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The problem of fermion masses hierarchy in the Standard Model is considered on a toy model of a
10-dimensional space-time with a IIA supergravity type background. The Dirac equation written on this
background, after compactification of extra four- and one-dimensional subspaces, gives the spectrum of
Fermi fields which profiles in five dimensions and corresponding Higgs generated masses in four
dimensions depend on the eigenvalues of Dirac operator on the named compact subspaces. Schwarzschild
Euclidean deformation of the supergravity throat with the “apple-shaped” conical singularity permits to
leave only three nondivergent angular modes interpreted as three generations of the down-type quarks. The
resulting expressions for the quark masses are a geometry version of the Froggatt-Nielsen mechanism.
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I. INTRODUCTION

Models in warped extra dimensions are among the
popular trends aimed at resolving the Standar Model
(SM) fermions mass hierarchy enigma. In the works of
this approach, based upon the five-dimensional (5D)
Randall-Sundrum (RS) model [1], chiral SM fermions
“live” in the bulk, and their small masses mf in four
dimensions result from the overlaps of the fermionic bulk
wave functions and the Higgs field profile confined to the
IR end of the slice of the RS AdS5 background; see
reviews [2–4] and references therein. Then, the calculated
values of masses of quarks or leptons strongly depend on
the ratios cf ¼ Mf=k of bulk masses Mf of corresponding
Fermi fields to the curvature k of AdS5: mf ∼ ϵ2cf−1, where
ϵ ¼ 10−16 is the Planck-TeV hierarchy parameter. Thus, to
get the observed masses mf, the special choice of values of
parameters cf in the vicinity of 1=2 for every SM fermion is
demanded. This fine-tuning of fermion bulk masses is an
essential drawback of models [2–4]. We also pay attention
to Refs. [5] and [6], in which each Standard Model family
lives in its own slice of the 5D bulk separated by additional
3-branes and fermion masses in four dimensions essentially
depend on the choice of parameters of the model, and to
Ref. [7], in which fermions bulk masses are dynamically

generated through fermions interaction with the bulk scalar
field, but again bulk Yukawa coupling constants of this
interaction are fine tuned for every SM fermion.
In the present paper, the Dirac equation with zero bulk

mass on a 10-dimensional background is considered where
profiles of Fermi fields in the 5D space-time remaining
after compactification of (4þ 1) extra dimensions are

determined by eigenvalues Kð4Þ
l of Dirac operator on

compact subspace Kð4Þ and by the angular momentum q
with respect to the warped S1 dimension. In this way, the
present paper generalizes the approach of Refs. [8–11], in
which the named angular momentum numbers the fermion
generations and three fermion families arise from a single
Fermi field in six dimensions. In the 6D model of Ref. [10],
three fermion generations originate thanks to the introduced
codimension-2 brane and corresponding “apple-shaped”
conical singularity of the extra two-dimensional sphere.
We use the same trick at the point of the Schwarzschild
Euclidean “horizon” of the supergravity throat.
Beginning from Witten’s seminal work [12], it is known

that the chiral fermions of SM cannot be obtained from
Dirac equation on D-dimensional space M4 × ΣD−4 purely
from the metric and spin connection on compact extra
space ΣD−4. For the Dirac operator on extra space to have
physically necessary zero modes the topologically non-
trivial background gauge fields must be introduced, as it is
done, for example, in Refs. [13–15]. However, Witten’s
no-go theorem was formulated for the direct product of
M4ðxÞ and compact extra space ΣD−4ðyÞ, whereas we are
considering what is typical for the RS-type models non-
factorizable warped geometries of type AðyÞM4ðxÞ ×
ΣD−4ðyÞ where the nonzero eigenvalues of the extra space

*Contact author: baltshuler@yandex.ru, altshul@lpi.ru

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 015033 (2024)

2470-0010=2024=110(1)=015033(9) 015033-1 Published by the American Physical Society

https://orcid.org/0000-0002-3949-869X
https://ror.org/01jkd3546
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.015033&domain=pdf&date_stamp=2024-07-30
https://doi.org/10.1103/PhysRevD.110.015033
https://doi.org/10.1103/PhysRevD.110.015033
https://doi.org/10.1103/PhysRevD.110.015033
https://doi.org/10.1103/PhysRevD.110.015033
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Dirac operator play the role similar to the bulk fermion
masses in lower dimensions; that is, they, as it will be
shown below, determine the bulk profiles of Fermi fields
and do not prevent the appearance of chiral fermions in four
dimensions.
The picture considered in this paper is a toy model that

ignores the SUð3Þ × SUð2Þ ×Uð1Þ group nature of the
Standard Model and the left-right asymmetry of its Weyl
fermions (see the discussion in the Conclusion). We also
consider only the down-type quarks (d, s, b) that differ in
Uð1Þ charge associated with the rotational symmetry
around the brane. Thus, the results of this paper are in a
sense complementary to approach of Ref. [13], in which
only a single generation of the Standard Model spectrum is
considered in a high-dimensional model incorporating the
full group nature of Standard Model and four types of the
SM fermions.

II. TEN-DIMENSIONAL BACKGROUND

Let us begin with the action SðDÞ in D dimensions for
gravity described by metric gAB (A;B ¼ 0; 1; 2…ðD − 1Þ),
for scalar field ϕ, n-form FðnÞi1i2…in and with Λ term, FðnÞ
and Λ interacting with ϕ:

SðDÞ ¼ MD−2
ðDÞ

Z �
RðDÞ −

1

2
ð∇ϕÞ2 − eαϕ

2n!
F2
ðnÞ − 2Λe− α

n−1ϕ

�

×
ffiffiffiffiffiffiffiffiffiffiffi
−gðDÞ

q
dDx; ð1Þ

where MðDÞ and RðDÞ are Planck mass and scalar curvature
in D dimensions. Following Ref. [16], we postulate the
invariance of the action (1) under the simultaneous scale
transformation gAB → e2λgAB, ϕ → ϕþ ð2ðn − 1Þ=αÞλ,
MðDÞ → e−λMðDÞ (λ ¼ const); this gives the coupling con-
stant of ϕ in the Λ term in (1). This action is a modified
and reduced version of the written in Einstein frame
bosonic part of the action of IIA supergravity (where
D ¼ 10, n ¼ 4, α ¼ 1=2, Λ ¼ 0, but plus to 4-form there
are nonzero 2- and 3-forms and Chern-Simons term LSC
(see Ref. [17]):

Sð10ÞIIA ¼ M8
ð10Þ

Z �
Rð8Þ −

1

2
ð∇ϕÞ2 − eϕ=2

24!
F2
ð4Þ −

e−ϕ

23!
F2
ð3Þ

−
e3ϕ=2

22!
F2
ð2Þ þ LCS

� ffiffiffiffiffiffiffiffiffiffiffiffi
−gð10Þ

q
d10x: ð2Þ

And in general, exponent α in (1) is not arbitrary in the
supergravity and string theories but depends on the num-
bers of compactified and noncompactified dimensionalities
and order of the n-form; see the recent review [18]. The
dynamical equations following from action (1) admit the
long-time-known [16,19–24] p-brane (fluxbrane) throat-
like solution which also permits the Schwarzschild-type

Euclidean modification. This solution looks deep into the
throat as

ds2ðDÞ ¼
�
r
L

�
2βðn−1Þ�

ημνdxμdxν þUðrÞ
�
Tθ

2π

�
2

dθ2
�

þ
�
L
r

�
2ξðn−1Þ� dr2

UðrÞ þ δ2r2dΩ2
ðnÞ

�
; ð3Þ

eϕ ¼ eϕ0

�
r
L

�2αðn−1Þ
Δ

; FðnÞ ¼ QðnÞdy1 ∧ … ∧ dyn;

UðrÞ ¼ 1 −
�
rSch
r

�
n−1

; ð4Þ

where ημν is the most plus metric of the p-dimensional
Minkowski space-time MðpÞ; μ; ν ¼ 0; 1;…ðp − 1Þ; Tθ is
the period of compact coordinate S1 (0 < θ < 2π); r is
the isotropic coordinate along the throat; dΩ2

ðnÞ is the

volume element on sphere Sn of unit radius, yi are angles
of this sphere (i ¼ 1; 2;…n); and length L and dimension-
less constant δ are expressed through QðnÞ, eϕ0 , Λ;
D ¼ pþ nþ 2,

β ¼ 2ðn − 1Þ
ðpþ nÞΔ ; ξ ¼ 2ðpþ 1Þ

ðpþ nÞΔ ;

Δ ¼ α2 þ 2ðpþ 1Þðn − 1Þ
pþ n

: ð5Þ

In metric (3) δ ¼ 1, if Λ ¼ 0 in action (1), nonzero
Λ-term in (1) results in δ ≠ 1; thus, δ is a free parameter of
the considered model, and its physical meaning is clari-
fied below.
Introduction of the imaginary periodic “time” (reverse

temperature) is a standard tool when temperature effects in
gravity are studied. The Schwarzschild type Euclidean
deformation of the 4-brane metric (“4-soliton”) was first
introduced in IIA supergravity in Refs. [25] and [26] and is
used in particular in the Witten-Sakai-Sugimoto model of
holographic QCD; see, e.g., Refs. [27] and [28], in which
metric (3) [with account of (4) and (5)] is written down in
the string frame for the IIA supergravity values of param-
eters given in action (2).
But we shall use solution (3) in another way. Our goal is

to study Dirac equation on the background (3). Let us
perform the coordinate transformation

r ∼ z−q;

q ¼ Δ
2ðn − 1Þ − Δ

¼ 2ðn − 1Þðpþ 1Þ þ ðpþ nÞα2
2ðn − 1Þ2 − ðpþ nÞα2 ; ð6Þ

which takes metric (3) to the Poincare-like form convenient
for writing down the Dirac equation on this background,
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ds2ðDÞ ¼
1

ðkzÞ2s
�
ημνdxμdxν þ UðzÞ

�
Tθ

2π

�
2

dθ2

þ dz2

UðzÞ þ κ2z2dΩ2
ðnÞ

�
; ð7Þ

where

UðzÞ ¼ 1 −
�

z
zIR

�
γ

; s ¼ 2ðn − 1Þ2
2ðn − 1Þ2 − ðpþ nÞα2 ;

γ ¼ ðn − 1Þq; κ ¼ δ

q
; ð8Þ

and q is given in (6). We note that for α ¼ 0 in action
(1) metric (7) describes the Schwarzschild deformed
AdSD−n × Sn space-time where κ is the ratio of radius of
Sn to radius k−1 of AdSD−n.
k and zIR in (7) and (8) are simply expressed through L

and rSch in (3) and (4), and there is no need to put down
these expressions since in what follows only background
(7) and (8) will be used.
To determine finally the background, it is necessary to

match zIR and Tθ. Following Refs. [19–24], we change
coordinate z in (7) and (8) to τ,

z ¼ zIR

�
1 −

γ

4

�
τ

zIR

�
2
�
. ð9Þ

This coordinate transformation gives in vicinity of zIR,
ðzIR − zÞ ≪ zIR, the following expressions for metric (7)
and for U (8),

ds2ðDÞ ¼
1

ðkzIRÞ2s
	
ημνdxμdxνþη2τ2dθ2þdτ2þκ2z2IRdΩ2

ðnÞ


;

ð10Þ

where

η ¼ γ ·
Tθ

4πzIR
; U ¼ γ2

4

�
τ

zIR

�
2

: ð11Þ

For η ¼ 1, we have the smooth IR end of the IR throat, like
was supposed, for example, in Refs. [25–28]. For η ≠ 1,
there is conical singularity with the codimension-2 IR plane
at this point. As was shown in Ref. [10] in the 6D model, in
case 2 < η < 4, there are three fermion generations corre-
sponding to three permitted quantum numbers along the
angular θ coordinate. The same will happen in our model;
see Sec. IV.
Throat (7) is terminated at its IR end at z ¼ zIR.

According to the conventional Randall-Sundrum approach,
we limit the throat (7) also from below with the codimen-
sion-1 Planck UV brane located at z ¼ zUV ¼ 1=k so that

zUV ¼ 1

k
≤ z ≤ zIR: ð12Þ

Again, according to the familiar Randall-Sundrum
approach, the Planck-TeV hierarchy (ϵ ¼ 10−16) is equal
to the ratio of warp factors at the UV and IR ends of the
throat; for metric (7), this means

ϵ ¼ 10−16 ¼
�
zUV
zIR

�
s
¼ ðkzIRÞ−s: ð13Þ

To conclude this section, a few remarks are in order
about UV and IR branes named above. At the UV end
components of the extrinsic curvature (equal to the loga-
rithmic derivatives over z of scale factors of subspaces
MðpÞ, S1 and Sn of metric (7)), and also derivative of scalar
field ϕðzÞ are nonzero. Hence, Z2 symmetry and the
corresponding Israel junction conditions on the codimen-
sion-1 Planck braneMðpÞ ⊗ S1 ⊗ Sn demand anisotropy of
the UV-brane energy-momentum tensor. It is always
possible to introduce the local surface action of the UV-
brane possessing the necessary anisotropy of the UV-brane
energy-momentum tensor. A more detailed discussion of
this topic is beyond the scope of the present paper.
The case of the codimension-2 braneMðpÞ ⊗ Sn at the IR

end of the throat (7) is theoretically less trivial [29–33],
while in our case, it is technically more simple since there
are no discontinuities on the brane in the extrinsic curva-
tures of brane’s subspaces and in the derivative of scalar
field, which is evident if metric (7) is considered near
z ¼ zIR in the form (10). This, in turn, means that the
action of the codimension-2 IR brane cannot depend on the
field ϕ and is of the isotropic Nambu-Goto type SbrIR ¼
−MD−2

ðDÞ
H
σ

ffiffiffiffiffiffi
−h

p
dD−2x, where h is determinant of the

induced metric and σ is the dimensionless brane’s tension.
Then, nonzero components of the brane’s energy-momen-
tum tensor are equal to Tbrν

μ ∼ σδνμ, Tbri
k ∼ σδik and Tbr ∼

ðD − 2Þσ (Tbr is the trace of the brane’s energy-momentum
tensor). Although components Tbr

AB are proportional to delta
function fixing the position of IR brane [δðτÞ=½2π ffiffiffiffiffiffiffiffiffiffiffiffi

gττgθθ
p �

for metric (10)], the components ðμνÞ and ðikÞ of the rhs of
the Einstein equations written in the form MD−2

ðDÞ R
ðDÞ
AB ¼

Tbr
AB − 1

D−2 gABT
br identically vanish for the codimension-2

brane. Hence, there is no delta function in the components
Rμ
ν and Ri

k of the Ricci tensor and, as expected, no
discontinuity in corresponding extrinsic curvatures.
On the other hand, the scaling factor before the S1

subspace of metric (10) is singular at τ ¼ 0, and its
logarithmic derivative is equal to 1=τ. The terms of the
θθ component of the Einstein equations that include the
delta function δðτÞ give the known relation between brane
tension and angle deficit factor: σ ¼ 2πð1 − ηÞ [29–33].
Hence, the choice of arbitrary parameter η (11) of the model
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is equivalent to the choice of the IR-brane dimensionless
tension σ.
As it was noted above and will be proved in Sec. IV to have

three fermion generations, we must have 2 < η < 4; that is,
tension σ must be negative. A negative-tension IR brane is
quite common in the RS-type models. More generally,
surfaces with negative tension are called in the literature
not p-branes but O-planes or orientifolds in the literature;
see Appendix in Ref. [18] or review [34].

III. DIRAC EQUATION

From now on, we will limit ourselves to the dimension-
alities of IIA supergravity D ¼ 10, p ¼ 4, n ¼ 4, leaving
the α exponent arbitrary for now. The Dirac equation with
zero bulk mass in ten dimensions follows from the action

SΨ ¼
Z

Ψ̄ð32ÞΓ̃ADAΨð32Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
−gð10Þ

p
d10x; ð14Þ

where Γ̃A are 32 × 32 gamma matrices in curved
10-dimensional space-time and DA are covariant deriva-
tives with account of spin connection. We first write down
the Dirac equation for the general metric of type (7),

ds2ð10Þ ¼ b2ðzÞημνdxμdxν þ P2ðzÞdθ2

þ N2ðzÞdz2 þ a2ðzÞdΩ2
ð4Þ ð15Þ

(μ, ν ¼ 0, 1, 2, 3), making the following choice of flat
anticommuting ΓA (cf. Refs. [35] and [36]):

Γμ ¼ γμ ⊗ σ1 ⊗ I4; Γz ¼ γ5 ⊗ σ1 ⊗ I4;

Γθ ¼ I4 ⊗ σ2 ⊗ τ5; Γi ¼ I4 ⊗ σ2 ⊗ τi; ð16Þ

where γμ are ordinary gamma matrices in Minkowski
space-time, τi are the same on S4, γ5 ¼ iγ0γ1γ2γ3,
τ5 ¼ τ1τ2τ3τ4, σ1;2 are Pauli matrices, and I4 is 4 × 4 unit
matrix. The Corresponding Dirac equation on space-time
(15) looks as (prime means derivative over z):

�
1

b
Γμ ∂

∂xμ
þ 1

N
Γz

�
∂

∂z
þ 2

b0

b
þ 1

2

P0

P
þ 2

a0

a

�

þ 1

P
Γθ ∂

∂θ
þ 1

a
Γi∇i

�
Ψð32Þ ¼ 0: ð17Þ

The 32-component spinor may be presented as a decom-

position of 8-component spinors ΨðlÞ
ð8Þ in six-dimensional

space-time fxμ; θ; zg and some eigenfunctions χðlÞðyiÞ of
Dirac operator Γi∇i on sphere S4 of unit radius:

Ψð32Þ ¼ ΣðlÞΨ
ðlÞ
ð8Þðxμ;θ; zÞ · χðlÞðyiÞ; Γi∇iχðlÞ ¼ iKð4Þ

l χðlÞ;

Kð4Þ
l ¼�ðlþ 2Þ; ð18Þ

where (l) enumerates main eigenvalues of Dirac operator
on S4 and sets of azimuthal numbers (on sphere Sn,

these main eigenvalues are KðnÞ
l ¼ �ðlþ n=2Þ, l ¼

0; 1; 2… [37]). The 8-component spinor is, in turn, a
couple of 4-component spinors (�), each of them consist-
ing of right and left Weyl 2-spinors. Thus, for definite
eigenvalue of the Dirac operator on S4 and definite angular
mode q on S1 (q ¼ 0; 1; 2…),

Ψðl;qÞ
ð8Þ ¼

0
BBBB@

ψþ
R ðxÞFþ

R ðzÞ
ψþ
L ðxÞFþ

L ðzÞ
ψ−
RðxÞF−

RðzÞ
ψ−
LðxÞF−

LðzÞ

1
CCCCA ·

eiqθ

b2P
1
2a2

; ð19Þ

here and below we omit the indices ðl; qÞ of ψ�
R;L and

profiles F�
R;L.

From the Dirac equations ðγμ∂μ −m�Þψ�ðxÞ ¼ 0 for
4-spinors ψ� ¼ ψ�

R þ ψ�
L (m� are the fermion masses

in four dimensions), and with account of (18) and (19),
Dirac equation (17) comes to four equations for
profiles F�

R;L:

8><
>:

�
1
N

d
dz þ q

P þ
Kð4Þ

l
a

�
F−
R − m−

b F−
L ¼ 0;

�
1
N

d
dz −

q
P −

Kð4Þ
l
a

�
F−
L þ m−

b F−
R ¼ 0;

ð20Þ

8><
>:

�
1
N

d
dz −

q
P −

Kð4Þ
l
a

�
Fþ
R − mþ

b Fþ
L ¼ 0;

�
1
N

d
dz þ q

P þ
Kð4Þ

l
a

�
Fþ
L þ mþ

b Fþ
R ¼ 0:

ð21Þ

We note that equations for (þ) and (−) components of 6D
eight-spinor separate thanks to the choice (16) of higher-
dimensional gamma matrices.
Finally, taking the scale factors bðzÞ, PðzÞ, NðzÞ, and

aðzÞ from comparison of metrics (15) and (7) (for the
specific values of dimensionalities in (6)–(8) named in the
beginning of this section), multiplying Eqs. (18) and (19)
by N, defining constants cl which are analogous to cf ¼
Mbulk

f =k in 5D models of Refs. [2–4], and passing to
dimensionless quantities t, μ�,

t ¼ 2πz
Tθ

;
γ

2η
ϵ
1
s ¼ tUV < t < tIR ¼ γ

2η
;

μ� ¼ Tθ

2π
·m�; cl ¼

Kð4Þ
l

κ
ð22Þ

[the lower and upper limits for the variable t are determined
from (12) and (13), ϵ ¼ 10−16], we obtain from (20) the
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following system of equations for the profiles F−
R;LðtÞ:

8><
>:

�
d
dt þ q

U þ cl
t
ffiffiffi
U

p
�
F−
R − μ−ffiffiffi

U
p F−

L ¼ 0; U ¼ 1 −


2ηt
γ

�
γ

�
d
dt −

q
U − cl

t
ffiffiffi
U

p
�
F−
L þ μ−ffiffiffi

U
p F−

R ¼ 0; γ ¼ 3ð15þ4α2Þ
9−4α2

:

ð23Þ

Equation (21) for Fþ
R;L take a similar form with corre-

sponding changes in the signs of various terms. It is
important to note that profiles of zero modes of F−

R, F
þ
L

and of F−
L, F

þ
R coincide, which is easily seen from (20)

and (21) in case m� ¼ 0; this will be used in Sec. V.
It is known that the Hermiticity of Dirac operators in (20)

[or (23)] requires the fulfillment of the boundary condi-
tions (BCs):

F−
LðzUVÞF−

RðzUVÞ ¼ F−
LðzIRÞF−

RðzIRÞ ¼ 0: ð24Þ

System (23), taking into account (22) and BC (24), is our
main tool. In Sec. V, we shall analyze its chiral zero modes,
when μ− ¼ 0. But it is interesting to note that for U ¼ 1
in (23) in the general case of nonchiral fermions, μ− ≠ 0,
second-order equation that follows from (23) formally
coincide with the nonrelativistic Schrodinger equation for
the wave function of an electron moving in a Coulomb
field, where cl in (23) play the role of the electron’s orbital
momentum. Thus, the solutions of these Equations are
well known, and their spectra may be easily found.
Unfortunately, the physical interpretation of these solutions
and spectra, including from the point of view of the
Standard Model, and the amazing parallel with nonrela-
tivistic quantum mechanics remain vague. Therefore, we
decided not to include these results in this paper.

IV. THREE GENERATIONS FROM
ONE FERMI FIELD

The coefficient in action (14) at the kinetic term in four
dimensions ψ̄γμ∂μψ must be equal to 1 for each mode q, l,
� and separately for R and LWeyl components. Thus, with
account of ffiffiffiffiffiffiffiffiffigð10Þ

p ¼ b4PNa4 [we again use generic metric
(15)], Ψ2

ð8Þ∼ðb4Pa4Þ−1 [see (19)],
R
χ̄lχl0dΩð4Þ ¼δll0 ,

and
R
eiðq−q0Þθdθ ¼ 2πδqq0 , the following normalization

condition of functions F�
R;LðzÞ must be satisfied:

2π

Z
zIR

zUV

N
b
ðF�

R;LÞ2dz ¼ 2π

Z
zIR

zUV

1ffiffiffiffi
U

p ðF�
R;LÞ2dz ¼ 1: ð25Þ

Transforming in this integral and in Eqs. (20) and (21)
coordinating z → τ like in (9) and taking into account
that near the IR end of the throat FR;L ∼ τ�q=η [see (20)
and (21)] and dz=

ffiffiffiffi
U

p
∼ dτ [the expression for U is given

in (11)], we see that finiteness of integral (25) demands

Z
0

τ�
2q
η dτ < ∞: ð26Þ

For the smooth IR end (η ¼ 1) of metric (7) or (10), this
integral is nondivergent only for one mode, q ¼ 0. In case

2 < η < 4; ð27Þ

integral (26) is finite for three modes (three fermion
generations) q ¼ 0;�1; hence, for these three modes,
kinetic terms in four dimensions may be normalized to 1.
Whereas for modes with divergent integral (26) this is
impossible, such modes fall out of the spectrum of
observable physical fields in Kaluza-Kline–type theories.
Thus, we reproduce here the result of Ref. [10],

not for the extra 2-sphere as a background but for the
Schwarzschild deformed supergravity background (7)
and (8). Below, it is shown that ratios of fermion masses
also depend on parameter η. Inequalities (27) mean also that
dimensionless tension σ of the codimension-2 O-plane
limiting the IR end of the throat (7) or (10) must be in the
range −6π < σ < −2π; see comments at the end of Sec. II.

V. HIGGS MECHANISM AND ZERO
MODES PROFILES

For m� ¼ 0 in Eqs. (20) and (21), or equivalently
μ− ¼ 0 in Eq. (23) for F−

R:LðtÞ and μþ ¼ 0 in similar
equations for Fþ

R;LðtÞ, and for U ¼ 1 in these equations, we
have four zero modes profiles:

F−
R ¼ C−

Re
−qtt−cl ; F−

L ¼ C−
Le

qttcl ;

Fþ
R ¼ Cþ

Re
qttcl ; Fþ

L ¼ Cþ
Le

−qtt−cl : ð28Þ

Since the Higgs field is located on or near the IR brane,
small fermion masses are acquired by the fields which
profiles have minimum at the IR end and maximum at the
other—UVend of the throat where t ≪ 1 [see definition of
t in (22)]. Thus, out of four solutions (28), two proportional
to t−cl must be left (we remind the reader that cl > 1=2),
while C−

L and Cþ
R are set equal to zero, which, in turn,

ensures the fulfillment of the boundary conditions (24).
Nonzero constants C−

R and Cþ
L are equal to each other

and are determined from the normalization integral (25),
which, being rewritten through variable t (22), for
U ¼ 1, and after substitution nonzero profiles (28),
takes the form (C is any of two named constants)
C2Tθ

R tIR
tUV e

−2qtt−2cldt ¼ 1. Since the main contribution to
this integral comes from small twhere the qt ≪ 1 exponent
in the integrand can be ignored (approximation U ¼ 1 is
also justified because of it) and neglecting the small
contribution from the upper limit of integration, we come
to the normalization condition
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ðC−
RÞ2 ¼ ðCþ

L Þ2 ¼
2πð2cl − 1Þ

Tθ
t2cl−1UV ; ð29Þ

which dependence on cl is familiar to the similar conditions
in 5D models [2–4].
The conventional way to introduce the SM Yukawa

interactions is to add to spinor action (14) the Higgs field
mass term,

SH ¼
Z

Ψ̄ð32ÞHΨð32Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
−gð10Þ

p
d10x; ð30Þ

where the vacuum average of the Higgs field hHi lives in
the vicinity or at the IR end of the throat. After substitution
here, expressions for Ψð32Þ from (18) and (19) and inte-
gration over extra coordinates with the assumption that
Higgs field does not depend on θ and yi, the nonzero
diagonal in the l, qmass terms of the fermion action in four

dimensions Sðl;qÞm ¼ R
ψ̄ ðl;qÞml;qψ

ðl;qÞd4x is obtained for
every component ðl; qÞ of the high-dimensional spinor
Ψð32Þ, where

ml;q ¼ 2π

Z
F−ðl;qÞ
R Fþðl;qÞ

L hHiNdz; ð31Þ

N is the lapse function in metric (15) or (7).
It makes sense to note that, in contrast to the Dirac

equation (17), where due to the choice of gamma
matrices (16) the equations for two 4-components of the
8-component spinor (19) are separated [see (20) and (21)],
the mass Higgs term of the action (30) entangles these
�4-spinors, providing the necessary product of right and
left Weyl spinors—like in (31). We believe that this is an
important advantage of the model under consideration,
since, for example, in the 5D models [2–4], right and left
spinors are introduced independently and are quite arbi-
trarily combined into the Higgs terms of the Lagrangian,
giving Yukawa interactions. On the emergence of left-right
group asymmetry of the Standard Model Weyl fermions in
theories with a big fermion multiplets, see the discussion in
the Conclusion.
Finally, under the assumption hHi ¼ Yδðz − zIRÞ=N

(Y is a dimensionless Yukawa coupling constant), writing
down from (28) and (29) expressions for F−

RðtIRÞ and
Fþ
L ðtIRÞ, taking into account the relationships (11) and (22)

between Tθ, zIR, and tIR ¼ γ=2η, we get from (31)

ml;q ¼ Y
2cl − 1

zIR

�
zUV
zIR

�
2cl−1

e−q·
γ
η: ð32Þ

In this paper, three generations of one type of Standard
Model fermions are considered. It is worth it to try to
identify three masses (32) obeying inequalities mq¼1;l¼0 <
mq¼0;l¼0 < mq¼−1;l¼0 with masses of three down-type
quarks d, s, b (at scale 2 GeV; errors are shown in

brackets): md ¼ 4.67ð32Þ MeV < ms ¼ 0.093ð2Þ GeV <
mðbÞ ¼ 4.18ð2Þ GeV [38]. The observed ratios of these
masses are equal to

md

ms
¼ 5.0ð7Þ × 10−2;

ms

mb
¼ 2.22ð25Þ × 10−2; ð33Þ

whereas in the considered model, these ratios, according
to (32), are

md

ms
¼ ms

mb
¼ e−

γ
η: ð34Þ

For α ¼ 1=2 like in IIA supergravity (2), and η only
slightly above 2, which guarantees three generations, see
(27), we have from (6), (8), or (23) γ ¼ 6; hence, γ=η ≈ 3

and md=ms ¼ e−3 ¼ 0.05, which coincide with its exper-
imental value (33). We may continue to play in different
nice values of the model parameters, but this numerology
without physical justification is hardly interesting.
In fact, the relation mq ∼ e−qγ=η (32) is a sort of a

geometry form of the Froggatt-Nielsen (FN) mechanism
where hierarchical masses of the SM fermions are
expressed in a way mf ∼ ϵQf (ϵ is a universal small
constant, and Qf are fermion’s charges of Abelian hori-
zontal symmetry Uð1Þ) [39]. In our model, rotation around
the S1 coordinate corresponds to group Uð1Þ, angular
number q corresponds to Qf, and parameter ϵ of the FN
mechanism is e−γ=η of our model.
The essential drawback of the considered model is the

equality of ratios of masses of lighter and heavier quarks,
like in (34), whereas, in practice, they differ; see (33). The
possible way to resolve this difficulty is discussed in the
Conclusion.
As for the mentioned absolute values of the masses of

down quarks, that is, the preexponential factor in (32), we
note again that in the 5D approaches to SM parameters cf,
that is, bulk fermion masses, are fine tuned for every
fermion mass in four dimensions.
The simple model considered above, where the compact

four-dimensional space (the base) of the 10D supergravity
(3) or (7) is S4, is intended to illustrate that bulk fermion
masses in lower dimensions can have a geometric origin.
And the sensible physical results may be achieved. For
example, in addition to the IIA supergravity parameters
α ¼ 1=2, D ¼ 10, p ¼ 4, and n ¼ 4, let us take free
parameter κ ¼ 3 [κ is introduced in (7) and (10)]; then,
in the rhs of (32) c0 ¼ 2=3 [see (18) and (22)] and
calculating zUV=zIR from (13) with account of s ¼ 9=8
[cf. Eq. (8) for the named values of parameters], for
Yukawa coupling constant of order 1 and canonical value
Z−1
IR ≈ 10 TeV, expression (32) comes to

m0;q ≈mse
−q·γη: ð35Þ
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The repetition of similar calculations of m1;q (32) with
the same input parameters but for the next (l ¼ 1) eigen-
value of Dirac operator on S4, that is, for c1 ¼ 1 [see (18)
and (22)], gives mass scales less than 1 eV. Of course, it
would be wonderful if the spectral number l enumerated
types of SM fermions (up and down quarks, charged
leptons, and neutrinos), while q corresponded to the
generations of quarks of the same type. But this can hardly
be expected in the framework of the considered extremely
simplified model.
Now, a few final remarks about the approximationU ¼ 1

in calculation of zero-mode profiles (28) are in order. It is
not difficult to write down these profiles for U ≠ 1 near
z ¼ zIR, that is, near τ ¼ 0, using the coordinate trans-
formation (9), metric (10), and expression for U (11). Now,
in contrast to the situation with U ¼ 1 considered above,
the zero-modes profiles are singular at τ ¼ 0 (although their
norms are integrable for q ¼ 0;�1; see Sec. IV).
Assumption hHi ¼ Yδðz − zIRÞ=N does not work now,
to get the Higgs generated masses of type (31) and (32),
it is necessary to put hHi ¼ const in some interval in the
vicinity of z ¼ zIR, like it was done, for example, in
Ref. [8]. Estimates show that this way of taking into
account U ≠ 1 slightly changes the result (34) for the
quark mass ratios.

VI. CONCLUSION

The first obvious improvement of the considered model
would be, following Refs. [8–11], to drop the assumption
of independence of Higgs field in (30) on the angular
coordinate θ. Then, action (30) will generate mass matrix
mq;q0 with nonzero nondiagonal elements, q ≠ q0; in
particular, in this case, the ratios of the eigenvalues of this
mass matrix should not be equal to each other like in (34).
We did not fulfill these calculations because of the
arbitrariness of the assumed dependence of the Higgs field
on the extra coordinate. In the models incorporating up
and down quarks, the knowledge of the m̂up and m̂down

mass matrices would allow us to calculate the Cabibbo-
Kobayashi-Maskawa matrix and hopefully to find the geo-
metry origin of the so-called flavor puzzle. This surprising
correlation between the experimentally observed ratios
of quark masses and the Cabibbo-Kobayashi-Maskawa
matrix mixing angles was considered in a recent author’s
paper [40], which is not related to the high-dimensional
models.
The model of the present paper does not allow us to carry

out the named calculations since it does not incorporate the
Standard Model group nature, including the left-right group
asymmetry of the SM chiral fermions. In many theories of
type [2–8], the restoration of the SM group nature is
achieved with the introduction for each SM chiral fermion
with its specific group properties of its own bulk fermion

field. A different approach, also adopted in this work, is
characteristic of the Grand Unified Theories in higher
dimensions, when all chiral SM fermions with their left-
right group asymmetries and other properties are compo-
nents of “big”Weyl fermion multiplets and arise as a result
of compactification and spontaneous breakdown of a large
group. It is also worth noting that the problem of the above-
mentioned arbitrariness of the Higgs field can be resolved
within the framework of the promising higher-dimensional
“gauge-Higgs” unification approach. For this set of issues,
see, for example, Refs. [13–15] and [41] or recent works
[42,43] and references therein. In many of these theories,
the problem of including three generations of fermions is
solved by introducing an additional flavor group “horizon-
tal” symmetry. Perhaps the geometry mechanism proposed
in the present work can be useful in this context.
Three main results of this paper may be outlined.
It is shown in Sec. IV that Schwarzschild Euclidean

deformation of the generalized IIA supergravity back-
ground with certain angle deficit factor −6π < 2πð1 − ηÞ <
−2π of the conical singularity at the horizon leaves non-
divergent three fermion angular modes interpreted as three
generations of fermions of one and the same type. This
result reproduces similar earlier results achieved perhaps in
more artificial 6D models.
Proportion mq ∼ e−qγ=η (32) obtained in Sec. V is a geo-

metry version of the FN mechanism. Also, in IIA super-
gravity [α ¼ 1=2, D ¼ 10, p ¼ 4, and n ¼ 4 in (3)–(8)]
and for η ¼ 2þ ϵ in (27) (ϵ ≪ 1), the obtained ratio (34) of
masses of d and s quarks md=ms ¼ e−3 is experimentally
viable. However, it is necessary to emphasize that in the
unrealistic model under consideration, which ignores the
SM group nature, specific numerical predictions are hardly
justified.
It is demonstrated that using 10-dimensional super-

gravity backgrounds the usually arbitrarily selected in
the models of 5D warped compactifications fermions’ bulk
masses may be identified with the eigenvalues of the Dirac
operator on a compact 4D subspace Kð4Þ. This is possible
because, as explained in the Introduction, Witten’s no-go
theorem [12] is not applicable in the models with warped
compactifications. This theorem imposes serious restric-
tions in unified theories, such as Refs. [13–15], since to
obtain chiral fermions in four dimensions it requires having
chiral eigenvectors of the Dirac operator on a compactified
subspace. Our result suggests that this requirement is not
necessary to obtain chiral SM fermions in four dimensions.
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