It does not lead
to splitting of the damping rate so we do not keep track of it.
The antisymmetric part is given by (suppressing the color
structure)

Dra;A
μν ðQÞ ¼ −q2Q2

�
−q6ðq20 − q23Þ þ q20q

2
3ðq20 − ΠTÞðΠT − ΠLÞ þ q4½2q40 þ 2q23ΠT − q20ð2q23 þ μ̄2 þ ΠT þ ΠLÞ�

þ q2½−q60 þ q23Π2
T þ q40ðq23 þ μ̄2 þ ΠT þ ΠLÞ þ q20ðq23ðΠL − 3ΠTÞ − ΠTΠLÞ�

�
−1
Aμνμ̄;

Dar;A
μν ðQÞ ¼ Dra;A

νμ ð−QÞ;

Drr;A
μν ðQÞ ¼ ðDra;A

μν ðQÞ −Dar;A
μν ðQÞÞ

�
1

2
þ fgðq0Þ

�
; ð51Þ

with μ̄ ¼ ḡ2μ
2π2

as analog of μ̃. It should be understood that
q0 → q0 þ iϵ is needed in the first explicit expression. The
resummed rr propagator is constructed using spectral
representation, with Dra;A

μν ðQÞ −Dar;A
μν ðQÞ giving the anti-

symmetric part of the spectral function and fg being Bose-
Einstein distribution for gluons. It is worth noting that (51)
and (21) share the same Lorentz structure, but very different
spectral function. The spectral function arises from collec-
tive excitations as well as Landau dampings. The Landau
damping can give both pole and cut contributions from
gluon-quark (in the LLL state) scatterings and gluon-gluon
scatterings, respectively.
To simplify the analysis, we consider two limits where

either one of them dominates: μ̄2 ≫ ΠT=L (high density
limit) and μ̄2 ≪ ΠT=L (low density limit). Note that
ΠT=L ∼ g2T2. The former limit requires parametrically

large μ or small T: g2μ ≫ T. In this case, we may ignore
ΠT=L and the rr propagator reduces to the QED counterpart
(21) with the substitution μ̃ → μ̄,

Drr;A
μν ðQÞ ¼ −2iπsgnðq0Þ

�
1

2
þ fgðq0Þ

�

×

�
δðq20 − x̄21Þ
q20 − x̄22

þ δðq20 − x̄22Þ
q20 − x̄21

�
AμνðQÞμ̄: ð52Þ

We have used x̄1;2 to denote x1;2ðμ̃ → μ̄Þ. Like in the QED
case, the spectral function contains Landau damping poles
and lightlike modes, both modified by density. The latter
limit is close to the usual magnetized plasma limit, where
the density leads to the following rr propagator:

Drr;A
μν ðQÞ ¼ 2iIm

�
Q2q2

ðQ2 − ΠTÞðq2Q2ðq30 − q23Þ −Q2q23ΠT − q20q
2⊥ΠLÞ

��
1

2
þ fgðq0Þ

�
Aμνμ̄: ð53Þ

The spectral function contains two poles and cut. The poles
are located at

Q2 − ΠT ¼ 0;

q2Q2ðq30 − q23Þ −Q2q23ΠT − q20q
2⊥ΠL ¼ 0: ð54Þ

Not surprisingly they correspond to the transverse mode
and mixed mode in the HTL regime in the absence of μ
[56]. The location of the cut is at Q2 < 0, from Landau
damping. Although the antisymmetric part inherits most
spectral features from the symmetric part, there is one
difference: the transverse mode and mixed mode are
decoupled in the symmetric part, but are coupled in the
antisymmetric part in the form of product in (53).

B. Damping rate of probe quark

Now we can proceed to calculate the splitting of damp-
ing rates from antisymmetric part of the gluon propagator.
Similar to (30), we have for the quark self-energy

ΣarðPÞ¼
N2

c−1

2Nc
g2
Z

d4Q
ð2πÞ4γ

μSrað0ÞðP−QÞγνDrr
μνðQÞ; ð55Þ

where the overall factor comes from tAtA ¼ N2
c−1
2Nc

. The
integration of Q should be bounded by the applicable
region of chromo-Hall dynamics, which will be fixed by
q0 ≲ τ−1R .
We first calculate the damping rate in the high density

limit μ̄2 ≫ ΠT=L. Using (52), (55), and (23), we have
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ΣA
arðPÞ ¼

N2
c − 1

2Nc

g2

ð2πÞ3
Z

d4Qsgnðq0Þ
ðP −QÞ2 þ iϵðp0 − q0Þ

×

�
1

2
þ fgðq0Þ

��
δðq20 − x̄21Þ
q20 − x̄22

þ δðq20 − x̄22Þ
q20 − x̄21

�

× γμðP − =QÞγνAμνðQÞμ̄: ð56Þ

The γ matrices are evaluated in the same way as before,

γμðP − =QÞγνAμνðQÞ ¼ 2i
q2

ðq20f1 þ q0f2Þ; ð57Þ

with f1 and f2 taking the schematic forms cμγ5γμ and cμ
being real functions of P and Q. We make the following
observation: the damping rate arises from purely imaginary
shift of momentum. This corresponds to the real part of the
coefficients of γ5γμ in ΣA

ar. It is only possible when the iϵ
prescription is invoked in the integral. It amounts to
keeping the real part of the following:

Re
i

ðP −QÞ2 þ isgnðp0 − q0Þ
¼ πδððP −QÞ2Þsgnðp0 − q0Þ: ð58Þ

Taking P2 ¼ 0 as before and p0 > 0, we have the
δððP −QÞ2Þ ≃ δð2P ·QÞ. The Dirac δ function is non-
vanishing for spacelike Q only, which comes from the
mode q20 ¼ x̄21. This is the density modified Landau damp-
ing pole. If we further estimate the relaxation time in the
high density limit τ−1R ∼ g4μGððeBÞ1=2=μÞ for some dimen-
sionless function G. The condition x1 ≲ 1=τR leads to q ≲
gμ̄ ≪ μ̄ similar to the QED case. Also, the mode becomes

almost static as x21 ≃
q2
3
q2

μ̄2
≪ q2. The remaining analysis is

parallel to the QED case. We can easily obtain the damping
rate by the substitution μ̃ → μ̄ in (43),

ΓL ≃
N2

c − 1

2Nc

g2Tq2UV
8πμ̄p

sgnðp3Þ;

ΓR ≃ −
N2

c − 1

2Nc

g2Tq2UV
8πμ̄p

sgnðp3Þ; ð59Þ

with qUV ∼ gμ̄. Clearly QGP in this limit behaves like a
paramagnet, which amplifies/damps modes with positive/
negative spin components along the magnetic field,
respectively.
Now we move on to the limit μ̄2 ≪ ΠT=L. Using (53),

(55), and (23), we obtain the following representation:

ΣA
arðPÞ ¼

N2
c − 1

2Nc
g2

Z
d4Q
ð2πÞ4 γ

μ
iðP − =QÞ

ðP −QÞ2 þ iϵðp0 − q0Þ
γν
�
1

2
þ fgðq0Þ

�

× 2iIm

�
Q2q2

ðQ2 − ΠTÞðq2Q2ðq30 − q23Þ −Q2q23ΠT − q20q
2⊥ΠLÞ

�
Aμνμ̄: ð60Þ

As reasoned above, only spacelike Q in the spectral function contributes to the damping rate. In this case, it corresponds to
the Landau damping cut, from which we obtain

ReΣA
arðPÞ ¼

N2
c − 1

2Nc
g2

Z
d3q
ð2πÞ4

π

2p
T
q0

�
2iμ̄
q2

�
ðq20f1 þ q0f2Þ

× 2iIm

�
Q2q2

ðQ2 − ΠTÞðq2Q2ðq30 − q23Þ −Q2q23ΠT − q20q
2⊥ΠLÞ

�				
q0¼p̂·q

: ð61Þ

We can further simplify the integral by noting that

Im½ Q2q2

ðQ2−ΠT Þðq2Q2ðq2
0
−q2

3
Þ−Q2q2

3
ΠT−q20q

2⊥ΠLÞ� is odd in q0, thus also

odd under q → −q. To have an integrand even under
q → −q, we can just keep the following terms in f1 and f2:

f1 ¼ −q2γ5γ3; f2 ¼ q3q2γ5γ0: ð62Þ

We then parameterize the quark self-energy as

ReΣA
arðPÞ≡N2

c−1

2Nc
g2
Z

dq
ð2πÞ4

πTμ̄
p

ðh1γ5γ3þh2γ5γ0Þ: ð63Þ

By rotational invariance, h1 and h2 are even and odd
functions of p̂3, respectively. Their precise forms can only
be obtained numerically. We use the following parameter-
ization of q:

q ¼ q cos αp̂þ q sin α cos β
b̂ − cos γp̂

sin γ

þ q sin α sin β
b̂ × p̂
sin γ

: ð64Þ

We have chosen p̂ as the z axis and the plane spanned by p̂
and b̂ as the z-x plane. γ denotes the angle between p̂ and b̂
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with cos γ ¼ p̂ · b̂. We have then p̂ · q̂ ¼ cos α and
d3q ¼ q2dqd cos αdβ. The angular integration is per-
formed numerically to obtain h1;2.
The q dependence is of particular interest. It has been

shown that the dynamical screening crucial for the damping
rate is the same as the case without magnetic field in the IR
limit [56]. It follows that the damping rate from symmetric
contributions contains logarithmic divergence [58]. One
may expect similar logarithmic divergence in the splitting
of damping rate from antisymmetric contributions. It turns
out that this is not the case. Figure 2 shows the q
dependence of h1;2 for a generic cos γ. Both h1 and h2
are IR safe. In the UV h2 decays more slowly than h1. Let
us define the q-integrated quantities as

ReΣA
arðPÞ ¼ H1γ

5γ3 − ϵðp3ÞH2γ
5γ0; ð65Þ

with

H1 ¼
N2

c − 1

2Nc
g2

πTμ̄
ð2πÞ4p

Z
qUV

0

dqh1;

H2 ¼
N2

c − 1

2Nc
g2

πTμ̄
ð2πÞ4p

Z
qUV

0

dqjh2j: ð66Þ

We have taken into account the signs of h1 and h2 (note that
the latter is an odd function of p̂3) such that bothH1 andH2

are positive. This leads to the following dispersions:

L∶ p0 ≃ p −
ip3H1

p
þ isgnðp3ÞH2;

R∶ p0 ≃ pþ ip3H1

p
− isgnðp3ÞH2; ð67Þ

with the following damping rate:

ΓL ≃ −sgnðp3Þ
�
H2 −

jp3jH1

p

�
;

ΓR ≃ sgnðp3Þ
�
H2 −

jp3jH1

p

�
: ð68Þ

To determine which mode is unstable, we need to compare
H2 with

jp3jH1

p , which depends on the choice of qUV. In the
magnetized plasma limit with the cut contribution, we may
estimate q ∼ q0 ∼ τ−1R ∼ g4T, thus qUV ∼ g4T ≪ m. From
Fig. 2, we see h1 dominates over h2 in the range of
integration schematically indicated by the yellow band, so
we may consider the H1 term in (68) only. It follows that
(68) has the same structure as (43) so that the previous
reasoning applies: the right-handed mode with p3 > 0 and
left-handed mode with p3 < 0 are amplified with respect to
their chiral partners. This is just the amplification of the
mode with a positive spin component along the magnetic
field, which provides a mechanism to polarize the probe
quark by the QGP paramagnet.

We are ready to propose the following picture for
polarization dynamics in heavy ion collisions: the initial
strong magnetic field first polarizes the spin of light quarks
in the QGP. At not very high energy, the QGP carries finite
baryon density. Because of the mismatch of charges of up
and down quarks, the medium is also electrically charged
and thus can be treated as a magnet. We have analyzed the
high density or low temperature limit and magnetized
plasma limit. In both cases, the QGP behaves as a para-
magnet. The initial magnetic field decays quickly so it
cannot affect the strange quarks produced in the late stage
of heavy ion collisions. Nevertheless, the spin polarized
charged QGP serves as a paramagnet, which can efficiently
polarize the strange quarks. This is realized through the
splitting in the damping rates for quarks with opposite spin
component along the magnetic field. Interestingly, this case

leads to a splittingΔΓ ∼ g4Tμ
p , which is parametrically larger

than the high density case with ΔΓ ∼ g2Tq2UV
μ̄p ∼ g6Tμ

p .
Finally, let us comment on two simplifications made in

our analysis. The first one is the LLL approximation. For a
realistic magnetic field produced in heavy ion collisions,
higher Landau level (hLL) contribution might not be
negligible. Indeed, interesting phenomenological conse-
quences have been discussed from inter-Landau level
transitions [59–61]. How do they affect our results?
Cutting the diagram in Fig. 1, we easily see that the
self-energy of the probe quark comes from scattering with
either quarks in the LLL states or gluons. The dominance of
either of them corresponds to the low and high density
limits, respectively. For the antisymmetric part of self-
energy leading to the splitting, we need at least one
scattering with LLL states. It is crucial that the LLL states
are spin polarized. The splitting in damping rates for
opposite spin states seems to imply that it is the spin of
the LLL states that is transferred to the counterpart of the
probe fermions.5 If this were true, we would expect no
qualitative change from hLL contributions, because hLL
states are twofold degenerate with opposite spins and their
contributions would cancel in the splitting.
The second simplification is the neglection of quark

mass, which is not necessarily small for strange quarks as
compared to temperature. One may ask, when does our
picture break down? For massive probe quarks, the right-
and left-handed components can convert to each other on
timescales of axial charge relaxation. The timescale has
been estimated as τm ∼ T

m2g2 [62]. If the relaxation timescale
is much longer than the splitting timescale τsplit ∼ 1

ΔΓ, the
polarization mechanism we propose is still effective. The
condition corresponds to T

m2g2 ≫
p

g6Tμ in the high density

limit and T
m2g2 ≫

p
g4Tμ in the low density limit. If the

5Note again the spin is entirely canceled by the orbital angular
momentum in the LLL approximation.
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relaxation time is much shorter than the splitting timescale
instead, the polarization will be washed out.

V. CONCLUSION AND OUTLOOK

We have considered self-energies of photons/gluons in a
chargedmagnetizedmedium in a strongmagnetic field limit.
Finite charge density of the medium induces an antisym-
metric component in the self-energies. We have found the

antisymmetric component leads to splitting of damping rates
for probe chiral fermions/quarks with opposite spin compo-
nent along themagnetic field.We have analyzed the high and
low density limits, finding the medium behaves like a
paramagnet in both cases. Applying the results to heavy
ion collisions, we propose theQGP consisting of light quarks
canbe analogous to a paramagnet due to the interplay of finite
magnetic field and baryon density. After decay of initial
magnetic field, the paramagnet can continue to polarize the
strange quarks produced at late stage of heavy ion collisions.
This provides a mechanism to effectively extend the lifetime
of the magnetic field other than the electric conductivity.
Several extensions of this work can be considered: we

have considered the strong magnetic field limit with the
LLL approximation. We have argued the mechanism for
polarization dynamics remains qualitatively the same based
on the assumption that only the spin of the Landau level
states matters for the polarization dynamics. It is desirable
to confirm the picture in the weak field limit, where the spin
and orbital angular momentum do not cancel each other. It
is more interesting to consider the scenario with vorticity.
Unlike the magnetized medium, the vortical medium
carries mostly orbital angular momentum. It is known that
an antisymmetric component exists in self-energy for
gluons in neutral vortical QGP [63]. It is expected to lead
to splitting of damping rates for different spin states, which
leads to the polarization mechanism through spin-orbit
coupling. We leave these for future studies.
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APPENDIX: EVALUATION OF THE PROBE
FERMION SELF-ENERGY

In this appendix, we evaluate the probe fermion self-
energy which is necessary to determine the damping rate in
the main text. Let us start from the antisymmetric con-
tribution of (36),

ΣA
arðPÞ ¼ −

ie2T
ð2πÞ3μ̃

Z
d3q
q2

f1
p · qþ iϵp0

¼ −
ie2Tγ5γ3

ð2πÞ3μ̃
Z

d3q
q2

p1q1 þ p2q2
p · qþ iϵp0

þ ie2Tp3γ
5

ð2πÞ3μ̃
Z

d3q
q2

q1γ1 þ q2γ2

p · qþ iϵp0

þ ie2Tγ5γ3

ð2πÞ3μ̃
Z

d3q
p · qþ iϵp0

¼ ie2Tγ5γ3

ð2πÞ3μ̃
Z

q⊥dq⊥dϕ
Z

dq3
p⊥q⊥ cosϕþ p3q3 þ iϵp0

−
ie2Tγ5γ3

ð2πÞ3μ̃ p⊥
Z

q2⊥ cosϕdq⊥dϕ
Z

dq3
ðq2⊥ þ q23Þðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

þ ie2Tp3γ
5

ð2πÞ3μ̃
Z

q⊥ðq⊥ · γ⊥Þdq⊥dϕ
Z

dq3
ðq2⊥ þ q23Þðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

; ðA1Þ

FIG. 1. One-loop fermion self-energy Σar. Black solid circle
represents the resummed photon propagator and the thick line
indicates the probe fermion. The other diagram can be obtained
by exchanging the ra labeling of the photon and probe fermion in
the loop. Its contribution does not give rise to damping because
the probe fermion is not thermally populated.

FIG. 2. q dependence of h1 (disk) and h2 (square) for
p̂ · b̂ ¼ cos γ ¼ 1

3
. Both are finite in the IR and UV. The shape

of the q dependence remains qualitatively the same for a wide
range of p̂ · b̂. With qUV ≪ m, the integration range is sche-
matically indicated by the yellow band. It follows that the
integration of h1 dominates the counterpart of h2.
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with

q⊥ · γ⊥ ¼ q⊥
p⊥

ððp1 cosϕ − p2 sinϕÞγ1 þ ðp1 sinϕþ p2 cosϕÞγ2Þ: ðA2Þ

ϕ is the angle between p⊥ and q⊥. We have used the cylindrical coordinates to calculate this integral.
Next, we will use the residue theorem to calculate the above integral. The sign of p0 and p3 will affect the integral result.

Therefore, we consider the following two cases that are related to our study: one case is p0 > 0 and p3 > 0, the other case is
p0 > 0 and p3 < 0.
As for the first case (p0 > 0 and p3 > 0), the integral results of q3 are

Z
dq3

p⊥q⊥ cosϕþ p3q3 þ iϵp0

¼ −
iπ
p3

;
Z

dq3
ðq2⊥ þ q23Þðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

¼ π

q2⊥ðip3 þ p⊥ cosϕÞ : ðA3Þ

Then, (A1) becomes

ΣA
arðPÞ ¼

ie2Tp3qUV
8π2μ̃p⊥

γ5
Z

dϕ
ðp1 cosϕ − p2 sinϕÞγ1 þ ðp1 sinϕþ p2 cosϕÞγ2

ip3 þ p⊥ cosϕ

−
ie2Tp⊥qUV

8π2μ̃
γ5γ3

Z
dϕ cosϕ

ip3 þ p⊥ cosϕ
þ e2Tq2UV

8πμ̃p3

γ5γ3: ðA4Þ

Let z ¼ eiϕ, cosϕ ¼ z2þ1
2z , and sinϕ ¼ z2−1

2z , then we can obtain

ΣA
arðPÞ ¼

e2Tp3qUV
8π2μ̃p⊥

γ5
I
jzj¼1

dz
z

�ðz2 þ 1Þðp1γ
1 þ p2γ

2Þ
p⊥ðz2 þ 1Þ þ 2izp3

þ ðz2 − 1Þðp1γ
2 − p2γ

1Þ
iðp⊥ðz2 þ 1Þ þ 2izp3Þ

�

−
e2Tp⊥qUV

8π2μ̃
γ5γ3

I
jzj¼1

dz
z

z2 þ 1

p⊥ðz2 þ 1Þ þ 2izp3

þ e2Tq2UV
8πμ̃p3

γ5γ3: ðA5Þ

The consequences of
H
dz are

I
jzj¼1

dz
z

ðz2 þ 1Þ
p⊥ðz2 þ 1Þ þ 2izp3

¼ 2πi
p⊥

�
1 −

p3

p

�
;

I
jzj¼1

dz
z

ðz2 − 1Þ
p⊥ðz2 þ 1Þ þ 2izp3

¼ 0: ðA6Þ

Substituting (A6) into (A5), we can get the final result

ΣA
arðPÞ ¼ −

ie2TqUV
4πμ̃

�
1 −

p3

p

��
γ5γ3 −

p3

p2⊥
γ5ðp1γ

1 þ p2γ
2Þ
�
þ e2Tq2UV

8πμ̃p3

γ5γ3: ðA7Þ

We can use a similar method to calculate the second case (p0 > 0 and p3 < 0). The integral results of q3 are

Z
dq3

p⊥q⊥ cosϕþ p3q3 þ iϵp0

¼ iπ
p3

;
Z

dq3
ðq2⊥ þ q23Þðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

¼ π

q2⊥ðp⊥ cosϕ − ip3Þ
: ðA8Þ

Then, (A1) becomes

ΣA
arðPÞ ¼

ie2Tp3qUV
8π2μ̃p⊥

γ5
Z

dϕ
ðp1 cosϕ − p2 sinϕÞγ1 þ ðp1 sinϕþ p2 cosϕÞγ2

p⊥ cosϕ − ip3

−
ie2Tp⊥qUV

8π2μ̃
γ5γ3

Z
dϕ cosϕ

p⊥ cosϕ − ip3

−
e2Tq2UV
8πμ̃p3

γ5γ3: ðA9Þ

We substitute z ¼ eiϕ, cosϕ ¼ z2þ1
2z , and sinϕ ¼ z2−1

2z into the above equation,
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ΣA
arðPÞ ¼

e2Tp3qUV
8π2μ̃p⊥

γ5
I
jzj¼1

dz
z

�ðz2 þ 1Þðp1γ
1 þ p2γ

2Þ
p⊥ðz2 þ 1Þ − 2izp3

þ ðz2 − 1Þðp1γ
2 − p2γ

1Þ
iðp⊥ðz2 þ 1Þ − 2izp3Þ

�

−
e2Tp⊥qUV

8π2μ̃
γ5γ3

I
jzj¼1

dz
z

z2 þ 1

p⊥ðz2 þ 1Þ − 2izp3

−
e2Tq2UV
8πμ̃p3

γ5γ3: ðA10Þ

The consequences of
H
dz are

I
jzj¼1

dz
z

z2 þ 1

p⊥ðz2 þ 1Þ − 2izp3

¼ 2πi
p⊥

�
1þ p3

p

�
;

I
jzj¼1

dz
z

z2 − 1

ðp⊥ðz2 þ 1Þ − 2izp3Þ
¼ 0: ðA11Þ

Eventually, we get

ΣA
arðPÞ ¼ −

ie2TqUV
4πμ̃

�
1þ p3

p

��
γ5γ3 −

p3

p2⊥
γ5ðp1γ

1 þ p2γ
2Þ
�
−
e2Tq2UV
8πμ̃p3

γ5γ3: ðA12Þ

Combining (A7) and (A12), we can get back to the result of (38).
Let us turn to the symmetric contribution. We start from the following expression:

ΣS
arðPÞ ¼

e2

ð2πÞ3
Z

d4Qsgnðq0Þ
ðP −QÞ2 þ iϵðp0 − q0Þ

�
1

2
þ fγðq0Þ

��
δðq20 − x21Þ
q20 − x22

þ δðq20 − x22Þ
q20 − x21

�
γμðP − =QÞγνSμνðQÞ; ðA13Þ

We first deal with γμðP − =QÞγνSμνðQÞ. The following result is obtained by considering only ∼q00:

γμðP − =QÞγνSμνðQÞ ¼ −2iq23

�
p0γ

0 þ q · γ −
ðq · γÞðp · qÞ

q2

�
: ðA14Þ

Then, (A13) can be written as

ΣS
arðPÞ ¼

ie2T
ð2πÞ3μ̃2

Z q23

�
p0γ

0 þ q · γ − ðq·γÞðp·qÞ
q2

�

ðp · qþ iϵp0Þ
d3q

Z
dq0
q0

δ

�
q20 −

q23q
2

μ̃2

�
sgnðq0Þ: ðA15Þ

We proceed with the integral of q0,

Z
dq0
q0

δ

�
q20 −

q23q
2

μ̃2

�
sgnðq0Þ ¼

μ̃2

q23q
2
: ðA16Þ

By using (A16), we can simplify (A15) and obtain

ΣS
arðPÞ ¼

ie2T
ð2πÞ3

Z
d3q

q2ðp · qþ iϵp0Þ
�
p0γ

0 þ q · γ −
ðq · γÞðp · qÞ

q2

�
: ðA17Þ

In cylindrical coordinates, the above equation can be rewritten as
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ΣS
arðPÞ ¼

ie2Tγ0p0
ð2πÞ3

Z
q⊥dq⊥dϕ

Z
dq3

ðq2⊥ þ q23Þðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

þ ie2T
ð2πÞ3

Z
q⊥ðq⊥ · γ⊥Þdq⊥dϕ

Z
dq3

ðq2⊥ þ q23Þðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

þ ie2Tγ3

ð2πÞ3
Z

q⊥dq⊥dϕ
Z

q3dq3
ðq2⊥ þ q23Þðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

−
ie2T
ð2πÞ3

Z
q⊥ðq⊥ · γ⊥Þðq⊥ · p⊥Þdq⊥dϕ

Z
dq3

ðq2⊥ þ q23Þ2ðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

−
ie2Tp3

ð2πÞ3
Z

q⊥ðq⊥ · γ⊥Þdq⊥dϕ
Z

q3dq3
ðq2⊥ þ q23Þ2ðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

−
ie2Tγ3
ð2πÞ3

Z
q⊥ðq⊥ · p⊥Þdq⊥dϕ

Z
q3dq3

ðq2⊥ þ q23Þ2ðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

−
ie2Tγ3p3

ð2πÞ3
Z

q⊥dq⊥dϕ
Z

q23dq3
ðq2⊥ þ q23Þ2ðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

: ðA18Þ

We still consider two cases. As for the case of p0 > 0 and p3 > 0, the integral results of q3 are
Z

q3dq3
ðq2⊥ þ q23Þðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

¼ iπ
q⊥ðip3 þ p⊥ cosϕÞ ;Z

dq3
ðq2⊥ þ q23Þ2ðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

¼ πð2ip3 þ p⊥ cosϕÞ
2q4⊥ðip3 þ p⊥ cosϕÞ2 ;Z

q3dq3
ðq2⊥ þ q23Þ2ðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ

¼ −p3π

2q3⊥ðip3 þ p⊥ cosϕÞ2 ;Z
q23dq3

ðq2⊥ þ q23Þ2ðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ
¼ πp⊥ cosϕ

2q2⊥ðip3 þ p⊥ cosϕÞ2 : ðA19Þ

We plug (A19) into (A18) and calculate the integral of q⊥ to get the following result:

ΣS
arðPÞ ¼

ie2Tγ0p0

8π2
ln
qUV
qIR

Z
dϕ

ip3 þ p⊥ cosϕ
−
e2Tγ3qUV

8π2

Z
dϕ

ip3 þ p⊥ cosϕ

þ ie2TqUV
8π2p⊥

Z
dϕ

ip3 þ p⊥ cosϕ
ðcosϕðγ1p1 þ γ2p2Þ þ sinϕðγ2p1 − γ1p2ÞÞ

−
ie2T
16π2

ln
qUV
qIR

Z ð2ip3 þ p⊥ cosϕÞdϕ
ðip3 þ p⊥ cosϕÞ2 ððcosϕÞ2ðγ1p1 þ γ2p2Þ þ sinϕ cosϕðγ2p1 − γ1p2ÞÞ

þ ie2Tp2
3

16π2p⊥
ln
qUV
qIR

Z
dϕ

ðip3 þ p⊥ cosϕÞ2 ðcosϕðγ
1p1 þ γ2p2Þ þ sinϕðγ2p1 − γ1p2ÞÞ: ðA20Þ

Then we can calculate the integral of ϕ and write

Z
dϕ

ip3 þ p⊥ cosϕ
¼ −2iπ

p
;

Z ðcosϕðγ1p1 þ γ2p2Þ þ sinϕðγ2p1 − γ1p2ÞÞdϕ
ip3 þ p⊥ cosϕ

¼ 2π

p⊥

�
1 −

p3

p

�
ðp1γ1 þ p2γ

2Þ;
Z

dϕ
ðip3 þ p⊥ cosϕÞ2 ðcosϕðγ

1p1 þ γ2p2Þ þ sinϕðγ2p1 − γ1p2ÞÞ ¼ −2iπ
p⊥
p3

ðγ1p1 þ γ2p2Þ;
Z ð2ip3 þ p⊥ cosϕÞdϕ

ðip3 þ p⊥ cosϕÞ2 ððcosϕÞ2ðγ1p1 þ γ2p2Þ þ sinϕ cosϕðγ2p1 − γ1p2ÞÞ ¼ −2iπ
p2
3

p3
ðγ1p1 þ γ2p2Þ: ðA21Þ
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Substituting (A21) into (A20), we can obtain

ΣS
arðPÞ ¼

e2Tγ0p0

4πp
ln
qUV
qIR

þ ie2Tγ3qUV
4π2p

þ ie2TqUV
4πp2⊥

�
1 −

p3

p

�
ðγ1p1 þ γ2p2Þ: ðA22Þ

As for the another case of p0 > 0 and p3 < 0, the integral results of q3 change into

Z
q3dq3

ðq2⊥ þ q23Þðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ
¼ −iπ

q⊥ðp⊥ cosϕ − ip3Þ
;

Z
dq3

ðq2⊥ þ q23Þ2ðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ
¼ πðp⊥ cosϕ − 2ip3Þ

2q4⊥ðp⊥ cosϕ − ip3Þ2
;

Z
q3dq3

ðq2⊥ þ q23Þ2ðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ
¼ −p3π

2q3⊥ðp⊥ cosϕ − ip3Þ2
;

Z
q23dq3

ðq2⊥ þ q23Þ2ðp⊥q⊥ cosϕþ p3q3 þ iϵp0Þ
¼ πp⊥ cosϕ

2q2⊥ðp⊥ cosϕ − ip3Þ2
: ðA23Þ

After using the result of (A23), (A18) becomes

ΣS
arðPÞ ¼

ie2Tγ0p0

8π2
ln
qUV
qIR

Z
dϕ

p⊥ cosϕ − ip3

þ e2Tγ3qUV
8π2

Z
dϕ

p⊥ cosϕ − ip3

þ ie2TqUV
8π2p⊥

Z
dϕ

p⊥ cosϕ − ip3

ðcosϕðγ1p1 þ γ2p2Þ þ sinϕðγ2p1 − γ1p2ÞÞ

−
ie2T
16π2

ln
qUV
qIR

Z ðp⊥ cosϕ − 2ip3Þdϕ
ðp⊥ cosϕ − ip3Þ2

ððcosϕÞ2ðγ1p1 þ γ2p2Þ þ sinϕ cosϕðγ2p1 − γ1p2ÞÞ

þ ie2Tp2
3

16π2p⊥
ln
qUV
qIR

Z
dϕ

ðp⊥ cosϕ − ip3Þ2
ðcosϕðγ1p1 þ γ2p2Þ þ sinϕðγ2p1 − γ1p2ÞÞ: ðA24Þ

We take advantage of the same method as before to integrate ϕ to get the following result:

Z
dϕ

p⊥ cosϕ − ip3

¼ −2iπ
p

;

Z ðcosϕðγ1p1 þ γ2p2Þ þ sinϕðγ2p1 − γ1p2ÞÞdϕ
p⊥ cosϕ − ip3

¼ 2π

p⊥

�
1þ p3

p

�
ðp1γ1 þ p2γ

2Þ;
Z

dϕ
ðp⊥ cosϕ − ip3Þ2

ðcosϕðγ1p1 þ γ2p2Þ þ sinϕðγ2p1 − γ1p2ÞÞ ¼ −2iπ
p⊥
p3

ðγ1p1 þ γ2p2Þ;
Z ðp⊥ cosϕ − 2ip3Þdϕ

ðp⊥ cosϕ − ip3Þ2
ððcosϕÞ2ðγ1p1 þ γ2p2Þ þ sinϕ cosϕðγ2p1 − γ1p2ÞÞ ¼ −2iπ

p2
3

p3
ðγ1p1 þ γ2p2Þ: ðA25Þ

In the end, we can obtain

ΣS
arðPÞ ¼

e2Tγ0p0

4πp
ln
qUV
qIR

−
ie2Tγ3qUV

4π2p
þ ie2TqUV

4πp2⊥

�
1þ p3

p

�
ðγ1p1 þ γ2p2Þ: ðA26Þ

Combining (A22) and (A26), we can obtain the result of (40). Similarly, for the case where p0 < 0, we do not elaborate
further.
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