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We establish robust relations between Transverse Momentum Dependent distributions (TMDs) and
collinear distributions. We define weighted integrals of TMDs that we call Transverse Momentum
Moments (TMMs) and prove that TMMs are equal to collinear distributions evaluated in some minimal
subtraction scheme. The conversion to the modified minimal subtraction (MS) scheme can be done by a
calculable factor, which we derive up to three loops for some cases. We discuss in detail the zeroth, the first,
and the second TMMs and provide phenomenological results for them based on the current extractions of
TMDs. The results of this paper open new avenues for theoretical and phenomenological investigation of
the three-dimensional and collinear hadron structures.
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I. INTRODUCTION

Parton distributions are of utmost importance in modern
physics, serving a dual purpose. Firstly, they provide
information about the internal hadron structure and the
nonperturbative dynamics of Quantum Chromodynamics
(QCD) [1,2]. Secondly, they allow for nonperturbative
QCD effects to be systematically included in theoretical
estimates of collider observables [3] within the framework
of QCD factorization theorems. Important examples of
factorization theorems are the collinear and Transverse
Momentum Dependent (TMD) factorization theorems [4].
The former approximates the momentum of the active
parton to be collinear to the large momentum of the parent
hadron, and it defines parton distribution functions (PDFs)
that encode the information on the momentum fraction,
Bjorken x, of the hadron’s momentum carried by the parton.
PDFs are the main source of knowledge regarding collinear
(1D) hadron structure, and they are determined in global
QCD analyses of the experimental measurements. TMD
factorization goes further, incorporating the parton’s trans-
verse momentum, kT , along with the momentum fraction x,
and it defines Transverse Momentum Dependent parton
distribution functions (collectively called TMDs). TMDs
provide plentiful information on the three-dimensional (3D)
hadron internal structure in the momentum space.

Exploration of the 1D and the 3D hadron structures is a
cornerstone of existing (LHC [5,6], Belle [7,8], RHIC [9],
JLab 12 [10]) and future experimental facilities, such as the
Electron-Ion Collider [11–13]. They are also objects of
intensive theoretical studies [1,2], including global phenom-
enological analyses [14–20] and higher loop QCD calcu-
lations. The most recent TMD analyses include perturbative
information up to approximate next-to-next-to-next-to-next-
to-leading logarithms (N4LL) [21,22], which is a remarkable
success for TMD phenomenology.
It is known that 1D and 3D structures are intimately

related. Experimental data from the same processes are
used to extract both 3D and 1D structures. For instance,
totally inclusive Drell-Yan measurements or high transverse
momentum data are used to extract collinear densities while
the transverse momentum dependent Drell-Yan cross sec-
tions at small values of transverse momentum are relevant to
3D structure. Intuitively, 3D TMDs can be reduced to 1D
PDFsby “integrating out” the parton’s transversemomentum
kT [23,24]. The integral relations are explicit in models with
parton model approximation and are used widely in phe-
nomenology of TMDs, i.e., Refs. [25–28]. Integral moments
of TMDs were explored in relation to the QCD energy-
momentum tensor in Ref. [29]. In the framework of QCD
resummation and small x, the subject was discussed in
Refs. [30–33]. The relationship between the modified
minimal subtraction (MS) scheme and other schemes was
explored in the resummation framework in Refs. [34–36].
The theoretical relations between TMD and PDF are

intricate, and they can be derived in the form of an
asymptotic expansion using the Operator Product
Expansion (OPE) [37–40]. Despite being theoretically
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clear, this approach cannot be applied phenomenologically
to relate TMDs and PDFs in a straightforward manner. The
main reason is the mismatch of the scale dependence of
PDFs and TMDs. As a consequence of the factorization
theorem, TMDs depend on two scales: the ultraviolet (UV)
renormalization scale and the renormalization scale of the
rapidity divergence, whereas PDFs depend solely on the
UV renormalization scale. The corresponding evolution
equations have a different analytical structure: a pair of
differential Collins-Soper equations diagonal in flavor
space with a nonperturbative Collins-Soper (CS) kernel
[41,42] vs nondiagonal in flavor space integrodifferen-
tial Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP)
equations [43,44] or DGLAP-type ones [45–48] for higher
twist distributions. Another reason is the divergence of the
integral of TMDs over kT, which is equivalent to the UV
divergence of PDFs and should be regularized [49,50]. The
relation between 3D and 1D structures should be devised in
such a way so that the corresponding quantities obtained
from 3D densities obey the same evolution equations as
their 1D counterparts, while simultaneously exhibiting no
dependence on the Collins-Soper kernel.
In this work, we establish a rigorous relationship between

1D and 3D structures that can be readily applied in
phenomenology. We define the Transverse Momentum
Moments (TMMs) which are weighted integrals of TMDs
in the transverse momentum with an upper cutoff. We prove
that TMMs are equivalent to the collinear matrix elements
computed in a minimal subtraction scheme (we call it TMD
scheme), provided that the perturbative scale is high enough
to neglect contributions from the power-suppressed terms.
The difference between the TMD scheme and MS scheme
emerges at the next-to-leading order (NLO) in the strong
coupling, αs, and can be expressed as a calculable factor. We
present specific expressions for various cases in this paper.
Specifically, TMMs of order n are defined as the

momentum integral with a weight knT , and the procedures
presented in this work can be defined for any n ≥ 0.
However, the estimates for values of n ≥ 2 are spoiled
by the need for subtraction of power divergences. For this
reason, we consider only the lowest-power weights (n ¼ 0,
1, 2) as they offer the most interesting phenomenological
information:
(1) The zeroth TMM, also explored in Refs. [49,51],

relates TMDs and collinear parton distribution
functions (twist-two PDFs). We provide the next-
to-next-to-next-to-leading order (N3LO) expression
for the matching between the TMD and MS
schemes. The derived relations are verified numeri-
cally using unpolarized TMDs from the recent N4LL
extraction ART23 [22,52], demonstrating the con-
sistency of the method.

(2) The first TMM provides information about the
distribution of the average transverse momentum

shift of partons [24,53–55], and it is expressed via
collinear distributions of twist three. Unlike the
zeroth TMM, the transformation to the MS scheme
is not applicable here due to the loss of information
upon integration. However, the first TMM yields
important information. As an illustrative example,
we consider the extraction of the Sivers function at
N3LO [56,57] and compute the Qiu-Sterman func-
tions [58], along with the average transverse mo-
mentum shifts of quarks in a transversely polarized
proton.

(3) The second moment is related to the average
absolute value of transverse momentum and the
quadrupole distribution, and it is generally described
by collinear operators of twist four. Reduction to the
TMD scheme requires a subtraction procedure of
power divergences, which we devise for the unpo-
larized case. Results are substantiated phenomeno-
logically using the data from ART23 [22].

The question of scale selection is one of the central in the
phenomenology of TMDs. It is also central in the deriva-
tions present in this paper because the scaling of TMDs
depends on the nonperturbative Collins-Soper kernel. The
Collins-Soper kernel does not play a role in any collinear
object, and thus the equivalence between TMMs and
collinear distributions can be reached only if TMMs are
not dependent on the Collins-Soper kernel. We show that it
can be achieved in the ζ prescription [59] or for a specific
selection of general scales in a generic TMD formalism.
Notably, the expressions are significantly simpler for the ζ
prescription, and therefore, we first present the derivation
for the ζ prescription and subsequently explore the case of
general scales.
The results of this paper open new avenues for explora-

tion of the three-dimensional structure of the nucleon and in
establishing rigorous connections between collinear and
transverse momentum dependent observables. They have
the potential to become instrumental in phenomenological
studies and to serve as benchmarks for comparison with
lattice QCD calculations.
The paper is organized as follows: we define the TMMs

and the corresponding collinear distributions in Sec. II.
Then, in Sec. III, we recall the standard parametrization and
properties of TMDs, and in Sec. IV we review the critical
elements of TMD evolution and the ζ prescription. The
zeroth, the first, and the second TMMs are considered in
Secs. V, VI, and VII, correspondingly. The Appendix
contains formulas of the perturbative ingredients for the
ζ prescription.

II. TRANSVERSE MOMENTUM MOMENTS

Let us consider a generic quark TMD defined as the
following matrix element, see e.g. Ref. [60]:
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F̃½Γ�ðx; bÞ ¼
Z

dz
2π

e−ixzp
þhp; sjq̄ðznþ bÞW†

∞

×
Γ
2
W∞qð0Þjp; si; ð1Þ

where W∞ represents the gauge link from the quark
position to the light cone infinity, the Dirac matrix Γ
selects the polarization of quarks, pþ denotes the plus
component of the momentum p of the nucleon, x is the
momentum fraction carried by the quark, and b is the
transverse displacement of the quark fields. The direction
of the Wilson line W∞ is determined by the physical
process [61]. TMDs in the momentum space are obtained
through the two-dimensional Fourier transform:

F½Γ�ðx; kTÞ ¼
Z

d2b
ð2πÞ2 e

iðbkTÞF̃½Γ�ðx; bÞ; ð2Þ

where bold symbols denote Euclidean two-dimensional
vectors in the transverse plane (b2 ¼ −b2 > 0). The inverse
Fourier transform of Eq. (2) reads as

F̃½Γ�ðx; bÞ ¼
Z

d2kTe−iðbkT ÞF½Γ�ðx; kTÞ: ð3Þ

In this paper, we adopt a notation convention wherein
functions with or without tilde denote conjugated functions
in b or kT spaces correspondingly.
The collinear matrix elements of interest are defined as

M½Γ�μ1…μnðxÞ ¼ in
Z

dz
2π

e−ixzp
þhp; sjq̄ðznÞW†

∞D⃖μ1…D⃖μn

×
Γ
2
W∞qð0Þjp; si; ð4Þ

where D is the covariant derivative, D⃖μ ≡ ∂
 

μ þ igAμ.
Notice that, the gauge field Aμ is located at the light cone
infinity �n∞, and therefore the covariant derivative
reduces to the partial derivative in regular gauges. In the
case of n ¼ 0, the matrix element in Eq. (4) coincides with
the definition of twist-2 collinear PDFs.
In the limit of a noninteracting theory, that is, in the

parton model, one has

M½Γ�μ1…μnðxÞ⟶
parton model

inlim
b→0

∂
n

∂bμ1…∂bμn
F̃½Γ�ðx; bÞ

¼
Z

d2kTkTμ1…kTμnF
½Γ�ðx; kTÞ; ð5Þ

where all vectors are Euclidean. If one interprets a TMD as
a parton distribution with momentum xpμ þ kμT within a
hadron of momentum pμ, then the TMMs can be regarded
as the parton distribution of the averaged transverse
momenta. For instance, according to this interpretation,

−gμνT Mμν represents the average hk2Ti distribution of a
parton in a hadron.
Accounting for interactions requires a renormalization

procedure, which is however different for the left- and
right-hand sides of Eq. (5). The renormalization of the
TMD operator needs both the ultra-violet (UV) and rapidity
renormalization scale, respectively μ and ζ, and as a result,
TMDs become dependent on them Fðx; kT ; μ; ζÞ. The
renormalization of Eq. (4) is purely UV and it proceeds
with a single scale, and therefore Eq. (4) acquires the scale

dependenceM½Γ�μ1…μnðx; μÞ. As a result, the scale dependence
of both sides is determined by different classes of evolution
equations. The evolution of TMD has a double-logarithmic
nature [4,62–66], while matrix elements in Eq. (4) evolve
by integrodifferential DGLAP-type equations [43–48].
The TMDs are the fundamental matrix elements of the

factorized cross section, and on top of this, they can also be
refactorized in the limit b → 0. This second factorization is
the result of the OPE which was studied thoroughly [37–
39,67–77]. Conventionally one uses an auxilliary scale
μOPE ∝ 1=b in the OPE for TMDs to minimize logarithmic
corrections. The OPE allows one to determine the asymp-
totic behavior of TMDs in terms of collinear distributions,
but it cannot be easily inverted. The main complication
comes from different classes of evolution equations.
In this paper, we consider weighted integrals (5) with a

momentum cutoff jkT j < μ. We show that they are equiv-
alent to the corresponding collinear distributions. The
critical element of our construction is the selection of
scales for TMDs. It must be done such that the non-
perturbative Collins-Soper kernel is eliminated as the
collinear matrix elements do not depend on it. We identify
two cases where this elimination can be achieved1:
(1) The TMD is evaluated using the ζ prescription [59].

In this case, TMMs are defined as

M½Γ�
ν1…νnðx; μÞ≡

Z
μ
d2kTkTν1…kTνnF

½Γ�ðx; kTÞ; ð6Þ

where the TMD on the right-hand side is the optimal
TMD (see Sec. IV for details). It is defined at the point
of vanishingCollins-Soper kernel, and thus anyTMM
does not depend on the Collins-Soper kernel.

(2) The TMD is evaluated with all involved scales equal
to μ, i.e.

M
� ½Γ�

ν1…νnðx;μÞ≡
Z

μ
d2kT kTν1…kTνnF

½Γ�ðx;kT ;μ;μ2Þ:

ð7Þ

In this case, the elimination of the Collins-Soper
kernel is not by construction, but it happens due to

1Other constructions satisfying these criteria may exist.
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the properties of the OPE and the TMM integral at
n ¼ 0, 1, 2.

We call these integrals in Eqs. (6) and (7) TMMs. In what
follows we show that (and similarly for M

�
)

M½Γ�
ν1…νnðx; μÞ ¼ M½Γ�ν1…νnðx; μÞ þOðμ−2Þ; ð8Þ

where we assume that the cutoff scale μ is sufficiently large,
to neglect Oðμ−2Þ corrections. We prove that the TMMs
obtained with Eqs. (6) and (7) (after the appropriate
subtractions) coincide with the collinear quantities from
Eq. (4) computed in some minimal subtraction scheme, that

we call the TMD scheme forM and TMD2 scheme forM
�
.

It means that TMM obeys the same evolution as the
corresponding collinear matrix element, with the kernel
that differs from the one in MS at order α2s (i.e. at NLO). In
some cases, it is possible to introduce a finite renormaliza-
tion constant to match the TMD scheme, TMD2 scheme,
and the MS scheme. Note, that the cutoff parameter μ in
Eqs. (6) and (7) is the renormalization scale for the collinear
distribution.
Importantly, the numerical values of (6) and (7) are not

the same, despite both being equivalent to the same
collinear matrix element. TMMs (6) and (7) correspond
to collinear matrix elements evaluated in different schemes,
which can be reduced to the MS scheme by different factors
(see Sec. V). In other words,

M½Γ�
ν1…νnðx; μÞ=M

� ½Γ�
ν1…νnðx; μÞ ¼ 1þOðαsÞ: ð9Þ

Detailed discussions on the relationship between the
zeroth moment of unpolarized TMDs or Sivers TMD and
the corresponding collinear functions can be found in
Refs. [49,51,55,57,68,78]. Higher moments are more
intricate as they are associated with power corrections in
the OPE.

III. PARAMETRIZATION OF TMDS IN POSITION
AND MOMENTUM SPACE

The standard parametrization [60] of the TMD matrix
element in Eq. (1) reads as

F̃½γþ�ðx; bÞ ¼ f̃1ðx; bÞ þ iϵμνT bμsTνMf̃⊥1Tðx; bÞ;
F̃½γþγ5�ðx; bÞ ¼ λg̃1ðx; bÞ þ iðb · sTÞMg̃⊥1Tðx; bÞ;

F̃½iσαþγ5�ðx; bÞ ¼ sαTh̃1ðx; bÞ − iλbαMh̃⊥1Lðx; bÞ
þ iϵαμT bμMh̃⊥1 ðx; bÞ

þM2b2

2

�
gαμT
2
þ bαbμ

b2

�
sTμh̃

⊥
1Tðx; bÞ; ð10Þ

where ϵμνT ¼ ϵ−þμν ¼ ϵ30μν with ϵ12T ¼ þ1, gμνT ¼ gμν−
nμn̄ν − n̄μnν, λ and sT are the longitudinal and transverse

components of the spin vector. The mass parameter M is a
typical nonperturbative scale, often chosen to be the mass
of the hadron. It is worth noting that a TMD depends solely
on the absolute value of the transverse coordinate b. In
momentum space, the parametrization is given by

F½γþ�ðx; kTÞ ¼ f1ðx; kTÞ − ϵμνT
kTμsTν
M

f⊥1Tðx; kTÞ;

F½γþγ5�ðx; kTÞ ¼ λg1ðx; kTÞ −
ðkT · sTÞ

M
g⊥1Tðx; kTÞ;

F½iσαþγ5�ðx; kTÞ ¼ sαTh1ðx; kTÞ þ
λkαT
M

h⊥1Lðx; kTÞ

−
ϵαμT kTμ
M

h⊥1 ðx; kTÞ

−
k2T
M2

�
gαμT
2
þ kαTk

μ
T

k2T

�
sTμh⊥1Tðx; kTÞ: ð11Þ

The TMDs in each space are related to each other by the
Hankel transform

Fðx; kTÞ ¼
M2n

n!

Z
∞

0

dbb
2π

�
b
kT

�
n
JnðbkTÞF̃ðnÞðx; b; μ; ζÞ;

ð12Þ

which is obtained by the angular integration in the Fourier
transform of Eq. (1), as b and kT are absolute values of the
transverse coordinate and momentum vectors. In Eq. (12)
we introduce a superscript (n) and explicitly apply the
following relation [79] for TMDs in b space:

F̃ðnÞðx; bT ; μ; ζÞ

≡ n!

�
−1
M2b

∂b

�
n
F̃ðx; b; μ; ζÞ

¼ 2πn!
ðbMÞn

Z
∞

0

dkTkT

�
kT
M

�
n
JnðbkTÞFðx; kT ; μ; ζÞ: ð13Þ

Note that for real functions f, this Hankel transform is also
real, and f̃ðnÞ possesses the same mass dimension for all n.
Therefore, the correspondence between the functions in
Eq. (10) and Eq. (13) is

f̃1ðx; bÞ≡ f̃ð0Þ1 ðx; bÞ; f⊥1Tðx; bÞ≡ f̃⊥ð1Þ1T ðx; bÞ;
g̃1ðx; bÞ≡ g̃ð0Þ1 ðx; bÞ; g̃⊥1Tðx; bÞ≡ g̃⊥ð1Þ1T ðx; bÞ;
h̃1ðx; bÞ≡ h̃ð0Þ1 ðx; bÞ; h̃⊥1Lðx; bÞ≡ h̃⊥ð1Þ1L ðx; bÞ;
h̃⊥1 ðx; bÞ≡ h̃⊥ð1Þ1 ðx; bÞ; h̃⊥1Tðx; bÞ≡ h̃⊥ð2Þ1T ðx; bÞ: ð14Þ

Formally one has [79]

lim
b→0

f̃ðnÞðx; bÞ ¼
Z

d2kT

�
k2T
2M2

�
n

fðx; kTÞ≡ fðnÞðxÞ; ð15Þ
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where fðnÞðxÞ is often referred to as the n-th moment of
the TMD.
The superscripts (0),(1),(2) in Eqs. (14) help to keep

track of the asymptotic behavior of the TMDs, and they are
important for the discussion of TMMs in the following
sections. The large-kT asymptotic of the TMDs are power-
like, and in kT space one has

fðx; kTÞ ∝
M2m

ðk2TÞmþ1
; ð16Þ

accompanied by powers of logarithms lnðkTÞ, where f
represents one of the TMDs from the right-hand side of
Eq. (11), and m is the corresponding superscript of
f̃ðmÞðx; bÞ from Eqs. (14).

IV. EVOLUTION OF TMDS AND ζ PRESCRIPTION

The treatment of evolution scales plays a central role in
the derivations of relations between 3D and 1D structures.
In this section, we recap the main elements of TMD
evolution and the ζ prescription. The detailed definition
and derivations can be found in Refs. [59,80]. For the
reader’s convenience, we collect several useful formulas in
the Appendix.
All TMDs depend on two renormalization scales, μ, the

UV evolution scale, and ζ, the rapidity evolution scale. In
the position space, the dependence on ðμ; ζÞ is governed by
two evolution equations [4],

μ2
d
dμ2

F̃ðx; b; μ; ζÞ ¼ γFðμ; ζÞ
2

F̃ðx; b; μ; ζÞ; ð17Þ

ζ
∂

∂ζ
F̃ðx; b; μ; ζÞ ¼ −Dðb; μÞF̃ðx; b; μ; ζÞ; ð18Þ

where F̃ represents any TMD in b space from the lhs of
Eq. (10), and D is the Collins-Soper kernel.2 The TMD
anomalous dimension γF has the following form:

γFðμ; ζÞ≡ ΓcuspðμÞ ln
�
μ2

ζ

�
− γVðμÞ: ð19Þ

Here, Γcusp is the cusp-anomalous dimension, and γV is the
vector anomalous dimension. The coefficients of the
corresponding perturbative series are denoted as

ΓcuspðμÞ ¼
X∞
n¼0

αnþ1s ðμÞΓn; ð20Þ

γVðμÞ ¼
X∞
n¼1

αns ðμÞγn; ð21Þ

with αsðμÞ being the QCD coupling constant. The Collins-
Soper kernel is a nonperturbative function that satisfies the
following evolution equation:

μ2
d
dμ2

Dðb; μÞ ¼ ΓcuspðμÞ
2

: ð22Þ

In the small-b regime, the Collins-Soper kernel can be
computed perturbatively. The corresponding expression
reads as, see i.e. [59,62],

Dðb; μÞ ¼
X∞
n¼0

Xn
k¼0

αnsLk
μdðn;kÞ þOðb2Þ; ð23Þ

where

Lμ ¼ ln

�
μ2b2

4e−2γE

�
: ð24Þ

All coefficients dðn;kÞ with k ≠ 0 can be expressed via
recursive formulas using anomalous dimensions, see for
instance [59], and dð1;0Þ ¼ 0. The power corrections Oðb2Þ
to Eq. (23) are expressed via vacuum matrix elements [81],
and can be determined through comparison with exper-
imental data [82] or by utilizing lattice QCD calcula-
tions [83,84].
The fact that the evolution of TMDs is determined by a

system of evolution equations (17), (18) leads to several
consequences. Firstly, Eqs. (22) and (19) guarantee the
existence of a solution for the system (17), (18) which
reads as

Fðx; b; μ; ζÞ ¼ exp

�Z
P

�
γFðμ0; ζ0Þ

dμ0

μ0
−Dðb; μ0Þ dζ

0

ζ0

��

× Fðx; b; μ0; ζ0Þ; ð25Þ

where P is any path in the (μ,ζ)-plane connecting points
ðμ; ζÞ and ðμ0; ζ0Þ. Secondly, there exist curves in the ðμ; ζÞ
space along which TMDs do not evolve [59,80]. These are
the equipotential lines of the two-dimensional vector field
E≡ ðγFðμ; ζÞ=2;−Dðb; μÞÞ [59]. Consequently, the selec-
tion of a particular scale for a TMD can be equivalently
replaced by the selection of a particular equipotential line.
The equipotential line ðμ; ζμðbÞÞ is determined by the
following equation [80]:

ΓcuspðμÞ ln
�

μ2

ζμðbÞ
�
− γVðμÞ ¼ 2Dðb; μÞ d ln ζμðbÞ

d ln μ2
: ð26Þ

Importantly, this equation and the Collins-Soper kernel
within it are applicable across all values of b, including

2D ¼ −K̃=2, where K̃ is the Collins-Soper kernel in the
notation of Ref [4]. It is a universal object for all quarks. For
gluons, the Collins-Soper kernel is different, and we do not
explicitly consider gluons in this paper; hence we do not assign
the flavor index to it.
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the nonperturbative large-b region. In this sense, the value of
ζμ is a functional of D, denoted as ζμðbÞ≡ ζμðDðbÞÞ.
Therefore, the ζ prescription consists in defining the

TMD on the equipotential line ðμ; ζμðbÞÞ. By definition,
such a TMD, which we call TMD in ζ prescription, is scale
invariant, satisfying

μ2
d
dμ2

Fðx; b; μ; ζμðbÞÞ ¼ 0: ð27Þ

To obtain the TMD at experimentally observed scales
ðμ; ζÞ, one evolves the TMD from ðμ0; ζμ0Þ to ðμ; ζÞ.
Notably, any convenient value of μ0 may be chosen, as
the TMD in ζ prescription Fðx; b; μ; ζμðbÞÞ remains inde-
pendent of it. A straightforward choice is μ0 ¼ μ, and the
simplest evolution path is a straight line from ζ0 ¼ ζðμÞ to
ζ ¼ μ2. In this case, the evolution takes the form of a
multiplicative factor,

Fðx; b; μ; ζÞ ¼
�

ζ

ζμðbÞ
�

−Dðb;μÞ
Fðx; b; μ; ζμðbÞÞ: ð28Þ

This formulation facilitates the computation of the TMD at
any chosen set of scales ðμ; ζμðbÞÞ starting from the TMD
Fðx; b; μ; ζμðbÞÞ in the ζ prescription, as given by Eq. (27).
In this approach, the selection of the scale for TMDs is

replaced by the selection of an equipotential line. It was
demonstrated in Ref. [80] that the optimal selection is the
equipotential line passing through the saddle point ðμ0; ζ0Þ
of the evolution field. The saddle point is defined as

Dðb; μ0Þ ¼ 0; ð29Þ

Γcuspðμ0Þ ln
�
μ20
ζ0

�
− γVðμ0Þ ¼ 0: ð30Þ

This point has the advantage of being uniquely defined and
such that the values of ζμ are finite at all values of μ [which
is not guaranteed for any arbitrary equipotential line
defined by Eq. (26)]. The TMD defined on the line that
passes through the saddle point, Eqs. (29) and (30), is
called the optimal TMD and is conventionally defined
without explicit scales, as discussed in Refs. [59,80].
Another advantage of the optimal TMD on the equipoten-
tial line passing through the saddle point is that the
resulting TMD is inherently independent of the Collins-
Soper kernel by construction, due to Eq. (29).
Phenomenological studies that use ζ prescription proved

to be very fruitful and include Refs. [14,15,56,57,59,80,85–
87], along with the latest extraction of TMDs from Drell-
Yan data performed at an approximate N4LL accuracy [22].

V. THE ZEROTH TRANSVERSE MOMENTUM
MOMENT

The zeroth TMM relates TMDs to the collinear (twist
two) parton distribution functions. In this section, we
demonstrate that the zeroth TMM corresponds to the
collinear PDF and exhibits the correct DGLAP evolution.
Specifically, we show that it can be precisely matched to
the MS collinear PDF through a finite renormalization
constant.
The zeroth TMM is simply the momentum integral of the

TMD given in Eq. (6). Upon substituting the parametriza-
tion for particular Dirac structures (10), we obtain

M½γþ�ðx; μÞ ¼
Z

μ
d2kTF½γ

þ�ðx; kTÞ ¼
Z

μ
d2kTf1ðx; kTÞ;

M½γþγ5�ðx; μÞ ¼
Z

μ
d2kTF½γ

þγ5�ðx; kTÞ ¼ λ

Z
μ
d2kTg1ðx; kTÞ;

M½iσαþγ5�ðx; μÞ ¼
Z

μ
d2kTF½iσ

αþγ5�ðx; kTÞ ¼ sαT

Z
μ
d2kTh1ðx; kTÞ −

Z
μ
d2kT

k2T
M2

�
gαμT
2
þ kαTk

μ
T

k2T

�
sTμh⊥1Tðx; kTÞ: ð31Þ

The last term contributes as ∼μ−2, because the pretzelocity
TMD, h⊥1T , behaves as k−6T at large kT . Since we are
considering the large-μ regime, we will neglect this term.
To simplify the notations, we introduce operation G, see

also Ref. [49],

Gn;m½f�ðx; μÞ ¼
Z

μ
d2kT

�
k2T
2M2

�
n

fðx; kTÞ: ð32Þ

In Eq. (32) the first index n can be any integer, while the
second indexm is the index of the TMD f̃ from Eqs. (14) in

b space, that corresponds to the TMD f. Notice that
without the upper cutoff, one recovers the usual n-th
moment of the TMD, as given by Eq. (15). With this
notation and using Eq. (16) we obtain the following
properties:

Gm;m½f�ðx; μÞ ∝ lnðμÞ;
Gmþl;m½f�ðx; μÞ ∝ μ2l for mþ l ≥ 0: ð33Þ

That is, for any TMD in b space of index m, the operation
Gm;m exhibits logarithmic divergence, the operation Gmþl;m
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has powerlike divergence of order l if l > 0, and Gmþl;m is
convergent if l < 0. In what follows for the zeroth moment,
where indices are (0,0), the index n is not a free parameter
but is defined by the index m of the TMD. For simplicity,
we use a single subscript in the case where n ¼ m, so that
Gn;n ≡ Gn. Hence, we have

Gn½f�ðx; μÞ ¼
Z

μ
d2kT

�
k2T
2M2

�
n

fðx; kTÞ

¼ 1

n!

Z
∞

0

dbμ

�
μb
2

�
n
Jnþ1ðμbÞf̃ðnÞðx; bÞ; ð34Þ

where Jnþ1 is the Bessel function of the first kind. In this
notation, Eqs. (31) turns into

M½γþ�ðx; μÞ ¼ G0½f1�ðx; μÞ; ð35Þ

M½γþγ5�ðx; μÞ ¼ sLG0½g1�ðx; μÞ; ð36Þ

M½iσαþγ5�ðx; μÞ ¼ sαTG0½h1�ðx; μÞ; ð37Þ

where sL and sT are the longitudinal and transverse
components of the proton’s spin. TMDs f1, g1, and h1
are known as the unpolarized, helicity, and transversity
TMDs, respectively.
At large values of kT the TMDs f1, g1, and h1 behave as

k−2T , see Eq. (16), [potentially multiplied by powers of
lnðkTÞ] [88]. Therefore, the integrals G0 diverge logarithmi-
cally as μ becomes large. This is, in essence, the UV
divergence associated with the DGLAP evolution of the
corresponding collinear distributions. As a result, the zeroth
TMMs, Eqs. (35)–(37), exhibit logarithmic divergences,
and these divergences are similar to those appearing in
collinear PDFs. In fact, for sufficiently large cut-off scales
μ, the following relations between them can be established:

G0½F�ðx; μÞ ¼ fðTMDÞðx; μÞ þOðμ−2Þ; ð38Þ

where F represents the TMDs f1, g1, and h1, and fðTMDÞ is
related to unpolarized (qðxÞ), helicity (ΔqðxÞ), and trans-
versity (δqðxÞ) collinear PDFs, respectively:

G0½f1�ðx; μÞ ¼ qðTMDÞðx; μÞ þOðμ−2Þ;
G0½g1�ðx; μÞ ¼ ΔqðTMDÞðx; μÞ þOðμ−2Þ;
G0½h1�ðx; μÞ ¼ δqðTMDÞðx; μÞ þOðμ−2Þ: ð39Þ

These relations were considered in Ref. [68] at NLL and
then studied in detail in Ref. [49]. The label “(TMD)” is

used to distinguish the functions resulting from the oper-
ation G0 from the collinear functions themselves. We will
demonstrate that the resulting functions fðTMDÞ obey the
same DGLAP evolution equations as collinear PDFs.
Therefore, the label “(TMD)” indicates that the collinear
PDF is evaluated in a particular TMD scheme, which is a
minimal subtraction scheme, but it does not coincide with
the MS scheme [89,90]. The transformation between the
TMD scheme and the conventional MS scheme can be

performed by a finite renormalization constant ZMS=TMD,
which we derive below. The schemes differ also for TMMs
evaluated with the optimal TMDs, Eq. (6), or with TMDs at
general scales, Eq. (7). We consider these cases one by one,
starting with the ζ prescription.

A. Optimal TMDs

To derive Eq. (38) and verify its properties, we exploit
the correspondence between the large-μ asymptotic behav-
ior of Hankel integrals and the small-b asymptotic behavior
of the integrand [91]. The small-b asymptotic of a TMD
can be computed using the OPE. For TMDs f1, g1, and h1,
the OPE takes the form

F̃fðx;bÞ¼
X
f0

Z
1

x

dy
y
C̃f←f0 ðy;μOPEÞff0

�
x
y
;μOPE

�
þOðb2Þ

≡ C̃⊗fþOðb2Þ; ð40Þ

where C̃ is the coefficient function that depends on b via
LO ¼ lnðμ2OPEb2=4e−2γEÞ. Here we explicitly indicate the
flavor labels f of the TMD and introduce the convolution
notation “⊗” that implies Mellin convolution and summa-
tion over flavors f0 (quarks, antiquarks, and gluons)

C̃ ⊗ f ≡X
f0

Z
1

x

dy
y
C̃f←f0 ðy; μÞff0

�
x
y
; μ

�

¼
X
f0

Z
1

x

dy
y
C̃f←f0

�
x
y
; μ

�
ff0 ðy; μÞ: ð41Þ

Notice that this convolution is not commutative [for
instance see terms such as C1 ⊗ P1 ⊗ P1 in Eq. (42)]
because the kernels are not symmetric in flavor space. The
expression in Eq. (40) is independent of μOPE as the
dependence on this scale cancels between PDF evolution
and the coefficient function, rendering the lhs of Eq. (40)
scale invariant. For the optimal TMD, the perturbative
coefficient function takes the following form:
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C̃ ¼ 1þ αsð−P1LO þ C1Þ þ α2s

�
P1 ⊗ P1 − β0P1

2
L2

O − ðP2 þ C1 ⊗ P1 − β0C1ÞLO þ C2

�

þ α3s

�
−ðP1 ⊗ P1 ⊗ P1 − 3β0P1 ⊗ P1 þ 2β20P1Þ

L3
O

6

þ ðP1 ⊗ P2 þ P2 ⊗ P1 þ C1 ⊗ P1 ⊗ P1 − 3β0C1 ⊗ P1 − 2β0P2 − β1P1 þ 2β20C1Þ
L2

O

2

− ðP3 þ C1 ⊗ P2 þ C2 ⊗ P1 − 2β0C2 − β1C1ÞLO þ C3

�
þOðα4sÞ; ð42Þ

where the leading term 1≡ δff0δð1 − yÞ represents the
unity convolution, Cn are the finite parts of the coefficient
function free from any logarithmic dependence, and Pn
stand for the perturbative coefficients of the DGLAP
kernel, as given by

μ2
d
dμ2

fðx; μÞ ¼
�X∞

n¼1
αns ðμÞPnðxÞ

�
⊗ fðx; μÞ

¼ P ⊗ fðx; μÞ: ð43Þ

Furthermore, βn represent the coefficients of the QCD beta
function, defined by

μ2
d
dμ2

αsðμÞ ¼ −
X∞
n¼0

βnα
nþ2
s ðμÞ: ð44Þ

Expressions for the coefficient functions for the unpo-
larized TMD can be found in Refs. [37,38,70,74] up to α3s
order, for helicity TMD in Refs. [68,71] up to α1s , and for

transversity TMD in Ref. [72] up to α2s . The expressions
presented in these references apply to general scales ðμ; ζÞ,
and in the Appendix we provide the rules to render those
into ζ prescription. It is essential to emphasize that all
computations are in the MS scheme, and consequently,
PDFs in Eq. (40) are defined in the MS scheme.
The relationship between the small-b and large-μ asymp-

totic expansions with logarithmic terms is explored in detail
in Refs. [92,93]. Generally, power-suppressed terms in b
contribute to power-suppressed terms in μ, and the loga-
rithmic singularities at b → 0 turn into logarithmic singu-
larities at μ → ∞. For the leading power term, the asymptotic
behavior for b → 0 and μ → ∞ are connected by simple
replacement rulesLO → −l,L2

O → l2,L3
O → −l3 − 4ζ3,

etc., see Ref. [92] (here l ¼ lnðμ2=μ2OPEÞ). The OPE in
Eq. (40) is independent of μOPE, and therefore, it is conven-
tional to set μOPE ¼ μ (and hence l ¼ 0). Thus, the asymp-
totic form of Eq. (38) reads as

G0½F�ðx; μÞ ¼
�
1þ αsC1 þ α2sC2 þ α3s

�
2ζ3
3
ðP1 ⊗ P1 ⊗ P1 − 3β0P1 ⊗ P1 þ 2β20P1Þ þ C3

�
þOðα4sÞ

�

⊗ fðx; μÞ þOðμ−2Þ; ð45Þ

where αs is evaluated at μ. Upon differentiating this
expression, we obtain

μ2
d
dμ2

fðTMDÞðx; μÞ ¼ P0 ⊗ fðTMDÞðx; μÞ: ð46Þ

Here, the evolution kernel P0 deviates from the MSDGLAP
kernel P [defined in Eq. (43)] starting at order α2s :

P0 − P ¼ −α2sβ0C1 − α3sð2β0C2 − β0C1 ⊗ C1 þ β1C1Þ
þOðα4sÞ: ð47Þ

Thus, we have established that the function fðTMDÞ is a
collinear PDF that obeys the DGLAP equation but is

computed in a scheme different from MS. As we stated
in the previous subsection, we refer to this scheme as the
TMD scheme. The same result holds for helicity and
transversity zeroth TMM, employing the pertinent DGLAP
kernels P and coefficient functions C.
The transition from the TMD scheme to the MS scheme

is accomplished through multiplication by a finite renorm-
alization matrix Z:

fðMSÞ
f ðx; μÞ ¼

X
f0

Z
1

x

dy
y
ZMS=TMD
f←f0 ðy; μÞfðTMDÞ

f0

�
x
y
; μ

�
;

ð48Þ
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where the PDF on the left-hand side is the collinear PDF in the MS scheme (explicitly indicated by the superscript MS).

Expressions for the finite renormalization constant ZMS=TMD can be obtained by eliminating terms in Eq. (47). The result
reads as

ZMS=TMD¼ 1−αsC1−α2sðC2−C1⊗C1Þ

−α3s

�
C3þC1⊗C1 ⊗C1−C1⊗C2−C2⊗C1þ

2ζ3
3

P1⊗ ðP1−β0 ·1Þ⊗ ðP1−2β0 ·1Þ
�
þOðα4sÞ: ð49Þ

The inverse factor can be expressed as

ðZMS=TMDÞ−1 ¼ 1þ αsC1 þ α2sC2 þ α3s

�
C3 þ

2ζ3
3

P1 ⊗ ðP1 − β0 · 1Þ ⊗ ðP1 − 2β0 · 1Þ
�
þOðα4sÞ: ð50Þ

The present state-of-the-art DGLAP equation precision
is next-to-next-to-leading order (NNLO) making the terms
of order α2s in Eqs. (49) and (50) sufficient for that level of
accuracy. For the sake of completeness, we present our
results up to α3s .
Hence, using Eqs. (38) and (49), one can determine

collinear PDFs based on known values of TMDs. We
emphasize that the scheme-transformation factor Z is a
matrix in flavor space. Consequently, to reconstruct a
collinear PDF with a precision beyond NLO, both quark
and gluon TMDs are required.

B. TMDs at general scales

If one employs a set of arbitrary TMD scales ðμTMD; ζÞ,
then, in general, it is not possible to reconstruct a collinear
PDF. The reason is the double-logarithm form of the

coefficient function, which has an auxiliary arbitrary scale
μOPE and which produces an extra logarithmic contribution
into the evolution of G0½F� already at leading order (LO).
These terms cannot be removed by any finite renormaliza-
tion. However, in the special case of

μ ¼ μOPE ¼ μTMD ¼
ffiffiffi
ζ

p
; ð51Þ

the collinear PDF is obtained in a TMD2 scheme, which can
be converted to the MS scheme through a finite renorm-
alization constant, different from the one obtained
in Eq. (49).
The most general coefficient function of the small-bOPE

for the TMD Fðx; b; μTMD; ζÞ involves three scales3: μOPE,
μTMD, and ζ. The expression for it has the following
structure:

CðLO;LT;lTÞ ¼ 1þ αs

��
−
Γ0

4
L2

T þ
Γ0

2
LTlT −

γ1
2
LT

�
· 1 − P1LO þ C̄1

�

þ α2s

��
Γ2
0

32
L2

TðLT − 2lTÞ2 þ
Γ0γ1
8

L2
TðLT − 2lTÞ þ

Γ0β0
12

LTðL2
T − 3LTlT − 3LTLO þ 6LOlTÞ

þL2
T
γ21 þ 2γ1β0

8
−LTðLT − 2lTÞ

Γ1 þ Γ0C̄1

4
−LT

γ2 þ 2dð2;0Þ þ γ1C̄1

2
þ lTdð2;0Þ

�
· 1

þ Γ0

4
LTLOðLT − 2lTÞP1 þLTLO

γ1
2
ðP1 − β0 · 1Þ þ

1

2
L2

OP1 ⊗ ðP1 − β0 · 1Þ

−LOðP2 þ C̄1 ⊗ ðP1 − β0 · 1ÞÞ þ C̄2

�
þOðα3sÞ; ð52Þ

where αs is at the scale μOPE, and

LO ¼ ln

�
μ2OPEb

2

4e−2γE

�
; LT ¼ ln

�
μ2TMDb

2

4e−2γE

�
; lT ¼ ln

�
μ2TMD

ζ

�
: ð53Þ

3Notice that μOPE dependence cancels with that in the evolution of the collinear PDFs in Eq. (40).
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Note that the finite parts of the coefficient function C̄i are
different from Ci for the optimal TMD. The relation
between them is provided in Eq. (A9) in the Appendix.
The evaluation of G0 through the OPE effectively

replaces ln b by ln μ, where μ is the integral cutoff in the

operation G0. Therefore, the resulting function depends on
the scales μ, μTMD, and ζ. Importantly, the dependence on μ
does not reproduce the DGLAP equation. Setting μOPE ¼ μ
we obtain

μ2
d
dμ2

G0½F�ðx; μ; μTMD; ζÞ ¼
��

PðμÞ þ γVðμÞ − ΓcuspðμÞlμ

2
· 1

�
þ α2s

��
Γ2
0

8
lμðl2

μ − l2
TÞ

−
Γ0γ1
8
ðlμ − lTÞð3lμ þ lTÞ þ

γ21
4
ðlμ − lTÞ þ dð2;0Þ þ Γ2

0

2
ζ3

�
· 1

þ 1

4
Γ0ðl2

T − l2
μÞP1 þ γ1ðlμ − lTÞP1 −

Γ0

2
lμC̄1 þ C̄1 ⊗ P1 þ

�
γ1
2
− β0

�
C̄1

�

þOðα3sÞ
�

⊗ fðx; μÞ; ð54Þ

where αs ≡ αsðμÞ, and we also define

lμ ¼ ln

�
μ2

ζ

�
: ð55Þ

This equation does not exhibit the DGLAP structure and
cannot be reduced to it through any finite factor, due to the
lμ term which is present at LO. Additionally, this function
depends on μTMD and ζ, as encoded in Eqs. (17) and (18).
On the other hand, these issues can be avoided by setting

scales as specified in Eq. (51). This choice of scales

significantly simplifies the logarithmic structure of the
coefficient function, Eq. (52), and the evolution equation
now becomes

μ2
d
dμ2

fðTMD2Þðx; μÞ ¼ P̄ ⊗ fðTMD2Þðx; μÞ; ð56Þ

where we denote fðTMD2Þðx; μÞ≡ G0½F�ðx; μ; μ; μ2Þ. The
evolution kernel P̄ deviates from the DGLAP kernel at
order α2s, akin to the difference highlighted in Eq. (47):

P̄ − P ¼ −α2sβ0C̄1 − α3s

�
2β0C̄2 − β0C̄1 ⊗ C̄1 þ β1C̄1 − 2ζ3Γ0β0

�
P1 þ

�
γ1
2
−
2β0
3

�
· 1

��
þOðα4sÞ: ð57Þ

Thus, the label “(TMD2)” signifies that the collinear PDF is evaluated in another TMD scheme distinct from theMS scheme
and the previously discussed TMD scheme labeled “(TMD).” As before, one can construct the finite renormalization
constant to pass from fðTMD2Þ to the MS-scheme PDF. The expression obtained for this constant is

ZMS=TMD2 ¼ 1 − αsC̄1 − α2s

�
C̄2 − C̄1 ⊗ C̄1 − ζ3Γ0

�
P1 þ

�
γ1
2
−
2β0
3

�
· 1

��
þOðα3sÞ; ð58Þ

and the inverse factor reads as

ðZMS=TMD2Þ−1 ¼ 1þ αsC̄1 þ α2s

�
C̄2 − ζ3Γ0

�
P1 þ

�
γ1
2
−
2β0
3

�
· 1

��
þOðα3sÞ: ð59Þ

This conclusion aligns with the findings of the authors in Ref. [49], where the agreement of fðTMD2Þðx; μÞ with the collinear
PDF was demonstrated numerically.
Notice that also in this case our result stands for the unpolarized TMD, helicity TMD, and transversity TMD.
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C. Phenomenological examples

To illustrate the application of our formulas and to verify
their accuracy numerically, we consider a specific example
of TMD extraction from experimental data, namely the
ART23 determination of unpolarized TMD [22]. ART23
analysis [22] was performed at N4LL accuracy (with N3LO
matching to collinear PDF) via the global QCD fit of Drell-
Yan and electroweak boson production data. The extraction
has been done for optimal TMDs, and thus we use the
formulas from Sec. VA.
In Figure 1 we plot ZMS=TMD ⊗ G0½f1�ðx; μÞ=

fMSðx; μÞ − 1 at two values of μ ¼ 10 and 20 GeV, con-
sidering LO, NLO, and NNLO precision for Z. One can see
that the agreement between the zeroth TMM and collinear
PDFs improves at higher values of the scale μ. Leading
order expression already gives a very good agreement
within 5%. The agreement between reconstructed and
original PDFs is approximately 5% at μ ¼ 10 GeV
(depending on x), and about 2% at μ ¼ 20 GeV. As

higher-order corrections to ZMS=TMD are applied, the

precision improves significantly.4 With ZMS=TMD taken at
NNLO, the agreement is of order of 2%–5% at
μ ¼ 10 GeV, ≲1% at μ ¼ 20 GeV, and at the subpercent-
age level for larger μ. We have verified that the central line

(without convolution with ZMS=TMD) agrees with the results
presented in Ref. [49]. In the region of large x, the
deviations become larger due to large lnð1 − xÞ contribu-
tions. Potentially, the agreement can be improved using
threshold resummation methods [94,95].
Figure 2 shows ZMS=TMD ⊗ G0½f1�ðx; μÞ at x ¼ 0.1 as a

function of μ and compares it to MSHT20 [96]. This figure
demonstrates that fðTMDÞ reproduces very well the evolu-
tion of collinear PDF. One can see that the agreement starts
from μ ∼ 5 GeV. For lower values of the scale μ, the power
corrections are substantial, and caution should be exercised
in the application of our formulas.

10
–4

0.001 0.010 0.100 1

–0.04

–0.02

0.00

0.02

0.04

0.001 0.010 0.100 1

10
–4

0.001 0.010 0.100 1

–0.04

–0.02

0.00

0.02

0.04

0.001 0.010 0.100 1

FIG. 1. Comparison of unpolarized PDF for u and d quarks determined from the unpolarized TMD (central values of ART23
extraction [22]), as a function of x at fixed μ ¼ 10 (the upper row) and 20 GeV (the bottom row). The plots show the deviation from the
MS value which was used in the fit of TMD (extraction MSHT20 [96]). Dashed orange lines, dotted blue lines, and solid green lines

correspond to the LO, NLO, and NNLO order of factor ZMS=TMD.

4For the application of ZMS=TMD we need the gluon TMD,
which is not presently known. Instead, we used a pure OPE term
with a constant nonperturbative function.
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Lastly, Fig. 3 illustrates that the uncertainty band of
TMD reproduces the uncertainty band of collinear PDF.
This is a feature of the ART23 extraction, which incorpo-
rates PDF uncertainty into the TMD uncertainty band.
Fig. 3 provides an important consistency test demonstrating
that the input PDF is recovered completely with the correct
uncertainty band. Possibly one can consider this feature in a
broader context of proposed joined fits of TMDs and PDFs.
TMM discussed in this paper can be utilized as an addi-
tional consistency check for the output of such a fit for the
mean values and for the uncertainty bands. Notice that in
other extractions such as Refs. [15,16], where the central

replica of PDFs was used in the OPE, we expect the
uncertainty band of TMM to become very small.
In the case of helicity and transversity, the same relations

hold; however at present it is not feasible to present a
phenomenological study of these relations. There are no
extractions of helicity TMDs that can be compared to the
collinear helicity PDF which is currently extracted [97] at
NNLO accuracy. In the case of transversity PDF, the
current extraction has substantial uncertainties (see for
instance Ref. [98] and references therein), and therefore
the usage of our relations would not be meaningful for their
comparison.
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5.8

6.0

6.2

6.4

6.6

6.8

10 20 30 40 50

FIG. 2. Comparison of unpolarized PDF for u and d quarks determined from the unpolarized TMD (extraction ART23 [22]), as a
function of μ at fixed x ¼ 0.1. The plot shows the deviation from the MS value which was used in the fit of TMD (extraction MSHT20

[96]). Different lines correspond to different orders of correction factor ZMS=TMD.
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FIG. 3. Comparison of uncertainty bands for unpolarized PDF for u and d quarks as a function of x at fixed μ ¼ 20 GeV. The blue
band is the uncertainty band determined from the uncertainty band of unpolarized TMD (extraction ART23 [22]). The yellow band is the

uncertainty band for unpolarized PDF (extraction MSHT20 [96]). Comparison is done with NNLO ZMS=TMD.
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VI. THE FIRST TRANSVERSE MOMENTUM MOMENT

The first TMMs read as

M½γþ�
μ ðx; μÞ ¼

Z
μ
d2kTkTμF½γ

þ�ðx; kTÞ ¼ −
Z

μ
d2kTkTμϵ

ρν
T

kTρsTν
M

f⊥1Tðx; kTÞ;

M½γþγ5�
μ ðx; μÞ ¼

Z
μ
d2kTkTμF½γ

þγ5�ðx; kTÞ ¼ −
Z

μ
d2kTkTμ

ðkT · sTÞ
M

g⊥1Tðx; kTÞ;

M½iσαþγ5�
μ ðx; μÞ ¼

Z
μ
d2kTkTμF½iσ

αþγ5�ðx; kTÞ ¼
Z

μ
d2kTkTμ

λkαT
M

h⊥1Lðx; kTÞ −
Z

μ
d2kTkTμ

ϵαρT kTρ
M

h⊥1 ðx; kTÞ: ð60Þ

The first TMMs are expressed via the transformation G1 ≡ G1;1, Eqs. (34), and they are given by

M½γþ�
μ ðx; μÞ ¼ −ϵT;μνsνTMG1½f⊥1T �ðx; μÞ; ð61Þ

M½γþγ5�
μ ðx; μÞ ¼ −sTμMG1½g⊥1T �ðx; μÞ; ð62Þ

M½iσαþγ5�
μ ðx; μÞ ¼ −λgT;μαMG1½h⊥1L�ðx; μÞ − ϵT;μαMG1½h⊥1 �ðx; μÞ: ð63Þ

These quantities can be interpreted as the average dis-
placement of the transverse momentum of a parton within a
polarized hadron [24,53–55,99,100]. Their nonzero values
are a consequence of the presence of the spin, whether it be
the spin of the proton or the parton. Notice that all functions
in b space have index (1), and the operation Gn;m (34) is
performed with n ¼ m ¼ 1. This corresponds to the first
moment of TMDs in the momentum space from Eq. (15).
The small-b expansion structure for these TMDs differs

from what was considered in Section V for f1, g1, and h1.
Schematically this OPE can be expressed as

F̃ðx; bÞ ¼
X
t

½C̃tðLOÞ ⊗ t�ðxÞ þOðb2Þ; ð64Þ

where t represents collinear distributions of twist two, twist
three, or twist four, and ⊗ denotes an integral convolution
in momentum fractions. Two notable differences between
Eq. (40) and Eq. (64) are noteworthy. Firstly, twist-three
and twist-four distributions t depend on two or more

collinear momentum fractions. Therefore, the convolution
with the coefficient function projects several variables onto
a single variable x in the lhs of Eq. (64). For example, the
leading term for the small-b expansion of the Sivers
function is a projection [101,102] of twist-three distribu-
tions Tðx1; x2; x3Þ onto the Qiu-Sterman function

f̃⊥ð1Þ1T ðx; bÞ ¼ �πTð−x; 0; xÞ þOðαs; b2Þ; ð65Þ

where� corresponds to either semi-inclusive deep inelastic
scattering (SIDIS), “−” or Drell-Yan, “þ”. The correspond-
ing coefficient function at the zeroth order in αs is
δðx2Þδðxþ x1Þδðx − x3Þ. The second difference is that
the formula (64) relates one TMD to several collinear
distributions. For instance, the Sivers TMD f⊥1T is related to
the twist-three distribution Tðx1; x2; x3Þ, and (starting from
NLO) to the twist-three distribution ΔTðx1; x2; x3Þ [76].
The worm-gear-T TMD g⊥1T is related to the twist-two
helicity distributions Δq and to the twist-three distributions
T and ΔT [77], and so forth. Explicitly [77,103],

G1½f⊥1T �ðx; μÞ ¼ �
π

2
TðTMDÞð−x; 0; x; μÞ þOðμ−2Þ;

G1½g⊥1T �ðx; μÞ ¼
x
2

Z
1

x

dy
y
ΔqðTMDÞðy; μÞ þ x

Z
1

−1
dy1dy2dy3δðy1 þ y2 þ y3Þ

Z
1

0

dαδðx − αy3Þ
�

×
ΔTðTMDÞðy123; μÞ

y22
þ TðTMDÞðy123; μÞ − ΔTðTMDÞðy123; μÞ

2y2y3

�
þOðμ−2Þ;
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G1½h⊥1L�ðx; μÞ ¼ −
x2

2

Z
1

x

dy
y
δqðTMDÞðy; μÞ

− x
Z

1

−1
dy1dy2dy3δðy1 þ y2 þ y3Þ

Z
1

0

dααδðx − αy3ÞHðTMDÞðy123; μÞ
y3 − y2
y22y3

þOðμ−2Þ;

G1½h⊥1 �ðx; μÞ ¼∓ π

2
EðTMDÞð−x; 0; x; μÞ þOðμ−2Þ; ð66Þ

where the shorthand y123 ≡ y1; y2; y3, functions T, ΔT, H
and E are twist-3 collinear PDFs whose explicit definitions
can be found in Refs. [77,104,105]. The signs of the first
and the last equation should be understood as Drell-Yan,
the upper signs, and SIDIS, the lower sign.
These features are also characteristics of the collinear

matrix elementsM½Γ�μ from Eq. (4) which lack definite twist
and consequently represent a mixture of different
contributions.
The perturbative structure of coefficient C̃t in the ζ

prescription follows a form similar to Eq. (42). It can be
written as

C̃t ¼ Rt ⊗ ð1þ αsð−P1tLO þ C1tÞ þOðα2sÞÞ; ð67Þ

where Rt is the projection operator, and Pt ¼
P

n α
n
sPnt.

The projection operator Rt projects the multivariable
higher-twist distribution to the single variable x. For
instance, in the case of the Sivers function the operation
Rt is πδðx2Þδðx1 þ x2 þ x3Þδðx3 − xÞ, which being inte-
grated with twist-three distribution Tðx1; x2; x3Þ results in
Eq. (65). The coefficients C1t are known for all TMDs
except h⊥1T ; see Refs. [76,77,106–108]. The presence of the
projection operator does not allow one to turn Mμ to the
MS scheme, as it would require a convolution with all
variables xi. Nevertheless, the difference between Mμ in
the TMD scheme and the MS scheme starts at NLO, alike
for the zeroth TMM. To demonstrate this, one can differ-
entiateMμ with respect to the scale, and from Eq. (67) one
obtains

μ2
d
dμ2

G1½F�ðx; μÞ ¼ Rt ⊗ P0t ⊗ tþOðα2sÞ; ð68Þ

where F represents any of the TMDs appearing in
Eqs. (61)–(63). The right-hand side of Eq. (68) is the
LO evolution ofMμ in the MS scheme. At NLO, there is a
term containing the one-loop finite part C1t, which deviates
from the expression in the MS scheme [see Eq. (47)], and
so we have P0t − Pt ¼ Oðα2sÞ. Note, that presently the twist-
3 evolution kernel is known only at order αs. Thus,
collinear distributions determined by TMMs are as precise
as determinations by other methods.

There is one “accidental” exception from this general
rule, namely, the Boer-Mulders function h⊥1 that has C1t
that commutes with the projector C1t ¼ −ζ2CF1 [77]. Also
the Boer-Mulder function is chiral odd, and does not mix
with twist-3 gluon distributions. Therefore, in this case, one
can find the NLO part of the transformation factor between
TMD and MS-schemes

�
1þ asðμÞCF

π2

6

�
G1½h⊥1 � ¼∓ π

2
Eð−x; 0; xÞð1þOða2sÞÞ;

ð69Þ

where E is the chiral-odd distribution of twist 3; see
definition in Refs. [77,105]. However, one cannot expect
that such construction would be possible beyond NNLO.
Thus, the first TMM Mμ is related to Mμ computed in

the TMD scheme. Since the matrix element Mμ is not an
autonomous function (in the sense that it mixes with other
functions by the QCD evolution), one cannot transform
Mμ to the MS scheme without using extra information.
Certainly, the connections between the twist-3 and TMD
functions present intriguing avenues for further theoretical
and phenomenological investigations [55,78].

A. General scales

At general scales, the OPE can be formally represented as

F̃ðx; b; μOPE; μTMD; ζÞ
¼

X
t

½CtðLO;LT;lTÞ ⊗ t�ðxÞ þOðb2Þ; ð70Þ

where the summation is over collinear distributions of twist
two, twist three, or twist four, and ⊗ denotes an integral
convolution inmomentum fractions. Analogously to the case
discussed earlier, the coefficient Ct contains the projection
operator Rt, preventing the direct transformation of the first
TMMs, Mμ, to the MS scheme. Therefore, the persisting
challenges in the transformation from theTMDscheme to the
MS scheme, previously observed for the optimal TMD case,
continue to apply at general scales, even when considering
the specific set of scales of Eq. (51).
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B. Phenomenological example

The Sivers function has attracted considerable attention
in the literature [24,53–57,99,100]. This function is related
[101,102] to the Qiu-Sterman function and provides a 3D
snapshot of the transversely polarized nucleon. One of the
interesting features of the Sivers function is encoded in its
first TMM M½γþ�

μ , as it can be interpreted as the average
transverse momentum shift of partons with given x due to
the spin-orbital interactions [54].
We compute M½γþ�

μ using recent extractions of the Sivers
function at N3LO [56,57]. In these extractions, u, d, and sea
quark Sivers functions were determined. Figure 4 illustrates

M½γþ�
μ for u, d, and sea quarks based on Refs. [56,57].
If one integrates over x, the result can be interpreted as

the mean transverse momentum shift of a parton in a
transversely polarized hadron. Let us denote [54]

hkfT;νiðμÞ ¼
Z

1

0

dxM½γþ�
ν;f ðx; μÞ; ð71Þ

where f is the flavor index. As seen from Eq. (62), for a
hadron polarized in the ŷ direction, we have ν ¼ 1. For the
extraction from [57], we obtain the following values at
μ ¼ 10 GeV:

hkuT;1i ¼ −0.011þ0.011−0.023 GeV; hkdT;1i ¼ 0.17þ0.21−0.17 GeV;

hkseaT;1i ¼ −0.26þ0.26−0.32 GeV; ð72Þ

where the uncertainties are computed according to
Ref. [57]. It is worth noting that the errors in these
quantities are correlated. These numbers are consistent
with lattice QCD results from Ref. [109] that give the Sivers
shift for u − d quarks in the range of hku−dT;1 i ¼
−0.3… − 0.15 GeV. The results in Eq. (72) are compa-
rable5 to those extracted in Ref. [110] in a TMD parton
model analysis of the transverse single spin asymmetries

for pion and kaon production in Semi-Inclusive Deep
Inelastic Scattering.
The so-called Burkardt sum rule [54] conjectures that the

sum over all hkT;1i is zero. This and other sum rules for
TMDs were studied in Ref. [29]. In our notations, this can
be expressed as

X
f¼q;q̄;g

Z
1

0

dxM½γþ�
ν;f ðx; μÞ ¼

X
f¼q;q̄;g

hkfT;νi ¼ 0: ð73Þ

While the Burkardt sum rule is not formally proven in
QCD, it has been verified in model computations, as shown
in previous studies [111,112]. If we define the following
sum as

X
f¼q;q̄;g

hkfT;νi ¼ hkT;νi; ð74Þ

then, intriguingly, the Burkardt sum rule exhibits autono-
mous evolution at LO [113]:

μ2
d
dμ2
hkT;νi ¼ −

αs
2π

CAhkT;νi þOðα2sÞ: ð75Þ

Therefore, if hkT;νi is zero at the initial scale, it continues to
be zero at other scales. For the specific case of the
extraction from Ref. [57], we find that, at μ ¼ 10 GeV,
the result for the sum over quark flavors is

X
f¼q;q̄
hkfT;1i ¼ hkT;1i − hkgT;1i ¼ −0.14þ0.14−0.31 GeV: ð76Þ

This allows us to estimate the contribution of the gluon
Sivers function as hkgT;1i ≃ 0.14þ0.31−0.14 GeV, assuming the
validity of the Burkardt sum rule, Eq. (74). Therefore based
on Ref. [57], one could anticipate potentially sizable gluon
Sivers functions, comparable in magnitude to the Sivers
function for the d quark, even though the error band
is large.
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FIG. 4. The first TMM for the Sivers function (extraction [56,57]) for different flavors, computed at μ ¼ 10 GeV.

5Notice that the definition of the observables hkq⊥i reported in
Ref. [110] differs from our Eq. (72) by a minus sign.
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VII. THE SECOND TRANSVERSE MOMENTUM MOMENT

Now, we proceed to derive expressions for the second TMMs:

M½γþ�
μν ðx; μÞ ¼

Z
μ
d2kTkTμkTνF½γ

þ�ðx; kTÞ ¼
Z

μ
d2kTkTμkTνf1ðx; kTÞ;

M½γþγ5�
μν ðx; μÞ ¼

Z
μ
d2kTkTμkTνF½γ

þγ5�ðx; kTÞ ¼ λ

Z
μ
d2kTkTμkTνg1ðx; kTÞ;

M½iσαþγ5�
μν ðx; μÞ ¼

Z
μ
d2kTkTμkTνF½iσ

αþγ5�ðx; kTÞ ¼ sαT

Z
μ
d2kTkTμkTνh1ðx; kTÞ

−
Z

μ
d2kTkTμkTν

k2T
M2

�
gαρT
2
þ kαTk

ρ
T

k2T

�
sTρh⊥1Tðx; kTÞ: ð77Þ

By considering the operation defined in Eq. (32) with n → nþ 1 and m → n, we obtain

Gnþ1;n½F�ðx; μÞ ¼
Z

μ
d2kT

�
k2T
2M2

�
nþ1

Fðx; kTÞ

¼ 1

2M2n!

Z
∞

0

db μ3
�
μb
2

�
n ðnþ 1ÞJnþ1ðμbÞ − Jnþ3ðμbÞ

nþ 2
F̃ðnÞðx; bÞ; ð78Þ

which, for the second moment, contributes solely with
indices (1,0), leading to

M½γþ�
μν;divðx; μÞ ¼ −gT;μνM2G1;0½f1�; ð79Þ

M½γþγ5�
μν;divðx; μÞ ¼ −λgT;μνM2G1;0½g1�; ð80Þ

M½iσαþγ5�
μν;div ðx; μÞ ¼ sT;αgT;μνM2G1;0½h1�

þ ðgT;μαsT;ν þ gT;ναsT;μ − gT;μνsT;αÞ

×
M2

2
G2½h⊥1T �: ð81Þ

Notice that the contributions of f1, g1, and h1 involve the
operation G1;0, while h⊥1T contributes to the second TMM
through G2. The subscript “div” in Eqs. (79)–(81), indicates
that these functions exhibit power divergences at large μ, as
discussed below. The very last term of Eq. (81) corresponds
to the collinear counterpart of the pretzelocity. It incorpo-
rates twist-three and twist-four distributions [40] and
reproduces the MS expression up to NLO. Its ln μ diver-
gence is the same UV divergence as in the corresponding
twist-4 operator, and doing the same derivations as in
Sec. V, we conclude that this TMM reproduces the collinear
counterpart of the pretzelocity h⊥1T function.
To establish a connection between Eqs. (79)–(81) and the

matrix elements in Eq. (4), it is necessary to examine the
small-b OPE up to the first power of b2. The general form
of this expansion is given by

F̃ðx; bÞ ¼ C̃ ⊗ f þ b2
X
k

C̃ð2Þk ⊗ ftw 4
k þOðb4Þ; ð82Þ

wwhere the first term is presented in Eq. (40), and the
second term represents the power correction, typically
involving distributions of twist four and target mass
corrections. The coefficients C̃ð2Þ are presently unknown
(except for the target-mass corrections part at the tree order
[40]). Notably, at the tree order, the b2 term in the OPE,
Eq. (82), is equivalent to the matrix element M in Eq. (5)
(with appropriately contracted indices). Thus, to relate
Mμν;div and Mμν, it is necessary to subtract the leading
small-b contribution, C̃ ⊗ f.
The integrals of the type Gnþ1;n behave as ∝ μ2 at large μ

reproducing the UV power divergence of the corresponding
operator Mμν, which is defined in Eq. (4). These power
divergences are natural for physical renormalization
schemes, such as the momentum subtraction scheme.
However, in the dimensional regularization and, conse-
quently, in the MS scheme, these power divergences do not
appear directly.6 Therefore, to match with the MS scheme,
one needs to subtract the leading ∝ μ2 behavior fromMμν.
The resulting function Mμν is the matrix element Mμν

computed in a minimal subtraction scheme (TMD scheme),
which coincides with MS up to NLO. This relation is
proven analogously to the approach used in the previous
sections.

6These power divergences correspond in the MS scheme to the
so-called renormalons which appear due to the factorial growth of
the coefficient functions. See the discussion in Ref. [114], and an
example of explicit computation in Ref. [115].
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The asymptotic part of Gnþ1;n can be computed analytically. We express the Gnþ1;n transformation as

Gnþ1;n½F�ðx; μÞ ¼
μ2

2M2
AS½Gnþ1;n½F��ðx; μÞ þ Ḡnþ1;n½F�ðx; μÞ; ð83Þ

where AS½Gnþ1;n½F�� denotes the leading asymptotic term that can be derived from the first term in the OPE, Eq. (82). The
term Ḡnþ1;n corresponds toMμν in the TMD scheme, and it undergoes logarithmic evolution. Hence, the second moments in
the MS scheme (up to NLO) are given by

M½γþ�
μν ðx; μÞ ¼ −gT;μνM2Ḡ1;0½f1�ðx; μÞ; ð84Þ

M½γþγ5�
μν ðx; μÞ ¼ −λgT;μνM2Ḡ1;0½g1�ðx; μÞ; ð85Þ

M½iσαþγ5�
μν ðx; μÞ ¼ sT;αgT;μνM2Ḡ1;0½h1�ðx; μÞ þ ðgT;μαsT;ν þ gT;ναsT;μ − gT;μνsT;αÞ

M2

2
G2½h⊥1T �ðx; μÞ: ð86Þ

The asymptotic term AS½G1;0½F�� for the cases f1, g1, and h1 can be derived straightforwardly using Eq. (42). Up to N3LO,
the expression reads as

AS½G1;0½F��ðx; μÞ ¼ fαsP1 þ α2s ½P2 þ ðC1 − P1Þ ⊗ ðP1 − β01Þ�
þ α3s ½P3 þ ðC1 − P1Þ ⊗ ðP2 − β11Þ þ ðC2 − P2Þ ⊗ ðP1 − 2β01Þ
− ðC1 − P1Þ ⊗ ðP1 − β01Þ ⊗ ðP1 − 2β01Þ� þOðα4sÞg ⊗ fðx; μÞ; ð87Þ

where f is the collinear PDF corresponding to F. This
expression can be numerically computed using existing
codes for TMD phenomenology.7

Therefore, armedwith the knowledge of the optimal TMD
and the corresponding collinear PDF of twist two, one can
compute the secondTMMin the TMDscheme,which agrees
with the MS scheme up to NLO. We emphasize that the
expression in Eq. (87) holds for unpolarized, helicity, and
transversity functions, with the relevant kernels and coef-
ficient functions substituted accordingly.

A. General scales

A similar result (albeit with notably more intricate
expressions) can be derived for TMDs assessed at the
set of scales μ ¼ μOPE ¼ μTMD ¼

ffiffiffi
ζ
p

.
The second moment is determined by the transformation

G defined in Eq. (78). For general scales, this integral
cannot be reduced to the collinear matrix element Mμν in
Eq. (4). This is evident from the structure of the OPE,
which takes the form

F̃ðx; b; μOPE; μTMD; ζÞ ¼ CðLO;LT;lTÞ ⊗ f

þ b2
�X

k

Cð2ÞðLO;LT;lTÞ ⊗ ftw4k −D2lTCðLO;LT;lTÞ ⊗ f

�
þOðb4Þ; ð88Þ

7Most codes for TMD phenomenology, see e.g. Ref. [52], include the computation of the leading terms for the small-b OPE in
position space. In order to obtain Eq. (87), one should replace the logarithmic terms of the coefficient function in Eq. (42) according to
the rule

L0
O → 0; LO → −1; L2

O → −2; L3
O → −3!; L4

O → −4!þ 16ζ3; etc:;

where L0
O corresponds to the logarithmless part of the coefficient function.
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where f is the twist-two collinear PDF, ftw4k represents a
twist-four collinear PDF, the coefficient C is the leading
power coefficient function given in Eq. (52), the coefficient
Cð2Þ is the subleading power coefficient function, and D2

stands for the power correction to the Collins-Soper kernel.
It is noteworthy that D2 is not necessarily suppressed by αs
(see, e.g., Ref. [81]). The matrix element Mμν is related to
ftw4k . The transformation Mμν, computed at general scales,

contains an additional contribution ∼D2, and thus, cannot
be unambiguously related to Mμν.
However, for the scales shown in Eq. (51), the contri-

bution ∼D2 vanishes, allowing for the determination ofMμν

as outlined in Sec. VII. In this case, the expression for
AS½G1;0½F�� differs from Eq. (87). It can be derived from
Eq. (52), and it reads as

AS½G1;0½F��ðx; μ; μ; μ2Þ ¼
�
αs

�
P1 þ

Γ0 þ γ1
2

�

þ α2s

�
P2 þ

�
C̄1 − P1 − Γ0 −

γ1
2

�
⊗

�
P1 − β0 þ

Γ0 þ γ1
2

�
þ Γ2

0

2ζ3 − 1

4
þ Γ1 þ γ2 þ 2dð2;0Þ

2

�

þ α3s

�
P3 þ

�
C̄1 − P1 − Γ0 −

γ1
2

�
⊗

�
P2 − β1 þ

Γ1 þ γ2
2
þ dð2;0Þ þ Γ2

0

2ζ3 − 1

4

�

þ
�
C̄2 − P2 − Γ1 −

γ2
2
− dð2;0Þ − Γ0β0

4ζ3
3
þ Γ2

0

4ζ3 þ 3

4

�
⊗

�
P1 − 2β0 þ

Γ0 þ γ1
2

�

−
�
C̄1 − P1 þ Γ0

4ζ3 − 3

2
−
γ1
2

�
⊗

�
P1 − β0 þ Γ0 þ

γ1
2

�
⊗

�
P1 − 2β0 þ

Γ0 þ γ1
2

�

þ Γ3
0

2 − ζ3 − 3ζ5
4

þ Γ2
0β0

4ζ3 þ 1

4
− Γ0β

2
0

2ζ3
3
þ Γ0Γ1

2ζ3 − 1

2

þ 2dð2;0Þβ0 þ
Γ2 þ γ3

2
þ dð3;0Þ

�
þOðα4sÞ

�
⊗ fðx; μÞ; ð89Þ

where all terms with anomalous dimensions are accom-
panied by 1 that is omitted for simplicity. Notice that
several recursive combinations appear in Eq. (89); this is a
known feature of expansions at higher order of αs.

B. Phenomenological examples

The knowledge of the average width of TMDs can shed
information on the dynamics of QCD. Reference [116]
using the ideas of the emergence of qq̄ condensate and
model calculations predicted that the sea quark TMDs
should be different and wider compared to the valence
quark TMDs. An attempt to numerically study the widths
was made in Ref. [20], where the authors realized the
difficulties of the naive application of integration of TMDs
in kT and used a “renormalization” procedure consisting of
calculating the result at a fixed b instead of b ¼ 0. An
alternative observable to the momentum space width, the
width in b space

R
d2bbf̃1ðx; b;Q;Q2Þwas introduced and

studied in Ref. [117]. The widths of kT and b space provide
complementary information, but they cannot be unambig-
uously related to each other in a model-independent way.
A meaningful estimate of the width of distributions in the

momentum space is via the second TMM, hk2Ti ¼
−gμνT M½γþ�

μν ¼ 2M2Ḡ1;0½f1�. An example of the evaluation
of hk2Ti is presented in Fig. 5. It confirms that the

asymptotic term cancels the power growth of the G1;0

transformation.8 The resulting line exhibits a general
logarithmic behavior. In Fig. 5, we do not present uncer-
tainty bands because they are quite large, on the order of
25%–35% for u and d quarks (at μ ¼ 20 GeV), and 50%–
60% for ū and d̄ quarks.
We have also observed that at large μ, the curve for

AS½G1;0� oscillates (the first sign of oscillation is seen in the
left panel of Fig. 5). This is a result of the number-flavor-
variation scheme used in ART23. The change of Nf in the
coefficient function generates tiny discontinuities in
Fðx; bÞ at certain values of b. In turn, they generate
oscillations in the Hankel transform. The oscillations are
small (see, e.g., Fig. 2, where the same oscillations are
present but barely visible). However, the subtraction of the

8However, the cancellation is not very precise because we use
AS½G1;0� only at N3LO. Therefore, at very large values of μ (we
have used μmax ¼ 100 GeV in our studies), one observes a power
growth in Ḡ1;0. The terms that generate this growth are induced by
higher perturbative order (N4LO in the present example) loga-
rithms in the evolution of f that are not compensated by the
coefficient function. Thus, the cancellation of the asymptotic term
can be facilitated by a minor variation of the scale. We have found
that for our computation, it is sufficient to change μ → 1.014μ to
eliminate the asymptotic term very precisely in a wide range of μ.
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asymptotic term amplifies the oscillations by a power factor
and affects the entire procedure. This implies that the
determination of second moments places more stringent
requirements on the TMD model.
In Fig. 6, we plot xhk2Ti as a function of x at

μ ¼ 10 GeV. Notice that one can see from Fig. 6 that
the width resulting from ART23 extraction grows with the
decrease of x. This growth is associated with the effects of
the gluon shower that is characteristic of high energies; see
for instance Ref. [118] where the widening of the gluon
transverse momentum dependent density was found. We
also see that ART 23 has flavor dependence for widths,
with antiquarks being narrower than quarks, except for ū at
x ∼ 0.1, where it is similar to u and d. If we consider the
widths averaged with x,

hxk2Ti ¼ 2M2

Z
1

0

dxxḠ1;0½f1�; ð90Þ

using ART23 extraction, we obtain

hxk2Tiu ¼ 0.52� 0.12 GeV2;

hxk2Tid ¼ 1.10� 0.28 GeV2;

hxk2Tiū ¼ 0.42� 0.06 GeV2;

hxk2Tid̄ ¼ 0.024� 0.004 GeV2: ð91Þ

The inclusion of the x weight in Eq. (90) is required to
facilitate the convergence of the integral at small x. While
one might anticipate that the integrals hk2Ti for valence
combinations would naturally converge, akin to the PDF
case, this convergence should be explicitly incorporated
into the fitting ansatz. In the case of ART23, the parameters
governing the low x behavior of quarks and antiquarks
were treated independently, resulting in divergent integrals.
In the future, it will be interesting to consider parametriza-
tions in which hk2Tiq could be numerically estimated.
The numbers we obtain in Eqs. (91) are in a reasonable

agreement with those found in the parton model extractions
and flavor independent fits, for instance in Refs. [119],
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FIG. 5. Values of hk2Ti computed for ART23 extraction of unpolarized TMD as a function of μ. Solid and dashed orange lines are for d
quark, and solid and dashed blue lines are for u quark. Dashed lines show the value of hk2Ti without a subtraction term.

FIG. 6. Values of xhk2Ti computed for ART23 extraction of unpolarized TMD as a function of x at μ ¼ 10 GeV. The two colors
distinguish different flavors. The uncertainty band is evaluated from the uncertainty band of ART23 extraction.

TRANSVERSE MOMENTUM MOMENTS PHYS. REV. D 110, 016003 (2024)

016003-19



where it was found that hk2Ti ≈ 0.25 GeV2. The parton
model fit [28] of HERMES multiplicities in SIDIS resulted
in hk2Ti ¼ 0.57� 0.08 GeV2. These numbers are similar to
those found in the analyses with TMD evolution in
Refs. [20,120].

VIII. CONCLUSIONS

In this paper, we explore the relationship between TMD
distributions and collinear functions. We define TMMs, the
weighted integrals of TMDs with a weight knT and a
momentum cutoff jkT j < μ, such that the cutoff, μ,
becomes the scale at which the collinear functions are
evaluated. We prove that the evolution of TMMs is the
same DGLAP(-type) evolution equations as for the collin-
ear quantities. The relation holds in the case of the ζ
prescription or in the general case of all scales of TMDs
being equal. We find it particularly convenient to utilize
TMM with TMDs defined using the ζ prescription [59],
which allows one to use scaleless nonperturbative TMD
directly and simplifies analytic calculations. We prove that
TMMs are equal to collinear distributions evaluated in
some minimal subtraction schemes which we called a TMD
scheme for TMDs in the ζ prescription and a TMD2
scheme for TMDs in a general TMD formalism. We
demonstrate that the relation between TMD and a MS
scheme, which is typical for collinear observables, is purely
perturbative via a perturbatively calculable coefficient Z.
Using this coefficient Z the TMMs can be converted to the
MS scheme.
In particular, we consider the first three TMMs that

provide the most interesting phenomenological pieces of
information.
The zeroth TMM is related to collinear twist-2 PDFs

(unpolarized, helicity, or tranversity, depending on the input
TMD). We prove that this TMM obeys the same DGLAP
evolution equation as collinear PDFs, and we derive the
coefficient Z up to three loops. As a phenomenological
example, we have performed an exhaustive comparison of
the zeroth TMM using unpolarized TMDs from a global
QCD analysis of the data at N4LL (ART23) and compared
the results to the corresponding collinear PDF MSHT20
obtained in the analysis of the data with NNLO precision.
We have shown that for μ≳ 5 GeV both the central values
and the errors agree. The extraction of PDFs proceeds
currently through the analysis of data from either inclusive
processes or processes with high transverse momentum, for
which a collinear description is appropriate. Nevertheless,
the same PDF could be extracted also using data compat-
ible with TMD factorization, through the procedure out-
lined in this work. This observation is important as it is a
further step toward a simultaneous extraction of PDFs
and TMDs.
The first TMMs involve TMDs like Sivers, Boer-

Mulders functions, and worm-gear TMD functions.

These TMMs provide information on the average trans-
verse momentum shift of partons due to the correlation of
the transverse motion and the spin and/or to the spin of the
partons and that of the nucleon. The evolution of the first
TMMs is the same in TMD and MS schemes up to Oðα2sÞ.
The first TMM in the case of the Sivers functions
corresponds to a certain projection of the collinear twist-
3 functions, the so-called Qiu-Sterman function. Using the
current extraction of the Sivers functions we have provided
an explicit calculation of the first TMMs. Moreover,
utilizing the information on the quark Sivers functions
we have estimated the average shift of gluons in a
transversely polarized proton.
Finally, we have established that the second TMMs are

related to the average widths of unpolarized, helicity, and
transversity TMDs. The second TMMs have power diver-
gence and need a subtraction to yield results that can be
related to collinear quantities. Therefore, a proper sub-
traction scheme is introduced, leading to subtracted aver-
aged second TMMs that provide a quantitative estimate of
collinear twist-4 operators. We have provided a phenom-
enological example using ART23 extraction of TMDs.
We conclude by stating that establishing the relation

between the 1D and 3D structure of the nucleon holds
significant importance from theoretical, phenomenological,
and experimental standpoints. This connection offers a
unified approach to investigate the nucleon’s structure,
aiding in the development of comprehensive global QCD
analyses, and could help to shape the experimental ini-
tiatives at current and prospective facilities, such as
Jefferson Lab 12 and the future Electron-Ion Collider.
The results of this paper open new avenues for theo-

retical and phenomenological investigation of the three-
dimensional and collinear hadron structures. We trust that
usage of our results will facilitate phenomenological
extractions of TMDs and collinear distributions and it will
be useful in lattice QCD studies.

The supporting data for this paper, specifically the Z
factors, are openly available from [121].
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APPENDIX: PERTURBATIVE EXPRESSIONS
FOR ζ PRESCRIPTION

In this Appendix, we collect the expressions for the
computation of TMD in the ζ prescription relevant to the
present discussion. The ζ prescription was developed in
Refs. [59,80], where detailed evaluations and additional
expressions can be found.

1. The optimal equipotential line
in the perturbative regime

The optimal equipotential line is defined by the differ-
ential equation Eq. (26) along with the specified boundary
conditions Eq. (29). Note that this equation is generally
nonperturbative due to the involvement of the Collins-

Soper kernel D, which is inherently nonperturbative. The
solution, expressed in terms of a general D, can be found
in Ref. [80].
The perturbative expression for the optimal equipotential

line reads as [15]

ζpertμ ðbÞ ¼ μ

b
2e−γEe−vðb;μÞ; ðA1Þ

where

vðb; μÞ ¼
X∞
n¼0

αnsvnðLμÞ: ðA2Þ

The coefficients vn up to NNLO are

v0ðLμÞ ¼
γ1
Γ0

; ðA3Þ

v1ðLμÞ ¼
β0
12

L2
μ −

γ1Γ1

Γ2
0

þ γ2 þ dð2;0Þ

Γ0

; ðA4Þ

v2ðLμÞ ¼
β20
24

L3
μ þ

�
β1
12
þ β0Γ1

Γ0

�
L2

μ þ
�
β0γ2
2Γ0

þ 4β0dð2;0Þ

3Γ0

−
β0γ1Γ1

2Γ2
0

�
Lμ

þ γ1Γ2
1

Γ3
0

−
γ1Γ2 þ γ2Γ1 þ dð2;0ÞΓ1

Γ2
0

þ γ3 þ dð3;0Þ

Γ0

: ðA5Þ

2. Small-b coefficient function

The coefficient functions for the small-b OPE, as
computed in Refs. [37–39,68–77,122], are provided for
the general TMD scale setting ðμ; ζÞ at μTMD ¼ μOPE ¼ μ.
These coefficients exhibit a double-logarithmic form,

C̄ðLO;lTÞ ¼
X∞
n¼0

X2n
k¼0

Xn
l¼0

αnsLk
Ol

l
Tc
ðn;k;lÞ; ðA6Þ

where cðn;k;lÞ are expressions involving collinear momen-
tum fractions, and we denote the logarithms as

LO ¼ ln

�
μ2OPEb

2

4e−2γE

�
; lT ¼ ln

�
μ2TMD

ζ

�
: ðA7Þ

The coefficients cðn;k;lÞ for k ≠ 0 involve evolution kernels
and anomalous dimensions, and, as previously done, we
define cðn0;0;0Þ ¼ C̄n0 with n0 < n [see Appendix D
in Ref. [70] or expression Eq. (52)]. In the ζ

prescription, the double-logarithm terms vanish, and
Eq. (A6) turns to

C̃ðLOÞ ¼
X∞
n¼0

Xn
k

αnsLk
OC
ðn;kÞ: ðA8Þ

Similar to the general case, the coefficients Cðn;0Þ ¼ Cn
are the unique part of this expression, as the rest of the
terms are expressed via evolution kernels [see an example
in Eq. (42)].
The relation between Cn and C̄n is as follows:

C1 ¼ C̄1;

C2 ¼ C̄2 þ
dð2;0Þγ1
Γ0

;

C3 ¼ C̄3 þ
dð2;0Þγ1
Γ0

C̄1

þ
�ðdð2;0ÞÞ2 þ dð3;0Þγ1 þ dð2;0Þγ2

Γ0

−
dð2;0Þγ1Γ1

Γ2
0

�
;

ðA9Þ
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where coefficients Γ, γ, and d are defined in Eqs. (20) and
(21) and Eq. (23). The coefficient functions are matrices in
flavor space, and the flavor indices in the expressions above
are contracted in the natural way. The two-loop C̄2 matrix is
reported in Eqs. (7.3)–(7.8) of Ref. [70] and in the
Mathematica auxiliary files of Ref. [70], and the three-
loop C̄3 can be found in Refs. [38,74].
Expressions for coefficients C1 read as, see Ref. [70] and

references therein:

Cqq
1 ðxÞ ¼ CF

�
2ð1 − xÞ − π2

6
δð1 − xÞ

�
;

Cqg
1 ðxÞ ¼ 4TRð1 − xÞx;

Cgq
1 ðxÞ ¼ 2CFx;

Cgg
1 ðxÞ ¼ −CA

π2

6
δð1 − xÞ;

Cq̄q
1 ðxÞ ¼ Cq0q

1 ðxÞ ¼ 0; ðA10Þ

where q̄ denotes the antiquark of the quark q, and q0 indicates the other possible flavors of quarks different form q and q̄.
We report here the known dði;0Þ (see [62,123–126]):

dð1;0Þ ¼ 0; dð2;0Þ ¼ CA

�
404

27
− 14ζ3

�
−
56

27
Nf;

dð3;0Þ ¼ C2
A

�
297029

1458
−
3196

81
ζ2 −

6164

27
ζ3 −

77

3
ζ4 þ

88

3
ζ2ζ3 þ 96ζ5

�

þ CANf

�
−
31313

729
þ 412

81
ζ2 þ

452

27
ζ3 −

10

3
ζ4

�

þ CFNf

�
−
1711

54
þ 152

9
ζ3 þ 8ζ4

�
þ N2

f

�
928

729
þ 16

9
ζ3

�
: ðA11Þ

To compute the Z factor between the TMD scheme and the MS scheme, Eq. (49), we need to compute various
convolutions, such as

ðC1 ⊗ C1Þff0 ðxÞ ¼
X
i

Z
1

x

dy
y
Cfi
1 ðyÞCif0

1

�
x
y

�
: ðA12Þ

The explicit results are

ðC1 ⊗ C1Þqq ¼ C2
F

�
π4

36
δð1 − xÞ þ

�
8þ 2π2

3

�
ðx − 1Þ − 4ðxþ 1Þ logðxÞ

�
− 8CFTRðxð1 − xÞ þ x logðxÞÞ; ðA13Þ

ðC1 ⊗ C1Þqg ¼ CFTR

�
4ð1 − x2Þ þ 8x logðxÞ − 2π2

3
ð1 − xÞx

�
−
2π2

3
CATRð1 − xÞx; ðA14Þ

ðC1 ⊗ C1Þgq ¼ C2
F

�
2ð1 − xÞ2 − π2

3
x

�
−
π2

3
CFCAx; ðA15Þ

ðC1 ⊗ C1Þgg ¼
π4

36
C2
Aδð1 − xÞ − 16CFNfTRðxð1 − xÞ þ x logðxÞÞ; ðA16Þ

ðC1 ⊗ C1Þq̄q ¼ ðC1 ⊗ C1Þq0q ¼ 0: ðA17Þ

The same expressions are to be used for the TMD2 scheme Z factor in Eq. (58) where a C̄1 ⊗ C̄1 convolution appears, as
at NLO they are the same, C̄1 ¼ C1.
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[29] C. Lorcé, J. High Energy Phys. 08 (2015) 045.
[30] S. Catani, M. Ciafaloni, and F. Hautmann, Nucl. Phys.

B366, 135 (1991).
[31] S. Catani, M. Ciafaloni, and F. Hautmann, Phys. Lett. B

242, 97 (1990).
[32] S. Catani and F. Hautmann, Phys. Lett. B 315, 157 (1993).

[33] S. Catani and F. Hautmann, Nucl. Phys. B427, 475 (1994).
[34] S. Catani, M. Ciafaloni, and F. Hautmann, Phys. Lett. B

307, 147 (1993).
[35] M. Ciafaloni and D. Colferai, J. High Energy Phys. 09

(2005) 069.
[36] M. Ciafaloni, D. Colferai, G. P. Salam, and A. M. Stasto,

Phys. Lett. B 635, 320 (2006).
[37] M.-x. Luo, T.-Z. Yang, H. X. Zhu, and Y. J. Zhu, J. High

Energy Phys. 06 (2021) 115.
[38] M. A. Ebert, B. Mistlberger, and G. Vita, J. High Energy

Phys. 09 (2020) 146.
[39] M. A. Ebert, B. Mistlberger, and G. Vita, J. High Energy

Phys. 07 (2021) 121.
[40] V. Moos and A. Vladimirov, J. High Energy Phys. 12

(2020) 145.
[41] J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381

(1981); B213, 545(E) (1983).
[42] J. C. Collins and D. E. Soper, Nucl. Phys. B197, 446

(1982).
[43] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438

(1972).
[44] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
[45] Z.-B. Kang and J.-W. Qiu, Phys. Rev. D 79, 016003

(2009).
[46] W. Vogelsang and F. Yuan, Phys. Rev. D 79, 094010

(2009).
[47] V. M. Braun, A. N. Manashov, and B. Pirnay, Phys. Rev. D

80, 114002 (2009); 86, 119902(E) (2012).
[48] V. M. Braun, A. N. Manashov, and J. Rohrwild, Nucl.

Phys. B826, 235 (2010).
[49] M. A. Ebert, J. K. L. Michel, I. W. Stewart, and Z. Sun, J.

High Energy Phys. 07 (2022) 129.
[50] J. O. Gonzalez-Hernandez, T. C. Rogers, and N. Sato,

Phys. Rev. D 106, 034002 (2022).
[51] J. O. Gonzalez-Hernandez, T. Rainaldi, and T. C. Rogers,

Phys. Rev. D 107, 094029 (2023).
[52] artemide, stable version: https://github.com/

VladimirovAlexey/artemide-public in-production version:
https://github.com/VladimirovAlexey/artemide-
development (accessed: 2023-04-30).

[53] D. Boer, P. J. Mulders, and O. V. Teryaev, Phys. Rev. D 57,
3057 (1998).

[54] M. Burkardt, Phys. Rev. D 69, 057501 (2004).
[55] L. Gamberg, A. Metz, D. Pitonyak, and A. Prokudin, Phys.

Lett. B 781, 443 (2018).
[56] M. Bury, A. Prokudin, and A. Vladimirov, Phys. Rev. Lett.

126, 112002 (2021).
[57] M. Bury, A. Prokudin, and A. Vladimirov, J. High Energy

Phys. 05 (2021) 151.
[58] J.-w. Qiu and G. F. Sterman, Phys. Rev. Lett. 67, 2264

(1991).
[59] I. Scimemi and A. Vladimirov, J. High Energy Phys. 08

(2018) 003.
[60] R. Boussarie et al., arXiv:2304.03302.
[61] J. C. Collins, Phys. Lett. B 536, 43 (2002).
[62] T. Becher and M. Neubert, Eur. Phys. J. C 71, 1665 (2011).
[63] M. G. Echevarria, A. Idilbi, and I. Scimemi, J. High Energy

Phys. 07 (2012) 002.
[64] J.-Y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, J. High

Energy Phys. 05 (2012) 084.

TRANSVERSE MOMENTUM MOMENTS PHYS. REV. D 110, 016003 (2024)

016003-23

https://doi.org/10.1140/epjc/s10052-023-11949-2
https://doi.org/10.1016/j.nuclphysa.2024.122874
https://doi.org/10.1103/PhysRevD.82.074024
https://arXiv.org/abs/2209.14872
https://doi.org/10.5506/APhysPolB.53.12-A1
https://arXiv.org/abs/2204.02280
https://arXiv.org/abs/2204.02280
https://arXiv.org/abs/2207.06307
https://arXiv.org/abs/2207.06307
https://arXiv.org/abs/1501.01220
https://doi.org/10.1140/epja/i2012-12187-1
https://arXiv.org/abs/1108.1713
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1016/j.nuclphysa.2022.122447
https://doi.org/10.1016/j.nuclphysa.2022.122447
https://doi.org/10.1007/JHEP06(2019)028
https://doi.org/10.1007/JHEP06(2019)028
https://doi.org/10.1007/JHEP06(2020)137
https://doi.org/10.1007/JHEP06(2020)137
https://doi.org/10.1007/JHEP07(2020)117
https://doi.org/10.1007/JHEP07(2020)117
https://doi.org/10.1140/epjc/s10052-020-7757-5
https://doi.org/10.1140/epjc/s10052-020-7972-0
https://doi.org/10.1140/epjc/s10052-020-7972-0
https://doi.org/10.1007/JHEP04(2021)102
https://doi.org/10.1103/PhysRevD.104.L111503
https://doi.org/10.1103/PhysRevD.104.L111503
https://doi.org/10.1007/JHEP10(2022)127
https://doi.org/10.1103/PhysRevD.107.L011506
https://doi.org/10.1103/PhysRevD.107.L011506
https://doi.org/10.1007/JHEP05(2024)036
https://doi.org/10.1007/JHEP05(2024)036
https://doi.org/10.1016/0550-3213(95)00632-X
https://doi.org/10.1016/0550-3213(95)00632-X
https://doi.org/10.1016/S0550-3213(96)00648-7
https://doi.org/10.1103/PhysRevD.57.5780
https://doi.org/10.1103/PhysRevD.106.034014
https://doi.org/10.1103/PhysRevD.102.054002
https://doi.org/10.1103/PhysRevD.102.054002
https://doi.org/10.1007/JHEP07(2018)148
https://doi.org/10.1007/JHEP04(2014)005
https://doi.org/10.1007/JHEP04(2014)005
https://doi.org/10.1007/JHEP08(2015)045
https://doi.org/10.1016/0550-3213(91)90055-3
https://doi.org/10.1016/0550-3213(91)90055-3
https://doi.org/10.1016/0370-2693(90)91601-7
https://doi.org/10.1016/0370-2693(90)91601-7
https://doi.org/10.1016/0370-2693(93)90174-G
https://doi.org/10.1016/0550-3213(94)90636-X
https://doi.org/10.1016/0370-2693(93)90204-U
https://doi.org/10.1016/0370-2693(93)90204-U
https://doi.org/10.1088/1126-6708/2005/09/069
https://doi.org/10.1088/1126-6708/2005/09/069
https://doi.org/10.1016/j.physletb.2006.03.014
https://doi.org/10.1007/JHEP06(2021)115
https://doi.org/10.1007/JHEP06(2021)115
https://doi.org/10.1007/JHEP09(2020)146
https://doi.org/10.1007/JHEP09(2020)146
https://doi.org/10.1007/JHEP07(2021)121
https://doi.org/10.1007/JHEP07(2021)121
https://doi.org/10.1007/JHEP12(2020)145
https://doi.org/10.1007/JHEP12(2020)145
https://doi.org/10.1016/0550-3213(81)90339-4
https://doi.org/10.1016/0550-3213(81)90339-4
https://doi.org/10.1016/0550-3213(82)90453-9
https://doi.org/10.1016/0550-3213(82)90453-9
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1103/PhysRevD.79.016003
https://doi.org/10.1103/PhysRevD.79.016003
https://doi.org/10.1103/PhysRevD.79.094010
https://doi.org/10.1103/PhysRevD.79.094010
https://doi.org/10.1103/PhysRevD.80.114002
https://doi.org/10.1103/PhysRevD.80.114002
https://doi.org/10.1103/PhysRevD.86.119902
https://doi.org/10.1016/j.nuclphysb.2009.10.005
https://doi.org/10.1016/j.nuclphysb.2009.10.005
https://doi.org/10.1007/JHEP07(2022)129
https://doi.org/10.1007/JHEP07(2022)129
https://doi.org/10.1103/PhysRevD.106.034002
https://doi.org/10.1103/PhysRevD.107.094029
https://github.com/VladimirovAlexey/artemide-public
https://github.com/VladimirovAlexey/artemide-public
https://github.com/VladimirovAlexey/artemide-public
https://github.com/VladimirovAlexey/artemide-development
https://github.com/VladimirovAlexey/artemide-development
https://doi.org/10.1103/PhysRevD.57.3057
https://doi.org/10.1103/PhysRevD.57.3057
https://doi.org/10.1103/PhysRevD.69.057501
https://doi.org/10.1016/j.physletb.2018.03.024
https://doi.org/10.1016/j.physletb.2018.03.024
https://doi.org/10.1103/PhysRevLett.126.112002
https://doi.org/10.1103/PhysRevLett.126.112002
https://doi.org/10.1007/JHEP05(2021)151
https://doi.org/10.1007/JHEP05(2021)151
https://doi.org/10.1103/PhysRevLett.67.2264
https://doi.org/10.1103/PhysRevLett.67.2264
https://doi.org/10.1007/JHEP08(2018)003
https://doi.org/10.1007/JHEP08(2018)003
https://arXiv.org/abs/2304.03302
https://doi.org/10.1016/S0370-2693(02)01819-1
https://doi.org/10.1140/epjc/s10052-011-1665-7
https://doi.org/10.1007/JHEP07(2012)002
https://doi.org/10.1007/JHEP07(2012)002
https://doi.org/10.1007/JHEP05(2012)084
https://doi.org/10.1007/JHEP05(2012)084


[65] M. A. Ebert, A. Gao, and I. W. Stewart, J. High Energy
Phys. 06 (2022) 007; 07 (2023) 96.

[66] A. Vladimirov, V. Moos, and I. Scimemi, J. High Energy
Phys. 01 (2022) 110.

[67] S. M. Aybat and T. C. Rogers, Phys. Rev. D 83, 114042
(2011).

[68] A. Bacchetta and A. Prokudin, Nucl. Phys. B875, 536
(2013).

[69] M. G. Echevarria, I. Scimemi, and A. Vladimirov, Phys.
Rev. D 93, 011502 (2016); 94, 099904(E) (2016).

[70] M. G. Echevarria, I. Scimemi, and A. Vladimirov, J. High
Energy Phys. 09 (2016) 004.

[71] D. Gutiérrez-Reyes, I. Scimemi, and A. A. Vladimirov,
Phys. Lett. B 769, 84 (2017).

[72] D. Gutierrez-Reyes, I. Scimemi, and A. Vladimirov, J.
High Energy Phys. 07 (2018) 172.

[73] D. Gutierrez-Reyes, S. Leal-Gomez, I. Scimemi, and A.
Vladimirov, J. High Energy Phys. 11 (2019) 121.

[74] M.-x. Luo, T.-Z. Yang, H. X. Zhu, and Y. J. Zhu, Phys.
Rev. Lett. 124, 092001 (2020).

[75] M.-X. Luo, X. Wang, X. Xu, L. L. Yang, T.-Z. Yang, and
H. X. Zhu, J. High Energy Phys. 10 (2019) 083.

[76] I. Scimemi, A. Tarasov, and A. Vladimirov, J. High Energy
Phys. 05 (2019) 125.

[77] F. Rein, S. Rodini, A. Schäfer, and A. Vladimirov, J. High
Energy Phys. 01 (2023) 116.

[78] J.-W. Qiu, T. C. Rogers, and B. Wang, Phys. Rev. D 101,
116017 (2020).

[79] D. Boer, L. Gamberg, B. Musch, and A. Prokudin, J. High
Energy Phys. 10 (2011) 021.

[80] A. Vladimirov, J. High Energy Phys. 10 (2019) 090.
[81] A. A. Vladimirov, Phys. Rev. Lett. 125, 192002 (2020).
[82] A. Bermudez Martinez and A. Vladimirov, Phys. Rev. D

106, L091501 (2022).
[83] H.-T. Shu, M. Schlemmer, T. Sizmann, A. Vladimirov, L.

Walter, M. Engelhardt, A. Schäfer, and Y.-B. Yang, Phys.
Rev. D 108, 074519 (2023).

[84] A. Avkhadiev, P. E. Shanahan, M. L. Wagman, and Y.
Zhao, Phys. Rev. D 108, 114505 (2023).

[85] F. Hautmann, I. Scimemi, and A. Vladimirov, Phys. Lett. B
806, 135478 (2020).

[86] M. Bury, F. Hautmann, S. Leal-Gomez, I. Scimemi, A.
Vladimirov, and P. Zurita, J. High Energy Phys. 10 (2022)
118.

[87] M. Horstmann, A. Schafer, and A. Vladimirov, Phys. Rev.
D 107, 034016 (2023).

[88] A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, J. High
Energy Phys. 08 (2008) 023.

[89] G. ’t Hooft, Nucl. Phys. B61, 455 (1973).
[90] W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta,

Phys. Rev. D 18, 3998 (1978).
[91] N. V. Slonovskii, Izvestiia vysshikh uchebnykh zavedenii

Matematika / Ministerstvo vysshego obrazovaniia SSSR
72, 86 (1968).

[92] R. Wong, Comput. Math. Appl. 3, 271 (1977).
[93] R. F. MacKinnon, Math. Comput. 26, 515 (1972).
[94] G. P. Korchemsky and G. Marchesini, Nucl. Phys. B406,

225 (1993).
[95] A. Idilbi, X.-d. Ji, and F. Yuan, Nucl. Phys. B753, 42

(2006).

[96] S. Bailey, T. Cridge, L. A. Harland-Lang, A. D. Martin,
and R. S. Thorne, Eur. Phys. J. C 81, 341 (2021).

[97] V. Bertone, A. Chiefa, and E. R. Nocera (MAP Collabo-
ration), arXiv:2404.04712.

[98] C. Cocuzza, A. Metz, D. Pitonyak, A. Prokudin, N. Sato,
and R. Seidl (Jefferson Lab Angular Momentum (JAM)
Collaboration), Phys. Rev. D 109, 034024 (2024).

[99] M. Burkardt, Phys. Rev. D 69, 091501 (2004).
[100] S. Meissner, A. Metz, and K. Goeke, Phys. Rev. D 76,

034002 (2007).
[101] X. Ji, J.-W. Qiu, W. Vogelsang, and F. Yuan, Phys. Rev.

Lett. 97, 082002 (2006).
[102] X. Ji, J.-w. Qiu, W. Vogelsang, and F. Yuan, Phys. Rev. D

73, 094017 (2006).
[103] I. Scimemi and A. Vladimirov, Eur. Phys. J. C 78, 802

(2018).
[104] V. M. Braun, Y. Ji, and A. Vladimirov, J. High Energy

Phys. 05 (2021) 086.
[105] V. M. Braun, Y. Ji, and A. Vladimirov, J. High Energy

Phys. 10 (2021) 087.
[106] Z.-B. Kang, B.-W. Xiao, and F. Yuan, Phys. Rev. Lett. 107,

152002 (2011).
[107] P. Sun and F. Yuan, Phys. Rev. D 88, 114012 (2013).
[108] L.-Y. Dai, Z.-B. Kang, A. Prokudin, and I. Vitev, Phys.

Rev. D 92, 114024 (2015).
[109] B. U. Musch, P. Hagler, M. Engelhardt, J. W. Negele, and

A. Schafer, Phys. Rev. D 85, 094510 (2012).
[110] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, S.

Melis, F. Murgia, A. Prokudin, and C. Turk, Eur. Phys. J. A
39, 89 (2009).

[111] K. Goeke, S. Meissner, A. Metz, and M. Schlegel, Phys.
Lett. B 637, 241 (2006).

[112] A. Courtoy, S. Scopetta, and V. Vento, Phys. Rev. D 79,
074001 (2009).

[113] J. Zhou, Phys. Rev. D 92, 074016 (2015).
[114] M. Beneke, Phys. Rep. 317, 1 (1999).
[115] V. M. Braun, E. Gardi, and S. Gottwald, Nucl. Phys. B685,

171 (2004).
[116] P. Schweitzer, M. Strikman, and C. Weiss, J. High Energy

Phys. 01 (2013) 163.
[117] P. C. Barry, L. Gamberg, W. Melnitchouk, E. Moffat, D.

Pitonyak, A. Prokudin, and N. Sato (Jefferson Lab Angular
Momentum (JAM) Collaboration), Phys. Rev. D 108,
L091504 (2023).

[118] F. Hautmann and H. Jung, Nucl. Phys. B883, 1 (2014).
[119] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F.

Murgia, and A. Prokudin, Phys. Rev. D 72, 094007 (2005);
72, 099903(E) (2005).

[120] A. Bacchetta, F. Delcarro, C. Pisano, M. Radici, and A.
Signori, J. High Energy Phys. 06 (2017) 081.

[121] O. del Rio, A. Prokudin, I. Scimemi, and A. Vladimirov,
https://github.com/prokudin/TMMs.

[122] M.-X. Luo, T.-Z. Yang, H. X. Zhu, and Y. J. Zhu, J. High
Energy Phys. 01 (2020) 040.

[123] M. G. Echevarria, I. Scimemi, and A. Vladimirov, Phys.
Rev. D 93, 054004 (2016).

[124] Y. Li and H. X. Zhu, Phys. Rev. Lett. 118, 022004 (2017).
[125] A. A. Vladimirov, Phys. Rev. Lett. 118, 062001 (2017).
[126] A. Vladimirov, J. High Energy Phys. 04 (2018) 045.

DEL RIO, PROKUDIN, SCIMEMI, and VLADIMIROV PHYS. REV. D 110, 016003 (2024)

016003-24

https://doi.org/10.1007/JHEP06(2022)007
https://doi.org/10.1007/JHEP06(2022)007
https://doi.org/10.1007/JHEP07(2023)096
https://doi.org/10.1007/JHEP01(2022)110
https://doi.org/10.1007/JHEP01(2022)110
https://doi.org/10.1103/PhysRevD.83.114042
https://doi.org/10.1103/PhysRevD.83.114042
https://doi.org/10.1016/j.nuclphysb.2013.07.013
https://doi.org/10.1016/j.nuclphysb.2013.07.013
https://doi.org/10.1103/PhysRevD.93.011502
https://doi.org/10.1103/PhysRevD.93.011502
https://doi.org/10.1103/PhysRevD.94.099904
https://doi.org/10.1007/JHEP09(2016)004
https://doi.org/10.1007/JHEP09(2016)004
https://doi.org/10.1016/j.physletb.2017.03.031
https://doi.org/10.1007/JHEP07(2018)172
https://doi.org/10.1007/JHEP07(2018)172
https://doi.org/10.1007/JHEP11(2019)121
https://doi.org/10.1103/PhysRevLett.124.092001
https://doi.org/10.1103/PhysRevLett.124.092001
https://doi.org/10.1007/JHEP10(2019)083
https://doi.org/10.1007/JHEP05(2019)125
https://doi.org/10.1007/JHEP05(2019)125
https://doi.org/10.1007/JHEP01(2023)116
https://doi.org/10.1007/JHEP01(2023)116
https://doi.org/10.1103/PhysRevD.101.116017
https://doi.org/10.1103/PhysRevD.101.116017
https://doi.org/10.1007/JHEP10(2011)021
https://doi.org/10.1007/JHEP10(2011)021
https://doi.org/10.1007/JHEP10(2019)090
https://doi.org/10.1103/PhysRevLett.125.192002
https://doi.org/10.1103/PhysRevD.106.L091501
https://doi.org/10.1103/PhysRevD.106.L091501
https://doi.org/10.1103/PhysRevD.108.074519
https://doi.org/10.1103/PhysRevD.108.074519
https://doi.org/10.1103/PhysRevD.108.114505
https://doi.org/10.1016/j.physletb.2020.135478
https://doi.org/10.1016/j.physletb.2020.135478
https://doi.org/10.1007/JHEP10(2022)118
https://doi.org/10.1007/JHEP10(2022)118
https://doi.org/10.1103/PhysRevD.107.034016
https://doi.org/10.1103/PhysRevD.107.034016
https://doi.org/10.1088/1126-6708/2008/08/023
https://doi.org/10.1088/1126-6708/2008/08/023
https://doi.org/10.1016/0550-3213(73)90376-3
https://doi.org/10.1103/PhysRevD.18.3998
https://doi.org/10.1016/0898-1221(77)90084-0
https://doi.org/10.1090/S0025-5718-1972-0308695-9
https://doi.org/10.1016/0550-3213(93)90167-N
https://doi.org/10.1016/0550-3213(93)90167-N
https://doi.org/10.1016/j.nuclphysb.2006.07.002
https://doi.org/10.1016/j.nuclphysb.2006.07.002
https://doi.org/10.1140/epjc/s10052-021-09057-0
https://arXiv.org/abs/2404.04712
https://doi.org/10.1103/PhysRevD.109.034024
https://doi.org/10.1103/PhysRevD.69.091501
https://doi.org/10.1103/PhysRevD.76.034002
https://doi.org/10.1103/PhysRevD.76.034002
https://doi.org/10.1103/PhysRevLett.97.082002
https://doi.org/10.1103/PhysRevLett.97.082002
https://doi.org/10.1103/PhysRevD.73.094017
https://doi.org/10.1103/PhysRevD.73.094017
https://doi.org/10.1140/epjc/s10052-018-6263-5
https://doi.org/10.1140/epjc/s10052-018-6263-5
https://doi.org/10.1007/JHEP05(2021)086
https://doi.org/10.1007/JHEP05(2021)086
https://doi.org/10.1007/JHEP10(2021)087
https://doi.org/10.1007/JHEP10(2021)087
https://doi.org/10.1103/PhysRevLett.107.152002
https://doi.org/10.1103/PhysRevLett.107.152002
https://doi.org/10.1103/PhysRevD.88.114012
https://doi.org/10.1103/PhysRevD.92.114024
https://doi.org/10.1103/PhysRevD.92.114024
https://doi.org/10.1103/PhysRevD.85.094510
https://doi.org/10.1140/epja/i2008-10697-y
https://doi.org/10.1140/epja/i2008-10697-y
https://doi.org/10.1016/j.physletb.2006.05.004
https://doi.org/10.1016/j.physletb.2006.05.004
https://doi.org/10.1103/PhysRevD.79.074001
https://doi.org/10.1103/PhysRevD.79.074001
https://doi.org/10.1103/PhysRevD.92.074016
https://doi.org/10.1016/S0370-1573(98)00130-6
https://doi.org/10.1016/j.nuclphysb.2004.02.030
https://doi.org/10.1016/j.nuclphysb.2004.02.030
https://doi.org/10.1007/JHEP01(2013)163
https://doi.org/10.1007/JHEP01(2013)163
https://doi.org/10.1103/PhysRevD.108.L091504
https://doi.org/10.1103/PhysRevD.108.L091504
https://doi.org/10.1016/j.nuclphysb.2014.03.014
https://doi.org/10.1103/PhysRevD.72.094007
https://doi.org/10.1103/PhysRevD.72.099903
https://doi.org/10.1007/JHEP06(2017)081
https://github.com/prokudin/TMMs
https://github.com/prokudin/TMMs
https://doi.org/10.1007/JHEP01(2020)040
https://doi.org/10.1007/JHEP01(2020)040
https://doi.org/10.1103/PhysRevD.93.054004
https://doi.org/10.1103/PhysRevD.93.054004
https://doi.org/10.1103/PhysRevLett.118.022004
https://doi.org/10.1103/PhysRevLett.118.062001
https://doi.org/10.1007/JHEP04(2018)045

