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The next-to-minimal supersymmetric Standard Model with triplets is an attractive extension of the
Standard Model. It combines the advantages of the next-to-minimal supersymmetric Standard Model
and the minimal supersymmetric Standard Model with triplets to give three tiny Majorana neutrinos
masses via a type-Iþ II seesaw mechanism. With the on-shell renormalization scheme, we consider the
neutrino masses up to one loop approximation. Applying the effective Lagrangian method, we study the
transition magnetic moments of Majorana neutrinos and consider the normal hierarchy and inverse
hierarchy neutrino mass spectra within the constraints of experimental data on neutrino oscillations.
The solar neutrino transition magnetic moment is further deduced, and compared with the XENONnT
experiment limit.
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I. INTRODUCTION

From recent neutrino oscillation experiments, it is
known that neutrinos have nonzero masses and mix with
each other (see Refs. [1–5]). However, the mass and
mixing cannot be accounted for explicitly in the Standard
Model (SM), so it is needed to extend the SM to fit the
neutrino oscillation experiments. The minimal super-
symmetric extension of the SM (MSSM) is a relatively
simple extension of the SM, but it does not account
for neutrino masses and does not provide a perfect
explanation of the μ problem ([6]) and the hierarchy
problem [7,8]. In light of this reality, the next-to-minimal
supersymmetric of the Standard Model (NMSSM)
emerged [9,10]. It introduces a singlet with the hyper-
charge Y equal to 0, solving the μ problem. However,
NMSSM is no better at improving the little hierarchy
problem. Because the interaction of singlet states pro-
duces additional Higgs quartic, this can solve the small

hierarchy problem in the NMSSM. But the additional
Higgs quartic directly contributes to the Higgs mass,
while the additional Higgs quartic is suppressed in the
large tan β limit [11–14]. Extending the MSSM by adding
the SUð2Þ triplets (TMSSM) [15–17] can provide such a
Higgs quartic naturally. This model becomes more
attractive when the triplet state has a nonzero hyper-
charge. In this case, the quartic couplings for the Higgs
boson are not suppressed in the large tan β limit. Based on
the above advantages, the next-to-minimal supersymmet-
ric Standard Model with triplets (TNMSSM) [18] is an
attractive extension of the SM.
The TNMSSM includes one singlet with zero hyper-

charge, two triplet states with hypercharges �1, and
introduces three right-handed neutrinos with zero
hypercharge. The right-handed neutrinos couple to the
singlet state, and the left-handed neutrinos couple to
the triplet state T. When the singlet scalar (Higgs) and
triplet states acquire vacuum expectation value (VEV),
the right-handed neutrinos and the left-handed neutrinos
acquire Majorana masses. Combining the Majorana
mass terms with the Dirac mass terms, the tiny neutrino
masses can be obtained by the type-Iþ II seesaw
mechanism [19,20].
In general, the transformation between the mass eigen-

states of neutrinos ν1;2;3 and the flavor eigenstates νe;μ;τ is
described via the Pontecorvo-Maki-Nakagawa-Sakata
matrix UPMNS [21,22]. The constituent parameters of the
UPMNS matrix and the squared mass differences have been
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well measured by the neutrino oscillation experiments; the
results read [23]

Δm2
ν21 ¼ ð7.19–7.60Þ × 10−5 eV2;

jΔm2
ν32 jNH ¼ ð2.42–2.48Þ × 10−3 eV2;

jΔm2
ν32 jIH ¼ ð2.48–2.54Þ × 10−3 eV2;

sin2θ12 ¼ 0.30–0.32;

sin2θ23 ¼ 0.525–0.578;

sin2θ13 ¼ 0.0217–0.0230; ð1Þ

where jΔm2
ν32 jNH is for normal hierarchy (NH), and

jΔm2
ν32 jIH is for inverse hierarchy (IH). Equation (1) shows

that the three massive neutrinos are not degenerate, which
indicates that nonzero neutrino transitions can take place by
the electroweak radiation effects. The transition magnetic
moments are one of the most important characteristics of
massive Majorana neutrinos. Since neutrinos are detected
indirectly, one of the more effective ways to study neutrino
properties is to study neutrino-electron elastic scattering in a
detector. In particular, it is more effective to probe the
neutrino magnetic moment at low values of electron recoil
energy. Experiments with low energy thresholds and good
energy resolution are well suited for this purpose. Solar
experiments such as BOREXINO [24], Super-Kamiokande
[25], and reactor experiments like GEMMA [26], TEXONO
[27], andMUNU [28] are providing some competing bounds
on neutrino magnetic moments. However, a more stringent
constraint comes from astrophysical sources, such as globu-
lar clusters and white dwarfs [29], and the recent XENONnT
experiment also provides strict limits [30,31]. In recent
work [31,32], they made the study in the radiative type-II
and type-III seesaw scenario to realize neutrino electromag-
netic vertex at one loop with dark matter.
Renormalization is carried out to remove the ultraviolet

divergence that appears in the loop calculations. The mass-
on-shell subtraction scheme is often used in the electro-
weak process calculation. The advantage of the on-shell
scheme is that all parameters have a clear physical meaning
and can be measured directly in the experiment [33–35].
The neutrino masses of the tree level are given by the type-
Iþ II seesaw mechanism. Further, we use the on-shell
scheme to consider the effect of one-loop results on the
neutrino mass of the tree level. Combining the results of
tree level and one loop, the tiny neutrino masses are given.
Applying the effective Lagrangian method and the on-shell
scheme, we analyze the radiative contributions from the
one-loop diagrams to the neutrinos transition magnetic
moment in the TNMSSM. In the numerical analysis, we
take into account the measured results in Eq. (1). It can be
noted that the hierarchy of neutrino masses has not been
determined experimentally; both of the cases of NH
neutrino masses and IH neutrino masses are considered
in this work.

This paper is organized as follows: The framework of
the TNMSSM and the mechanism giving tiny neutrino
masses are present in Sec. II. The transition magnetic
moment of Majorana neutrinos in the TNMSSM is calcu-
lated in Sec. III. Section IV presents the numerical analyses
of the neutrino transition in the TNMSSM. Conclusions are
given in Sec. V. Most of the technical details are omitted in
the text and then collected in the Appendixes.

II. THE TNMSSM

Besides the superfield of the MSSM, TNMSSM intro-
duces a gauge singlet superfield S and two SUð2ÞL triplet
superfields T and T̄. The corresponding superpotential of
the TNMSSM is given by [18]

W ¼ SðλHu ·Hd þ λT trðT̄TÞÞ þ
κ

3
S3 þ χuHu · T̄Hu

þ χdHd · THd þ huHu ·Qūþ hdHd ·Qd̄

þ heHd · Lē; ð2Þ

where HT
d ¼ ðH0

d; H
−
d Þ, HT

u ¼ ðHþ
u ; H0

uÞ, QT
i ¼ ðui; diÞ,

and LT
i ¼ ðνi; eiÞ are SUð2Þ doublet superfields, and dci ,

uci , and eci represent the singlet down-type quark, up-type
quark, and charged lepton superfields, respectively. In
addition, λ, λT , κ, χu, χd, and hu;d;e are dimensionless
couplings.
Here the triplet superfields with hypercharge Y ¼ �1 are

defined as follows:

T ≡ Taσa ¼
 
Tþ=

ffiffiffi
2

p
−Tþþ

T0 −Tþ=
ffiffiffi
2

p
!
; ð3Þ

T̄ ≡ T̄aσa ¼
 
T̄−=

ffiffiffi
2

p
−T̄0

T̄−− −T̄−=
ffiffiffi
2

p
!
: ð4Þ

The σa (a ¼ 1, 2, 3) are 2 × 2 Pauli matrices, other
products between SUð2ÞL doublets and SUð2ÞL triplets
have the following form:

Hu ·Hd ¼ Hþ
u H−

d −H0
uH0

d; ð5Þ

Hu · T̄Hu ¼
ffiffiffi
2

p
Hþ

u H0
uT̄− − ðH0

uÞ2T̄0 − ðHþ
u Þ2T̄−−; ð6Þ

Hd · THd ¼
ffiffiffi
2

p
H−

dH
0
dT

þ − ðH0
dÞ2T0 − ðH−

d Þ2Tþþ: ð7Þ

Based on the TNMSSM superfields, we introduce three
singlet right-handed neutrino superfields Nc with hyper-
charge zero, and the superpotential involving newly intro-
duced Nc can be written as

Wtype-IþII ¼ YLL · TLþ YDL ·HuNc þ YRNcSNc: ð8Þ
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The soft breaking term of the TNMSSM is generally given as

−Lsoft ¼ m2
Hu
jHuj2 þm2

Hd
jHdj2 þm2

SjSj2 þm2
T trðjTj2Þ þm2

T̄ trðjT̄j2Þ þm2
ν̄jνcj2 þm2

QjQj2 þm2
ujūj2 þm2

d̄
jd̄j2

þm2
LjLj2 þm2

ējēj2 þm2
Nc jNcj2 þ

�
AhuQ ·Huū − AhdQ ·Hdd̄ − AheL ·Hdēþ ASHu ·Hd þ ATS trðTT̄Þ

þ Aκ

3
S3 þ AuHu · T̄Hu þ AdHd · THd þ AYL

L · TLþ AYN
L ·HuNc þ AYR

NcSNc þ H:c:

�

−
1

2

�
M3λ̃3λ̃3 þM2λ̃2λ̃2 þM1λ̃1λ̃1 þ H:c:

�
: ð9Þ

When the electroweak symmetry is broken, the neutral
scalars generally gain nonzero VEVs:

hH0
di ¼

υdffiffiffi
2

p ; hH0
ui ¼

υuffiffiffi
2

p ; hT0i ¼ υTffiffiffi
2

p ;

hT0i ¼ υT̄ffiffiffi
2

p ; hSi ¼ υSffiffiffi
2

p : ð10Þ

Thus the neutral scalars fields can be written as usual

H0
d ¼

hd þ iPd þ υdffiffiffi
2

p ; T̄0 ¼ hT̄ þ iPT̄ þ υT̄ffiffiffi
2

p ;

H0
u ¼

hu þ iPu þ υuffiffiffi
2

p ; T0 ¼ hT þ iPT þ υTffiffiffi
2

p ;

S0 ¼ hS þ iPS þ υSffiffiffi
2

p ; ð11Þ

For convenience, we can define the parameters as

v2ud ¼ v2u þ v2d; v2TT̄ ¼ v2T þ v2T̄ ;

tan β ¼ υu
υd

; tan β0 ¼ υT
υT̄

; ð12Þ

In the TNMSSM, the masses of W boson and Z boson
can be written in the following form:

M2
Z ¼ g12 þ g22

4
ðv2u þ v2d þ 4v2T þ 4v2T̄Þ;

M2
W ¼ g22

4
ðv2u þ v2d þ 2v2T þ 2v2T̄Þ;

v2 ¼ v2u þ v2d þ 2v2T þ 2v2T̄ ≈ ð246 GeVÞ2; ð13Þ

where g1 and g2 denote Uð1ÞY and SUð2ÞL gauge coupling
constants, respectively.
The effective μ term is generated spontaneously via

the nonzero VEVs of singlet S, when the electroweak
symmetry is broken (EWSB):

μeff ¼ λvs; μeffT ¼ λTvs: ð14Þ

In general for the tiny neutrino masses and mixings, the
type-I seesaw mechanism [19] is the simplest and which
can be realized by introducing three right-handed neutrinos
to the TNMSSM superfield. Another interesting approach
is known as type-II seesaw mechanism [20], which is
realized by means of the Higgs triplet T in the TNMSSM.
Then the neutrino mass term in TNMSSM can be

written as

−LMν
¼1

2
ν̄LMLν

C
Lþ

1

2
N̄C

RMRNRþ ν̄LMDNRþH:c:

¼1

2

�
ν̄L N̄C

R

��
ML MD

MT
D MR

��
νCL
NR

�
þH:c: ð15Þ

with

ML¼
ffiffiffi
2

p
YLvT; MD¼YDvuffiffiffi

2
p ; MR¼

ffiffiffi
2

p
YRvS; ð16Þ

where MD is the 3 by 3 Dirac mass term, and ML and MR
are the 3 by 3 Majorana mass terms. With the rotation
matrix ZNν

, the masses of neutrinos are gotten by the
formula ZT

Nν
MνZNν

¼diagðmνiÞ;i¼1…6 [36]. The matrix
ZNν

is defined by the leading order of ς, which is defined as
ς ¼ MDM−1

R . It is a good approximation to adopt ZT
Nν

in the
following form [37]:

ZT
Nν

¼
�
ST 0

0 RT

�
:

 
1 − 1

2
ς†ς −ς†

ς 1 − 1
2
ςς†

!
: ð17Þ

Here the matrices S and R defined in Eq. (17) are to
diagonalize Mtree

ν and MR,

STMtree
ν S ¼ diagðmν1 ; mν2 ; mν3Þ;

RTMRR ¼ diagðmν4 ; mν5 ; mν6Þ: ð18Þ

In this condition, the effective light neutrino mass matrix
of the tree level is generally given as [21,22,38–42]

Mtree
ν ≈mII

ν þmI
ν ¼ ML −MDM−1

R MT
D; ð19Þ
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where the first term mII
ν is the result of the type-II seesaw

mechanism and the second term mI
ν is the result of the

type-I seesaw mechanism by using the approximation
M−1

R M�
DM

T
D ≈MDM

†
DM

−1
R ≪ MR.

When the tree-level neutrino mass is obtained, we further
consider the effect of one-loop radiation correction on the
neutrino mass and use the on-shell renormalization scheme
to remove the UV divergence [34,35]. It can be written as

δm1−loop
νij ¼ δmðZ;ν0Þ

νij þ δmðW;e−Þ
νij þ δmðH0;ν0Þ

νij þ δmðA0;ν0Þ
νij

þ δmðν̃I ;χ̃Þ
νij þ δmðν̃R;χ̃Þ

νij þ δmðHþ;e−Þ
νij þ δmðẽ;χ−Þ

νij :

ð20Þ

Here δm1−loop
νij represents the one-loop radiation correction

of the neutrino mass, for which detailed derivation can be
found in Appendix A.
Considering those one-loop corrections, the mass matrix

in Eq. (15) is rewritten as

Msum
ν ¼MνþZNν

δmνZT
Nν

¼
 
ðMLþδðmLÞÞ3×3 ðMDþδðmDÞÞ3×3
ðMDþδðmDÞÞT3×3 ðMRþδðmRÞÞ3×3

!
: ð21Þ

The matrix Msum
ν in Eq. (21) including the one-loop

corrections also has a seesaw structure. Similar to Eq. (19),
at one-loop level we obtain the corrected effective light
neutrino mass matrix in the following form [37]:

Meff
ν ≈ ðML þ δðmLÞÞ − ðMD þ δðmDÞÞ

· ðMR þ δðmRÞÞÞ−1 · ðMD þ δðmDÞÞT: ð22Þ

With the “top-down”method [5,43,44] shown inAppendixB,
we can diagonalize the effective neutrino mass matrix Meff

ν

and obtain three light neutrino masses, mixing angles with
neutrinos.
In the leading-order approximation, the effective

mass matrix of three light neutrinos is given by
Meff

ν ≈ ðMLþ δðmLÞÞ− ðMDþ δðmDÞÞ · ðMRþ δðmRÞÞÞ−1·
ðMDþ δðmDÞÞ. Either MD þ δðmDÞ or ðMD þ δðmDÞÞ ·
ðMR þ δðmRÞÞÞ−1 · ðMD þ δðmDÞÞ may dominate Meff

ν ,
but another possibility can be focused on: the smallness
of Meff

ν arises from a significant cancellation between
ML þ δðmLÞ and ðMD þ δðmDÞÞ · ðMR þ δðmRÞÞÞ−1 ·
ðMD þ δðmDÞÞ in the case ofOðMeff

ν Þ≪OðMLþδðmLÞÞ∼
OððMDþδðmDÞÞ ·ðMRþδðmRÞÞ−1 ·ðMDþδðmDÞÞÞ. The
tinyneutrinomasses imply that the relationOðMLþδðmLÞÞ∼
OððMDþδðmDÞÞ·ðMRþδðmRÞÞ−1 ·ðMDþδðmDÞÞÞ must
hold. It is the significant but incomplete cancellation bet-
ween ML þ δðmLÞ and ðMD þ δðmDÞÞ · ðMR þ δðmRÞÞ−1 ·
ðMD þ δðmDÞÞ terms that results in the nonvanishing but tiny
masses for three light neutrinos [45–47]. In this interesting

case, it will enhance the YL and YD terms in Eq. (16), which
affects the coupling of the neutrino to fermions and scalars.
Therefore, this will have an impact on the transition magnetic
moment and neutrinomass of theMajorana neutrinos that are
studied in this work. According to the above analysis, we
makeMtree

ν to give the tree-level neutrino mass and combine
the results given by the tree-level and the one-loop corrections
to give themass of the neutrino that satisfies the strict neutrino
experimental limit. Specific details will be discussed in the
numerical analysis IV.

III. NEUTRINO MAGNETIC MOMENT

The electric dipole moment (EDM) and magnetic dipole
moment (MDM) of the Dirac fermion (e.g., charged lepton,
neutrino, etc.) can be written as the operators

LEDM ¼ i
2
ϵijψ̄ iσ

μνγ5ψ jFμν;

LMDM ¼ 1

2
μijψ̄ iσ

μνψ jFμν; ð23Þ

where σμν ¼ i
2
½γμ; γν�, Fμν is the electromagnetic field

strength, ψ i;j is the four component Dirac fermions of
on shell, ϵij and μij are Dirac diagonal (i ¼ j) or transition
(i ≠ j) EDM and MDM between states ψ i and ψ j,
respectively.
To obtain the Dirac fermion EDM and MDM, we use the

effective Lagrangian method. The reason is that the masses
of internal lines are much greater than the masses of
external Dirac fermion in the TNMSSM, then it is more
convenient to employ the effective Lagrangian method to
calculate the contributions from loop diagrams to fermion
diagonal or transition EDM and MDM [48]. It is sufficient
to retain only the dimensional-6 operators in the later
calculations [49–52]:

OL;R
1 ¼ eψ̄ iði=DÞ3PL;Rψ j;

OL;R
2 ¼ eðiDμψ iÞγμF · σPL;Rψ j;

OL;R
3 ¼ eψ̄ iF · σγμPL;RðiDμψ jÞ;

OL;R
4 ¼ eψ̄ ið∂μFμνÞγνPL;Rψ j;

OL;R
5 ¼ emψ i

ψ̄ iði=DÞ2PL;Rψ j;

OL;R
6 ¼ emψ i

ψ̄ iF · σPL;Rψ j; ð24Þ

where Dμ ¼ ∂
μ þ ieAμ, PL ¼ 1

2
ð1 − γ5Þ, PR ¼ 1

2
ð1þ γ5Þ,

and mψ i
is the mass of fermion ψ i.

By describing the electromagnetic form factors of
Dirac and Majorana neutrinos in Ref. [53], one can obtain
the EDM and MDM for Majorana neutrinos of the
following form:

ϵMij ¼ ϵDij − ϵDji; μMij ¼ μDij − μDji; ð25Þ

ZHANG, YANG, ZHANG, and FENG PHYS. REV. D 110, 015035 (2024)

015035-4



with

ϵDij ¼ 4memνiℑ

�
CR
2 þmνj

mνi

CL�
2 þ CR

6

�
μB;

μDij ¼ 4memνiℜ

�
CR
2 þmνj

mνi

CL�
2 þ CR

6

�
μB; ð26Þ

νi and νj denote the Majorana neutrinos. In Eq. (25), the
first term is the Dirac neutrino like term representing the
EDM and MDM, and the second term −μDji and −ϵDji
represents the Dirac antineutrino like term for the EDM and

MDM, and the details of their derivation can be found
in Appendix C. It can be observed that μMij and ϵMij are
antisymmetric, so the EDM and MDM of the Majorana
neutrinos will not be diagonal, but there can have transition
EDM and MDM.
In the TNMSSM, the one-loop diagrams contributing

to the transition magnetic moment of the Majorana neu-
trinos are depicted the Fig. 1. The corresponding Wilson
coefficients can be written as

CL;R
2;6 ¼ CL;RðaÞ

2;6 þ CL;RðbÞ
2;6 þ CL;RðcÞ

2;6 þ CL;RðdÞ
2;6 : ð27Þ

Here the term CL;Rða;bÞ
2;6 represents the loop contributions

from Figs. 1(a) and 1(b):

CRðaÞ
2 ¼ 1

2m2
W
C
Wχβν̄i
R C

Wνjχ̄β
R

�
I1ðxχβ ; xWÞ− I4ðxχβ ; xWÞ

�
;

CRðaÞ
6 ¼ 2mχβ

m2
Wmνi

C
Wχβν̄i
L C

Wν
◯
j χ̄β

R

�
I3ðxχβ ; xWÞ− I1ðxχβ ; xWÞ

�
;

CRðbÞ
2 ¼ 1

2m2
W
C
Wχβν̄i
R C

Wνjχ̄β
R

�
I3ðxχβ ; xWÞ þ I4ðxχβ ; xWÞ

�
;

CRðbÞ
6 ¼ 2mχβ

m2
Wmνi

C
Wχβν̄i
L C

Wνj χ̄β
R

�
−I3ðxχβ ; xWÞ

�
;

CLða;bÞ
2;6 ¼ CRða;bÞ

2;6

���
L↔R

: ð28Þ

The concrete expressions Ikðk ¼ 1;…; 4Þ can be found in
Refs. [54,55], and xi ¼ m2

i =m
2
W with mi denoting the mass

of the corresponding particle.

The loop contributions from Figs. 1(c) and 1(d) can be written as

CRðcÞ
2 ¼ 1

4m2
W
C
S−�α χβν̄i
R C

S−α νjχ̄β
L

�
I4ðxχβ ; xS−α Þ − I3ðxχβ ; xS−α Þ

�
;

CRðcÞ
6 ¼ mχβ

2m2
Wmνi

C
S−�α χβν̄i
R C

S−α νj χ̄β
R

�
I3ðxχβ ; xS−α Þ − I1ðxχβ ; xS−α Þ

�
;

CRðdÞ
2 ¼ 1

4m2
W
C
S−�α χβν̄i
R C

S−α νjχ̄β
L

�
2I3ðxχβ ; xS−α Þ − I1ðxχβ ; xS−α Þ − I4ðxχβ ; xS−α Þ

�
;

CRðdÞ
6 ¼ mχβ

2m2
Wmνi

C
S−�α χβν̄i
R C

S−α νj χ̄β
R

�
I1ðxχβ ; xS−α Þ − I2ðxχβ ; xS−α Þ − I3ðxχβ ; xS−α Þ

�
;

CLðc;dÞ
2;6 ¼ CRðc;dÞ

2;6

���
L↔R

: ð29Þ

IV. THE NUMERICAL ANALYSES

In the calculation, we take the W boson mass mW ¼ 80.377 GeV, the Z boson mass mZ ¼ 90.188 GeV, the electron
mass me ¼ 0.511 MeV, αemðmZÞ ¼ 1=128.9 for the coupling of the electromagnetic interaction, and αsðmZÞ ¼ 0.118
for the coupling of the strong interaction. The constraint on the sum of neutrino masses

P
i mνi < 0.12 eV is

FIG. 1. One-loop diagrams contributing to the transition
magnetic moment of Majorana neutrinos in the TNMSSM, where
(a) and (b) are the charged fermion χβ and W-boson loop
contributions, and (c) and (d) are the charged fermion χβ and
charged scalar S−α loop contribution.
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considered [56,57]. So far the neutrino mass spectrum is
not fixed; both the NH neutrino masses mν1 < mν2 < mν3

and the IH neutrino masses mν3 < mν1 < mν2 are consid-
ered in the following analyses.
The measured mass of the Higgs boson is [57]

mh ¼ 125.25� 0.17 GeV: ð30Þ

For simplicity, we appropriately set M1 ¼ 500 GeV, for
those Higgsino parts. Limited on supersymmetric particle
masses from the Particle Data Group [57], we choose
M2 ≥ 300 GeV in the numerical calculations, assuming
that the mass parameter of slepton can be written as
mL̃ ¼ mẽ ¼ mν̃ ¼ diagðME;ME;MEÞ TeV. The LHC
experimentally excludes the case where the mass of
the slepton is less than 700 GeV, and here we make
ME ≳ 0.8 TeV [58–60].
The neutrino oscillation experimental data [57] and the

lightest CP-even Higgs boson mass constrain relevant
parameter space strongly. For convenience, we choose
the relevant parameters as default values below for numeri-
cal calculations to reduce the number of free parameters in
the model considered here:

tanβ¼3.4; λ¼0.5; λT ¼0.22 κ¼0.86;

χu¼0.1; χd¼1.2; AλT ¼Aλ¼1000GeV;

Aκ¼−1000GeV; Aχu ¼−850GeV; Aχd ¼−500GeV:

ð31Þ

The relevant couplings YR;ll and YD;ll are not free param-
eters. When the MRll

(l ¼ 1, 2, 3) is given, in combination
with Eqs. (13), (14), (16), and (22), we can replace YR;ll and
YD;ll with other relevant parameters. Therefore only the
coupling YL of the type-II seesaw mechanism needs to
be set. Generally, YL is assumed to be diagonal and takes
the form

YL ¼ diagðYee; Yμμ; YττÞ: ð32Þ

Yee is constrained strongly by the 0ν2β decay experiments
in the range Yee ≲ 0.04. For simplicity in the subsequent
analysis we set Yee ¼ Yμμ ¼ Yττ ¼ YLL. In addition,
a small VEV vT of T0 and vT̄ of T̄ are constrained by
the ρ parameter [57], so later we will set vTT̄ ¼ 0.001 GeV
to simplify the numerical evaluations.
For Majorana neutrinos, their transition magnetic

moments are on the order of 10−24μB [61,62]. These values
are much lower than the sensitivity of the present experi-
ments. Nonstandard interactions of the neutrinos can
lead to enhanced magnetic moments [63]. In the general
Standard Model extension, the left-handed Majorana neu-
trinos gain tiny masses through a type-I seesaw mechanism,
so YD tends to be relatively small, which will depress
the transition magnetic moments of Majorana neutrinos

[54,64,65]. However, in the TNMSSM, the type-Iþ II
seesaw mechanism is naturally present, which may provide
an opportunity to increase the neutrino’s interaction with
other particles. In this way, the transition magnetic moments
of Majorana neutrinos can be enhanced if the tiny neutrino
mass is obtained. According to the above analysis, the
contribution of Fig. 1 can enhance the transition magnetic
moment in the TNMSSM. The mixing parameters of the
light neutrinos with charged fermions and charged scalars
are not tiny under the type-Iþ II seesaw, and the right-
handed neutrino mass matrix MR also affects the numerical
results by influencing the mixing of the light neutrinos with
charged fermions and charged scalars. For simplicity and not
to lose general features, we assume there are no off-diagonal
elements in the matrix MR and the diagonal elements are all
degenerate, which means MR;11 ¼ MR;22 ¼ MR;33 ¼ MR in
Eq. (16). In the later analysis, we will set MR ¼ 100 GeV
and combine the tree-level with the one-loop results to give
the neutrino mass that satisfies the neutrino oscillation
experiment. The effect of one-loop corrections on neutrino
mass is analyzed by the following formula:

Cratio ¼
ðmν-lightest −mtree

ν−lightestÞ
mν−lightest

: ð33Þ

Heremν−lightest is the lightest neutrino mass of the NH and IH
neutrino masses, and mtree

ν−lightest is the lightest neutrino mass
of the tree level. Then the effect of one-loop correction
on neutrino mass can be reflected by Eq. (33).
We set mν−lightest ¼ 0.005 eV for NH and IH neutrino
masses, s212; s

2
13; s

2
23;Δm2

ν21 ; jΔm2
ν32 j with the center values.

In Fig. 2, we takeM2 ¼ 500 GeV, μ ¼ 650 GeV for NH
(a) and IH (b) neutrino masses. Then the ratio of one-loop
corrections versus YLL is plotted in Figs. 2(a) and 2(b),
where the solid, dotted, and dashed lines denote the results
of tan β0 ¼ 0.4, tan β0 ¼ 0.6, and tan β0 ¼ 0.8, respectively.
With the increase of YLL, the proportion of one-loop
corrections will also increase, and the proportion of one-
loop corrections will further increase with the increase of
tan β0. This is because YLL can influence YD through
Eqs. (16) and (19), which in turn affects the interaction
of neutrinos with fermions and scalar bosons. As for the
contribution of the one-loop corrections, when YLL
increases, YD should also increase accordingly, and the
contribution of one-loop corrections will become more
significant. In addition, when vTT̄ is fixed, vT will increase
with tan β0, which in turn will have an impact on YD
through Eqs. (16) and (19), which in turn will affect the
contribution of a one loop. So we can find that with the
increase of YLL and tan β0, the contribution of the one loop
becomes more significant.
In Fig. 3, we take μ ¼ 650 GeV, tan β0 ¼ 0.6 for NH (a)

and IH (b) neutrino masses. Then the ratio of one-loop
corrections versus M2 is plotted in Figs. 3(a) and 3(b),
where the solid, dotted, and dashed lines denote the results

ZHANG, YANG, ZHANG, and FENG PHYS. REV. D 110, 015035 (2024)

015035-6



of YLL ¼ 0.01, YLL ¼ 0.025, and YLL ¼ 0.04, respec-
tively. As M2 increases, the proportion of one-loop cor-
rections will decrease, and there will be a certain complex
correlation. This relationship is further amplified as YLL
increases. The soft breaking wino mass M2 influences the
neutralinos and chargino masses. The contribution of
neutralinos and chargino loop diagrams is an important
part of one-loop correction. As M2 increases, the neutra-
linos and chargino mass also increase, resulting in
some resonant effects from the one-loop contribution.

Therefore, it can be seen from Fig. 3 that fluctuations
occur with the change of M2. This is caused by the
interference effect between neutralino-sneutrino and
chargino-slepton loop diagrams.
In Fig. 4, we take M2 ¼ 500 GeV, YLL ¼ 0.04 for NH

(a) and IH (b) neutrino masses. Then the ratios of one-loop
corrections versus μ are plotted in Figs. 4(a) and 4(b),
where the solid, dotted, and dashed lines denote the results
of tan β0 ¼ 0.4, tan β0 ¼ 0.6, and tan β0 ¼ 0.8, respectively.
With the increase of μ, the proportion of one-loop
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FIG. 3. Cratio versus M2 are plotted for NH (a) and IH (b) neutrino masses, where the solid, dotted, and dashed lines represent
YLL ¼ 0.01, YLL ¼ 0.025, and YLL ¼ 0.04, respectively.

600 650 700 750 800

20

40

60

80

100

[Gev]

C
ra
tio
10
0

(a)
600 650 700 750 800

20

40

60

80

100

(b) [Gev]

C
ra
tio
10
0

FIG. 4. Cratio versus μ are plotted for NH (a) and IH (b) neutrino masses, where the solid, dotted, and dashed lines represent
tan β0 ¼ 0.4, tan β0 ¼ 0.6, and tan β0 ¼ 0.8, respectively.
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FIG. 2. Cratio versus YLL are plotted for NH (a) and IH (b) neutrino masses, where the solid, dotted, and dashed lines represent
tan β0 ¼ 0.4, tan β0 ¼ 0.6, and tan β0 ¼ 0.8, respectively.
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corrections will decrease. As tan β0 increases, the propor-
tion of one-loop corrections increases further. This is
because the μ term can influence vS through Eq. (14),
which in turn affects the mass of neutralinos, chargino,
sleptons, and charged Higgs, but changes in μ have a
greater effect on neutralino and chargino masses than other
particles. As μ increases, the mass of the associated
particles also increases, leading to the suppression of
the sneutrino-neutralino and the slepton-charginos loop-
diagram contribution. From Figs. 3 and 4, we can see that
the change in the mass of the neutralinos and charginos
greatly affects the proportion of the result of the one loop,
and perhaps there is a deeper connection between the
neutrinos and neutralinos and charginos.
Without losing generality, we set tan β0 ¼ 0.8 in later

analysis of the transition magnetic moments of Majorana

neutrinos. In combination with the results of one-loop
correction to the neutrino mass, we study the transition
magnetic moments of Majorana neutrinos within the range
allowed by the neutrino oscillation experiment. In Fig. 5,
we take μ ¼ 650 GeV, for NH (a)–(c) and IH (d)–(f)
neutrino masses, then plot the transition magnetic moment
versus M2 for left-handed Majorana neutrinos, assuming
that the neutrino mass spectrum with NH or IH. The solid,
dotted, and dashed lines represent YLL¼0.01, YLL¼0.025,
and YLL ¼ 0.04, respectively. Figures 5(a)–5(c)
[Figs. 5(d)–5(f)] represent jμM12j=μB, jμM13j=μB, and jμM23j=μB
results, respectively. We can find that the general trend on
the left-handed Majorana neutrino transition magnetic
moment decreases with increasing M2. Here the soft
breaking wino mass M2 influences the wino-like chargino
masses. As M2 increases, the wino-like chargino mass also
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FIG. 5. The transition magnetic moment versus M2 is plotted for NH (a)–(c) and IH (d)–(f) neutrino masses, where the solid, dotted,
and dashed lines represent YLL ¼ 0.01, YLL ¼ 0.025, and YLL ¼ 0.04, respectively. Here (a)–(c) [(d)–(f)] denote that jμM12j=μB,
jμM13j=μB, and jμM23j=μB, respectively, when the neutrino mass spectrum is NH (IH).
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increases, leading to suppression of the wino-like chargino
loop contribution. In addition, it is found that the general
trend of the transition magnetic moment of Majorana
neutrinos increases with YLL. Here YLL affects YD through
Eqs. (16) and (19). To obtain the tiny neutrino masses when
YLL increases the YD also increases. Both YLL and YD can
affect the interaction of neutrinos with fermions and
scalars. This is because large YLL and YD enhance the
couplings between neutrinos with fermions and scalars,
which give significant contributions to the transition
magnetic moment through the charged fermions and
charged scalars loop diagrams.
However, in Fig. 5 we can also see that the transition

magnetic moments of Majorana neutrinos may drop
sharply in certain parameter spaces. This is due to the fact
that the Majorana neutrino coincides with its antiparticle,
the Majorana neutrino transition magnetic moment μMij in
Eq. (25) contains the Dirac-neutrino-like term μDij and the
Dirac-antineutrino-like term −μDji. Considered the super-
symmetric particle loop contributions in the TNMSSM,
the Majorana neutrino transition magnetic moment may
have resonant absorption in some parameter space, which
originates from the interference between the Dirac-neutrino
class term and the Dirac-antineutrino class term.
Figure 5 shows that there are some differences between

the two different types of neutrino mass spectra, with the
NH changing more smoothly than the IH. Thus in the
future, with a more precise understanding of the transition
magnetic moments of Majorana neutrinos, it may be
possible to differentiate the hierarchy of the neutrino mass.
In Fig. 6, we take M2 ¼ 500 GeV, for NH (a)–(c) and

IH (d)–(f) neutrino masses. Then the transition magnetic
moment of Majorana neutrinos varies with μ assuming
neutrino mass spectrum with NH or IH, as jμM12j=μB [(a)
and (d)], jμM13j=μB [(b) and (e)] and jμM23j=μB [(c) and (f)],
respectively, where the solid, dotted, and dashed lines
denote the results of YLL ¼ 0.01, YLL ¼ 0.025, and
YLL ¼ 0.04, respectively. It can be found that within the
range given, the general trend of the transition magnetic
moment of Majorana neutrinos increases with the increase
of μ and with the increase of YLL. Here, when we fix λ and
MR, through Eq. (14), vS will also increase as μ increases,
which affects the mass of the charged Higgs, the mass
of the slepton, the wino-like chargino masses, and the
interaction of neutrinos with fermions and scalars YR.
Therefore, the change of μ will have a significant effect
on the transition magnetic moment of Majorana neutrinos.
However, YR should decrease as μ increases and the wino-
like chargino masses should increase which would suppress
the contribution of the loop diagram, but we did not see the
expected result. For the same reason as M2, the resonance
absorption phenomenon also occurs with the change of μ,
and in a given range, it just leaves the resonance absorption
point, so we can see that the transition magnetic moment
also increases with the increase of μ.

Recent results from XENONnT have pushed the labo-
ratory limit down to 6.3 × 10−12μB at the 90% C.L. [30].
The upper limit on solar neutrinos with an enhanced
transition magnetic moment is 6.3 × 10−12μB. For
Majorana neutrinos, the relation takes the form [66]

μ2solar ¼ jμ12j2c213 þ jμ13j2ðc213cos2θ̃ þ s213Þ
þ jμ23j2ðc213sin2θ̃ þ s213Þ: ð34Þ

Here μsolar represents the solar neutrinos transition mag-
netic moment. We take θ̃ ≃ θ12 approximately. In Fig. 7,
μ ¼ 650 GeV in NH (a) and IH (b), then plot
the transition magnetic moment of the solar neutrinos
versus M2. The solid, dashed, and dotted lines are the
results for YLL ¼ 0.01, YLL ¼ 0.025, and YLL ¼ 0.04,
respectively. The red solid line denotes the constraints
from the XENONnTexperiment. It is found that for smaller
values ofM2 and larger values of YLL, relatively large solar
neutrino transition magnetic moments can be obtained.
Since the μsolar is a combination of jμM12j=μB, jμM13j=μB, and
jμM23j=μB, there may be a resonance absorption of the solar
neutrino transition magnetic moments, which also origi-
nates from the interference between the Dirac-neutrino
class term and the Dirac-antineutrino class term. In addi-
tion, in Fig. 8, we take YLL ¼ 0.04 in NH (a) and IH (b),
then plot the transition magnetic moment of the solar
neutrinos versus μ. The solid, dashed, and dotted lines are
the results for M2 ¼ 300, M2 ¼ 500, and M2 ¼ 700 GeV,
respectively. μ can influence the couplings between neu-
trinos with fermions and scalars by influencing vS, and can
also influence the masses of particles including chargino,
charged Higgs, slepton, and others. Therefore, the change
of μ will have a significant effect on the solar neutrino
transition magnetic moment. We can see that with the
change of M2, the solar neutrino transition magnetic
moments also change accordingly. Compared with Fig. 6,
the resonance absorption point of μ moves with the change
of M2. When M2 ¼ 320 GeV and μ is greater than
750 GeV, the transition magnetic moment of the solar
neutrinos will exceed the limit given by the XENONnT
experiment. In addition, it can be found that when
M2 ¼ 700 GeV, it can be found that the solar neutrino
transition magnetic moments decrease correspondingly
with the increase of μ. This gives rise to the expected
phenomenon that large particle masses will depress the
contribution of the loop diagrams. Moreover, we can find
that the resonance absorption points are not the same for
different neutrino mass spectrum and, perhaps in the future,
we can indirectly give evidence to explain the neutrino
mass spectrum by in-depth study of the transition magnetic
moment. From Figs. 7 and 8, we can see that the transition
magnetic moments of solar neutrinos will exceed the limit
given by the XENONnT experiment in some parameter
space. This will further limit our parameter space, and

TRANSITION MAGNETIC MOMENT OF MAJORANA NEUTRINOS … PHYS. REV. D 110, 015035 (2024)

015035-9



300 400 500 600 700 800 900
10 17

10 15

10 13

10 11

(a) M2[Gev]
300 400 500 600 700 800 900

10 17

10 15

10 13

10 11

(b) M2[Gev]

FIG. 7. jμsolarj=μB versus M2 are plotted for NH (a) and IH (b) neutrino mass, where the solid, dashed, and dotted lines denote the
results of YLL ¼ 0.01, YLL ¼ 0.025, and YLL ¼ 0.04, respectively. The red solid line denotes the constraints from the XENONnT
experiment.

600 650 700 750 800
10 17

10 15

10 13

10 11

(a) [Gev]
600 650 700 750 800

10 17

10 15

10 13

10 11

(d) [Gev]

600 650 700 750 800
10 17

10 15

10 13

10 11

[Gev]
600 650 700 750 800

10 17

10 15

10 13

10 11

(e) [Gev]

600 650 700 750 800
10 17

10 15

10 13

10 11

(c) [Gev]
600 650 700 750 800

10 17

10 15

10 13

10 11

(f) [Gev]

(b)

FIG. 6. The transition magnetic moment versus μ are plotted for NH (a)–(c) and IH (d)–(f) neutrino masses, where the solid, dotted,
and dashed lines represent YLL ¼ 0.01, YLL ¼ 0.025, and YLL ¼ 0.04, respectively. Here (a)–(c) [(d)–(f)] denote that jμM12j=μB,
jμM13j=μB, and jμM23j=μB, respectively, when the neutrino mass spectrum is NH (IH).
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improve our understanding of the neutrino transition
magnetic moment, with better reference value for future
research. With the further development of experimental
physics, more stringent limits on the neutrinos transition
magnetic moment will be proposed, further limiting the
parameter space. Thus improving the understanding of
neutrino magnetic moments may indirectly improve the
understanding of the 0ν2β decay experiments and neutrino
mass generation mechanism, the hierarchy of neutrino mass
spectra, as well as the new physics [67].

V. CONCLUSIONS

In the paper, we take the next-to-minimal supersym-
metric Standard Model with triplets (TNMSSM) of new
physics models to study the transition magnetic moment of
Majorana neutrinos. The model gives three tiny Majorana
neutrino masses via the type-Iþ II seesaw mechanism.
The neutrino mass matrix of the tree level is given by the
type-Iþ II seesaw mechanism. Further, we use the on-shell
scheme to consider the effect of the one-loop corrections on
the tree-level neutrino mass matrix. Then the mass matrix
of neutrinos is given by combining the results of tree
level and one loop. Because of the nature of the
type-Iþ II seesaw mechanism, the smallness of
Meff

ν ≈ ðMLþ δðmLÞÞ− ðMDþ δðmDÞÞ · ðMRþ δðmRÞÞÞ−1 ·
ðMDþ δðmDÞÞ is attributed to a significant but incomplete
cancellation between ML þ δðmLÞ and ðMD þ δðmDÞÞ ·
ðMR þ δðmRÞÞÞ−1 · ðMD þ δðmDÞÞ terms. Applying the
effective Lagrangian method and on-shell scheme,
we investigate the transition magnetic moment of the
Majorana neutrino in the model. Under the constraints
of the current experimental data on neutrino physics and
some assumptions of parameter space, we consider the
mass spectrum of neutrinos with two possibilities, NH
neutrino masses and IH neutrino masses.
When the neutrino mass includes one-loop correction,

numerical results show that the effects of the one-loop
correction increase as the YLL increases, because they can

affect the interaction of neutrinos with fermions and scalar
boson neutrinos through the type-Iþ II seesaw mechanism,
which in turn affects the neutrino mass. Then we found that
the sneutrino-neutralino and the slepton-chargino diagram
made a significant contribution, perhaps indicating a deeper
connection between neutrino and neutralino and chargino.
The contribution of the one-loop correction decreases as the
mass of neutralinos and charginos increases. We adjust the
parameter space according to the neutrino experiment to
ensure that the neutrino mass given by the tree-level and
one-loop correction is within the range allowed by the
neutrino experiment. In addition, the numerical results
show that, when the supersymmetric particles are light
and the couplings between neutrinos with charged fermions
and charged scalars are large, the transition magnetic
moment of Majorana neutrinos in the TNMSSM can be
enhanced to Oð10−11μBÞ. The mass of the tiny neutrino is
in the range given by the neutrino oscillation experiment,
and at the same time, a large transition magnetic moment is
obtained. The masses of particles in the charged fermions
and charged scalar loop diagrams have significant effects
on the transition magnetic moment of the Majorana
neutrinos. Resonant absorption may occur in some param-
eter spaces due to interference between Dirac-like neutrino
terms and Dirac-like antineutrino terms. We compare the
calculated solar neutrino transition magnetic moments with
the latest XENONnT experimental results and find that the
results will exceed the XENONnT experimental limits in
some parameter spaces. This will further limit the current
parameter space, provide rich phenomenology, and may
have some reference value for future research. In addition,
the in-depth study of neutrino transition magnetic moments
may indirectly give evidence to explain the mass order of
neutrinos. This model is simple but phenomenologically
offers rich content for a solution to neutrino properties. A
deeper understanding of the Majorana neutrino transition
magnetic moment in the future may indirectly lead to a
further understanding of neutrino properties and the neu-
trino mass generation mechanisms as well as new physics.

600 650 700 750 800
10 17

10 15

10 13

10 11

(a) [Gev]
600 650 700 750 800

10 17

10 15

10 13

10 11

(b) [Gev]

FIG. 8. jμsolarj=μB versus μ are plotted for NH (a) and IH (b) neutrino mass, where the solid, dashed, and dotted lines denote the
results of M2 ¼ 300, M2 ¼ 500, and M2 ¼ 700 GeV, respectively. The red solid line denotes the constraints from the XENONnT
experiment.
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APPENDIX A: THE ONE-LOOP CORRECTIONS
TO THE NEUTRINO MASSES IN THE TNMSSM

In this section, we compute the one-loop corrections to
the neutrino masses in the TNMSSM. The general form of
the self-energy for νi0 − νj

0 can be written as [34]

ΣðkÞij ¼ cijmjω− þ dijmiωþ þ eij=kω− þ fij=kωþ: ðA1Þ

When the external leg of the self-energy is neutrino,
k2 ≪ m2

0 with m0 being the mass of the heaviest internal
particle and cij, dij, eij, and fij can be written as an
expansion of k2 [35]:

cij ¼ c0ij þ k2c1ij;

dij ¼ d0ij þ k2d1ij;

eij ¼ e0ij þ k2e1ij;

fij ¼ f0ij þ k2f1ij: ðA2Þ

Σij are renormalized by adding counterterms and the
renormalized ΣRen

ij are written as

ΣRen
ij ðkÞ
¼ ΣijðkÞ þ ðc�ijmjω− þ d�ijmiωþ þ e�ij=kω− þ f�ij=kωþÞ;

ðA3Þ

where the quantities with � are the counterparts. In the
on-shell renormalization scheme, it is determined by the
mass-shell conditions

ΣRen
ij ðkÞuiðkÞjk2¼m2

i
¼ 0;

ūjðkÞΣRen
ij ðkÞjk2¼m2

j
¼ 0; ðA4Þ

the solution can be written as

c�ij¼−c0ijþm2
i d

1
ijþm2

i e
1
ijþmimjf1ij;

d�ij¼−d0ijþm2
jc

1
ijþm2

je
1
ijþmimjf1ij;

e�ij¼−e0ij−m2
jc

1
ij−m2

i d
1
ij−ðm2

i þm2
jÞe1ij−mimjf1ij;

f�ij¼−f0ij−mimjc1ij−mimjd1ij−mimje1ij−ðm2
i þm2

jÞf1ij:
ðA5Þ

From Eqs. (A3) and (A5), the renormalized self-energy can
be written as

ΣRen
ij ðkÞ ¼ ðm2

i d
1
ij þm2

i e
1
ij þmimjf1ij þ c1ijk

2Þmjω− þ ðm2
jc

1
ij þm2

je
1
ij þmimjf1ij þ d1ijk

2Þmiωþ

þ ð−m2
jc

1
ij −m2

i d
1
ij − ðm2

i þm2
jÞe1ij −mimjf1ij þ e1ijk

2Þ=kω−

þ ð−mimjc1ij −mimjd1ij −mimje1ij − ðm2
i þm2

jÞe1ij þ f1ijk
2Þ=kωþ

¼ ð=k −mjÞΣ̂ijðkÞð=k −miÞ: ðA6Þ

In the final step, ΣRen
ij ðkÞ was written to make its on-shell behavior more obvious as

Σ̂ijðkÞ ¼ c1ijmjωþ þ d1ijmiω− þ e1ijðmiω− þmjωþ þ =kωþÞ þ f1ijðmiωþ þmjω− þ =kω−Þ: ðA7Þ

For convenience, some new symbols are introduced:

δZL
ij ¼ −m2

jc
1
ij −m2

i d
1
ij − ðm2

i þm2
jÞe1ij −mimjf1ij þ e1ijk

2;

δZR
ij ¼ −mimjc1ij −mimjd1ij −mimje1ij − ðm2

i þm2
jÞf1ij þ f1ijk

2;

δmL
ij ¼

�
m2

i d
1
ij þm2

i e
1
ij þmimjf1ij þ c1ijk

2
	
mj;

δmR
ij ¼

�
m2

jc
1
ij þm2

je
1
ij þmimjf1ij þ d1ijk

2
	
mi: ðA8Þ
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Up to one-loop order, the two-point Green function is

ΓijðkÞ ¼
�
=k −mtree

i

	
δij þ ΣRen

ij ðkÞ
¼ �=k −mtree

i

	
δij þ δZL

ij=kω− þ δZR
ij=kωþ − δmL

ijω− − δmR
ijωþ

¼ ðδij þ δZL
ijÞ
�
=k −mtree

i − δmL
ij þ δZL

ijm
tree
i

	
ω− þ ðδij þ δZR

ijÞ
�
=k −mtree

i − δmR
ij þ δZR

ijm
tree
j

	
ωþ; ðA9Þ

where δij þ δZL
ij is the renormalization multiplier for the left-handed wave function and δij þ δZR

ij is the renormalization
multiplier for the right-handed wave function.mtree

i is the mass of the ith generation of fermions at tree level. From Eq. (A9)
and the mass-shell conditions, the one-loop correction of the mass matrix elements is obtained as

δmloop
ij ¼ 
�δmL

ij þ δmR
ij

�
k2¼0

−
�
miδZL

ijjk2¼m2
i
þmjδZR

ijjk2¼m2
j

��
¼ 3mtree

i ðmtree
j Þ2c1ij þ ðmtree

i mtree
j þ ðmtree

i Þ2 þ ðmtree
j Þ2Þmtree

i d1ij

þ ððmtree
i Þ2mtree

j þ 3mtree
i ðmtree

j Þ2Þe1ij þ ð3ðmtree
i Þ2mtree

j þmtree
i ðmtree

j Þ2Þf1ij; ðA10Þ

in which δZL;R
ij , δmL;R

ij are defined in Eq. (A8). Equation (A10) is the key formula for calculating the one-loop corrections
for the mass matrix of neutrino.
The bosons exchanged in the one-loop self-energy diagrams can be vectors and scalars, and they correspond to different

integrals. The amplitudes for the case of exchanging the vector boson are

AmpVðkÞ ¼ ðμwÞ2ϵ
Z

dDQ
ð2πÞD ðiAðVÞ

σ1 γμωσ1Þ
ið=Qþ =kþmfÞ
ðQþ kÞ2 −m2

f

ðiBðVÞ
σ2 γμωσ2Þ

−i
Q2 −m2

V

¼ −
Z

1

0

dx
Z

dDQ
ð2πÞD

1

ðQ2 þ xð1 − xÞk2 − xm2
f − ð1 − xÞm2

VÞ2
n
ð2 −DÞAðVÞ

σ BðVÞ
σ ð1 − xÞ=kωσ þDmfA

ðVÞ
σ̄ BðVÞ

σ ωσ

o

¼ −i
Z

1

0

dx
Z

dDQ
ð2πÞD

1

ðQ2 þ xm2
f þ ð1 − xÞm2

VÞ2
�
1þ 2xð1 − xÞk2

Q2 þ xm2
f þ ð1 − xÞm2

V



×
n
ð2 −DÞAðVÞ

σ BðVÞ
σ ð1 − xÞ=kωσ þDmfA

ðVÞ
σ̄ BðVÞ

σ ωσ

o
; ðA11Þ

whereD ¼ 4 − 2ϵ and μw represents the renormalization scale. AðVÞ
σ ; BðVÞ

σ with σ ¼ � are the interaction vertices, which can
be obtained through SARAH.mV represents the mass of the vector boson that appears in the loop andmf is for the fermion
in the loop. By combining Eqs. (A1), (A2), and (A11), we get

c0ijðmV;mfÞ ¼ −iD
mf

mj
AðVÞ
þ BðVÞ

− F2aðmf;mVÞ;

d0ijðmV;mfÞ ¼ −iD
mf

mi
AðVÞ
− BðVÞ

þ F2aðmf;mVÞ;

e0ijðmV;mfÞ ¼ −ið2 −DÞAðVÞ
− BðVÞ

− F2bðmf;mVÞ;
f0ijðmV;mfÞ ¼ −ið2 −DÞAðVÞ

þ BðVÞ
þ F2bðmf;mVÞ;

c1ijðmV;mfÞ ¼ −i4
mf

mj
AðVÞ
þ BðVÞ

− F3aðmf;mVÞ;

d1ijðmV;mfÞ ¼ −i4
mf

mi
AðVÞ
− BðVÞ

þ F3aðmf;mVÞ;

e1ijðmV;mfÞ ¼ i2AðVÞ
− BðVÞ

− F3bðmf;mVÞ;
f1ijðmV;mfÞ ¼ i2AðVÞ

þ BðVÞ
þ F3bðmf;mVÞ: ðA12Þ

F2a; F2b; F3a, and F3b are the integrals over the internal momentum of the loop, and their explicit form is
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F2aðm1; m2Þ ¼ ðμwÞ2ϵ
Z

1

0

dx
Z

dDQ
ð2πÞD

1

ðQ2 þ xm2
1 þ ð1 − xÞm2

2Þ2

¼ 1

ð4πÞ2

8<
:1

ϵ
− γE þ

m2
1 ln

4πμ2w
m2

1

−m2
2 ln

4πμ2w
m2

2

m2
1 −m2

2

9=
;;

F2bðm1; m2Þ ¼ ðμwÞ2ϵ
Z

1

0

dx
Z

dDQ
ð2πÞD

1 − x
ðQ2 þ xm2

1 þ ð1 − xÞm2
2Þ2

¼ 1

2ð4πÞ2
�
1

ϵ
− γE þ m2

1 − 3m2
2

2ðm2
1 −m2

2Þ
þ 1

ðm2
1 −m2

2Þ2
�
m2

1ðm2
1 − 2m2

2Þ ln
4πμ2w
m2

1

þm2
2 ln

4πμ2w
m2

2

�
;

F3aðm1; m2Þ ¼ ðμwÞ2ϵ
Z

1

0

dx
Z

dDQ
ð2πÞD

2xð1 − xÞ
ðQ2 þ xm2

1 þ ð1 − xÞm2
2Þ3

¼ 1

ð4πÞ2
1

ðm2
1 −m2

2Þ3
�
−m2

1m
2
2 ln

m2
1

m2
2

þm4
1 −m4

2

2


;

F3bðm1; m2Þ ¼ ðμwÞ2ϵ
Z

1

0

dx
Z

dDQ
ð2πÞD

2xð1 − xÞ2
ðQ2 þ xm2

1 þ ð1 − xÞm2
2Þ3

¼ 1

ð4πÞ2
1

ðm2
1 −m2

2Þ4
�
1

3
m6

1 þ
1

6
m6

2 þ
1

2
m4

1m
2
2 −m2

1m
4
2 −m4

1m
2
2 ln

m2
1

m2
2


: ðA13Þ

For the case of exchanging scalar bosons, the amplitudes are derived in a similar way,

AmpSðkÞ¼ðμwÞ2ϵ
Z

dDQ
ð2πÞD ðiA

ðSÞ
σ1 ωσ1Þ

ið=Qþ=kþmfÞ
ðQþkÞ2−m2

f

ðiBðSÞ
σ2 ωσ2Þ

i
Q2−m2

S

¼ i
Z

1

0

dx
Z

dDQ
ð2πÞD

1

ðQ2þxm2
fþð1−xÞm2

SÞ2
�
1þ 2xð1−xÞk2

Q2þxm2
fþð1−xÞm2

S

n
AðSÞ
σ̄ BðSÞ

σ ð1−xÞ=kωσþmfA
ðSÞ
σ BðSÞ

σ ωσ

o
;

ðA14Þ

where AðSÞ
σ ; BðSÞ

σ with σ ¼ � are the interaction vertices,
which can also be obtained through SARAH.mS represents
the mass of the scalar boson that appears in the loop andmf

is for the fermion in the loop. From Eqs. (A1), (A2),
and (A14), we obtain

c0ijðmS;mfÞ ¼ i
mf

mj
AðSÞ
− BðSÞ

− F2aðmf;mSÞ;

d0ijðmS;mfÞ ¼ i
mf

mi
AðSÞ
þ BðSÞ

þ F2aðmf;mSÞ;

e0ijðmS;mfÞ ¼ iAðSÞ
þ BðSÞ

− F2bðmf;mSÞ;
f0ijðmV;mfÞ ¼ iAðSÞ

− BðSÞ
þ F2bðmf;mSÞ;

c1ijðmS;mfÞ ¼ i
mf

mj
AðSÞ
− BðSÞ

− F3aðmf;mSÞ;

d1ijðmS;mfÞ ¼ i
mf

mi
AðSÞ
þ BðSÞ

þ F3aðmf;mSÞ;

e1ijðmS;mfÞ ¼ iAðSÞ
þ BðSÞ

− F3bðmf;mSÞ;
f1ijðmV;mfÞ ¼ iAðSÞ

− BðSÞ
þ F3bðmf;mSÞ: ðA15Þ

In this work, the mixing of νi0 − νj
0 originates from the

following loop diagrams:
(i) The internal particles are Z ∼ gauge boson and

neutrinos ν0α (α ¼ 1; 2;…; 6).
(ii) The internal particles are W ∼ gauge boson and

charged leptons eα (α ¼ 1, 2, 3).
(iii) The internal particles are CP-even Higgs bosons H0

β
(β ¼ 1; 2;…; 5) and neutrinos ν0α (α ¼ 1; 2;…; 6).

(iv) The internal particles are CP-odd Higgs bosons A0
β

(β ¼ 1; 2;…; 5) and neutrinos ν0α (α ¼ 1; 2;…; 6).
(v) The internal particles are CP-even sneutrinos

ν̃Rβ (β ¼ 1; 2;…; 6) and neutralinos χ̃α (α ¼
1; 2;…; 7).

(vi) The internal particles are CP-odd sneutrinos
ν̃Iβ (β ¼ 1; 2;…; 6) and neutralinos χ̃α (α ¼
1; 2;…; 7).

(vii) The internal particles are charged Higgs bosons
Hþ

β (β ¼ 1; 2;…; 4) and charged leptons eα
(α ¼ 1, 2, 3).

(viii) The internal particles are slepton ẽβ (β ¼ 1; 2;…; 6)
and charginos χ−α (α ¼ 1, 2, 3).
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Then, the one-loop corrections to the neutrino mass matrix
elements can be obtained:

δm1−loop
νij ¼ δmðZ;ν0Þ

νij þ δmðW;e−Þ
νij þ δmðH0;ν0Þ

νij þ δmðA0;ν0Þ
νij

þ δmðν̃I ;χ̃Þ
νij þ δmðν̃R;χ̃Þ

νij þ δmðHþ;e−Þ
νij þ δmðẽ;χ−Þ

νij :

ðA16Þ

APPENDIX B: DIAGONALIZED THE EFFECTIVE
NEUTRINO MASS MATRIX

Using the top-down method [5,43,44] in the effective
mass matrix Meff

ν , we get the Hermitian matrix,

H ¼ ðMeff
ν Þ†Meff

ν : ðB1Þ

The eigenvalues of the 3 × 3 effective mass squared
matrix H are given as

m2
1 ¼

a
3
−
1

3
pðcosϕþ

ffiffiffi
3

p
sinϕÞ;

m2
2 ¼

a
3
−
1

3
pðcosϕ −

ffiffiffi
3

p
sinϕÞ;

m2
3 ¼

a
3
þ 2

3
p cosϕ: ðB2Þ

Here the concrete forms of the parameter in Eq. (B2) are
given:

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 3b

p
; ϕ ¼ 1

3
arccos

�
1

p3

�
a3 −

9

2
abþ 27

2
c

��
;

a ¼ TrðHÞ;
b ¼H11H22 þH11H33 þH22H33 −H2

12 −H2
13 −H2

23;

c ¼ DetðHÞ: ðB3Þ

For the three neutrino mixing, there are two possible
solutions on the neutrino mass spectrum. The normal
hierarchy (NH) spectrum is

mν1 < mν2 < mν3 ; m2
ν1 ¼ m2

1;

m2
ν2 ¼ m2

2; m2
ν3 ¼ m2

3;

Δm2
ν21 ¼ m2

ν2 −m2
ν1 ; Δm2

ν32 ¼ m2
ν3 −m2

ν2 ; ðB4Þ

and the inverted hierarchy (IH) spectrum is

mν3 < mν1 < mν2 ; m2
ν3 ¼ m2

1;

m2
ν1 ¼ m2

2; m2
ν2 ¼ m2

3;

Δm2
ν21 ¼ m2

ν2 −m2
ν1 ; Δm2

ν32 ¼ m2
ν2 −m2

ν3 : ðB5Þ

The orthogonal matrix Uν of H can be obtained from the
mass squared matrixH and the three eigenvalues [5,43,44].

The mixing angles between three tiny neutrinos can be
defined as follows:

sin θ13 ¼ jðUνÞ13j; cos θ13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jðUνÞ13j2

q
;

sin θ23 ¼
jðUνÞ23jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jðUνÞ13j2
p ; cos θ23 ¼

jðUνÞ33jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jðUνÞ13j2

p ;

sin θ12 ¼
jðUνÞ12jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jðUνÞ13j2
p ; cos θ12 ¼

jðUνÞ11jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jðUνÞ13j2

p :

ðB6Þ

APPENDIX C: THE DIRAC FERMIONS
EDM AND MDM

In fact, all dimensional-6 operators in (24) induce the
effective couplings among fermions and photons, and
the vertex containing an external photon can be
written as

OL;R
1 ¼ iefððpþ kÞ2 þ p2Þγρ þ ð=pþ =kÞγρ=pgPL;R;

OL;R
2 ¼ ieð=pþ =kÞ½=k; γρ�PL;R;

OL;R
3 ¼ ie½=k; γρ�=pPL;R;

OL;R
4 ¼ ieðk2γρ − =kkρÞPL;R;

OL;R
5 ¼ iemψ i

fð=pþ =kÞγρ þ γρ=pgPL;R;

OL;R
6 ¼ iemψ i

½=k; γρ�PL;R: ðC1Þ

When the full theory is invariant under the combined
transformations of charge conjugation, parity and time
reversal (CPT), then the induced effective theory maintains
symmetry after the heavy degrees of freedom are integrated
out. It implies that the Wilson coefficients of the operator
OL;R

2;3;6 satisfy the relation [49]

CL;R
3 ¼ CR;L�

2 ; CL
6 ¼ CR�

6 ; ðC2Þ

where CL;R
I (I ¼ 1…6) represents the Wilson coefficients

of the corresponding operator OL;R
I in the effective

Lagrangian. Applying the equations of motion to the
external fermions, one finds that the relevant terms in
the effective Lagrangian change as follows:

CR
2O

R
2 þCL

2O
L
2 þCL�

2 OR
3 þCR�

2 OL
3 þCR

6O
R
6 þCR�

6 OL
6

⇒

�
CR
2 þ

mψ j

mψ i

CL�
2 þCR

6

�
OR

6 þ
�
CR�
2 þmψj

mψ i

CL
2 þCR�

6

�
OL

6

¼emψ i
ℜ

�
CR
2 þ

mψ j

mψ i

CL�
2 þCR

6

�
ψ̄ iσ

μνψ jFμν

þiemψ i
ℑ

�
CR
2 þ

mψ j

mψ i

CL�
2 þCR

6

�
ψ̄ iσ

μνγ5ψ jFμν: ðC3Þ
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Where ℜð� � �Þ and ℑð� � �Þ represent the real and imaginary parts of the chosen complex number, respectively. Comparing
Eq. (23) and Eq. (C3), one can obtain

ϵij ¼ 4memψ i
ℑ

�
CR
2 þmψj

mψ i

CL�
2 þ CR

6

�
μB;

μij ¼ 4memψ i
ℜ

�
CR
2 þmψj

mψ i

CL�
2 þ CR

6

�
μB; ðC4Þ

where μB ¼ e
2me

and me is the electron mass. Equation (C4) indicates that the EDM and MDM of Dirac fermions are

proportional to the imaginary and real parts of the effective coupling CR
2 þ mψj

mψ i
CL�
2 þ CR

6 , respectively.
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