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The gravitational positivity bound gives quantitative “swampland” constraints on low-energy effective
theories inside theories of quantum gravity. We give a comprehensive discussion of this bound for those
interested in applications to phenomenological model building. We present a practical recipe for deriving
the bound, and discuss subtleties relevant for realistic models. As an illustration, we study the positivity
bound on the scattering of the massive gauge bosons in the Higgs/Stückelberg mechanism. Under certain
assumptions on gravitational amplitudes at high energy, we obtain a lower boundmV ≳ Λ2

UV=gMPl on the
gauge boson massmV , where g is the coupling constant of the gauge field,MPl is the reduced Planck mass
and ΛUV is the ultraviolet cutoff of the effective field theory. This bound can strongly constrain
new physics models involving a massive gauge boson. We also discuss how the bound depends on our
high-energy assumptions.
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I. INTRODUCTION

It is one of the outstanding questions in present-day
physics to uncover the origin and the identity of the dark
matter (DM). More broadly we are interested in the search
for the dark sector containing DM, or any physics beyond
the Standard Model (BSM).
Traditionally, dark sectors have been analyzed in the

framework of low-energy effective field theories (EFTs),
where the effects of the dark sector have been incorporated
by small couplings of the dark sector to particles of the
Standard Model (SM). It is often the case that such
couplings are severely constrained by experiments/obser-
vations, leading to very small (absolute) values of param-
eters. While certain fine-tunings are needed, the dominant
attitude has been that such small parameters are well-
tolerated in the EFTs, as long as such small parameters

are technically natural [1]. This raises a fundamental
problem for dark-sector searches; while we can keep
eliminating parameter spaces for dark-sector-SM couplings,
there is in principle no lower bound on their size, and it
seems that we can never exclude a “nightmare” scenario
where the dark sector interacts with the SM sector only
through gravitational interactions.
The situation is different, however, once we impose an

extra condition that the IR low-energy EFT has a consistent
UV completion with gravity. There has been mounting
evidence recently that there are necessary conditions for a
low-energy EFT to have a consistent UV completion, and
such conditions are often called swampland constraints in
the literature [2,3]. One way to obtain such constraints is to
invoke the so-called positivity constraints on scattering
amplitudes at low energy. The positivity constraints are
well-established in nongravitational theories and their
application to the EFT of the Standard Model and cosmol-
ogy has long been discussed; see [4–7] for early references
on QCD. For more recent developments, see e.g., [8], a
review article [9] and references therein. The advantage of
this method is that we can derive an infinite set of
inequalities on the EFT couplings by minimal assumptions
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on the scattering amplitudes such as unitarity, analyticity,
and locality, without relying too much on the details of the
UV completion.
It is challenging to derive positivity bounds in the

presence of gravity because scattering amplitudes of quan-
tum gravity are less understood in general. If one can derive
such bounds, however, the bounds will be understood as the
swampland conditions on a given EFT. There are various
attempts to formulate positivity bounds in the presence of
gravity; see e.g., [10–23].
In this paper, we discuss a particular version of

positivity bounds with gravitational effects included [14].
Interestingly, the effect of gravity modifies the positivity
bound, and in some cases strengthens it. While the effects of
gravity are suppressed by the powers of the Planck scale,
gravity can still change the conclusions dramatically since
we are interested in small couplings in dark sectors. Indeed,
it has been known that if the gravitational positivity bound is
applied to the matter-matter scatterings at loop level in
D ¼ 4 dimensions, we obtain nontrivial constrains on the
spectrum and renormalizable couplings of light particles
well below the Planck scale [16,24–29].
The gravitational positivity bound sometimes gives a

lower bound on the size of the dark sector couplings. When

combined with upper bounds from observations, one can
then in principle exclude some dark sector models. The
gravitational positivity bound relies on some assumptions
of the UV theory and hence can be violated in observations.
This, however, inevitably implies a violation of some well-
defined assumptions of the UV theories, and hence we can
derive sharp constraints of UV physics from the experi-
ments of IR physics.
It is an interesting question to systematically apply the

gravitational positivity bounds to various BSMmodels. It is
fair to say, however, that a systematic application of
gravitational positivity bounds for BSM physics remains
mostly unexplored. Moreover, there are important unsolved
problems whose solutions are required for such analysis, as
we will see below.
The goal of this paper is to make the gravitational

positivity bound more accessible to a broader audience of
phenomenologists interested in BSM physics. In Fig. 1, we
show the procedures to obtain the gravitational positivity
bound for scalar fields. For this purpose, we list a concrete
recipe for deriving gravitational positivity bounds for a
given EFT, and list some fine prints in such discussions. We
next illustrate the power and limitations of the bounds in the
concrete example of a massive dark U(1) gauge boson (dark

FIG. 1. Workflow to get the gravitational positivity bound (scalar case).
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photon). We will find that the resulting bound is impres-
sively strong, however, for applications for realistic models,
there are some theoretical subtleties that need to be
addressed.
The rest of this paper is organized as follows. In Sec. II

we summarize the gravitational positivity bound for non-
experts. In Sec. III we present a practical recipe for deriving
the gravitational positivity bound. As a concrete illustration
of our procedure, we write down the gravitational positivity
bound for a massive U(1) gauge boson in Sec. IV. We will
find that the resulting bound is very strong and rules out
many parameter spaces. One should note, however, that
there are important subtleties for realistic model building,
as we will discuss further in Sec. V. The final section
(Sec. VI) is devoted to conclusions and discussions. We
included an Appendix for gravitational contributions
beyond graviton t-channel exchange.

II. GRVITATIONAL POSITIVITY BOUNDS

In this section we summarize the gravitational positivity
bounds of [14]. To make the presentation friendly to
nonexperts, we outline the basic assumptions, definitions
of quantities to be computed, bounds, and their interpre-
tations, and leave their derivations to original references.
We begin with the nongravitational case and then include
gravity. We will close with some remarks needed for
applications to realistic phenomenological model building.

A. Positivity bounds without gravity

Positivity bounds are formulated in terms of scattering
amplitudes. For technical simplicity, this subsection
focuses on scalar scattering amplitudes in gapped theories.

1. Assumptions

Consider an s-u symmetric scattering amplitudeMðs; tÞ
of AB → AB type in a given low-energy EFT, where s, t, u
are the standard Mandelstam variables that satisfy
sþ tþ u ¼ 2ðm2

A þm2
BÞ, and mA and mB are the masses

of the external particles A and B, respectively. We assume
that the forward amplitude Mðs; t ¼ 0Þ evaluated in the
would-be UV complete theory satisfies the following
properties:
(1) Analyticity: The amplitude Mðs; t ¼ 0Þ is analytic

on the physical sheet1 of the complex s-plane except
for poles and discontinuities on the real axis required
by unitarity.

(2) Unitarity: The imaginary part is non-negative,
i.e., ImMðs; t ¼ 0Þ ≥ 0.

(3) s2-boundedness: The amplitude is bounded by s2 at
high energy, i.e., limjsj→∞Mðs; 0Þ=s2 ¼ 0. This
third condition is guaranteed in local quantum field

theories thanks to the Froissart bound [30,31] and
the Phragmén-Lindelöf theorem.

2. Positivity bounds

The aforementioned three properties imply an infinite set
of consistency relations among scattering amplitudes
evaluated at the UV and IR. Let us define

a2n ≔
�
∂
2nMðs; t ¼ 0Þ

∂s2n

�
s¼m2

Aþm2
B

ðn ¼ 1; 2;…Þ: ð2:1Þ

Then, the following dispersion relation holds from the
analyticity and s2-boundedness of the amplitude:

a2n ¼
2 · ð2nÞ!

π

Z
∞

m2
th

ds
ImMðs; t¼ 0Þ

ðs−m2
A −m2

BÞ2nþ1
ðn¼ 1;2;…Þ;

ð2:2Þ

where mth is the threshold energy, i.e., the mass of the
lightest intermediate state. Note that the relation for n ¼ 0
does not follow under the present assumptions, which
requires a stronger assumption that the amplitude is
bounded by s0 at high energy.
The EFT is defined with a UV cutoff which we denote by

ΛUV. The actual cutoff of the EFT, namely the scale of new
physics, is unknown from the low-energy perspective. We
thus introduce a reference scale Λ below which the EFT is
assumed to be valid, i.e., Λ is assumed to satisfy Λ < ΛUV.
Let us define2 [35–37]

B2nðΛÞ ≔ a2n −
2 · ð2nÞ!

π

Z
Λ2

m2
th

ds
ImMðs; t ¼ 0Þ

ðs −m2
A −m2

BÞ2nþ1

ðn ¼ 1; 2;…Þ: ð2:3Þ

We emphasize that B2nðΛÞ is defined in terms of the
amplitude at the IR scale below Λ, and therefore it is
calculable within the EFT. Then, the dispersion relation
(2.2) implies

B2nðΛÞ ¼
2 · ð2nÞ!

π

Z
∞

Λ2

ds
ImMðs; t ¼ 0Þ

ðs −m2
A −m2

BÞ2nþ1

ðn ¼ 1; 2;…Þ; ð2:4Þ

which provides a consistency relation between the IR
physics below Λ (lhs) and the UV physics above Λ

1There are in general unstable resonances, whose associated
poles are however located in other sheets in the complex s-plane.

2In general, we can have m2
th < m2

A þm2
B and branch cuts can

run on the entire real s-axis. The definitions (2.1) and (2.3) may
become ill-defined. In such a case, B2nðΛÞ should be defined
through the “arcs” of [32,33] (see also [34]). B2nðΛÞ defined in
this way agree with (2.3) [or (2.7)] when branch cuts do not run
on the entire real s-axis, according to the Cauchy integral
theorem.
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(rhs). Furthermore, unitarity implies that the rhs is non-
negative, so that

B2nðΛÞ ≥ 0 for all Λ such that Λ< ΛUV ðn¼ 1;2;…Þ:
ð2:5Þ

These bounds are called the positivity bounds. Note that
B2nðΛÞ is a monotonically nonincreasing function of Λ
because the integrand in (2.3) is positive. The typical
behavior is shown in Fig. 2. When the bounds (2.5) are
satisfied at a certain scale, they also hold at any scale below
it. The positivity bound (2.5) is thus stronger for larger Λ.

3. Interpretations

In a given EFT, one can compute the forward amplitude
and evaluate B2nðΛÞ defined in Eq. (2.3) in terms of
parameters of the EFT and a scale Λ. The positivity
bounds (2.5) then provide certain inequalities among the
EFT couplings and Λ, leading to two complementary
interpretations:
(1) Bounds on EFT couplings.

Suppose that the low-energy EFT describes a
system below an energy scale E. We can then
identify Λ with the energy scale of interest E to
find the bounds on the EFT couplings. These are the
necessary conditions for the EFT to have a standard
UV completion and be valid below the scale E ¼ Λ.
(In here we are agnostic on the value of the cutoff
scale ΛUV.)

(2) Bounds on the UV cutoff.
In some cases, one may want to assume certain

values of the EFT couplings—for example, coupling
constants are already fixed by experiments or they
need to take certain values for phenomenological
purposes (e.g., so that they can be searched in a

particular experiment). One can then ask up to which
scale the EFT can be valid, i.e., at which scale the
new physics comes in. As shown in Fig. 2, B2nðΛÞ
may become negative at some energy scale Λ�, in
which case we can derive an upper bound ΛUV < Λ�
on the UV cutoff of the EFT.

The condition (2.5) is based on the assumptions on UV,
but care must be taken to ensure because we do not know
the UV theory. If a violation of the inequality (2.5) is
observed in the experiment, it may indicate a violation of
the original assumptions. In this sense, we can also use the
positivity bounds (2.5) to probe UV from IR.

B. Positivity bounds with gravity

We next explain how the positivity bounds are extended
to theories with gravity. The main new ingredient is that the
t-channel graviton exchange contributes a new singularity
to the low-energy scattering amplitudes as ∼ − s2=ðM2

PltÞ
(MPl ≃ 2.4 × 1018 GeV being the reduced Planck mass),
invalidating the definition (2.1) of a2 and hence the
positivity argument for B2ðΛÞ.3 In this subsection, we
summarize how the positivity bounds are formulated in
the presence of gravity.

1. Assumptions

The basic assumptions are the same as before,
namely analyticity, unitarity, and the s2-boundedness
limjsj→∞jMðs; tÞ=s2j ¼ 0 for small negative t.
While the argument below can be applied to any UV

complete theory with these three properties, a typical
candidate of such a UV completion is a perturbative string
theory with a particle spectrum as shown in Fig. 3.

FIG. 2. The expression (2.3) of B2nðΛÞ is a monotonically nonincreasing function as a function of Λ, and crosses zero at the scale
Λ ¼ Λ�. For a well-defined UV completion, we need B2nðΛÞ ≥ 0, which defines an upper bound Λ� on the scale Λ.

3Note that the positivity argument for B2n (n ¼ 2; 3;…) is
unchanged. In the following, we focus on B2.
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2. Gravitational positivity bounds

We define a2 by subtracting the graviton t-pole from the
amplitude and taking the forward limit as4

a2 ≔ lim
t→−0

�
∂
2Mðs; tÞ
∂s2

þ 2

M2
Plt

�
s¼m2

Aþm2
B

: ð2:6Þ

With a2 defined in this manner, we introduce

BðΛÞ ≔ a2 −
4

π

Z
Λ2

m2
th

ds
ImMðs; t ¼ 0Þ
ðs −m2

A −m2
BÞ3

: ð2:7Þ

Here and in what follows we suppress the subscript 2 of
B2ðΛÞ for notational simplicity. The dispersion relation
(2.4) is then modified as

BðΛÞ ¼ lim
t→−0

"
2

M2
Plt

þ 4

π

Z
∞

Λ2

ds
ImMðs; tÞ�

sþ t
2
−m2

A −m2
B

�
3

#
:

ð2:8Þ

Due to the first term in the square bracket (which is
negative for t < 0), the sign of BðΛÞ is undetermined.
However, one can show that the positivity of BðΛÞ holds at
least approximately. The idea is that we split the integral of
the dispersion relation into the quantum gravity part and the
other,

BðΛÞ ¼ 4

π

Z
Λ2
QG

Λ2

ds
ImMðs;0Þ

ðs−m2
A −m2

BÞ3

þ lim
t→−0

�
2

M2
Plt

þ 4

π

Z
∞

Λ2
QG

ds
ImMðs; tÞ

ðsþ t
2
−m2

A −m2
BÞ3

�
:

ð2:9Þ

When we take the forward limit t → −0, the lhs of (2.9) is
finite because it is defined by subtracting the t-pole term.
Then, although the t-pole term in the rhs diverges in the
forward limit t → −0, the sum in the square bracket should
be finite as a result of a cancellation with the quantum
gravity part,

lim
t→−0

�
2

M2
Plt

þ 4

π

Z
∞

Λ2
QG

ds
ImMðs; tÞ

ðsþ t
2
−m2

A −m2
BÞ3

�
≕

σ

M2
PlM

2
ðσ ¼ 0;�1Þ; ð2:10Þ

where we defined the sign σ and the mass scale M, which
depend on details of the cancellation mechanism. (The case
σ ¼ 0 corresponds to the exact cancellation.) As a result,
we find

BðΛÞ ≥ σ

M2
PlM

2
for all Λ s:t: Λ < ΛUV < ΛQG; ð2:11Þ

which we call the gravitational positivity bound.
The right-hand side of (2.11) is suppressed by powers of

MPl, and hence disappears in the decoupling limit
MPl → ∞, where the gravitational positivity bound reduces
to the positivity bound without gravity.
While the derivation here works irrespective of the

details of the cancellation mechanism, the most plausible
scenario is the Regge behavior5: the gravitational ampli-
tude is modified as ImM ∼ s2þα0tþ��� with α0 ∼ Λ−2

QG by an
infinite tower of higher-spin states at s ≥ Λ2

QG (see Fig. 3).
The perturbative string theory is a typical example of this
scenario in which the quantum gravity scale ΛQG corre-
sponds to the string scale. The cancellation of the t-pole
can be explicitly shown under the assumption of Regge
behavior [14].

3. Interpretations

In contrast to the nongravitational positivity bound
(2.5), the gravitational positivity bound (2.11) contains

FIG. 3. Typical scenario; a UV completion of gravity is achieved well below the Planck scale by an infinite tower of higher-spin states
(Regge tower). There may also exist new UV states beyond the EFT that are described within QFT model building and that are not
directly related to the UV completion of gravity.

4For simplicity, we focus on the amplitude up to OðM−2
Pl Þ and

only subtract the graviton t-pole as a divergent term in the
forward limit t → −0 in the definition of a2. See [15,20] for
arguments with the OðM−4

Pl Þ terms.

5See also [38,39] for connections between Reggeization and
causality.
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not only the IR data BðΛÞ determined by the EFT
parameters up to the scale Λ, but also the UV data
ðM; σÞ of gravitational Regge amplitudes (or, generically
speaking, quantum gravity amplitudes). Therefore, there
are three possible interpretations, depending on the context
[16,17,27–29]:
(1) Quantum gravity constraints on IR physics.

If we specify/assume a quantum gravity scenario
and the parameters ðσ;MÞ of gravitational Regge
amplitudes, we can think of the bounds (2.11) as
quantum gravity constraints on the low-energy EFT
at a scaleΛ ¼ E. Such constraints are useful to carve
out the parameter space of phenomenological mod-
els in the spirit of the swampland program.6

(2) Constraints on the scale of new physics.
As in the nongravitational case, we can interpret

(2.11) as the bounds giving the maximum cutoff Λ�
when we assume the parameters of the EFT and the
UV data ðσ;MÞ. When the bounds (2.11) are
violated, one can try to increase the cutoff of
the EFT by adding new state(s) to EFT like Fig. 2.
If the bounds (2.11) are inevitably violated at
Λ > Λ�, this is a sign of the necessity for a UV
completion of gravity. In this case, Λ� is not a
maximum scale of just new physics, but the upper
bound on the quantum gravity scale ΛQG.

(3) IR constraints on quantum gravity.
Once the parameters and the validity of the model

are identified by experiments at a scale Λ ¼ E, we
can use the bounds (2.11) to constrain the param-
eters ðσ;MÞ of the gravitational Regge amplitudes
required for UV completion of gravity. Such con-
straints are useful as a necessary condition for a
quantum gravity theory to describe our real world.

As we mentioned in Sec. II A, the violation of original
assumptions on UV theory leads to the violation of (2.11).
Differently from the nongravitational case, however, exper-
imental tests of the violation of (2.11) require knowledge of
the UV data ðM; σÞ.

4. Comments on ðM;σÞ
As we explain more explicitly later, nontrivial con-

straints on the IR physics are obtained in the spirit of
Interpretation 1 when Bgrav − σ=ðM2

PlM
2Þ < 0. Here, Bgrav

is the gravitational part of B which will be defined in
the next section. This condition is satisfied either when
σ ¼ 0;þ1 or when M is sufficiently large, typically M ≫
mlight withmlight being the mass scale of light particles. This
shows that details of the UV data ðM; σÞ are important in
discussing phenomenological implications of the gravita-
tional positivity [29].

Notably, recent studies proceed in the direction to carve
out the parameter space of ðM; σÞ itself and sharpen the
gravitational positivity bound (2.11). For scattering of
identical scalars, the best bound obtained so far is sche-
matically of the form [18,22]7 (see also [21,23]),

BðΛÞ ≥ −Oð1Þ
M2

Plm
2
; ð2:12Þ

wherem denotes the threshold energy, i.e., the energy of the
lightest intermediate state. For tree-level amplitudes, this
scale is essentially the mass of the lightest higher-spin
particle (spin 2 or higher). For loop amplitudes, this
corresponds to the lowest energy of the intermediate multi-
particle states. Note that this bound is a necessary condition
for the effective theory to have a standard UV completion,
rather than a sufficient condition. Therefore, it is still a
nontrivial question if there exists a consistent quantum
gravity theory that accommodates a negative BðΛÞ,8 more
specifically that with σ ¼ −1 and M ∼mlight. Further
studies in this direction are encouraged for phenomeno-
logical applications of the gravitational positivity.

C. Generalizations for realistic theories

When one tries to apply the gravitational positivity
bounds (2.5) to realistic phenomenological models, the
basic idea is the same as in the case of scalar scatterings of
the previous subsection. However, one encounters several
new subtleties to be carefully addressed, which we list in
the following.

1. Spin

The positivity bound can be extended to a scattering of
particles with spin, see [35,40].9 There are extra technical
complications, however, and here we highlight the issue of

6See [10,16,24,25] for possible connections between positivity
and the swampland conjecture.

7There are two complementary approaches to this problem
depending on how to treat the graviton t-channel pole. First, the
one initiated in [18] works in finite impact parameter to make the
graviton contribution finite. While it gives a universal bound that
does not rely on details of UV completion, the obtained bound is
trivialized in spacetime four dimensions due to a logarithmic IR
divergence. On the other hand, the one proposed in [22] uses the
sum rule of gravitational Regge amplitudes to give a bound on the
parameter space ðM; σÞ. While this approach assumes Reggeiza-
tion of gravitational amplitudes, it is applicable even in spacetime
four dimensions.

8To our best knowledge, there is no known tree-level string
amplitude that accommodates σ ¼ −1, even though σ ¼ −1 is
not prohibited by the consistency of scalar scattering alone. It
would be interesting to clarify in what class of quantum gravity
theories (if they exist) σ ¼ −1 can be realized.

9For this purpose, it is useful to diagonalize the crossing
relation using the transversity formalism of [41]. For the use of
this formalism in the context of positivity bounds, see [40].
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the kinematic singularity, which is relevant for our dis-
cussion of gauge bosons in Sec. III.
Let us consider two-to-two scattering amplitudes of

massive spin-1 particles with mass mV . The kinematic
singularity is the singularity of the scattering amplitude M
from the pole s ¼ 4m2

V of the scattering angle θ as in

cos θ ¼ 1þ 2t
s − 4m2

V
: ð2:13Þ

The kinematic singularity disappears in the forward
limit t → 0 if the scattering amplitude does not contain
the massless t-pole. However, in our setup, the kinematic
singularity appears from t-channel graviton exchange
diagrams. We can deal with this singularity by defining
a kinematic singularity-free amplitude to be [40] (see
also [42,43])10

fMðs; tÞ ≔ s2ðs − 4m2
VÞ2Mðs; tÞ: ð2:14Þ

We can then derive the positivity bound by essentially the
same arguments, as long as we replace the amplitude M
by fM. In practice, this is the same as ignoring the
contribution of kinematic singularity to the t-channel
graviton exchange diagrams.

2. Massless particles

The general properties of the scattering amplitudes have
been established only in gapped systems, and not when
massless particles are present. Even worse, the traditional
nonperturbative S-matrix does not exist for massless
particles, due to the issue of the IR divergence. To avoid
this IR issue, we estimate the contributions from IR
divergent diagrams to the positivity bounds by introducing
an IR cutoff in the Appendix. We find that they will be
subdominant, and hence we expect that the subtleties
associated with the IR divergence will not affect our main
conclusion. However, this may not be the case in other
models, in which case an appropriate prescription for
massless particles is required to derive the bounds.

3. Unstable particles

If a particle has a decay channel, such an unstable particle
does not appear in the asymptotic states and the standard
scattering amplitudes cease to exist for the particle [44].
However, unstable-particle scattering amplitudes can be
unambiguously defined by residues of higher-point ampli-
tudes (see e.g. [45]) and their properties can be studied in the
S-matrix theory.11 Unitarity of the S-matrix leads to certain

constraints on the unstable-particle scattering amplitudes,
and in particular, there exists a positivity constraint on the
imaginary part [46], suggesting the existence of positivity
bounds even from scattering of unstable particles. In the
present paper, however, we will only focus on the scattering
of stable particles and leave a precise treatment of unstable
particles for a future study.

4. Anomalous threshold singularities

Even for stable particles, the analytic structure of a
scattering of a heavier particle is not as simple as that of a
lighter particle. It is known that the scattering of the heavier
particle can have a new singularity called an anomalous
threshold, whose existence does not immediately follow
from unitarity. While general knowledge of anomalous
threshold is still missing to the best of our knowledge
(see [47,48] for recent discussions), we expect that the
anomalous thresholds appear only in the IR regime, i.e.,
they are detectable and controlled within EFT at least when
the heavy particle is stable. If this is indeed the case, the
anomalous thresholds will give additional technical com-
plications but will not spoil the success of positivity
bounds, as long as these thresholds are taken into account
in the derivation of the dispersion relations.

III. PRACTICAL RECIPE
FOR GRAVITATIONAL POSITIVITY

We are now ready to discuss practical recipes for
deriving gravitational positivity bounds for EFTs. Instead
of making the presentation fully general, we focus on the
case of 2 → 2 scattering VV → VV of spin-1 particle V
with mass mV . This will be the case relevant for the rest of
this paper.
The gravitational positivity bound is an inequality for the

quantity BðΛÞ. When we wish to apply the gravitational
positivity bound of the previous section, we run into one
practical problem; we can almost never compute an exact
scattering amplitudeMðs; tÞ in an EFT. In fact, if we know
the exact expression for Mðs; tÞ, we can analytically
continue the expression to the whole complex plane, and
we have effectively solved for the quantum gravity already.
The best we can do is to compute an approximate
expression MEFTðs; tÞ for Mðs; tÞ, by including only a
finite number of parameters out of an infinite number of
higher-dimensional operators. The differences between the
two are small in the regions of the validity of EFT (at scales
Λ ≪ ΛUV). Hence, the computation of the approximate
amplitude MEFT is sufficient for evaluating the quantity
BðΛÞ which only requires information below Λ. In the
following, we will discuss EFT scattering amplitudeMEFT
and explain a practical way to calculate BðΛÞ from the EFT
amplitude MEFT; for notational simplicity we will simply
denote this approximate amplitude as M in the rest of
this section.

10Although the s2 factor is not necessary to cancel the
kinematic singularity, it simplifies the subsequent expressions
by retaining s ↔ u crossing symmetry in t → 0 limit.

11There are still IR divergences, which need to be addressed
separately.
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We consider the scattering amplitude of the gauge
bosons VV → VV. Corresponding to polarizations of the
gauge boson, we define the following combinations of
helicity amplitudes. For the scattering of transverse modes,

MTTðs; tÞ ≔
1

4
½Mð1þ2þ3þ4þÞ þMð1þ2−3þ4−Þ

þMð1−2−3−4−Þ þMð1−2þ3−4þÞ�; ð3:1Þ

where superscripts� denote helicities. For the scattering of
the transverse mode and the longitudinal mode,

MTLðs; tÞ ≔
1

2
½Mð1þ2L3þ4LÞ þMð1−2L3−4LÞ�; ð3:2Þ

where superscripts L denote longitudinal polarizations. For
the scattering of longitudinal modes,

MLLðs; tÞ ≔ Mð1L2L3L4LÞ: ð3:3Þ

These amplitudes are defined such that they exhibit s ↔ u
symmetry [up to subtleties associated with the kinematical
singularity discussed around (2.14)], which are not relevant
to the following discussion.
We provide a step-by-step procedure for deriving the

gravitational positivity bound. The basic task is simple; we
need to evaluate the cutoff-dependent quantity BðΛÞ
defined by a spin-1 generalization of (2.8),

BðΛÞ ≔ a2 −
4

π

Z
Λ2

m2
th

ds
Im fMðs; t ¼ 0Þ
ðs − 2m2

VÞ7
; ð3:4Þ

where fM is a kinematic singularity-free amplitude defined
in (2.14), mth is the threshold energy, i.e., the mass of the
lightest intermediate state, and a2 is basically defined as
in (2.6), but with gravitational corrections included [as we
will soon see in (3.8)].

Step 1: Calculate Mðs; tÞ We compute the 2 → 2

scattering amplitude Mðs; tÞ up to order OðM−2
Pl Þ:

Mðs;tÞ¼Mnon-gravðs;tÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
OðM0

PlÞ

þMgravðs;tÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
OðM−2

Pl Þ

þ ���|{z}
OðM−4

Pl Þ
: ð3:5Þ

Here Mnon-gravðs; tÞ is the contribution from diagrams
with no graviton exchange, while Mgravðs; tÞ is the
contribution from diagrams with one graviton ex-
change and is of the order OðM−2

Pl Þ. The remaining
terms are the order ofOðM−4

Pl Þ and are neglected in the
rest of the analysis. Once we compute M, it is
straightforward to obtain kinematic-singularity free

amplitude fM (2.14), both for nongravitational and
gravitational contributions. Note that such an ampli-
tude exists for each choice of helicity of external
vector fields [as in (3.1)–(3.3)].

Step 2: Calculate Bnon-gravðΛÞ We compute the non-
gravitational contribution Bnon-gravðΛÞ to BðΛÞ. We
assume that the EFTof interest is renormalizable in the
gravity decoupling limit MPl → ∞.
In such a case, the amplitude Mnon-grav itself

satisfies the analyticity and the s2-boundedness, which
is the s6-boundedness in terms of M̃non-grav, when the
expression is analytically continued throughout the
complex plane, even outside the regions of validity of
the EFT. The nongravitational part then satisfies the
twice-subtracted dispersion relation, giving the for-
mula

Bnon-gravðΛÞ ¼
4

π

Z
∞

Λ2

ds
Im fMnon-gravðs; t ¼ 0Þ

ðs − 2m2
VÞ7

:

ð3:6Þ

This formula is practically useful since we only need
to compute the imaginary part of the forward ampli-
tude. This expression further simplifies in the limit
Λ ≫ mV ,

Bnon-gravðΛÞ ≃
4

π

Z
∞

Λ2

ds
ImMnon-gravðs; t ¼ 0Þ

ðs − 2m2
VÞ3

:

ð3:7Þ

In other words, in this limit, we can in practice
neglect the subtleties associated with the use of the

kinematic-singularity-free amplitude fM, and use the
original amplitude M for the evaluation of
Bnon-gravðΛÞ in (3.7) [which coincides (2.4) with n ¼
1 and mA ¼ mB ¼ mV].

Step 3: Calculate BgravðΛÞ We next compute the
gravitational contribution BgravðΛÞ to BðΛÞ. While
this contains many different Feynman diagrams in
general, we will argue in the Appendix that it is
enough to consider the contribution from t-channel
graviton exchange diagrams. In this case, the integral
part of (2.7) is absent for this contribution becausefMgrav;t-channelðs; tÞ does not have the s-channel or u-
channel discontinuity at the nongravitational one-
loop order. Therefore, the gravitational part of BðΛÞ
is simplified to a2 defined in (2.6), evaluated for the
gravity t-channel amplitude,

BgravðΛÞ≃a2;grav;t-channel

≔ lim
t→−0

�
2

6!

∂
6 eMgrav;t-channelðs;tÞ

∂s6
þ 2

M2
Plt

�
s¼2m2

V

:

ð3:8Þ
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When we assume Λ ≫ mV , we obtain an expression

BgravðΛÞ ≃ lim
t→−0

�
∂
2Mgrav;t-channelðs; tÞ

∂s2
þ 2

M2
Plt

− ðkinematic singularityÞ
�
s¼2m2

V

: ð3:9Þ

Step 4: Write down the inequality for total BðΛÞ The
constraints on EFTare obtained as the inequality (2.11)
for the combined expression BðΛÞ ¼ Bnon-gravðΛÞþ
BgravðΛÞ. There are three interpretations of this in-
equality, as we discussed in Sec. II B.

IV. POSITIVITY BOUND ON DARK U(1)
GAUGE BOSON

A gauge interaction is one of the cornerstones of the
quantum field theory (QFT). Gauge symmetries and their
breakings are one of the most crucial ingredients of the
Standard Model, and many BSM models also introduce
new gauge symmetries. In particular, a light gauge boson is
one of the candidates for the DM [49–51].
In this section, we work out the details of the gravita-

tional positivity recipe for the dark U(1) gauge boson. Here
we study the Abelian-Higgs mechanism of the simplest
gauge theory, the U(1) theory. We discuss theoretical
constraints obtained by step-by-step computations spelled
out in the previous section.

A. Higgs contribution

In the Higgs mechanism, the gauge boson gets a mass
when a charged scalar field Φ gets a nonzero vacuum
expectation value (VEV) v. The renormalizable Lagrangian
of the Higgs mechanism to generate a mass for a U(1)
gauge boson is

L ¼ jDμΦj2 − λ

4
ðjΦj2 − v2Þ2; ð4:1Þ

where Dμ ¼ ∂μ − igΦVμ is the covariant derivative and gΦ
is a charge of Φ and λ > 0. After Φ ¼ vþ ϕ=

ffiffiffi
2

p þ iG
develops the VEV, the Goldstone component G is absorbed
into the longitudinal component of the gauge boson. There
are a massive gauge boson V and a real scalar ϕ after the

gauge symmetry breaking, and the gauge boson gets a mass
mV ¼ ffiffiffi

2
p

gΦv and a real scalar ϕ has a mass mϕ ¼ ffiffiffi
λ

p
v.

The interaction of the Higgs and gauge bosons are given by

L ∋
�
g2Φ
2
ϕ2 þ gΦmVϕ

	
VμVμ − λ

�
v

2
ffiffiffi
2

p ϕ3 þ 1

16
ϕ4

	
:

ð4:2Þ

The gravitational interaction can be found by expanding the
Lagrangian (4.1) in terms of the canonical gravitational
field hμν as

Lgrav ¼ −
hμνTμν

MPl
þOðM−2

Pl Þ; Tμν ≡−
2ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp

LÞ
∂gμν

:

ð4:3Þ

The Higgs-gauge boson interaction (4.2) does not make the
gauge boson V unstable since it has a Z2 symmetry
V ↔ −V.

1. Calculation of BðΛÞ
We calculate BðΛÞ at the one-loop order using the recipe

described in Sec. III. In Figs. 4(a) and 4(b), we show some
examples of the gravitational and nongravitational proc-
esses. The one-loop diagrams are calculated by using the
Mathematica packages FeynRules [52–54], FeynArts [55],
FeynCalc [56–58], and Package-X [59].

2. Nongravitational contributions

Figure 4(a) shows some examples of the nongravitational
Feynman diagrams involving the Higgs boson ϕ. From
these (and other) diagrams we evaluate the nongravitational
part of BðΛÞ to be

BTT
non-grav ¼

g4Φ
4π2Λ4

þ
g4Φ

h
m4

ϕ

�
12 log

�
mϕ

Λ

�
þ 1

�
þm2

ϕm
2
V

�
12 log

�
Λ3mV
m4

ϕ

�
− 27

�
þ 24m4

V

i
18π2Λ6m2

ϕ

þ � � � ; ð4:4Þ

BTL
non-grav ¼

g4Φ
2π2Λ4

þ
g4Φ

h
−3ðm3

ϕ − 2mϕm2
VÞ2 log

�
mϕmV

Λ2

�
þ 17m4

ϕm
2
V − 20m2

ϕm
4
V − 8m6

ϕ þ 12m6
V

i
9π2Λ6m2

ϕm
2
V

þ � � � ; ð4:5Þ
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BLL
non-grav ¼

g4Φ
π2Λ2m2

V
þ
g4Φ

�
4m2

ϕm
2
V log

�
m2

V
Λ2

�
− 8m2

ϕm
2
V þ 5m4

ϕ þ 6m4
V

�
8π2Λ4m4

V
þ � � � : ð4:6Þ

Here � � � represents contributions suppressed by higher
powers of Λ, which scale is assumed to be much greater
than mϕ and mV . We have also numerically estimated the
two-loop contributions and confirm that these effects are
smaller than the one-loop contributions in the parameter
region of present interest.

3. Gravitational contributions

As the next step, we compute the one-loop diagrams of
the gravitational contributions [Fig. 4(b)],

BTT
grav ¼

−g2Φ
72π2m2

ϕM
2
Pl

gTT

�
mV

mϕ

	
; ð4:7Þ

BTL
grav ¼

−g2Φ
144π2m2

VM
2
Pl

gTL

�
mV

mϕ

	
; ð4:8Þ

BLL
grav ¼

−g2Φ
72π2m2

VM
2
Pl

gLL

�
mV

mϕ

	
; ð4:9Þ

where the functions gTT;TL;LL are given by

gTTðxÞ ¼
2

x8ð1 − 4x2Þ2
�
−6ð2x2 − 1Þð4x4 − 5x2 þ 1Þ2 logðxÞ þ ð200x8 − 346x6 þ 230x4 − 63x2 þ 6Þx2

− 6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2
− 4

r
ð4x10 − 32x8 þ 52x6 − 35x4 þ 10x2 − 1Þx log

�
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2
− 4

r
þ 1

x

		�
; ð4:10Þ

gTLðxÞ ¼
−1

x6ð1 − 4x2Þ2
�
6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2
− 4

r
xð51x2 þ 2ð8x6 − 92x4 þ 147x2 − 93Þx4 − 5Þ log

�
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2
− 4

r
þ 1

x

		
þ ð4x2 − 1Þð−344x8 þ 416x6 − 201x4 þ 30x2 þ 6ð32x8 − 128x6 þ 114x4 − 41x2 þ 5Þ logðxÞÞ

�
; ð4:11Þ

gLLðxÞ ¼
−244x6 þ 268x4 − 123x2 þ 18

x4 − 4x6
þ
6x
�
28x4−19x2þ3

x6
− 2

��
1
x2 − 2

�
2
log

�
1
2

� ffiffiffiffiffiffiffiffiffiffiffi
1
x2 − 4

q
þ 1

x

��
�

1
x2 − 4

�
3=2

þ 6ð−4x6 þ 20x4 − 13x2 þ 3Þ logðxÞ
x6

: ð4:12Þ

FIG. 4. Some examples of the Higgs-loop contribution to BðΛÞ. (a) Non-gravitational Feynman diagrams. (b) t-channel graviton
exchange diagrams.
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We plot the functions gTT;TL;LL in Fig. 5. These functions
are real and positive for any real values of mV and mϕ, and
we find that the gravitational contributions from the Higgs
to BðΛÞ are negative.
In the limit of mV=mϕ → 0 and → ∞, the above

expressions reduce to

BTT
grav ¼

8<:− g2Φ
72π2m2

ϕM
2
Pl

ðmV=mϕ → 0Þ;

− g2Φ
24πmVmϕM2

Pl
ðmV=mϕ → ∞Þ;

ð4:13Þ

BTL
grav ¼

8<:− g2Φ
144π2m2

VM
2
Pl

ðmV=mϕ → 0Þ;

− g2Φ
24πmVmϕM2

Pl
ðmV=mϕ → ∞Þ;

ð4:14Þ

BLL
grav ¼

8<:− g2Φ
72π2m2

VM
2
Pl

ðmV=mϕ → 0Þ;

− g2Φ
24πmVmϕM2

Pl
ðmV=mϕ → ∞Þ:

ð4:15Þ

B. Fermion contribution

Next, let us introduce a dark U(1) charged Dirac fermion
ψ as a matter field, whose interaction is given by

Lψ ¼ iψ̄=Dψ −mFψ̄ψ ; ð4:16Þ

where Dμ ¼ ∂μ − igFVμ is the covariant derivative. Note
that this interaction can destabilize the gauge boson, by
allowing V → ψψ̄ decay if mV > 2mF and decay into
gravitons.
If the mass of the charged particles is large ðmF ≫ ΛÞ,

these charged particles are integrated out in the EFT and
yield higher-derivative corrections to the EFT action. These

effects to BðΛÞ can be estimated as Oðg4F=m4
FÞ and we can

ignore them compared to contributions (4.4) from the
Higgs field. Hence, our interest is the charged particle
within the regime of EFT (mF < Λ).

1. Calculation of BðΛÞ
We calculate the contributions of fermion-loop diagrams

to BðΛÞ for the dark photon scattering amplitudes at one-
loop order.

2. Nongravitational contributions

The diagram for a non-gravitational fermion loop is
shown in Fig. 6(a). The one-loop contributions are given by

BTT
non-grav;F ¼

g4Fð2 log Λ2

m2
F
þ 1Þ

4π2Λ4
þ � � � ; ð4:17Þ

BTL
non-grav;F ¼ 4g4Fm

2
V

3π2Λ6
þ � � � ; ð4:18Þ

BLL
non-grav;F ¼

g4Fm
4
Vð4 log Λ2

m2
F
− 7Þ

π2Λ8
þ � � � ð4:19Þ

for Λ ≫ mV;F. These contributions of LL and TL vanish in
the limit mV=Λ → 0. Recall that Bnon-grav is determined
by the high-energy limit of the forward limit ampli-
tude thanks to the dispersion relation. The behaviors
BTL
non-grav;F; B

LL
non-grav;F → 0 as mV=Λ → 0 can be under-

stood by the decoupling of the longitudinal sector in
the high-energy limit. The contributions of the charged
particles to BTL

non-grav and BLL
non-grav can be ignored in the

limit Λ ≫ mV .
We thus focus on the TT scattering. The charged spin-

1=2 loops give positive contributions to the nongravita-
tional diagram of the order BTT

non-grav;F ∼ g4F=Λ4, which is of
the same order as the Higgs counterpart (4.4). Therefore,
the inclusion of charged spin-1=2 particles does not
drastically change the nongravitational part. We reach a
similar conclusion even in the presence of charged spin-0
particles [16].
In contrast, as studied in [27,29], charged spin-1 loops

with the mass mspin-1 and the charge gspin-1 lead to a
different asymptotic behavior BTT

non-grav ∼ g4spin-1=ðm2
spin-1Λ2Þ

FIG. 6. The fermion-loop contributions to B. (a) Diagram for
Bnon-grav. (b) Diagram for Bgrav.

FIG. 5. The functions gTT;TL;LLðxÞ. These functions are
real and positive for x > 0 and therefore the gravitational
contributions are negative for all the masses of the Higgs boson
and the gauge boson.
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which dominates over other contributions in the limit
Λ ≫ mspin-1. One may then wonder about contributions
from higher-spin particles. The scaling in Λ is determined
by the high-energy behavior of the imaginary part of the
amplitude in the forward limit, i.e., the total cross section.
Roughly, spin-0 and spin-1=2 loops give ImM ∝ s0 while
spin-1 loops yield ImM ∝ s=m2

spin-1 in the high-energy
limit. The faster growth in s provides a larger contribution
to Bnon-gravðΛÞ. However, the asymptotic growth of the
cross section in s is bounded by the Froissart bound [30] as
ImM < sln2s in gapped theories, implying that the spin-1
contribution almost saturates the bound. Higher-spin par-
ticles, if they are described by gapped theories like QCD,
may not give drastically different contributions compared
to spin-1 particles. For instance, in the case of light-by-light
scattering, the hadronic contribution can be estimated as
ImM ∝ s1.08 by employing the vector meson dominance
model [60,61].
In short, if a charged spin-1 or higher-spin particle

appears at m, the nongravitational contribution BTT
non-grav

needs to be modified in Λ > m. By contrast, spin-0 or spin-
1=2 particles give additional contributions but the qualita-
tive behavior of BTT

non-grav is the same.

3. Gravitational contributions

Next, we discuss the gravitational parts [Fig. 6(b)],
which are given by

BTT
grav;F ¼ −

11g2F
360π2M2

Plm
2
F
gTT;F

�
mV

mF

	
; ð4:20Þ

BTL
grav;F ¼ −

11g2F
720π2M2

Plm
2
F
gTL;F

�
mV

mF

	
; ð4:21Þ

BLL
grav;F ¼ −

g2Fm
2
V

420π2M2
Plm

4
F
gLL;F

�
mV

mF

	
; ð4:22Þ

where

gTT;FðxÞ ¼
60ðx2 − 8Þðx2 − 2Þ log ð1

2
xð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 4

p
− xÞ þ 1Þ − 20x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 4

p
ð2x4 − 11x2 þ 24Þ

11x5ðx2 − 4Þ3=2 ; ð4:23Þ

gTL;FðxÞ ¼
60ðx4 − 22x2 þ 56Þ log ð1

2
xð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 4

p
− xÞ þ 1Þ − 20x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 4

p
ðx4 − 19x2 þ 84Þ

11x5ðx2 − 4Þ3=2 ; ð4:24Þ

gLL;FðxÞ ¼
70ðð120 − 36x2Þ log ð1

2
xð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 4

p
− xÞ þ 1Þ þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 4

p
ðx4 þ 8x2 − 60ÞÞ

3x7ðx2 − 4Þ3=2 : ð4:25Þ

We plot the functions gAB;FðxÞðA;B ¼ T; LÞ in Fig. 7.

Let us first discuss the limit mV → 0, which yields

BTT
grav;F ¼ −

11g2F
360π2M2

plm
2
F
; ð4:26Þ

BTL
grav;F ¼ −

11g2F
720π2M2

plm
2
F
; ð4:27Þ

BLL
grav;F ¼ −

g2Fm
2
V

420π2M2
plm

4
F
: ð4:28Þ

If the Higgs and the gauge boson are lighter than the charged
particles ðmϕ; mV ≪ mFÞ, we can neglect these contribu-
tions to the gravitational process Bgrav in comparison to the
contributions of the gauge boson sector. Note that the LL
part has an additional suppression m2

V=m
2
F because the

longitudinal mode should decouple from the charged particle
in the limit mV → 0. However, since the longitudinal mode

FIG. 7. The functions gTT;FðxÞ (red), gTL;FðxÞ (green), and
gLL;FðxÞ (blue). The solid and dashed lines represent the real and
imaginary parts, respectively.
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does not decouple from gravity, the TL mode does not have
such a suppression factor in the diagram where the longi-
tudinal mode attaches to the graviton line.
By contrast, a peculiar behavior appears in a heavy mass

range of the gauge boson. The functions gAB;F are singular
atmV ¼ 2mF and become complex numbers inmV > 2mF.
The thresholdmV ¼ 2mF corresponds to the value at which
the decay of the gauge boson to the charged particles starts
to be kinematically allowed. The singularity at mV ¼ 2mF
is understood as an anomalous threshold. Let us consider
the triangle diagram of Fig. 6(b), which gives rise to the
gravitational form factor of the gauge boson. The triangle
diagram has a normal threshold at t ¼ 4m2

F. In addition,
the anomalous threshold comes up on the first sheet of the
complex t-plane in mV >

ffiffiffi
2

p
mF and the position of the

singularity is at

t ¼ m2
V

m2
F
ð4m2

F −m2
VÞ: ð4:29Þ

Therefore, the form factor at t ¼ 0 is singular when
mV ¼ 2mF, generating the singularity of BAB

grav;F. In
Fig. 7, we have plotted the functions in the unstable range
mV > 2mF as well. Recall that BðΛÞ has to be real
according to the dispersion relation (2.8) if all the mentioned
properties are satisfied. This implies that at least one of the
properties does not hold when the gauge boson decays. In
fact, amplitudes exhibit peculiar behaviors if the mass of
the external particle is extrapolated to the unstable
region [46,47]. The conventional positivity bounds need
to be modified for unstable particles.
We expect that the subtleties associated with the decay

are negligible if the particle is long-lived (gF ≪ 1). In other
words, although the fermion contribution to BgravðΛÞ is
quite subtle in the mass range mV > 2mF, this subtle
contribution can be smaller than the contribution from
the Higgs sector and could be simply negligible. In the
following, we shall adopt this optimistic expectation when
discussing models in which the gauge boson decays into
other particles. The issue of unstable particles will be
studied elsewhere.

C. Constraint on dark gauge boson

In Table I, we summarize our estimation of BðΛÞ for a
light gauge boson. We apply the gravitational positivity
bound (2.11) to these amplitudes:

BðΛÞ ¼ Bnon-gravðΛÞ þ BgravðΛÞ ≥
σ

M2
PlM

2
: ð4:30Þ

For simplicity of the presentation, in the following, we
will discuss the constraints on the dark gauge boson
parameters for σ ¼ 0 with a fixed value of Λ
(Interpretation 1 in Sec. II B). One should recall, however,
that the actual bound is (4.30). The bound becomes
stronger for σ ¼ þ1 and weaker for σ ¼ −1. We will
later see more quantitatively how the σ=ðM2

PlM
2Þ term

changes the bound in Fig. 12.

1. Abelian-Higgs without matter fields

Let us first look at the case where there is no matter field
and only gauge and Higgs fields exist. For a very light
gauge boson mV ≪ mϕ;F ≪ Λ and mϕ ≪

ffiffiffiffiffiffiffiffiffiffi
ΛmV

p
, the

following conditions can be obtained from each helicity

BTT
non-grav þ BTT

grav ≥ 0 ⟶ mϕ ≥
Λ2

3
ffiffiffi
2

p
gΦMPl

; ð4:31Þ

BTL
non-grav þ BTL

grav ≥ 0 ⟶ mV ≥
Λ2

6
ffiffiffi
2

p
gΦMPl

; ð4:32Þ

BLL
non-grav þ BLL

grav ≥ 0 ⟶ gΦ ≥
Λ

6
ffiffiffi
2

p
MPl

: ð4:33Þ

In Fig. 8, we show the positivity conditions. Note that the
higher terms of Λ for the nongravitational contributions can
be dominant if mϕ ≳ ffiffiffiffiffiffiffiffiffiffi

mVΛ
p

or mϕ ≲m2
V=Λ.

2. Stückelberg gauge boson with matter field

Next, let us discuss the case where the Higgs field ϕ is
absent in the EFT, as in the case of the Stückelberg
mechanism. We find

TABLE I. Summary of the gravitational and nongravitational contributions to B for mV ≪ mϕ;F ≪ Λ and
mϕ ≪

ffiffiffiffiffiffiffiffiffiffi
ΛmV

p
.

Higgs loop Fermion loop

Bnon-grav Bgrav Bnon-grav Bgrav

TT g4Φ
4π2Λ4 − g2Φ

72π2M2
Plm

2
ϕ

g4Fð2 logΛ2

m2
F
þ1Þ

4π2Λ4

− 11g2F
360π2M2

Plm
2
F

TL g4Φ
2π2Λ4 − g2Φ

144π2M2
Plm

2
V

4g4Fm
2
V

3π2Λ6 − 11g2F
720π2M2

Plm
2
F

LL g4Φ
π2Λ2m2

V
− g2Φ

72π2M2
Plm

2
V

g4Fm
4
V ð4 logΛ2

m2
F

−7Þ
π2Λ8

− g2Fm
2
V

420π2M2
Plm

4
F
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BTT
non-grav þ BTT

grav ≥ 0 ⟶ gF ≳ 0.2
Λ2

mFMPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðΛm−1

F Þ
p ;

ð4:34Þ

BTL
non-grav þ BTL

grav ≥ 0 ⟶ mV ≳ 0.1
Λ3

gFmFMPl
; ð4:35Þ

BLL
non-gravþBLL

grav ≥ 0⟶mV ≳0.02
Λ4

gFm2
FMPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðΛm−1

F Þ
p :

ð4:36Þ

In Fig. 9, we show the positivity conditions on mV − gF
plane. Note that for mV > 2mF, delicate arguments are
required and the positivity conditions used previously
cannot be applied as they are.
More generally, it is possible to incorporate both Higgs

and fermions. The helicity configurations involving longi-
tudinal modes provide stronger constraints. As discussed
earlier, the Higgs contribution is dominant when gΦ ∼ gF
and mV ≪ mϕ;F, in which case the positivity conditions
will be similar to those of the Higgs scenarios.

3. Comparison with other swampland constraints
for Stückelberg gauge bosons

Let us compare our swampland constraints with another
swampland constraint on the gauge boson mass [62]
(see also [63]) motivated by the swampland distance
conjecture [3]. This bound states that the UV cutoff ΛUV
of an EFT with a gauge boson should obey

ΛUV ≲minððmVMPl=gÞ1=2; g1=3MPlÞ; ð4:37Þ

where (as before) mV is the gauge boson mass and g is the
gauge coupling constant. In Fig. 10 we compare our bounds
and the bound (4.37) for sample values of parameters.
One can see in Fig. 10 that overall our bound is stronger

than the bound (4.37). Let us quickly point out, however,
that the two bounds are derived under a different set of
assumptions/arguments, and one needs to be careful in any
meaningful comparison.
The gravitational positivity bound is derived by general

properties of Reggeized scattering amplitudes of a weakly-
coupled UV theory. The assumptions are believed to be
standard, but the bound has some ambiguities due to the
unknown UV mass scale/sign ðM; σÞ in (2.10). By contrast,

FIG. 9. The constraints on the dark gauge boson parameters for
the Stückelberg U(1) gauge theory with a fermion field. The
positivity bound is satisfied in the region above the lines. We
choose Λ ¼ 1 TeV.

FIG. 8. The constraints on the dark gauge boson parameters in the Higgs mechanism. (a) Lower limit of gΦ as a function of mV . The
positivity bound is satisfied in the region above the lines. (b) Contour of the lower bound of gΦ on mV -mϕ plane from the positivity
bound. The dashed lines indicate the Higgs quartic coupling is large λ > π. We choose Λ ¼ 1 TeV in both figures.
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the bound (4.37) is derived from a set of swampland
conjectures. The ðmVMPl=gÞ1=2 bound in (4.37) is derived
by noting that the Stückelberg mass is obtained when the
gauge boson eats a fundamental axion, for which we can
apply an axionic version [62,63] of the weak gravity
conjecture [64]; the g1=3MPl bound in (4.37) is derived
from a combination of the (sub)lattice/tower weak gravity
conjecture [65,66] (see also [25,67]) and the species
bound [68–70].
Let us also note that our bound applies to gauge boson

masses both in the Higgs mechanism and the Stückelberg
mechanism, while the bound (4.37) applies only to those in
the Stückelberg mechanism. Our bound is more general in
this respect.
In Fig. 10 we also plotted the bound from the weak

gravity conjecture [64], which requires an existence of a
particle with charge g and massm such that

ffiffiffi
2

p
g ≥ m=MPl.

V. TOWARD CONSTRAINTS ON REALISTIC
PHENOMENOLOGICAL MODELS

The dark U(1) gauge sectors discussed so far have
nothing to do with our Universe and are entirely theoretical
constructs. However, any new physics describing our
universe must necessarily coexist with the Standard
Model. Since some important subtleties arise at this point,
we will first briefly discuss them and then discuss the
specific model (B − L gauge model) as a possible appli-
cation of the gravitational positivity.
If we apply the discussion of gravitational positivity

bounds to, for example, the scattering of photons and dark
gauge bosons, the dark sector necessarily has interactions
beyond those described by the Standard Model and

gravity [29]. In general, these interactions allow the dark
gauge boson to decay into photons and SM fermions and
also decay into gravitons.
In this case, the dark gauge boson has a finite decay

width, and hence care must be taken when applying the
positivity constraint. Despite those caveats, the decay rate

FIG. 10. Comparison between the swampland constraints for Stückelberg gauge bosons, the gravitational positivity bound (in red) and
other swampland bounds (4.37) (in blue) and the weak gravity conjectures (in green). We take the cutoff scale Λ is 1 GeV (dotted lines),
1 TeV (solid lines), and 1 PeV (dashed lines). (a) Light fermion case mF ¼ mV and (b) Heavy fermion case mF ¼ 0.1Λ. In this plot, the
lines are chopped in the parameter space where mV > 0.1Λ.

FIG. 11. Implication to the Uð1ÞB−L gauge boson from the
gravitational positivity bound with σ ¼ 0. Here we adopt
Λ ¼ 1 GeV. The positivity constraint excludes the parameter
region below the black lines. The dotted lines indicate that the
gauge boson mass is greater than neutrino masses and our
analysis cannot be directly applied. We also show several
experimental constraints from the fifth force searches [71–79],
stellar cooling [80], cosmological constraints on the neutrino
properties [81,82], and XENONnT constraint on the e − ν
scattering [83,84]. We assume that right-handed neutrinos are
heavy and not relevant to the constraints.
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of light and weakly interacting gauge bosons is extremely
small, and we expect no major practical problems.
As an example, we consider the Uð1ÞB−L extension of

the Standard Model. We assume the gauge charge of the
B − L breaking Higgs is the same as that of the SM leptons.
In Fig. 11, we show the positivity bound (4.30) on the
Uð1ÞB−L model and current experimental constraints. Here
we take σ ¼ 0 and Λ ¼ 1 GeV. In this plot, we assume that
the B − L Higgs contributions are dominated over the SM
fermions and neglect the SM contributions. The dashed
lines in the figure show the parameter region where the dark
gauge boson can decay into neutrinos. The stringent bound
from the positivity constraint comes from TL scattering
mode. Note that the constraint is more severe for the higher
cutoff, as seen in the TL constraint (4.32). The gravitational
positivity bound requires the larger gauge coupling for
smaller masses and has strong tensions with the exper-
imental searches.

VI. CONCLUSION AND DISCUSSION

In this paper, we discussed the practical procedure for
deriving gravitational positivity bounds. We illustrated the
procedure for dark gauge bosons, and discussed implica-
tions of the bounds.
There are two complementary comments regarding our

results. First and foremost, our bound is very strong; in
Fig. 11 most of the parameter regions unexplored by
experiments are already excluded by the positivity bound.
This is a clear demonstration of the power of the gravi-
tational positivity bound, and we believe that the gravita-
tional positivity bound can give rather strong constraints for
many EFTs in BSM physics. It is a fascinating question to
explore this point further.
Despite this optimism, we should also be well aware of

the fine prints and limitations of our results, and we should
be careful in interpreting the results. Our bound is derived
from several assumptions of UV physics as spelled out in
Sec. III, which can be violated in some UV scenarios. In
particular, we have assumed σ ¼ 0 in the gravitational
positivity bound BðΛÞ > σ=ðM2

PlM
2Þ. As we have remarked

before, the bound becomes stronger for σ ¼ þ1 and weaker
for σ ¼ −1. For illustrative purposes, we show the bound
BðΛÞ > σ=ðM2

PlM
2Þ for various values ofM with σ ¼ −1 in

Fig. 12. While the bound BðΛÞ > 0 is accurate when the
scaleM is sufficiently large, the constraint region shrinks as
M decreases.12 Further theoretical studies are required to
carve out the parameter space of the UV data ðM; σÞ.

Conversely, if the violation of the inequality BðΛÞ > 0 is
experimentally verified, it can be regarded as an IR con-
straint on quantum gravity (Interpretation 3). Moreover,
there are other subtleties when we wish to apply the bounds
to realistic models, as discussed in Sec. V. We expect in
general that the dark photon interacts with the Standard
Model via kinetic mixings with the Standard-Model gauge
bosons. This means that there are large nongravitational
amplitudes from QCD that can have a significant impact on
the dark photon constraint. Another issue is the stability of
the dark photon. The dark photon is expected to decay into
Standard Model fermions and photons once it interacts with
the SM sector. In this case, the dark photon has a finite decay
width, and care must be taken when applying the positivity
constraint. It requires careful theoretical analysis to fully
address these details, which we hope will be discussed in
future works.
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APPENDIX: GRAVITATIONAL CONTRIBUTIONS
BEYOND GRAVITON t-CHANNEL

The gravitational contribution BgravðΛÞ to BðΛÞ can be
divided into Bgrav;t-channelðΛÞ from the graviton t-channel
exchange and the remaining part Bgrav;othersðΛÞ (see
Fig. 13). In this appendix we show that we can neglect
Bgrav;othersðΛÞ in comparison with Bgrav;t-channelðΛÞ.
Calculation of Bgrav;othersðΛÞ is challenging due to the

presence of IR-divergent diagrams in fMgrav;othersðs; tÞ.
While it is more desirable to define IR-finite amplitudes
using the dressed state formalism, it is beyond the scope of
this work and will be pursued in future research. To
regularize this IR divergence, instead, we introduce an
IR regulator μIR by deforming the graviton propagator as

iPμνρσ

q2 þ iϵ
→

iPμνρσ

q2 − μ2IR þ iϵ
; ðA1Þ

where Pμνρσ is defined by Pμνρσ ¼ ðημρηνσ þ
ημσηνρ − ημνηρσÞ=2 in the harmonic gauge. Using the
deformed graviton propagator, we can confirm that

jfMgrav;othersðs; tÞj is bounded by Oðs6Þ as jsj → ∞.

Along with the analyticity of fMgrav;others, this makes it
possible to derive the relation,

Bgrav;othersðΛÞ ¼
4

π

Z
∞

Λ2

ds
Im fMgrav;othersðs; t ¼ 0Þ

ðs − 2m2
VÞ7

: ðA2Þ

Moreover, since Im fMgrav;othersðs; tÞ is also bounded by
Oðs6Þ, we obtain

Bgrav;othersðΛÞ ¼ O
�

1

M2
PlΛ2

	
: ðA3Þ

This is much smaller compared to the contribution from the
graviton t-channel exchange diagrams and can be safely
neglected.
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