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We compute the one-loop contribution to the θ̄ parameter of an faxionlike particle (ALP) with CP-odd
derivative couplings. Its contribution to the neutron electric dipole moment is shown to be orders of
magnitude larger than that stemming from the one-loop ALP contributions to the up- and down-quark
electric and chromoelectric dipole moments. This strongly improves existing bounds on ALP-fermion
CP-odd interactions and also sets limits on previously unconstrained couplings. The case of a general
singlet scalar is analyzed as well. In addition, we explore how the bounds are modified in the presence of a
Peccei-Quinn symmetry.
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I. INTRODUCTION

Axionlike particles (ALPs) are singlet pseudo-Goldstone
bosons (pGBs) that emerge as a consequence of the
spontaneous breaking of a global symmetry. They are
motivated by a variety of scenarios that aim to solve some
of the shortcomings of the Standard Model of particle
physics (SM). This includes scenarios that solve the strong
CP problem [1–4], theories with extra space-time dimen-
sions [5–8], some dynamical flavor theories [9–12], dark
matter models [13–15], scenarios that explore a dyna-
mical origin for Majorana neutrino masses [16] and string
theory models [17], among others. Consequently, the
study of ALPs is currently under intense investigation,
marked by a surge in experimental proposals and robust
theoretical endeavors. The most prominent among those
pGB candidates is the QCD axion [1–4], which aims to
explain the absence of CP violation in the strong sector by
dynamically relaxing the θ̄ parameter to the CP conserv-
ing point.
Flavor preserving, low energy CP-odd observables are

predicted by the SM to be very small, since they are
suppressed by a combination of small quark masses and
small CKM mixing angles, and first arise at multiloop level
in the perturbative expansion. Hence, they are powerful

probes of new sources of CP violation. Prime among these
observables is the electric dipole moment (EDM) of the
neutron (nEDM), whose dominant contribution in the SM
arises from penguin diagrams involving spectator quarks
[18,19] and is estimated to be several orders of magnitude
smaller than the current experimental bound [20,21].
In this work, we focus on the case of a generic ALP (i.e.,

with shift-symmetric couplings to SM fermions). Inspired
by the QCD axion, most of the effort in ALP phenom-
enology has been devoted to study the CP-conserving
couplings of ALPs to SM particles. However, CP-violating
ALP signatures are gaining increased interest [22–30].
Indeed, derivative ALP-fermion interactions can have

CP-odd couplings, and it turns out that they may contribute
to quark electric dipole moments (qEDMs) at one loop.
These and the resulting contribution to the nEDM have
been computed elsewhere [22]. In this work, we compute
instead the one-loop contribution to θ̄ of an ALP with
CP-odd derivative couplings to the SM quarks. We will
show that its contribution to the nEDM is parametrically
distinct than that of quark electric dipole moments and can
be numerically much more important. For completeness,
the contribution to θ̄ of a generic scalar is also computed
and compared.

II. SETUP: DERIVATIVE FERMIONIC
ALP LAGRANGIAN

Let us consider an ALP a, defined as a spin-0 field,1

singlet of the SM, and described by a Lagrangian invariant

*victor.enguita@uam.es
†belen.gavela@uam.es
‡bgrinstein@ucsd.edu
§pquilez@ucsd.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1ALPs with an exact shift symmetry are not necessarily pseudo-
scalars since the allowed CP-odd derivative couplings can be as
large as the CP-conserving ones, preventing us from assigning a
definite transformation property of the ALP under CP.
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under the shift symmetry a → aþ constant,2 except for a
small mass term ma ≪ fa, where fa is the ALP physics
scale. We focus here on effective ALP-fermion interactions
up to Oð1=faÞ terms. At scales μ≲ fa, these purely
derivative interactions are encoded in the following effec-
tive Lagrangian:

La ⊃
1

2
∂μa∂μa −

1

2
m2

aa2 þ
�
ūLMuuR þ d̄LMddR þ H:c:

�
þ θ̄0

αs
8π

GμνG̃
μν þ ∂μa

fa

�
ūLγμCQuL þ ūRγμCuRuR

þ d̄LγμCQdL þ d̄RγμCdRdR
�
; ð1Þ

where ma is the ALP mass, CQ;uR;dR are hermitian 3 × 3

matrices in flavor space and Mu;d are the up-type and
down-type quark 3 × 3 mass matrices. Note that the ALP
couplings to uL and to dL are identical as mandated by the
SM electroweak SUð2Þ ×Uð1Þ gauge invariance. Because
of the hermiticity of the ALP-fermion coefficient matrices,
only the flavor off-diagonal ALP-fermion couplings can
lead to observable effects of CP violation. The SM fermion
mass terms are also shown in Eq. (1) and taken to be real
and diagonal so that the overall phase of the argument of
the determinant of the mass matrices is already included in
the θ̄ term, where θ̄0 ≡ θ̄ðμ ¼ μ0Þjtree and μ0 ≡ fa.
Our objective in this work is to compute the leading

contribution of the fermionic ALP couplings to θ̄ (and its
subsequent impact on the nEDM), which arises at one loop,
as we will see next; see Fig. 1.3 We assume that the ALP
mass is larger than the QCD scale, ma ≳ 1 GeV. Let us
consider an effective field theory (EFT) below the scale
μ2 ¼ minðmt;maÞ. The parameters in this EFT are com-
puted by matching at the scale μ ¼ μ2 and receive con-
tributions from integrating out both the ALP and the top
quark. Let us focus first on the contribution to the phase of
the up-quark mass. The details of the computation of the
one-loop diagram in Fig. 1 are given in the next section, but
let us anticipate that the contribution to θ̄ will turn out to be
dominated by the top loop, provided all entries of CQ;uR;dR
are of the same order, and reads

Δθ̄ALP ≃
mtmaxðm2

a; m2
t Þ

16π2f2amu
Im
�
C13
Q C�13

uR

�
: ð2Þ

The dependence of this formula on the top mass is highly
relevant; e.g., for ma < mt, it is cubic, a behavior that will
be transmitted to the ensuing contribution to the nEDM.
This θ̄-induced contribution to the nEDM will be shown to

be several orders of magnitude larger than that obtained in
Ref. [22] through the contribution to the quark EDMs, as
the latter only depends on mt linearly.
The mass dependence in Eq. (2) can be readily understood

using the chirality-flip basis (described in Appendix A)
instead of the derivative basis in Eq. (1). In the chirality-flip
basis, there are two relevant Feynman diagrams to be
considered, shown in Fig. 4. In order for the upper diagram
in Fig. 4 with an internal top quark to contribute to the ūLuR
term, a mass insertion ∝ mt inside the loop provides the
required chirality flip. Each vertex contributes a factor of
mt=fa. Since the loop depends on the renormalization scale
only, logarithmically the diagram gives a contribution that
scales with mt and fa as m3

t =f2a. The loop in the second
diagram in Fig. 4 is quadratic in ma, and the vertex
contributes a factor of mt=f2a. So, the contributions of
the first and second diagram scale as m3

t =f2a and mtm2
a=f2a,

respectively, and both contain a factor of C13
Q C�13

uR . Finally,
since we are computing the contribution to the phase of the
up-quark mass term, the result is inversely proportional to
the absolute value of the quark mass itself, explaining the
1=mu factor in Eq. (2) (see footnote 2).
The result can also be understood in the derivative basis

in Eq. (1), in which only the diagram in Fig. 1 contributes,
but rather than obtaining the factors of m2

t and m2
a from the

vertices, they arise from the quadratically divergent loop
integral. We have verified that both bases give the same
results for the explicit computations presented in Sec. III.
It is easy to see as well that the contributions to other

CP-violation observables do not scale as mt maxðm2
t ; m2

aÞ.
Take, for example, the contribution to the quark EDM, dq,
and use again the chirality-flip basis of the Lagrangian. At
one loop, it arises exclusively from the diagram in Fig. 3;
there is no contribution from the analog of that for the up
quark mass from the bottom diagram in Fig. 4 because the
photon cannot couple to the neutral axion. The chirality flip
and the vertices give a factor of m3

t =f2a, but now dimen-
sional analysis dictates that the loop integral gives an
additional factor of 1=m2

t so that dq ∼mt=f2a.
The Lagrangian in Eq. (1) includes all operators that

contribute at order Oð1=f2aÞ to Δθ̄ALP in the derivative
basis. There exists a single shift-symmetric operator with
mass dimension 5 [33–35] and another one with dimension
6 [36,37], both involving the Higgs. They are not displayed

FIG. 1. One-loop corrections to the fermion masses.

2Anomalous couplings that break the shift invariance are often
included in the ALP Lagrangian. In this work, we ignore them.

3It has been recently claimed [31,32] that there are small
additional contributions that, however, are not included in the
standard approach to the calculation of θ̄. The inclusion of this
effect would not significantly modify the results of this work.

ENGUITA, GAVELA, GRINSTEIN, and QUÍLEZ PHYS. REV. D 110, 015024 (2024)

015024-2



in Eq. (1) since they are CP-even and thus do not contribute
to Δθ̄ALP. Beyond these, there are CP-odd operators with
mass dimension 7 and thus Oð1=f3aÞ.
It is also worth noting that, since we are assuming

ma ≳ 1 GeV, including the operator aGG̃ in the
Lagrangian would not introduce a dynamical mechanism
relaxing θ̄ to zero. That is, it would not amount to
promoting the ALP to a QCD axion with a true PQ
symmetry (that would require ma → 0).

III. COMPUTATION OF THE CONTRIBUTION
TO θ̄

We perform in this section the one-loop matching of the
Lagrangian in Eq. (1) to the following QCD Lagrangian:

LQCD;CPV ¼ θ̄
αs
8π

GμνG̃
μν þ

X
q¼u;d;s

q̄ mqq

−
i
2

X
q¼u;d;s

�
dqFμνq̄σμνγ5qþ gsd̃qGμνq̄σμνγ5q

�
þ � � � ; ð3Þ

where q ¼ u, d, s denote the three lighter quark fields
(up, down and strange quarks), while du;d;s and d̃u;d;s stand
for their respective qEDMs and chromo-EDMs (cEDMs),
and Fμν and Gμν denote the QED and QCD field strength
tensors, respectively. Other dimension five operators (such
as the Weinberg operator) are left implicit in the ellipsis.
The calculation of θ̄ proceeds in standard effective field

theoretical fashion: Starting from the EFT defined in
Eq. (1), we run θ̄ from μ0 to μ1 ≈maxðmt;maÞ and then
match θ to θ0 defined in EFT0, a new effective theory where
the heaviest of the top quark and the ALP have been
integrated out. Then run θ̄0 to μ2 where the lighter of the top
quark and the ALP is integrated out and a new θ00 for a new
EFT00 is computed. This effective theory is QCDþ QED
with five flavors of quarks. To perform the calculation, we
find the renormalization group equation (RGE) in the EFT,
use it to determine the functional form of θ̄ðμÞ, giving θ̄ðμ1Þ
in terms of the initial (prescribed) value θ̄ðμ0Þ, and then
compute a threshold correction δθ̄ðμ1Þ that fixes the para-
meter in the EFT0: θ̄0ðμ1Þ ¼ θ̄ðμ1Þ þ δθ̄ðμ1Þ. The process is
then repeated in going from EFT0 to EFT00. Finally the RGE
is used in the EFT00 to compute θ̄00ðμIRÞ where the choice
μIR ≈ 1 GeV is common as it is appropriate for computing
physical effects such as the nEDM. Henceforth, we drop
the double prime in θ̄00ðμIRÞ. If the ALP is lighter than the b
quark, the procedure above is accordingly modified.
At leading order, the ALP contribution to both the

running and matching of θ̄ can be obtained using θ̄ ¼ θþ
arg detðM1 loop

u M1 loop
d Þ by evaluating the ALP-exchange

contribution to the one-loop quark mass matrices,

M1 loop
u;d ¼ Mu;d þ ΔMu;d; ð4Þ

where Mu;d is the tree level mass, and ΔMu;d is the
correction at one loop; thus,

Δθ̄ALPðμÞ ¼
X
q¼u;d

arg
�
det
�
Mqð1þM−1

q ΔMqÞ
��

¼
X
q¼u;d

Im
�
Tr log ð1þM−1

q ΔMqÞ
�

≃
X
q¼u;d

ImTr
�
M−1

q ΔMq

�
: ð5Þ

Here, as stated earlier,Mq in Eq. (1) is taken to be real, and
in the last step, we assumed that the loop correction to the
mass is small, Mu;d ≫ ΔMu;d.

4

We have computed the one-loop diagram in Fig. 1.5 The
final result using dimensional regularization and the MS
scheme reads

Δθ̄ALPðμÞ ≃
1

f2a

X
q¼u;d

ImTr
�
M−1

q CQLCqR

�
; ð6Þ

where L≡ diagðL1; L2; L3Þ; and

Lk ¼
mqk

16π2

��
m2

a þm2
qk

��
1þ log

μ2

m2
a

�

þ m4
qk

m2
qk −m2

a
log

m2
a

m2
qk

	
; ð7Þ

which explicitly depends on the renormalization scale μ
and also includes the finite contributions. In this expres-
sion qk stands for the different type of quarks, i.e.,
fu1; u2; u3g≡ fu; c; tg and fd1; d2; d3g≡ fd; s; bg. The
running of θ̄ðμÞ is determined by the renormalization group
equation,

dθ̄
dμ

¼
X
q¼u;d

Im
d
dμ

ln detMq ¼
X
q¼u;d

Im
d
dμ

Tr lnMq

¼
X
q¼u;d

ImTr

�
M−1

q
d
dμ

Mq

�
; ð8Þ

where, to leading order,Mu;d ≡M1 loop
u;d as given in Eq. (4).

Taking into account that the tree-level contribution Mu;d is
μ independent, it follows that

4This approximation breaks down for mu → 0, which is why
the apparent divergence in Eq. (2) in that limit is an artifact.

5The renormalization of the kinetic terms does not contribute
to θ̄ [38].
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μ
dθ̄
dμ

≃
X
q¼u;d

ImTr

�
M−1

q μ
d
dμ

ΔMq

�
; ð9Þ

which, given Eq. (6), leads to

μ
dθ̄
dμ

≃
1

f2a

X
q¼u;d

ImTr
�
M−1

q CQLCqR

�
; ð10Þ

where L≡ diagðL1;L2;L3Þ, and

Lk ¼
mqk

8π2
�
m2

a þm2
qk

�
: ð11Þ

Neglecting threshold corrections, that is, dropping the
matching contribution δθ̄ at μ1 and μ2, the result of the
calculation is

θ̄ðμIRÞ ≃ θ̄0 þ
X

ui¼fu;c;tg

muk

�
m2

a þ m̂2
uk

�
16π2f2amui

Im
�
Cik
QC

�ik
uR

�

× log
f2a

max
�
m2

a; m2
uk

�þ X
di¼fd;s;bg

mdk

�
m2

a þ m̂2
dk

�
16π2f2amdi

× Im
�
Cik
QC

�ik
dR

�
log

f2a
max

�
m2

a; m2
dk

� : ð12Þ

In this expression, we have included the leading log
resummation capturing the effect of QCD, as this is needed
to account properly for the μ dependence of the quark
masses as explained in Sec. D. This is encoded in the
modified masses m̂uk and m̂dk , as given in Eq. (D4), and
implicitly in computing the ratios of masses as muk=mui ¼
m̄ukðμÞ=m̄uiðμÞ or mdk=mdi ¼ m̄dkðμÞ=m̄diðμÞ, that is, a
ratio of running masses at a common renormalization scale
μ, cf. Eq. (D3). As discussed after Eq. (2), under the
assumption that the combinations ImðCik

QC
�ik
u;dR

Þ are com-

parable, the dominant contribution to θ̄ arises from the top
loop affecting the phase of the up quark.
Finally, note that Eqs. (6) and (7) produce in addition

finite contributions to θ̄, which add to the putative initial
value θ̄ðμ0 ¼ faÞ. Assuming no cancellations, all contri-
butions need to separately comply with the experimental
limit θ̄ ≪ 10−10.6

IV. NEUTRON EDM AND CEDM IMPACT

The stringent experimental limit on the nEDM, dn <
1.8 × 10−26 e · cm (90% C.L.) [20,21], sets important
constraints on CP-odd couplings. Furthermore, future
experiments are proposed to probe the nEDM at level of
dn ∼ ð2–3Þ × 10−28 e · cm [41]. The contribution of the
θ̄-parameter to the nEDM, together with that stemming
from the up, down and strange qEDMs and cEDMs, du;d;s
and d̃u;d;s, can be estimated7 to be [42–45]

dn ¼ 0.6ð3Þ × 10−16θ̄½e · cm�
− 0.204ð11Þdu þ 0.784ð28Þdd − 0.0028ð17Þds
− 0.32ð15Þed̃u þ 0.32ð15Þed̃d − 0.014ð7Þed̃s: ð13Þ

The coefficients of the qEDMs have been obtained with a
∼5% accuracy by the lattice computation in Ref. [43],
whereas the rest of the coefficients, which present larger
errors, are taken from QCD sum rule estimates [44–46].8
In particular, we use the analytical estimates computed in
Ref. [46] and update some of the input parameters; see
Sec. B for additional details.
Even though nEDM experiments provide at the moment

the leading bounds on the CP-odd couplings under dis-
cussion, storage ring facilities [47] are expected to provide
limits on the proton EDM (pEDM) of the order of dp ∼
10−29 e · cm in the near future [48]. Therefore, the projec-
tions of the pEDM bounds are competitive with those for
future nEDM measurements. The corresponding depend-
ence of the pEDM reads [49]

dp ¼ −1.0ð5Þ × 10−16θ½e · cm�
þ 0.784ð28Þdu − 0.204ð11Þdd − 0.0028ð17Þds
− 0.26ð14Þed̃u þ 0.28ð14Þed̃d þ 0.02ð1Þed̃s: ð14Þ

The estimates for dpðθ̄Þ and dpðd̃u;dÞ are obtained from the
nEDM analytical formulas in Ref. [46] by interchanging
u ↔ d; see Sec. B for details. The coefficient of du;d in the
pEDM formula is taken again from the lattice result in
Ref. [43]. Experimental limits also follow from measure-
ments of atomic EDMs, such as that of 199Hg [50]. We do
not include them in our analysis as they currently give
comparable bounds.
Using our final result for the ALP contribution to θ̄ in

Eq. (12), and barring cancellations with the θ̄0 value or
other terms, the following constraint on the CP-odd ALP
parameters involving the top quark is obtained:6This implies that the initial value of θ̄ðμ0Þ also needs to

be small. The bounds on the ALP couplings slightly differ
depending on the mechanism that may be responsible for the
solution to the strong CP problem at a high scale. If the complete
physical θ̄ parameter is set dynamically to be small in the UV,
θ̄ðμ0Þ ≪ 10−10, a nonzero θ̄ parameter is generated solely
through the running in Eq. (12). In other solutions [39,40], the
finite contributions in Eq. (7) may also be relevant.

7Note that these estimates get modified in the presence of a
QCD axion (in addition to the ALP); see Sec. C.

8The lattice results in Ref. [43] for the qEDM contributions are
well approximated by those obtained with QCD sum rules [46]
once the updated values of the chiral condensates are used;
see Sec. B.
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 Im½C13
Q C�13

uR �
f2a






θ̄

≲
�

m2
t

m2
a þm2

t

�
2 × 10−17 GeV−2: ð15Þ

Here and below, we conservatively assume log f2a=m2
a ∼ 1

and also disregard the running of the quark masses
(although the bounds could become stronger by over an
order of magnitude for fa=ma > 102; see Sec. D). Projec-
tions from future nEDM and pEDM measurements are
expected to improve this bound by 3 orders of magnitude.
In Table I, we show the corresponding results for all

the other combinations of couplings jIm½Cij
QC

�ij
qR �=f2aj. All

bounds in this paper consider one coupling combination
at a time. We have used the PDG values for the quark
masses [51]. The same bounds are also represented with
solid colors in Fig. 2 as a function of ma. The region below
ma ¼ 1 GeV appears shaded in gray—here and in all
figures below—since it lies outside the validity of our

approximations, and a proper treatment would require an
alternative computation where the ALP is included in the
chiral Lagrangian, similarly to Refs. [24,25]. For improved
plot clarity, future projections are exclusively depicted for
the most constrained coupling combination, jImðC13

Q C13
qRÞj.

However, it is important to note that all solid regions will be
shifted downward by the same factor based on forthcoming
nEDM and pEDM measurements.

A. Comparison with quark EDM contributions

The Lagrangian in Eq. (1) also generates a contribution
to the individual qEDMs du;d;s and cEDMs d̃u;d;s, which in
turn contribute to the final nEDM value through Eq. (13).
The corresponding Feynman diagram—see Fig. 3—has
been previously computed [22,53], and for the up-quark
EDM, it contributes as

du
e
≡ Qu

32π2f2a
Im
�
CQGC

†
uR

�
11
; ð16Þ

with G ¼ diagðGðxuÞ; GðxcÞ; GðxtÞÞ and

GðxkÞ≡max
3=2
k

�
3 − 4xk þ x2k þ 2 logðxkÞ

�
ðxk − 1Þ3

∼
mk

m2
a
min

�
m2

a; 3m2
k

�
; ð17Þ

where xk ≡m2
k=m

2
a, Qu ¼ þ2=3 is the charge of the up

quark in units of e, and the last expression captures the
order of magnitude for either ma ≪ mk or ma ≫ mk. An
analogous expression holds for the ALP induced dd. Also,
the same Feynman diagram depicts the one-loop contribu-
tion to the quark cEDM d̃q by replacing the photon with a
gluon, and its computation can be simply recast from that
for the qEDM as d̃q ¼ dq=eQu;d, where the gs factor is
customarily factored out in the definition, see Eq. (3).
The dq and d̃q contributions to the nEDM are compa-

rable, and again, the strongest bound corresponds to that
involving the top quark in the loop,

FIG. 2. ALP case. Bounds as a function of ma. Upper bounds
on Xij

q ≡ jImðCij
QC

ij
qRÞ=f2aj from the θ̄ correction (solid regions)

and from qEDMs and cEDMs (dashed lines). Future bounds
stemming from nEDM and pEDM projections [52] are indicated
for X13

u with a red dotted line. For ALP masses near or below the
QCD threshold (ma ≲ 1 GeV, shaded region), the results are
outside the validity of our approximations; see text.

TABLE I. ALP case. Bounds on jIm½Cij
QC

�ij
qR �=f2aj in GeV−2

obtained from the θ̄ correction.



Im�C13
Q C�13

uR

�
=f2a


 < � m2

t

m2
aþm2

t

�
2 × 10−17

Im�C23

Q C�23
uR

�
=f2a


 < � m2

t

m2
aþm2

t

�
1 × 10−14

Im�C13

Q C�13
dR

�
=f2a


 < � m2

b

m2
aþm2

b

�
3 × 10−12

Im�C12

Q C�12
uR

�
=f2a


 < � m2

c

m2
aþm2

c

�
5 × 10−11

Im�C23

Q C�23
dR

�
=f2a


 < � m2

b

m2
aþm2

b

�
6 × 10−11

Im�C12

Q C�12
dR

�
=f2a


 < � m2

s

m2
aþm2

s

�
3 × 10−7

FIG. 3. ALP-induced one loop contribution to the fermion-
photon vertex as considered in Ref. [22].
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 ImðC13
Q C�13

uR Þ
f2a






dq;d̃q

≲ 3.7 × 10−12 GeV−2; ð18Þ

which is several orders of magnitude weaker than that
obtained in Eq. (15) from θ̄.
Similarly, separate bounds on the other possible combi-

nations of parameters can be obtained using Eqs. (13) and
(17). As an example, in Table II, we compare the bounds for
the CP-odd combinations Xij

q ≡ jImðCij
QC

ij
qRÞ=f2aj stem-

ming from the qEDM and cEDM with those resulting
from our analysis of the θ̄ parameter for an ALP mass
ma ¼ 5 GeV. Indirect contributions from the charm and
bottom (c)qEDM, not included in Eq. (13), give bounds on
jIm½C23

Q C�23
uR �=f2aj [54,55]; Fig. 2 depicts, as a function of

ma, the bounds from θ̄ in solid regions and those from
qEDM and cEDM with dashed lines. It is seen that, for
ma ≳ 1 GeV, the dominant bounds on Xij

q arise from the
ALP contribution to θ̄.
Complementary bounds on these parameters can be

obtained from CP violation in ΔF ¼ 2 processes.9 For
example, from K − K̄ mixing, one obtains [56]

1

f2a



Im��C12
Q − C12

dR

�
2
�

≲ 10−13

�
ma

5 GeV

�
2

GeV−2: ð19Þ

This strong bound corresponds to a different direction in
parameter space and has a different parametric depen-
dence on ma.
We have cross-checked our results by performing the

computation in an alternative basis; see Sec. A. Indeed, the
chirality-preserving ALP-fermion interactions in Eq. (1)
can be traded for a specific combination of Yukawa-like
operators in the so-called “chirality-flip basis” via a suitable

field redefinition of the fields. As this is only a change of
basis, the number of free parameters does not change.

V. GENERIC SCALARWITH CP-ODD FERMIONIC
INTERACTIONS

In this section, the previous analysis is extended to a
theory of a singlet scalar ϕ with mass mϕ and coupled to
SM fermions without imposing shift symmetry.
The most general CP-odd fermion-scalar interactions are

described by a Lagrangian exhibiting Yukawa-like left-
right interactions,

L ⊃ ūLv

�
iKu

ϕ

Λ
þ Fu

ϕ2

Λ2

	
uR þ d̄Lv

�
i
ϕ

Λ
Kd þ

ϕ2

Λ2
Fd

	
dR

þ H:c: ð20Þ

where Kq and Fq are arbitrary 3 × 3 dimensionless coef-
ficient matrices in flavor space, and Λ denotes the new
physics scale. The dependence on the Higgs vacuum
expectation value, v ¼ 246 GeV, is a remnant of the
couplings ancestry above the electroweak scale, which
corresponds to Yukawa-like operators of mass dimension 5
(Kq terms) and 6 (Fq terms). The Oð1=Λ2Þ Fq terms have
been included as this is required by the consistency of the
EFT analysis at one loop. They contribute to θ̄ through the
lower diagram in Fig. 4 at the same order as the first
one (which presents two insertions of the coupling propor-
tional to Kd=Λ). Even considering only the Kq terms, this
Lagrangian has more free parameters than that for the ALP
in Eq. (1) (see also Appendix A). Those extra parameters

TABLE II. ALP case. Bounds from θ̄ contributions versus
qEDM and cEDM bounds. Experimental bounds on
jIm½Cij

QC
�ij
qR �=f2aj for the particular case ma ¼ 5 GeV. The last

column corresponds to the sum of the qEDM and cEDM
contributions. The bounds can be extrapolated to other values
of ma using Eqs. (11) and (17), respectively.

Combination
θ̄ bounds
(GeV−2)

qEDM & cEDM
(GeV−2)

Im�C13

Q C�13
uR

�
=f2a


 1.8 × 10−17 3.7 × 10−12

Im�C23

Q C�23
uR

�
=f2a


 1.1 × 10−14 8.3 × 10−8

Im�C13

Q C�13
dR

�
=f2a


 1.1 × 10−12 1.9 × 10−9

Im�C12

Q C�12
uR

�
=f2a


 2.7 × 10−12 2.3 × 10−9

Im�C23

Q C�23
dR

�
=f2a


 2.3 × 10−11 8.7 × 10−9

Im�C12

Q C�12
dR

�
=f2a


 8.6 × 10−11 1.2 × 10−5

FIG. 4. Scalar exchange one-loop contribution to the quark
masses.

9We thank Andreas Trautner and the referee for raising this
issue.
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include flavor-diagonal ones that can be complex, thus
sourcing additional CP-violation effects, in contrast to the
case of the ALP theory.
In the literature, it is also common to use the alternative

notation

q̄Liv
a
fa

KqqR ≡ a
fa

v
�
q̄ yqSqþ iq̄ yqPγ5q

�
; ð21Þ

with

yqS ≡ i
Kq − K†

q

2
; yqP ≡ Kq þ K†

q

2
: ð22Þ

The contribution of the Kq and Fq parameters to θ̄
through its running reads:

θ̄ðμIRÞ ≃ θ̄0 þ
v2

16π2Λ2
×

 X
i;k

�
mukImðKik

u Kki
u Þ

mui

−
m2

ϕImðFik
u Þ

vmui

	
log

Λ2

max
�
m2

ϕ; m
2
uk

�
þ
X
i;k

�
mdkImðKik

d K
ki
d Þ

mdi

−
m2

ϕImðFik
d Þ

vmdi

	
log

Λ2

max
�
m2

ϕ; m
2
dk

�
!
: ð23Þ

In turn, their contribution to the up-quark EDM is
given by

du
e
≡ Qu

32π2
v2

Λ2
Im
�
KqG0K†

q
�
11
; ð24Þ

withG0 ¼diagðG0ðxuÞ;G0ðxcÞ;G0ðxtÞÞ, where xk ≡m2
k=m

2
ϕ,

and

G0ðxkÞ≡ x1=2k

mϕ

ð3 − 4xk þ x2k þ 2 logðxkÞÞ
ðxk − 1Þ3 ;

and analogously for the other flavors and for the quark
cEDMs [22].
Stringent restrictions on this enlarged fKq;Fqg para-

meter space follow from the nEDM experimental limit
[20,57], with an impact comparable to that found in the
previous sections for the CP-odd couplings of a generic
ALP. Using again Eq. (13), the nEDM is seen to be
sensitive to the combinations Wij

q ≡ jImðKij
qK

ji
q Þ=Λ2j and

Vii
q ≡ jImðFii

q Þ=Λ2j. The corresponding bounds are dis-
played in Table III and depicted as a function of mϕ in

Figs. 5 and 6. For most Wij
q ’s, the constraint imposed by

their contribution to θ̄ dominates strongly over that from
contributions to qEDMs and cEDMs. In addition, the
contributions to θ̄ also provide a handle into several
combinations of parameters—W33

u and the Vii
q ’s—which

do not contribute to neither the qEDMs nor the cEDMs.
Analogously to the ALP case in Eq. (19), complemen-

tary bounds for different directions in the parameter space
of the general scalar can be obtained from CP violation in
ΔF ¼ 2 processes such as meson mixing [56].
In summary, much as in the case of ALPS, the bounds

obtained for a general scalar are several orders of magni-
tude stronger than those existing in the literature due to the

impact of the θ̄ parameter. Furthermore, some new combi-
nations of parameters have become accessible via the
present θ̄ analysis.

TABLE III. General scalar. Bounds on jImðKij
qK

ji
q Þ=Λ2j and

jImðFii
q Þ=Λ2j stemming from their contribution to the nEDM. The

bounds on jImðKij
qK

ji
q Þ=Λ2j inferred from their contribution to θ̄

are independent of mϕ, while those stemming from the sum of
qEDMs and cEDMs are evaluated for mϕ ¼ 5 GeV. The bounds
that stem from the indirect effect of the charm and bottom
(c)qEDMs are derived from [55].

Combination
θ̄-bounds
(GeV−2)

qEDM & cEDM
(GeV−2)

Im�K13

u K31
u

�
=Λ2



 8.9 × 10−18 9.0 × 10−13

Im�K13
d K31

d

�
=Λ2



 7.9 × 10−16 2.8 × 10−13

Im�K12
u K21

u

�
=Λ2



 1.2 × 10−15 3.1 × 10−14

Im�K23
u K32

u

�
=Λ2



 5.2 × 10−15 2.1 × 10−8

Im�K23
d K32

d

�
=Λ2



 1.6 × 10−14 1.3 × 10−12

Im�K12
d K21

d

�
=Λ2



 3.5 × 10−14 8.2 × 10−13

Im�K11
u K11

u

�
=Λ2



 7.1 × 10−13 2.2 × 10−12

Im�K11
d K11

d

�
=Λ2



 7.1 × 10−13 8.7 × 10−12

Im�K22
d K22

d

�
=Λ2



 7.1 × 10−13 3.8 × 10−12

Im�K22
u K22

u

�
=Λ2



 7.1 × 10−13 7.0 × 10−10

Im�K33
u K33

u

�
=Λ2



 7.1 × 10−13 � � �

Im�K33
d K33

d

�
=Λ2



 7.1 × 10−13 5.5 × 10−8

Im�F11
u

�
=Λ2



 1.5 × 10−14 � � �

Im�F11
d

�
=Λ2



 3.3 × 10−14 � � �

Im�F22
d

�
=Λ2



 6.5 × 10−13 � � �

Im�F22
u

�
=Λ2



 8.9 × 10−12 � � �

Im�F33
d

�
=Λ2



 2.9 × 10−11 � � �

Im�F33
u

�
=Λ2



 1.2 × 10−9 � � �
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VI. DISCUSSION

In this work, we have computed the one-loop contribu-
tion to the θ̄ parameter of an ALP with CP-odd derivative
couplings to fermions. Its impact on the nEDM is such that
the bounds obtained on the CP-odd ALP-fermion cou-
plings are many orders of magnitude stronger than those
stemming from the contributions to up- and down-quark
electric and chromo-electric dipole moments. The same
conclusion applies to the CP-odd fermionic couplings of a
generic scalar particle.

Finally, it is worth mentioning that the strong novel
bounds found above, either for an ALP theory or for a
general scalar, do not apply if those theories are extended
by including in the Lagrangian—in addition to the ALP—
an extra true QCD axion that solves the strong CP problem
via a Peccei-Quinn mechanism. In that case, the QCD axion
would absorb all contributions to θ̄ computed in this work.
Still a nonzero induced θ̄ind [45,58–60] would remain,
leading to weaker but significant bounds on the studied
couplings [22,24]. We expand on that case in Sec. C.
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APPENDIX A: CHIRALITY-FLIP BASIS

As a double check and to facilitate the comparison of our
results with the rest of the literature, we have also computed
the ALP-fermion contribution to θ̄ in the chirality-flip
basis. It is well known [33,61,62] that by applying the
transformation

uL ⟶ ei
a
fa
CQuL; dL ⟶ ei

a
fa
CQdL; ðA1Þ

uR ⟶ ei
a
fa
CuR uR; dR ⟶ ei

a
fa
CdR dR ðA2Þ

to the Lagrangian in Eq. (1), one can trade the derivative
ALP-fermionic interactions by Yukawa-like left-right inter-
actions as described by

FIG. 5. General scalar. Upper bounds on Wij
q ≡

jImðKij
qK

ji
q Þ=Λ2j stemming from the contributions of θ̄ (solid

regions) and from the sum of qEDMs and cEDMs (dashed lines)
to the nEDM. The red dotted line shows the projected bounds on
W13

u from future nEDM and pEDM experiments [47,48]. The
gray shaded area is as described in Fig. 2.

FIG. 6. General scalar. Upper bounds on Vij
q ≡ jImðFij

q Þ=Λ2j
stemming from the contributions of θ̄ (solid regions) to the
nEDM. The red dotted line shows the projected bounds on V11

u
from future nEDM and pEDM experiments [47,48]. The gray
shaded area is as described in previous plots.
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L ⊃ ūLv
�
i
a
fa

Ku þ
a2

f2a
Fu

	
uR þ d̄Lv

�
i
a
fa

Kd þ
a2

f2a
Fd

	
dR

þ H:c:þ…; ðA3Þ

where the Kq and Fq coefficient matrices are given by

vKq ≡ CQMq −MqCqR;

2vFq ≡ 2CQMqCqR − C2
QMq −MqC2

qR; ðA4Þ

and the ellipsis stands for higher order terms Oð1=f3aÞ.
The Lagrangian in Eq. (A3) is formally the same as that

in Eq. (20) for a general scalar (with the replacement ϕ → a
and Λ → fa), but the relations in Eq. (A4) reduce its
degrees of freedom. They ensure that it is shift symmetric
under a → aþ constant and equivalent to the ALP
Lagrangian in Eq. (1).
In this chirality-flip basis, the two diagrams in Fig. 4

contribute to the one-loop corrections to the quark masses
(in contrast with the derivative basis where only the first
topology contributes). In particular, it is this second
diagram that exhibits the quadratic divergence ∝ m2

a. It
is straightforward to check that the result obtained in the
derivative basis, Eq. (12), is recovered by substituting
Eq. (A4) into Eq. (23).

APPENDIX B: NEDM ESTIMATES FROM QCD
SUM RULES WITHOUT A PECCEI-QUINN

SYMMETRY

Various methods, including naive dimensional analysis
[63], chiral lagrangians [64,65], lattice simulations [43]

and QCD sum rules [44,66], can be employed to obtain
estimates of the nEDM and pEDM as a function of θ̄, dq
and d̃q. Their corresponding results do not always agree
with each other and present a large span of uncertainties.
Thoughout this paper, we will use the lattice result in

Ref. [43] for the coefficients of the qEDMs in the nEDM
and pEDM formulas,

dnðdqÞ ¼ −0.204ð11Þdu þ 0.784ð28Þdd − 0.0028ð17Þds
dpðdqÞ ¼ þ0.784ð28Þdu − 0.204ð11Þdd − 0.0028ð17Þds:

ðB1Þ

Note that the estimation in Ref. [22] has a typographical
error as the numerical coefficients for du and dd appear
interchanged with respect to the lattice results in Ref. [43].
For the rest of the coefficients dnðθ̄; d̃qÞ, we will use the

analytical formulas from QCD sum rule estimates in
Ref. [46] for the nEDM. The formula for dpðθ̄; d̃qÞ is
obtained by interchanging u ↔ d in dnðθ̄; d̃qÞ. The
result reads

dn;p
�
θ̄; d̃q; dq

� ¼ −c0
hq̄qi
λ2Nmn;p

Θn;p

�
θ̄; d̃q; dq

�
; ðB2Þ

where c0 ¼ 1.8 × 10−2 GeV4 [46], mn;p, respectively,
denote the neutron and proton mass, the value of the chiral
condensate will be taken from the recent computation in
Ref. [67] hq̄qi ¼ −ð0.272ð5Þ GeVÞ3 and the low-energy
constant λN ¼ −0.0436ð131Þ GeV3 will be taken from a
lattice calculation [46]. The Θn;p functions are given by

Θnðθ̄; d̃q; dqÞ ¼ χm�

�
ð4ed − euÞ

�
θ̄ −

m2
0

2

d̃s
ms

�
þm2

0

2

�
d̃d − d̃u

��4ed
mu

þ eu
md

�
þm2

0

2

�
4ed
ms

d̃d −
eu
ms

d̃u

�	

þ
�
κ −

1

2
ξ

��
4edd̃d − eud̃u

�þ ð4dd − duÞ;

Θpðθ̄; d̃q; dqÞ ¼ χm�

�
ð4eu − edÞ

�
θ̄ −

m2
0

2

d̃s
ms

�
þm2

0

2

�
d̃u − d̃d

��4eu
md

þ ed
mu

�
þm2

0

2

�
4eu
ms

d̃u −
ed
ms

d̃d

�	

þ
�
κ −

1

2
ξ

��
4eud̃u − edd̃d

�þ ð4du − ddÞ: ðB3Þ

where m� ≡ ð1=mu þ 1=ms þ 1=msÞ−1, eu and ed denote the electromagnetic charges of the up and down quarks
(eu ¼ þ2=3e, ed ¼ −1=3e) and the parameters m2

0 ¼ 0.8ð2Þ GeV2, κ ¼ −0.34ð10Þ, χ ¼ −5.7ð6Þ GeV−2 [68,69] and
ξ ¼ −0.74ð20Þ [70,71] are as defined in Eqs. (48)–(50) in Ref. [46]. Substituting these input parameters in Eqs. (B2)
and (B3), we finally obtain:

dnðθ̄; d̃q; dqÞ ¼ 0.6ð3Þ × 10−16θ̄ ½e · cm� − 0.2ð1Þdu þ 0.8ð4Þdd − 0.0028ð17Þds
− 0.32ð16Þed̃u þ 0.32ð16Þed̃d − 0.014ð7Þed̃s; ðB4Þ

dpðθ̄; d̃q; dqÞ ¼ −1.0ð5Þ × 10−16θ̄ ½e · cm� þ 0.8ð4Þdu − 0.2ð1Þdd − 0.0028ð17Þds
− 0.26ð13Þed̃u þ 0.28ð14Þed̃d þ 0.02ð1Þed̃s: ðB5Þ
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Note that the coefficients of the qEDMs predicted from
these QCD sum rules, with the updated the input values we
use, are in good agreement with the lattice QCD result in
Eq. (B1). The difference between our numerical results in
Eqs. (B4) and (B5) and those in [46] result solely because
we use an updated value for the quark condensate. Note that
the apparent discrepancy in the powers of mn in Eq. (B2)
with respect to the expression in Ref. [72] results from
the fact that the definition of the c0 coefficient in Ref. [46]
(and our results) differs by a factor of m4

n with respect to
that in Ref. [72].

APPENDIX C: NEDM ESTIMATES IN THE
PRESENCE OF A PECCEI-QUINN SYMMETRY

The presence of a Peccei-Quinn symmetry (with its
corresponding QCD axion) modifies the nEDM estimates
in Eq. (13). Firstly, the vev of the QCD axion will cancel the
direct θ̄ dependence in the first term of Eq. (13). Secondly,
the presence of explicit CP violation, e.g., via dipole
moment couplings, shifts the minimum of the QCD axion
potential away from the CP-conserving minimum, gener-
ating an induced θ̄ind [45,58–60]. Indeed, for a chiral
CP-odd theory such as that under consideration in Eq. (1),
the Vafa-Witten [73] theorem does not apply and therefore
cannot guarantee that the minimum of the axion sits exactly
at the CP-conserving minimum. The value of θ̄ind is
dominated by the cEDM [60],

θ̄ind ¼
m2

0

2

X
q¼u;d;s

d̃q
mq

; ðC1Þ

where our sign convention form2
0 is that of [74]. Taking this

induced θ̄ind into account results into a modification of the
coefficients in Eqs. (13) and (14), which now read [44,49]

dPQn ¼ −0.204ð11Þdu þ 0.784ð28Þdd
− 0.31ð15Þed̃u þ 0.62ð31Þed̃d; ðC2Þ

dPQp ¼ 0.784ð28Þdu − 0.204ð11Þdd
− 1.21ð60Þed̃u − 0.15ð7Þed̃:d ðC3Þ

This result was obtained by substituting, in the estimation
of Eq. (13), θ̄ by the expression for θ̄ind in Eq. (C1); i.e.,
dPQn;pðdu;d; d̃u;dÞ ¼ dn;pðθ̄ ¼ θ̄ind; du;d; d̃u;dÞ. It differs from
the result in Ref. [44] because we are using a more refined
estimation of dn;pðθ̄Þ [65]. Note that in these two equations,
the dependence on the qEDMs did not suffer any modi-
fication with respect to the estimation without PQ sym-
metry in Eqs. (13) and (14) since the induced θ̄ind due to the
existence of the qEDM is negligible [60], while the impact
on the cEDMs is significant as earlier explained.

The resulting bounds on ALP-fermion CP-odd cou-
plings are shown in Table IV for the case of an ALP with
derivative couplings and in Table V for the case of a general
scalar. In the latter case, no bounds result on the
jImðFii

q Þ=Λ2j coefficients, as their contribution is com-
pletely reabsorbed away by the Peccei-Quinn symmetry.

APPENDIX D: LEADING LOGS
IN THE QUARK MASS RUNNING

Consider integration of Eq. (10) retaining dependence on
the QCD coupling, αs, so that the effect of running masses
is retained. We neglect electroweak interactions since their
effect is much smaller. To incorporate these effects, we
solve Eq. (10) making use of the explicit derivative

μ
d
dμ

¼ μ
∂

∂μ
þ βðgsÞ

∂

∂gs
þ
X
q

mqγmðgsÞ
∂

∂mq
ðD1Þ

and the observation that the couplings CQ;uR;dR have
vanishing anomalous dimensions because the correspond-
ing operators in the Lagrangian of Eq. (1) are partially
conserved currents in QCD. Denoting by ḡ and m̄ the
running coupling and quark mass in QCD, that is, the
solutions to

TABLE IV. ALP case. Comparison of bounds w/o the presence
of a PQ symmetry. All bounds are in units of GeV−2, and ma ¼
5 GeV has been assumed for illustration.

Combination With PQ (GeV−2) Without PQ (GeV−2)

Im�C13
Q C13

uR

�
=f2a


 3.7 × 10−12 3.7 × 10−12

Im�C13

Q C13
dR

�
=f2a


 1.9 × 10−9 3.2 × 10−9

Im�C12

Q C12
uR

�
=f2a


 2.3 × 10−9 2.4 × 10−9

Im�C23

Q C23
dR

�
=f2a


 8.7 × 10−9 1.2 × 10−7

Im�C12

Q C12
dR

�
=f2a


 1.2 × 10−5 1.9 × 10−6

TABLE V. General scalar. Comparison of bounds w/o the
presence of a PQ symmetry through the (c)qEDMs. All bounds
are in units of GeV−2, and for mϕ ¼ 5 GeV.

Combination With PQ (GeV−2) Without PQ (GeV−2)

Im�K13
u K31

u

�
=Λ2



 9.0 × 10−7 9.2 × 10−7

Im�K13
d K31

d

�
=Λ2



 2.8 × 10−7 4.6 × 10−8

Im�K12
u K21

u

�
=Λ2



 3.1 × 10−8 3.1 × 10−8

Im�K23
d K23

d

�
=Λ2



 1.3 × 10−6 1.8 × 10−5

Im�K12
d K21

d

�
=Λ2



 8.2 × 10−7 1.4 × 10−7

Im�K22
d K22

d

�
=Λ2



 3.8 × 10−6 5.3 × 10−5

Im�K11
u K11

u

�
=Λ2



 2.2 × 10−6 2.2 × 10−6

Im�K11
d K11

d

�
=Λ2



 8.7 × 10−6 1.4 × 10−6
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μ
dḡ
dμ

¼ βðḡÞ and μ
dm̄
dμ

¼ γmðḡÞm̄;

integration of Eq. (10) including the full μ-derivative of
Eq. (D1) is equivalent to using only the μ∂θ̄=∂μ on the
left-hand side and substituting running couplings for the
couplings on the right-hand side.
Leading-log resummation is achieved using one-loop

running couplings. Using

βðgÞ ¼ −b0
g3

16π2
and γmðgÞ ¼ am

g2

16π2

with b0 ¼ 11 − 2nf=3 and am ¼ −8, the running couplings
ᾱsðμÞ are

1

ᾱsðμÞ
−

1

ᾱsðμ0Þ
¼ b0

2π
lnðμ=μ0Þ; ðD2Þ

and

m̄ðμÞ ¼ m̄ðμ0Þ
�
ᾱsðμÞ
ᾱsðμ0Þ

�
−am=2b0

: ðD3Þ

Notice that the running of the factor of M−1 on the right-
hand side on Eq. (10) cancels with the explicit overall mass
factor in L of Eq. (11). What remains is an integral over
m2

a þm2
q. The first of these is μ independent so that

integration simply gives a logarithm of the ratio of scales,
as in Eq. (12). For the second term, one needs

Z
μ

μ0

dμ
μ
m̄2 ¼

Z
g

g0

dḡ
βðḡÞ m̄ðḡÞ2 ¼ −

16π2

b0
m̄2ðμ0Þ

Z
g

g0

dḡ
ḡ3

�
g0

ḡ

�
2am=b0 ¼ 8π2

b0ð1þ am=b0Þ
�
m̄2ðμÞ
ḡ2ðμÞ −

m̄2ðμ0Þ
ḡ2ðμ0Þ

�
:

In the limit of vanishing coupling, g → 0 this gives
m2 lnðμ=μ0Þ, reproducing the explicit log in Eq. (12).
Accordingly, one should use

m̂2
qk logðμ20=μ21Þ ¼

4π

b0ð1þ am=b0Þ
�
m̄2ðμ0Þ
ᾱsðμ0Þ

−
m̄2ðμ1Þ
ᾱsðμ1Þ

�
;

ðD4Þ

with μ0 ¼ fa and μ1 ¼ maxðm2
a; m2

dk
Þ in Eq. (12).

A couple of remarks are in order. First, when computing
the ratios muk=mui ¼ m̄ukðμÞ=m̄uiðμÞ and mdk=mdi ¼
m̄dkðμÞ=m̄diðμÞ at a common renormalization scale μ, the
running of the mass and coupling constant may change

as they cross through thresholds. For example, for the
muk=mui ¼ mt=mu case, one writes the ratio in terms of
m̄tðmtÞ and m̄uðμIRÞ with μIR ¼ 2 GeV, the values at the
scales where they are often reported, as

mt

mu
¼
 
ᾱð5Þs ðmtÞ
ᾱð5Þs ðmbÞ

!12
23

 
ᾱð4Þs ðmbÞ
ᾱð4Þs ðμIRÞ

!12
25 m̄tðmtÞ
m̄uðμIRÞ

;

where ᾱ
ðnfÞ
s ðμÞ is the running coupling of Eq. (D2) com-

puted with nf active quark flavors. And second, similarly,
the effective mass in Eq. (D4) accounts for threshold effects
additively. For example, if ma < mb, one should use

m̂2
b logðμ20=m2

bÞ ¼ 4πm̄2
bðmbÞ

2
4 ᾱð5Þs ðmtÞ

ᾱð5Þs ðmbÞ

!24
23

0
@ 1

ᾱð6Þs ðmtÞ
−

1

ᾱð6Þs ðμ0Þ

 
ᾱð6Þs ðμ0Þ
ᾱð6Þs ðmtÞ

!24
21

1
A

þ 3

0
@ 1

ᾱð5Þs ðmbÞ
−

1

ᾱð5Þs ðmtÞ

 
αð5Þs ðmtÞ
αð5Þs ðmbÞ

!24
23

1
A
3
5: ðD5Þ

To get a sense of the magnitude of the leading log (LL)
resummation, we take ma < mt and fa ¼ 108 GeV, which
would be the minimum required from our conservative
bounds in Table I for jIm½C13

Q C�13
uR �j ∼ 10−2. Then we use,

naively, m̂q ¼ m̄qðmqÞ and then compare both sides of

Eq. (D4) and of Eq. (D5). Using ᾱð5Þs ðMzÞ ¼ 0.12,
mt ¼ 175 GeV, mb ¼ 4.2 GeV, we obtain that the naive
log overestimates the LL by factors of 1.8 and 2.8 in

Eqs. (D4) and (D5), respectively. It is a curious coincidence
that the running of the up quark from 1.0 GeV to mt
required to compute the factor mtðmtÞ=muðmtÞ in Eq. (12)
is 1.8, exactly compensating for the LL resummation:

m̄tðmtÞ
m̄uð1 GeVÞ m̄

2
t ðmtÞ ≈

m̄tðmtÞ
m̄uðmtÞ

m̂2
t :
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This coincidence is not generic; the running of the d or s
quark masses from 1.0 GeV tomb gives an enhancement of
1.3 to the ratio mb=md;s, so the overall LL resummation
effect is a a factor of 2.1 suppression.
We hasten to remind the reader that the bounds on coup-

lings in Sec. IV use, conservatively, m̂2
q logðf2a=μ21Þ → m2

q,

with mq ¼ m̄qðmqÞ for q ¼ t, b, c and m̄qð1 GeVÞ for
q ¼ u, d, s. For the parameters chosen in the examples
above, the neglected logarithmic factor is ∼20. It goes
without saying that including this rather large logarith-
mic factor results in stronger bounds than the ones we
obtained.
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