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In this paper, we conduct a comprehensive study of the next-to-minimal composite Higgs model
(NMCHM) extended with a dilaton field χ (denoted as NMCHMχ). A pseudo-Nambu-Goldstone
boson (pNGB) η, resulting from the SOð6Þ → SOð5Þ breaking, serves as a dark matter (DM)
candidate. The inclusion of the dilaton field is helpful for evading the stringent constraints from dark
matter direct detection, as it allows for an accidental cancellation between the amplitudes of DM-
nucleon scattering, an outcome of the mixing between the dilaton and Higgs fields. The presence of
the dilaton field also enriches the phase transition patterns in the early universe. We identify two
types of phase transitions: (i) a 1-step phase transition, where the chiral symmetry and electroweak
symmetry breaking (EWSB) occur simultaneously, and (ii) a 2-step phase transition, where the chiral
symmetry breaking transition takes place first, followed by a second phase transition corresponding to
EWSB. Since the first-order phase transitions can be strong due to supercooling in our model, we
also examine the stochastic background of gravitational waves generated by these phase transitions.
We find that these gravitational waves hold promise for detection in future space-based gravitational
wave experiments, such as LISA, Taiji, BBO, and DECIGO.

DOI: 10.1103/PhysRevD.110.015023

I. INTRODUCTION

The composite Higgs model (CHM) is one of the most
compelling models beyond the Standard Model (SM) for
addressing the hierarchy problem [1–10]. In this paradigm,
the Higgs boson is not viewed as a fundamental particle
but emerges as a pseudo-Nambu-Goldstone boson (pNGB)
corresponding to the spontaneous breaking of an approxi-
mate global symmetry. The minimal composite Higgs
model (MCHM) [2,3], which is the minimal realistic
CHM that possesses a custodial symmetry, is built on
the symmetry breaking pattern SOð5Þ → SOð4Þ. However,
this minimal realization does not introduce any new
degrees of freedom that could serve as a dark matter
candidate.
A natural extension to include a dark matter candidate is

to consider the next-to-minimal composite Higgs model
(NMCHM), which is based on the symmetry breaking

pattern SOð6Þ → SOð5Þ [11]. This pattern of symmetry
breaking implies the existence of five pNGBs, four of
which correspond to the Higgs fields, while the remaining
one corresponds to a new scalar boson η, potentially
serving as the weakly interacting massive particle (WIMP)
dark matter candidate. Note that the Z2 symmetry asso-
ciated with η → −η can be violated by the Wess-Zumino-
Witten (WZW) terms in the SOð6Þ → SOð5Þ model.
Therefore, we will consider an Oð6Þ → Oð5Þ model
[12–14], which assumes that the Z2 symmetry is respected
by the whole strong sector. Moreover, if the NMCHM is
equipped with an approximate conformal symmetry,
for instance, when it is built on the 5D duality framework
[15,16], both the scale invariance and the chiral symmetry
can be broken simultaneously during a confinement
phase transition (PT). The spontaneous breaking of this
approximate scale invariance also results in a pNGB,
known as a dilaton χ (its dual counterpart in 5D theory is
the radion [15–17]).
In this work, we will conduct a comprehensive study of

the NMCHM extended with χ, which we refer to as
NMCHMχ . We also make the assumption that the con-
formal symmetry breaking scale of NMCHMχ , which is
determined by the vacuum expectation value (VEV) of the
dilaton, coincides with the confinement scale. Nonetheless,
this condition is not generally required. A potential of the
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dilaton can be generated due to the explicit breaking of
conformal symmetry, and this will govern both the vacuum
expectation value (VEV) and the mass of the dilaton. If the
effect of explicit breaking is small, the theory would remain
near a fixed point over a large scale range from the
ultraviolet (UV) scale to the confinement scale, exhibiting
a walking behavior.1

In the NMCHMχ , the dilaton can influence dark matter
(DM) phenomenology in two ways. First, the dilaton field
can mix with the Higgs field, potentially leading to a
suppression of the DM-nucleon scattering amplitude if an
accidental cancellation occurs. This could help the DM
evade stringent constraints from direct detection. Second, if
mη > mχ , the DM candidate η could open an annihilation
window, ηþ η → χ þ χ. This would enhance the annihi-
lation cross section, impacting both indirect detection and
the relic density.
It has been proposed that the MCHM, when com-

bined with a dilaton field, can achieve a strong first-
order electroweak phase transition, particularly in the
context of a supercooled phase transition [20–28]. We
can anticipate that this would also occur in the
NMCHMχ . As we know, the strong first-order electro-
weak phase transition is not only essential for electro-
weak baryogenesis [26,29–38], but it also provides a
source of stochastic background of gravitational waves
(GWs). These GW signals are promising to be detected
in future experiments, such as LiSA, TianQin, Taiji,
BBO, and DECIGO [39–43].
This paper is organized as follows. In Sec. II, we discuss

the basic construction of the NMCHMχ , which includes the
effective Lagrangian and the effective potential. In Sec. III,
we analyze the DM phenomenology, taking into account
constraints from direct detection, indirect detection, and
relic density. In Sec. IV, we investigate the phase transition
dynamics of the NMCHMχ in conjunction with the results
from the DM phenomenology. In Sec. V, we discuss the
GWs produced by the FOPTs. Finally, we present our
conclusion in Sec. VI.

II. MODEL CONSTRUCTION

A. Effective theory of dilaton

In the next-to-minimal composite Higgs model
(NMCHM), an approximate conformal symmetry is typ-
ically assumed. The strong dynamics in the infrared region
(IR) lead to a condensate of techni-quarks, resulting in
the spontaneous breaking of both chiral symmetries and
conformal symmetry at the IR scale f. The Goldstone

boson corresponding to the breaking of scale invariance is
referred to as the dilaton, χ. If the conformal invariance is
explicitly broken by quantum effects, a potential for the
dilaton can develop, causing the dilaton field’s excitation to
become massive. We will follow the derivations and
conventions constructing the dilaton potential as presented
in Refs. [20,21], focusing exclusively on the case of the
mesonlike dilaton.
Given that both the Higgs boson and the dilaton

originate from the same underlying strongly-coupled
sector, the vacuum expectation value (VEV) of the
dilaton, vχ , is equal to the global symmetry breaking
scale f. We assume that the main source of the violation
of conformal invariance arises from the ultraviolet (UV)
theory. Consequently, the breaking effects infiltrate the
effective theory through the renormalization group equa-
tion (RGE) as follows:

∂ log ϵðχÞ
∂ log χ

¼ γϵ þ cð1ÞϵðχÞ; ð1Þ

where cð1Þ ¼ cϵ=g2χ , with cϵ assumed to be tiny to
generate a flat potential. Thus, the effective potential
of the dilaton with a nonzero VEV can be expressed as
follows [20,21]:

VðχÞ ¼ C½N; χ�χ4 ¼ ½cχg2χ − ϵðχÞ�χ4 ð2Þ

where cχ is an Oð1Þ coefficient, gχ ¼ 4π=
ffiffiffiffi
N

p
, as per the

large-N expansion description [44] and the detailed
expression of the CFT deformation coefficient ϵðχÞ can
be found in Eq. (B13).

B. The next-to-minimal composite Higgs model

For this study, we use a model where all the SM fermions
fall under the 6þ 6 representation of SO(6) as a benchmark
(fermions in higher dimensional representations have been
examined in Refs. [22,45]). The Goldstone bosons, which
correspond to global SO(6) symmetry breaking, are encoded
in the Σ field. This field is defined by rotating the vacuum
using a Goldstone matrix, denoted as ΣðxÞ≡ eiΠ=vχ .
Typically, it is expressed using the following patterns of
parametrization:

Σ ¼ sin
π

vχ

�
π1̂

π
;
π2̂

π
;
π3̂

π
;
π4̂

π
;
π5̂

π
; cot

π

vχ

�

¼ 1

vχ

�
h1; h2; h3; h4; η;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2χ − h2 − η2

q �
; ð3Þ

where hi ≡ vχ sin π
vχ

π î

π , iðîÞ ¼ 1, 2, 3, 4, η≡ vχ sin π
vχ

π5̂

π and

π2 ≡P5
â¼1ðπ îÞ2, h2 ≡P4

i¼1 h
2
i . By choosing the unitary

gaugeh1 ¼ h2 ¼ h4 ¼ 0 andh≡ h3, these parametrizations
are reduced to:

1While we refer to the behavior here as “walking” for
visualization purposes, it is in reality a tuning model with fixed
points set to be real, which differs from the complex ones found
in the true walking model. This signifies the emergence of a
tachyon in the 5D dual theory [18,19].
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Σ ¼ sin
π

vχ

�
0; 0;

π3̂

π
; 0;

π5̂

π
; cot

π

vχ

�

¼ 1

vχ

�
0; 0; h; 0; η;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2χ − h2 − η2

q �
: ð4Þ

However, wewill use the expression in the second line as it is
more conducive for discussing phenomenologies. Note that
in this parametrization, h and η are independent with χ.
The leading order of the chiral Lagrangian, derived from

the Callan-Coleman-Wess-Zumino (CCWZ) construction,
can be expressed as follows:

Lð2Þ
chiral ¼

f2

2
ðDμΣÞTðDμΣÞ

¼ 1

2
∂μh∂μhþ 1

2
∂μη∂

μηþ 1

2

ðh∂μhþ η∂μηÞ2
v2χ − h2 − η2

þ h2

v2

�
M2

WW
þ
μ W−μ þM2

Z

2
ZμZμ

�
: ð5Þ

The effective Lagrangian of the fermion sector can be
constructed either by spurions, which restore the broken
symmetries, or by directly integrating out the heavy
resonances. Finally, we obtain the following [22]:

Lf ¼ it̄L=∂

�
Πq

0 −
Πq

1

2

�
h
vχ

�
2
�
tL þ it̄R=∂

	
Πt

0 − Πt
1

�
c2ζ

�
η

vχ

�
2

þ s2ζ

�
1 −

�
h
vχ

�
2

−
�
η

vχ

�
2
��


tR

−
mt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�
v
vχ

�
2

q
 
sζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
h
vχ

�
2

−
�
η

vχ

�
2

s
þ icζ

η

vχ

!
h
v
t̄LtR þ H:c:þ � � � ð6Þ

where cζ ≡ cos ζ; sζ ≡ sin ζ and ζ represents the mixing
angle for embedding up-type quarks into the 6 representa-
tion of SO(6) which is the θ defined in Eq. (3.6) of Ref. [46]
and Eq. (3.16) of Ref. [22]. We take the value of the mixing
angle ζ to be π=2 to ensure the η → −η symmetry is
unbroken, in order to get a stable dark matter candidate.
The ellipses denote the other flavors of quarks, which are
also under the 6þ 6 representation of SO(6). The form
factors Πq

0;Π
q
1;Πt

0, and Πt
1 have a detailed construction that

can be found in Refs. [6–8,11,13,22].

C. Dilaton extension of the NMCHM

We can incorporate the dilaton field into our model
by considering it as a spurion that compensates for the
scale transformation of the effective Lagrangian for the
NMCHM. Alternatively, we can promote the global sym-
metry breaking scale f to a dynamic field χ. The dilaton
extension of the NMCHM (denoted as NMCHMχ) results
in the following effective Lagrangian:

Leff ¼
1

2

�
χ

vχ

�
2

∂μh∂μhþ 1

2

�
χ

vχ

�
2

∂μη∂
μηþ 1

2

�
χ

vχ

�
2 ðh∂μhþ η∂μηÞ2

v2χ − h2 − η2
þ 1

2
∂μχ∂

μχ

þ h2

v2

�
χ

vχ

�
2
�
M2

WW
þ
μ W−μ þM2

Z

2
ZμZμ

�

þ it̄L=∂

�
Πq

0 −
Πq

1

2

�
h
vχ

�
2
�
tL þ it̄R=∂

�
Πt

0 − Πt
1

�
1 −

�
h
vχ

�
2

−
�
η

vχ

�
2
��

tR þ � � �

−
mt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�
v
vχ

�
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
h
vχ

�
2

−
�
η

vχ

�
2

s
h
v
χ

vχ
t̄LtR þ H:c: − Veffðh; η; χÞ

þ αs
8π

ðb3IR − b3UVÞ log
�
χ

vχ

�
Ga

μνGaμν þ αem
8π

ðbemIR − bemUVÞ log
�
χ

vχ

�
FμνFμν: ð7Þ

The effective potential term becomes

Veffðh; η; χÞ ¼
�
χ

vχ

�
4
�
μ2h
2
h2 þ μ2η

2
η2 þ λh

4
h4 þ λη

4
η4 þ λhη

2
h2η2

�
þ cχg2χχ4 − ϵðχÞχ4: ð8Þ
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If the IR contribution predominates, the effective potential is
dictated by the effective Lagrangian resulting from integrat-
ing out the heavy resonances. Consequently, the coefficients
in the potential are interrelated, as they can all be represented
in terms of integrals of the form factors. [22]. The Weinberg
sum rules are also taken into account to eliminate the
divergence [6]. Note that the last line of Eq. (7) demonstrates
the interactions between the dilaton and the SM gauge
bosons, facilitated by trace anomalies [47]. The parameter
bUV receives contributions from both the strongly-coupled
sector and elementary fields, whereas bIR receives additional
contributions from light degrees of freedom that emerge after
the spontaneous breaking of SO(6) symmetry. The values of
these parameters are model-specific.
To render the kinetic terms of physical fields canonical,

we can choose the parametrization of the fluctuations
around the vacuum as follows:

h ¼ vþ
ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
ĥ; η ¼ η; χ ¼ vχ þ χ̂; ð9Þ

where ξ≡ v2=v2χ quantifies the extent of the vacuum
misalignment angle. Finally, the complete effective
Lagrangian is presented in Appendix A.

III. DARK MATTER PHENOMENOLOGY

It is straightforward to verify that the Lagrangian
Eq. (A1) presented in Appendix A remains invariant under
a Z2 transformation, η → −η. We assume that this sym-
metry is maintained throughout the composite sector, and
higher derivative terms involving Wess-Zumino-Witten
terms are absent. Under these conditions, η is protected
by the Z2 symmetry and thus can serve as a viable dark
matter (DM) candidate.
Direct detection experiments for DM can impose strin-

gent constraints on the parameter space of WIMP DM. In
the following discussion, we will use the upper bound of
the DM-nucleon cross-section adopted from the LUX-
ZEPLIN (LZ) experiment [48]. In the context of our model,
there are basically three kinds of interaction vertices related
to the direct detection: the Higgs portal η-η-h, the dilaton
portal η-η-χ, and the contact interactions with fermions
η-η-f-f̄. The first two interactions contribute to the DM-
nucleon scattering through t-channel processes mediated by
Higgs and dilaton. The contact interactions between the
DM and quarks are relatively suppressed as they are
induced by higher dimensional operators. The effective
Lagrangian for these interactions is formulated as follows:

Ldirect ¼
ξffiffiffiffiffiffiffiffiffiffi
1 − ξ

p η

v
∂μĥ∂μη − λhηv

ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
η2ĥþ

ffiffiffi
ξ

p χ̂

v
ð∂μηÞ2

− 2
m2

η

vχ
η2χ̂ þ ξ

2ð1 − ξÞv2 η
2ψ̄fψf: ð10Þ

Since the incoming and outgoing η are on-shell state during
the DM-nucleon scattering process, we can use integration

by part and equation of motion to rewrite the derivative
terms. Finally, the portal interactions can be expressed as

Lηηĥ ≃ −λhηv
ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
η2ĥ

Lηηχ̂ ≃ −
ffiffiffi
ξ

p m2
η

v
χ̂η2 −

2m2
η

vχ
χ̂η2 ¼ −3

m2
η

vχ
χ̂η2: ð11Þ

On the other hand, the Higgs field and dilaton field are
mixing, and thus we should diagonalize their mixing mass
matrix to figure out the mass eigenstates ðhp; χpÞ.

hp ¼ cos θĥþ sin θχ̂; χp ¼ cos θχ̂ − sin θĥ: ð12Þ

where θ is the mixing angle. hp is regarded as the SM-like
Higgs boson whose mass is about 126 GeV. If we consider
the physical mass of Higgs and dilaton as input parameters,
the mass matrix elements can be written in terms of θ,
physical mass mhp, and mχp in the following way

m2
h ¼ c2θm

2
hp

þ s2θm
2
χp ; m2

χ ¼ c2θm
2
χp þ s2θm

2
hp
;

m2
hχ ¼ sθcθðm2

hp
−m2

χpÞ: ð13Þ

The mass mixing term is induced by CFT violation and shift
symmetry violation which can be parametrized as [49]:

m2
hχ ∝ g2CFTv

2
χλ

2
ψ ðγviolationÞ: ð14Þ

where γviolation is an undetermined parameter depending on
UV theory. In practice, we will use the mixing angle θ as
an input instead of the mixing mass-squared. The spin-
independent DM-nucleon scattering cross section σSI can be
computed as:

σSI ¼
μ2m2

N

4πv2m2
η

�
cθahp
m2

hp

−
sθaχp
m2

χp

þ ωχ

�
cθaχp
m2

χp

þ sθahp
m2

hp

�

þ ξ

2ð1 − ξÞv
�
2

F2
N

¼ μ2m2
N

4πv2m2
η

�ðcθ þ sθωχÞahp
m2

hp

þ ðcθωχ − sθÞaχp
m2

χp

þ ξ

2ð1 − ξÞv
�
2

F2
N; ð15Þ

where ωχ ¼
ffiffiffi
ξ

p ð1þ γψ Þ, μ ¼ mNmη

mNþmη
is the reduced mass,

andFN ∼ 0.3 is the hadronmatrix element [14]. The effective
coupling coefficients between ðhp; χpÞ and DM η are
encoded in

ahp ¼ 3
m2

η

vχ
sθ þ λhηv

ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
cθ;

aχp ¼ 3
m2

η

vχ
cθ − λhηv

ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
sθ: ð16Þ
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Due themassmixing between theh and χ̂, the cross-section is
different from the ordinary NMCHM without dilaton. In
NMCHMχ model, the scattering amplitude could happen to
be suppressed due to an accidental cancellation between the
diagrams induced by hp and χp mediation [50]. In such
situation, the DM-nucleon scattering cross section can
circumvent the stringent constraint from direct detection
data (see Fig. 1).
In addition to direct detection, indirect detection bound

and observed relic density of DM also strictly constrain on
the parameter space of WIMPs. Both of these constraints
are sensitive to the annihilation of cold dark matter, and
we find the dominant annihilation channels are ηþ η →
hp þ hp and ηþ η → χp þ χp ifmη > mχp . For the indirect
detection constraint, we use the bound implied by the
gamma-ray data from Major Atmospheric Gamma-ray

Imaging Cherenkov (MAGIC) telescopes and the Fermi
Large Area Telescope (LAT) [51]. For the relic density, we
adopt result ΩDM ¼ 0.12 from the Planck experiment [52].
The numerical package microOMEGAs [53] is used to
compute the DM annihilation cross section, relic density,
and DM-nucleon scattering cross section. In Fig. 2, we
show all these constraints in mη −mχ plane for two
benchmark models with different θ. In both cases, there
are available parameter region surviving from all the DM
constraints and the mass of DM η is about 300 GeV–
600 GeV. For comparison, the projected sensitivities for
direct detection experiment PandaX-nT 200 tonne-year
(blue dashed-dotted lines) [54], indirect detection experi-
ment CTA (cyan dashed lines) [55], and Fermi-LAT
18 yearsþ LSST (green dashed lines) [56] are also plotted.
The arrows pointing outward the sensitivity lines

FIG. 2. The exclusion regions with different mixing angle θ ¼ −0.02 on the left and θ ¼ 0.01 on the right. The blue and green regions
are excluded by the LZ experiment [48] and the Fermi-MAGIC indirect detection respectively [51]. The red solid lines denote the DM
relic density ΩDMh2 ¼ 0.12 observed by Planck experiment [52]. The future sensitivity of the PandaX-nT [54] is denoted by blue
dashed-dotted lines, while the sensitivities of CTA [55] and Fermi-LAT 18 yearsþ LSST [56] are denoted by cyan and green dashed
lines. The arrows pointing outward the sensitivity lines correspond to the detectable regions.

FIG. 1. The DM-nucleon cross section estimated by Eq. (15) with different mixing angle θ. Other parameters are chosen to be
λhη ¼ 0.01, vχ ¼ 2 TeV, mχp ¼ 600 GeV. The gray shaded area is excluded by the LUX-ZEPLIN (LZ) bound and the red solid lines
denote the theoretical calculation of the spin independent scattering cross section. Different mixing angle leads to different exclusion
range of DM mass, with θ ¼ −0.02 for the left panel and θ ¼ 0.01 for the right panel. The accidental cancellation occurs only if θ
is negative.
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correspond to the detectable regions. In the left panel of
Fig. 2 corresponding to the case of θ ¼ −0.02, we find that
the parameters implied by the observed relic density can be
tested by the sensitivity of direct detection experiment
PandaX-nT. In the right panel corresponding to the case of
θ ¼ 0.01, the sensitivity of PandaX-nT can cover the whole

parameter space of our interests (therefore the blue dashed-
dotted lines are absent). In both panels, we can see that the
sensitivity of CTA is capable to cover the parameters
implied by the relic density as well, while Fermi-LAT
18 yearsþ LSST can test the mass region below
∼300 GeV.

FIG. 3. The parameter constraint from DM phenomenology. The legend is as same as the illstration in Fig. 2. On the left panel we scan
the mη − λhη plane with fixed dilaton mass mχ ¼ 1 TeV while on the right panel we scan mη −mχ plane fixed Higgs-DM
coupling λhη ¼ 0.01.
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In Fig. 3, we fix the mixing angle θ ¼ −0.02 and scan
the mη − λhη plane (left hand side) and mη −mχ plane
(right hand side) with different dilaton VEV vχ ¼ 2 TeV,
2.5 TeV, 3 TeV. For the panels in the left, the regions around
mη ¼ 500 GeV are excluded by the indirect detection
bound. It is caused by the resonant effect due to the energy
of incoming states reaches the mass pole at mη. Since the
annihilation cross section changes rapidly around this
resonant region, the mass preferred by relic density is
restricted in a a narrow interval. Note that there is another
red contour of relic density appears in the region of
700 GeV < mη < 1 TeV in the case of vχ ¼ 3 TeV. The
nearly vertical line located at the value 700 GeV can be
understood as the result of the resonance, while the vertical
line located at the value 1 TeV is due to the opening of
ηþ η → χp þ χp channel. Since the coupling of DM and
dilaton is proportional tom2

η, the annihilation probability of
η turns out to be larger with the increase of mη, and thus
reduce the dark matter relic density. As a result, the relic
density in the large DMmass region is too small to meet the
observed data. We also plot the projected sensitivity curves
of direct and indirect detection experiments in all the panels
of Fig. 3, and the convention of the line styles are the
same as Fig. 2. We can see that the combination of these
sensitivities can cover most of the parameter space, there-
fore our model can be examined in the future.
For the panels in the right, which show the constraints on

the mη-mχ plane, we can also find that a region with
mη=mχ ≈ 2 is excluded by the indirect detection due to
the resonant effect. In cases of vχ ¼ 2.5 TeV and 3 TeV,
there is another contour of ΩDMh2 ¼ 0.12 near the region
mη ∼ 700 GeV. The reason is that the ηη → χχ process
dominates the DM annihilation in this region, and there are
interference among the s, t, u-channels and the contact
interaction channel diagrams. In the limit of θ → 0, the
annihilation cross section can be approximated by

σv ∝
1

m2
η

�
−

1

ð4m2
η −m2

χÞ
λð3Þχ

�
6m2

η

vχ

�
−

2

2m2
η −m2

χ

�
4m2

η

vχ

�
2

þ 14m2
η

v2χ

�
2

: ð17Þ

The minimum of the annihilation cross section is found to
locate at mη ≈ 562 GeV for vχ ¼ 2 TeV, at mη ≈ 639 GeV
for vχ ¼ 2.5 TeV, and at mη ≈ 708 GeV for vχ ¼ 3 TeV.
We can see that thesemη canmatch themedian point between
the intersection points of the red contours and the mη axis.

IV. PHASE TRANSITION DYNAMICS
OF NMCHMχ

A. The effective potential

Before we start exploring the features and the patterns of
PTs, it is imperative to have a thorough understanding of
the effective potential [57–62]. Typically, the effective
potential of the next-to-minimal composite Higgs model
with dilaton (NMCHMχ), which encompasses the Higgs
boson, the dark matter, and the dilaton is comprised of the
following components:

Veffðh̃; η̃; χÞ ¼ V treeðh̃; η̃; χÞ þ V1−loopðh̃; η̃; χÞ
þ VCTðh̃; η̃; χÞ þ VTðh̃; η̃; χÞ: ð18Þ

In the composite Higgs model, the potential of pNGBs
originates from the explicit breaking of global symmetry.
This is already at one-loop order and is renormalized by the
Weinberg sum rules, as discussed in Sec. II. Consequently,
there is no necessity to incorporate an additional zero-
temperature one-loop correction to the potential. The daisy
resummation is also omitted due to its negligible impact on
the PT dynamics. Before computing the finite-temperature
terms, we should transform the kinetic terms of h, η in
Eq. (7) into canonical forms. This can be done by rewriting
the effective Lagrangian in terms of h̃≡ hχ=vχ ; η̃≡ ηχ=vχ ,
and then the effective potential Eq. (8), now denoted as
Vðh̃; η̃; χÞ, will possess following form:

Vðh̃; η̃; χÞ ¼ χ2

v2χ

�
1

2
μ2hh̃

2 þ 1

2
μ2ηη̃

2

�
þ 1

4
λhh̃

4 þ 1

4
ληη̃

4

þ 1

2
λhηh̃

2η̃2 þ V0ðχÞ; ð19Þ

where vχ is the VEV of χ at zero temperature and

V0ðχÞ ¼ cχg2χχ4 − ϵðχÞχ4: ð20Þ

To compute the finite temperature effective potential and
circumvent the singularity at the origin χ ¼ 0, we introduce
the canonical field variables χ1, χ2, and χ3 as replacements
for h̃, η̃, and χ. The scalar fields are redefined such that
χ1 ≡ h̃, χ2 ≡ η̃, and χ3 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − χ21 − χ22

p
. Then the zero-

temperature potential in terms of the new field variables are
given by

Vðχ1; χ2; χ3Þ ¼
�
μ2h
2v2χ

þ λh
4
þ cχg2χ

�
χ41 þ

�
μ2η
2v2χ

þ λη
4
þ cχg2χ

�
χ42 þ cχg2χχ43 þ

�
μ2η þ μ2h
2v2χ

þ λhη
2

þ 2cχg2χ

�
χ21χ

2
2

þ
�
μ2η
2v2χ

þ 2cχg2χ

�
χ22χ

2
3 þ

�
μ2h
2v2χ

þ 2cχg2χ

�
χ21χ

2
3 − ϵðχÞðχ21 þ χ22 þ χ23Þ2: ð21Þ
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The finite-temperature terms are vital in accomplishing
the first-order phase transition. These terms induce a dip at
the origin of the scalar field coordinates, thereby forming a
barrier between the origin ðχ1; χ2; χ3Þ ¼ ð0; 0; 0Þ (decon-
fined phase) and the EW vacuum ðχ1; χ2; χ3Þ ≈ ðv; 0; vχÞ
(confined phase). Following the strategy outlined in
Ref. [20], we assume that the theory in the deconfined phase
is characterized by a free energy given by F ≃ −cN2T4,
where c ¼ π2=8 corresponds to the N ¼ 4SUðNÞ super-
Yang-Mills theory.As the temperature decreases, thevacuum
configuration ðχ1; χ2; χ3Þ undergoes a transition from the
origin to the EW vacuum or an intermediate state due to
quantum tunneling effect. In the confined phase (χ ≳ T=gχ),
most of confined states have masses larger than temperature
and their thermal corrections can be neglected. In the low-
energy effective theory, only the light degrees of freedom
need tobe considered. These include theSMgauge bosonsW
and Z, the SM quark q, the Goldstone bosons arising from
SSB, the dilation χ, and the CFT resonances from the
composite sector. The free energy for the confined phase
can be expressed as

F ≃ Vðχ1; χ2; χ3Þ þ VTðχ1; χ2; χ3Þ: ð22Þ

The second term represents the finite temperature potential
[61]

VTðχ1; χ2; χ3Þ ¼
X

i¼bosons

niT4

2π2
Jb

�
m2

i ðχ1; χ2; χ3Þ
T2

�

−
X

i¼fermions

niT4

2π2
Jf

�
m2

i ðχ1; χ2; χ3Þ
T2

�
; ð23Þ

where the expressions for the effective masses m2
i of each

particle species are detailed in appendix B. The degrees of
freedom for each types of particles are given by

nW ¼ 6; nZ ¼ 3; nt ¼ 12; nΠ ¼ 3;

nχ1 ¼ nχ2 ¼ nχ1 ¼ 1;
X

nCFT ¼ 45

4
N2: ð24Þ

Note that we have simplified the contributions of CFT
resonances by assuming that all of them are bosonic states,
as suggested by Ref. [20]. The value of nCFT is chosen to
reproduce the free energy of the deconfined phase in the χ →
0 limit. This assumption defines an interpolation of the
effective potential between the interval 0 < χ ≲ T=gχ . The
functions JbðfÞ inEq. (23) are standard and defined as follows:

Jb½x� ¼
Z

∞

0

dkk2 log
h
1 − e−

ffiffiffiffiffiffiffiffi
k2þx

p i
;

Jf ½x� ¼
Z

∞

0

dkk2 log
h
1þ e−

ffiffiffiffiffiffiffiffi
k2þx

p i
: ð25Þ

B. Phase transition and bubbles nucleation

To gain an intuitive understanding of the first-order phase
transition, we can simplify the analysis by neglecting the χ1
and χ2 directions for the moment. This approximation is
motivated by the large number of degrees of freedom in the
CFT sector whose masses are ∼gχχ ≈ gχχ3. Consequently,
the potential barrier is predominantly determined by χ3.
As temperature decreases, the free energy of the symmetry-

preserving vacuum (χ3 ¼ 0) increases and equals that of the
symmetry-breaking vacuum (χ3 ¼ vχ) at a critical temper-
ature Tc. Consequently, the symmetry-preserving vacuum
becomes a false vacuum, prone to quantum tunneling to the
true vacuum (χ3 ¼ vχ). This process leads to the random
formation of true vacuum bubbles throughout the universe.
To estimate the critical temperature Tc, we approximate

the free energy of the symmetry-breaking vacuum by
considering only the zero-temperature terms, since the
JbðfÞðm2=T2Þ terms are exponentially suppressed in the
limit m=T ≫ 1. This yields the free energy:

Fðχ3 ¼ vχÞ ≈ Vmin
χ ≃

γϵ
4
cχg2χv4χ ¼ −

1

16
m2

χv2χ ; ð26Þ

which agrees with the result obtained in Ref. [20]. For the
symmetry-preserving vacuum, we approximate the free
energy as Fð0Þ ≃ −cN2T4. Solving for Tc, we find

−
π2

8
N2T4

c ¼ −
1

16
m2

χv2χ ⇒ Tc ¼
1

ð2π2Þ14
�
mχvχ
N

�1
2

: ð27Þ

At the critical temperature Tc, the tunneling probability is
still too low to produce bubbles, so the phase transition does
not occur yet. The universe remains in the false vacuum state
until a bubble is able to be produced within the Hubble
volume per Hubble time. The temperature corresponding to
this is called the nucleation temperature Tn. The computa-
tion of the nucleation temperature Tn is detailed in
Appendix E. It is worth noting that, in the NMCHMχ

model, Tn can be much lower than the critical temperature, a
situation known as supercooling, especially when N is large
and the dilaton mass mχ is small [20]. However, to ensure
dilaton potential to be bounded from below, it requires

cϵ < −
γϵ
cχ

⇒ m2
χN > 4ð4πÞ2c2χv2χ ; ð28Þ

which sets a lower bound of mχ for a given N.
Supercooling occurs in this model because the effective

potential for the dilaton has a very wide barrier between
χ ¼ 0 and χ ∼ vχ (see a schematic plot in Fig. 4 for a chosen
set of benchmark parameters), which is common in nearly
conformally symmetric models [63]. This barrier significantly
suppresses the tunneling rate. However, it is possible that
bubble nucleation never occurs because the false vacuum
decay rate always stays below the Hubble rate. In such cases,
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the supercooled state would end through the growth of
quantum fluctuations [64]. This type of situation is beyond
the scope of our research, and we only consider the case of
phase transitions that can be accomplished by vacuum decay.
When the χ1, χ2 directions are included, the overall phase
transition behavior from the deconfined phase to the confined
phase remains essentially unchanged. However, the EW
symmetry can be preserved during the confinement transition,
followed by a second phase transition that spontaneously
breaks the EW symmetry. In the χ > T=gχ region, the
minimum of the potential along the χ3 direction is almost
T-independent, and thus we can treat χ as a constant when we
determine the second step phase transition. The concrete
expression of the free energy with respect to χ1, χ2 and χ is
given inAppendix C. FromEqs. (C4) and (C5), we can obtain
the critical temperature T̃h

c at which h ¼ 0 is no longer the
local minimum.

χ2

v2χ
μ2h þ chT̃h

c ¼ 0 ⇒ T̃h
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−12μ2h�

6m2
W

v2 þ 3m2
Z

v2 þ 6λh þ λhη þ μ2h
v2χ
þ 6m2

t

v2ð1−v2

v2χ
Þ

�
vuuut ≈ 140 GeV; ð29Þ

where we have made an approximation χ ≈ vχ in the second
equality.Note that our numerical computation,whichwill be
presented in the next subsection, indicates that a phase with
χ2 ≠ 0 does not exist in the parameter space of interest.
The transition rate from the false vacuum to the true

vacuum (the bubble nucleation rate) per unit time per unit
volume is given by:

Γ ∼ AT4e−SE ; ð30Þ
where SE is the Euclidean action of the bounce solution.
Assuming a spherical solution, the equation of motion
(EOM) becomes:

d2ϕ⃗
dr2

þd− 1

r
dϕ⃗
dr

¼ ∂Vðϕ⃗;TÞ
∂ϕ⃗

; ϕ⃗ð∞Þ ¼ ϕ⃗false;
dϕ⃗
dr






r¼0

¼ 0:

ð31Þ
where the d ¼ 3 or 4 depending on the dimension of the
spherical solution considered. In principle, SE is deter-
mined by

SEðTÞ ¼ min

�
S3ðTÞ
T

; S4ðTÞ
�

ð32Þ

where:

S3
T

¼ 4π

T

Z
∞

0

drr2
�
1

2

dϕ⃗
dr

·
dϕ⃗
dr

þ Veffðϕ⃗ðrÞ; TÞ
�
; ð33Þ

S4 ¼ 2π2
Z

∞

0

drr3
�
1

2

dϕ⃗
dr

·
dϕ⃗
dr

þ Veffðϕ⃗ðrÞ; TÞ
�
: ð34Þ

Note that in the case of supercooling, since the evolution of
the universe is dominated by vacuum energy instead of
radiation energy, the nucleation condition in our model is
modified to

SEðTnÞ ≃ 131.98 − 4 ln

�
mχ

1 TeV

�
− 4 ln

�
vχ

2.5 TeV

�

þ 4 ln

�
Tn

100 GeV

�
− ln

�
β̃n
100

�
; ð35Þ

where β̃ is the inverse of the duration of phase transition.
More details can be found in Appendix E.

C. Numerical results

The most relevant model parameters related to the phase
transition in our model are the color number N, the dilaton
VEV vχ and the dilaton massmχ . In our numerical analysis,
we scan the parameter space of

N ¼ 3–10; vχ ¼ 2 TeV; 2.5 TeV;

3 TeV; mχ ∈ ½102; 104� GeV ð36Þ
to explore the impact of these parameters on the phase
transition. Other parameters are fixed by

vh ¼ 246 GeV; cχ ¼ 0.5; cϵ ¼ 0.001;

mη ¼ 1 TeV; λη ¼ 0.05; λhη ¼ 0.01: ð37Þ

As discussed in the previous subsection, the dilaton (χ3)
direction dominates the phase transition in our model.

FIG. 4. The effective potential in the χ direction at
T ¼ Tc ¼ 397 GeV. The parameters are chosen as N ¼ 7,
mχ ¼ 2 TeV, vχ ¼ 2.5 TeV. It can be seen that the barrier
between the two minima of the effective potential is wide.
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Moreover, the phase transition of confinement is expected
to be first order since the finite-temperature effective
potential always exhibits a barrier between the deconfined
phase and the confined phase. Our numerical calculations,
performed using the cosmoTransitions package [65],

confirms that there are two distinct patterns of phase
transitions: 1-step FOPTs and the 2-step FOPTs.
Figure 5 shows schematic pictures of these two patterns.
Figure 6 shows an example of 2-step phase transition
trajectories and potential contours in the χ1-χ3 plane.
The black curve in the left panel corresponds to the
tunneling path of first step, while the black curve in the
right panel corresponds to the tunneling path of second
step. Our calculations also show that the confinement
transition (either the 1-step transition or the first step of
the 2-step phase transition) is supercooled, meaning that
Tn ≪ Tc [19,63,66,67].
In the case of 1-step phase transition, due to the low

tunneling rate in the dilaton direction, ð0; 0; vχÞ is no longer
a minimum before the tunneling toward ðvh; 0; vχÞ directly.
Therefore the phase transition from (0, 0, 0) to ð0; 0; vχÞ
would never occur. In Fig. 7, we plot the evolution of χ1

FIG. 5. The PT patterns with 1-step PTon the left and 2-step PT
on the right.

FIG. 6. The 2-step FOPT potential contours at χ1 − χ3 plane with N ¼ 8, vχ ¼ 2 TeV, mχ ¼ 3 TeV. The red contours corresponds to
large potential value, while the blue contours corresponds to small potential value. The black curves represent the tunneling paths,
ð0; 0; 0Þ → ð0; 0; vT1

χ3 Þ (left panel) and ð0; 0; vT1
χ3 Þ → ðvT2

χ1 ; 0; v
T2
χ3 Þ (right panel).

FIG. 7. Evolution of the minima in χ1 and χ3 directions for the 2-step FOPT. The red, green, and blue curves represent phases (0, 0, 0),
ð0; 0; vTχ3Þ, and ðvTχ1 ; 0; vTχ3Þ, respectively.
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and χ3 with temperature in the case of a 1-step phase
transition, for fixed values of N ¼ 8, vχ ¼ 2 TeV,
and mχ ¼ 1.5 TeV.
We also find that the most sensitive parameter to the

phase transition pattern is the dilaton mass mχ . The critical
dilaton mass that distinguishes two phase transition pat-
terns can be figured out analytically using the action
approximation methods [68]. The details of derivation
can be found in Appendix D. We compare the numerical
results for the critical dilaton mass and corresponding
nucleation temperatures with the analytical approximation
results in Table I.
Note that in the parameter space we considered, the

quantum tunneling process can overwhelm the thermal
fluctuation when N ≥ 7 and dilaton mass is small, leading
to low temperature nucleation. In this case, the Euclidean
action SE is determined by 4-d action S4 for the bounce
solution. In Fig. 8, we compare the 3-d action S3=T (blue
line) with the 4-d action S4 (green line) for fixed values of
N ¼ 8, vχ ¼ 2 TeV, mχ ¼ 1.5 TeV (left panel), 700 GeV
(right panel). The black dashed line represents the nucle-
ation condition given by Eq. (35). The nucleation

temperatures for these two types of actions, denoted as
Tn3 and Tn4 , are determined by the intersecting points of the
dashed line with the blue (S3=T) and green (S4) lines. We
can see that for large dilaton mass (left panel), Tn3 > Tn4 ,
while for small dilaton mass (right panel), Tn3 < Tn4 .
In order to conduct a comprehensive analysis of the

parameter space, we scan themη −mχ parameter space and
display the constraints from the DM phenomenology along
with the phase transition patterns in Fig. 9. We present three
rows of panels corresponding to N ¼ 4, 7, 10, and in each
row, we feature three panels corresponding to vχ ¼ 2 TeV,
2.5 TeV, and 3 TeV. These plots confirm that from 10 GeV
to 10 TeV, the DM mass is almost irrelevant to the phase
transition. The region shaded in cyan indicates a potential
unbounded from below [refer to the condition provided in
Eq. (28). We also exclude the region corresponding to Tn <
1 GeV (represented in yellow) to prevent any significant
impact from strong FOPTs on the BBN. The orange dashed
line demarcates the boundary between 1-step FOPTs and 2-
step FOPTs. As previously discussed, a smaller dilaton
mass results in a lower tunneling rate, making 1-step phase
transition more likely. Conversely, a larger dilaton mass
leads to a higher tunneling rate, favoring a 2-step phase
transition. In Table II, we provide some benchmark points
for these two types of phase transition patterns.
In conclusion, Fig. 9 shows that our model can simulta-

neously provide a viable DM candidate and achieve strong
FOPTs at the same time. The DM mass is constrained
within a range of 200 GeV to 1 TeV.
Note that the mass and coupling strength of the DM

candidate η in our model suggest that η falls within the
WIMPs DM paradigm. However, supercooling might
influence the production of DM and potentially skew
our calculations of the DM relic density. More specifically,
η is a pNGB which originates from the confinement of
the techni-quarks in the composite sector. Before the

TABLE I. The comparison between numerical and analytical
approximation results of critical dilaton masses which dividing
two PT patterns. We have fixed vχ ¼ 2 TeV, mη ¼ 1 TeV and

λhη ¼ 0.01. mðnumÞ
crit and mðtheoÞ

crit are the numerical and analytical

approximations of critical dilaton masses while TðnumÞ
n and

TðtheoÞ
n are the nucleation temperatures corresponding to them,

respectively.

N TðnumÞ
n [GeV] TðanaÞ

n [GeV] mðnumÞ
crit [GeV] mðanaÞ

crit [GeV]

4 152.793 140.000 1291.549 945.374
7 145.273 140.000 1707.353 1553.890
10 146.317 140.000 2056.512 2129.810

FIG. 8. Evolution of S4 and S3=T for fixed values of N ¼ 8, vχ ¼ 2 TeV. The blue and green lines correspond to S3=T and S4,
respectively. The black dashed line represents the nucleation condition.
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confinement phase transition occurs, the universe contains
only deconfined techniquarks in thermal equilibrium with
the SM particles, not η. Therefore, it is crucial to compare
the DM freeze-out temperature with the nucleation temper-
ature. The freeze-out temperature of WIMPs DM can be
estimated as follows:

TFO ≃
mη

25
: ð38Þ

If Tn is lower than TFO, then the reheating after the
supercooled phase transition should be taken into account
[19,69]. During the strong FOPT, the latent heat between
the deconfined and confined phases is released, with the
majority of the energy being transferred into the plasma,
resulting in reheating the universe. At the end of the PT, the

FIG. 9. The PT patterns and DM phenomenology in mη −mχ plane for N ¼ 4, 7, 10 and vχ ¼ 2 TeV, 2.5 TeV, 3 TeV. The cyan and
yellow regions are excluded by the potential that is unbounded from below and the low nucleation temperature effect on the BBN. The
orange dashed lines divide two areas of the 1-step FOPTs and 2-step FOPTs. The region below the gray dashed lines can be probed by
the future space-based GW interferometer LISA [39].

TABLE II. PT benchmark points. Tc and Tn are the critical and
nucleation temperature of the first step FOPTs (dilaton domina-
tion) respectively.

N mχ [GeV] vχ [TeV] Pattern Tc [GeV] Tn [GeV]

BP1 4 800 2.5 1-step 297 7.78
BP2 4 2000 2.5 2-step 521 256
BP3 4 8000 2.5 2-step 1070 922
BP4 7 800 2.5 1-step 238 5.00
BP5 7 2000 2.5 2-step 397 160
BP6 7 8000 2.5 2-step 813 685
BP7 10 800 2.5 1-step 203 5.14
BP8 10 2000 2.5 1-step 334 114
BP9 10 8000 2.5 2-step 685 568
BP10 7 2000 2.0 2-step 357 186
BP11 7 2000 3.0 1-step 434 127
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free energy of the deconfined phase, F dec ≃ −T4
n, is

negligible compared to the free energy of the confined
phase, F con. Consequently, the latent heat between the two
phases can be approximated by the free energy of the
deconfined phase at the critical temperature Tc of the phase
transition. Assuming that the latent heat is entirely trans-
ferred to the radiation plasma, we can estimate the reheat-
ing temperature as follows:

F dec − F con ≃ F rh ⇒
π2

8
N2T4

c ≃
π2

90
g�T4

rh ⇒ Trh

≃
�
45

4g�

�1
4 ffiffiffiffi

N
p

Tc; ð39Þ

where g� is the effective degrees of freedom after reheating.
If TFO < Trh, then η will thermalize after reheating, and the
DM production scenario is similar to that of the traditional
WIMPs DM. However, if TFO > Trh, then η will instanta-
neously freeze-out as soon as they are produced by the
oscillating inflaton field (χ). Our numerical calculations
indicate that, within the parameter space of interest, the
critical temperature is typically around several hundred
GeV, even in scenarios where supercooling occurs.
Therefore, the situation of TFO > Trh ∼ Tc only arises
when mη ≳Oð10Þ TeV. Given that our main focus is on
a scale where mη; vχ < 10 TeV, the traditional WIMPs
paradigm is consistently applicable.

V. GRAVITATIONAL WAVES

In the previous section, we discussed the PT patterns of
our model and found that strong FOPTs exist. The
occurrence of these strong FOPTs in the early universe
can generate a stochastic background of GWs. The most
important PT parameters that characterize the GWs are the
ratio of vacuum energy density to radiation energy density
α, the inverse of PT duration in unit of Hubble time β̃, and
the bubble wall velocity ξw:

α≡ ρvac
ρrad

; β̃≡ −
1

H
dS
dt

¼ T
dS
dT

: ð40Þ

We will focus on the GWs produced by the confinement
transition, which is governed by the dilaton field. In the
scenario of a 2-step phase transition, the SM particles in
the plasma remain massless after the confinement transition.
The coupling between the SM particles and the dilaton is
suppressed by T2=v2χ, making the friction to the bubblewalls
negligible. In the scenario of a 1-step phase transition,
typically supercooled, the nucleation temperature is so
low that the friction from the plasma is negligible. The
production of gravitational waves in such a supercooled
phase transition has been extensively studied [70–74]. Given
that the friction from the plasma is negligible in both phase
transition patterns, the bubble walls are runaway [75],

allowing us to set ξw ≃ 1 in our calculation. Consequently,
the energy density of GWs is primarily contributed by the
collision of bubble walls, as given by [76–78],

Ωcolh2 ¼ 1.67 × 10−5
�
100

g�

�
1=3 0.44ξ3w

1þ 8.28ξ3w

1

β̃2

×

�
κϕα

1þ α

�
2

Ccolðf=fcolÞ: ð41Þ

In this equation, we will assume that the energy fraction of
the bubble collision, denoted by κϕ, is approximately 1. The
spectral shape function, Ccol, is defined as [77]:

Ccolðf=fcolÞ ¼
3.8ðf=fcolÞ2.9

0.9þ 2.9ðf=fcolÞ3.8
; ð42Þ

where the peak frequency is given by:

fcol ¼ 1.65 × 10−5 Hz

�
T�

100 GeV

��
g�
100

�
1=6

×
1.96β̃

1 − 0.051ξw þ 0.88ξ2w
: ð43Þ

As previously discussed, a smaller dilaton mass results in
a more supercooled phase transition, which in turn leads to
a larger value for α and a smaller value for β̃. Consequently,
according to Eq. (41), the peak amplitude of the GWenergy
density is enhanced. The GW spectra for the benchmark
points listed in Table III are presented in Fig. 10. In the left
panel, we fix N ¼ 7 and display the spectra for different
dilaton massesmχ . Conversely, in the right panel, we fix the
dilaton mass mχ ¼ 800 GeV and illustrate the spectra for
different values of N. The GW frequency band is chosen to
be within the range of ð10−5 Hz; 1 HzÞ, which will be
detectable in the future space-based GW interferometers
experiments, such as LISA, TianQin, Taiji, BBO, and
Ultimate DECIGO. As observed in the left panel, if
mχ ≲ 1 TeV, the GW amplitude can meet the sensitivity
of LISA, Taiji, BBO, and Ultimate DECIGO. However, if
mχ ≳ 2.5 TeV, the amplitude can only meet the sensitivity
requirements of BBO and Ultimate DECIGO. From the
right panel, it can be seen that different values of N only

TABLE III. The benchmark points for plotting the GW spectra.

Pattern N mχ [GeV] Tn [GeV] α β̃

BP4 1-step 7 800 5.00 1.31 × 107 4.71 × 101

BP12 2-step 7 2510 232 2.21 × 101 2.40 × 102

BP6 2-step 7 8000 685 2.96 × 100 1.30 × 103

BP1 1-step 4 800 7.78 2.21 × 106 6.22 × 101

BP7 1-step 10 800 5.14 1.17 × 107 5.36 × 101
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slightly affect the peak, and all spectra withmχ ¼ 800 GeV
are expected to be detectable by LISA and Taiji.
In order to compare the sensitivity of GW detection with

current dark matter constraints, we also show the limit of
parameter region which can reach the sensitivity of the
future space-based GW interferometer LISA in Fig. 9 (the
area below the gray dashed line is detectable). We can see
that there are some blind spot parameter regions for current
direct and indirect DM detection experiments below
mχ ∼ 2 TeV, and the GW detection experiment LISA
provide a complementary exploration technique to probe
these region.

VI. CONCLUSION

In this paper, we have conducted a detailed examination
of the NMCHM extended with a dilaton χ, including
aspects of DM phenomenology, cosmological phase tran-
sition dynamics, and gravitational waves (GW). Due to the
mixing between the dilaton and Higgs fields, an accidental
cancellation of the DM-nucleon scattering amplitude can
occur, allowing some parameter space to evade the strin-
gent constraints of DM direct detection. We have also
investigated the impact of DM indirect detection and relic
density on the parameter space. A key distinction of our
model from the standard NMCHM is the existence of
the ηη → χχ channel, which can significantly alter the DM
annihilation cross section whenmη > mχ . We also find that
the future DM direct and indirect detection experiments are
capable of probing most of the parameter space of our
interests.
Our model can easily achieve strong FOPTs within our

parameter space of interest. This is not surprising, as it is a
common characteristic of composite models with near
conformal symmetry. We have identified two patterns of
phase transition: 1-step and 2-step phase transitions. The
type and strength of the phase transition are primarily

influenced by the dilaton mass, the VEV of the dilaton
field, and the color number N of SUðNÞ strong interaction
in the composite sector. For a given set of N and vχ , we
can determine the critical dilaton mass that separates the
two phase transition patterns using an approximation.
Supercooling is a significant feature in this model. As N
increases and mχ decreases, supercooling progressively
intensifies. This could potentially lead to late-time inflation,
as the vacuum energy will dominate the universe at low
temperatures. Following the supercooled phase transition, the
universe will reheat, which could modify the production
mechanism of DM. However, our calculations show that
within the range of mη ≲ 10 TeV, the traditional thermal
freeze-out mechanism still holds. By combining the results
from DM phenomenology and phase transition studies,
we find that wihin a range of 200 GeV < mη < 1 TeV, our
model is consistent with all DM constraints and can simulta-
neously achieve a strong first-order phase transition.
Finally, we have also explored the stochastic background

of gravitational waves produced by the FOPT, which are
anticipated to be stronger than those produced by the
traditional electroweak phase transition. The spectra of
these GWs are expected to be detected by future space-
based GW interferometer experiments. In particular, a GW
spectra for mχ ≲ 2 TeV is hopeful to be probed by the near
future GW experiment LISA. Our research can also be
applied to electroweak baryogenesis, a topic we plan to
investigate in our future studies.
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APPENDIX A: EFFECTIVE LAGRANGIAN
OF NMCHMχ

The full Lagrangian of the NMCHMχ model can be
derived using spurion techniques [79–81]. By expanding
the Higgs field and the dilaton field around their respective
VEVs, we can obtain

Lpheno ¼
1

2
∂μĥ∂μĥþ

1

2
∂μη∂

μηþ 1

2
∂μχ̂∂

μχ̂ þ
�

ξffiffiffiffiffiffiffiffiffiffi
1− ξ

p ĥ
v
þ ð3ξþ 1Þξ

2ð1− ξÞ
ĥ2

v2
þ ξ2

2ð1− ξÞ
η2

v2
þ ξ

2

χ̂2

v2
þ

ffiffiffi
ξ

p χ̂

v
þ 2ξ

3
2ffiffiffiffiffiffiffiffiffiffi

1− ξ
p χ̂ ĥ

v2

�
ð∂μĥÞ2

þ
�
ξ

2

χ̂2

v2
þ

ffiffiffi
ξ

p χ̂

v
þ ξ

2ð1− ξÞ
η2

v2

�
ð∂μηÞ2 þ

�
ξffiffiffiffiffiffiffiffiffiffi
1− ξ

p η

v
þ ξð1þ ξÞ

1− ξ

ĥη
v2

þ 2ξ
3
2ffiffiffiffiffiffiffiffiffiffi

1− ξ
p χ̂η

v2

�
∂μĥ∂μη

−
�
λhv2ð1− ξÞĥ2 þ λhvð1− ξÞ32ĥ3 þ λh

4
ð1− ξÞ2ĥ4

�
−
�
1

2
m2

ηη
2 þ λη

4
η4
�
−
�
m2

χ

2
χ̂2 þ λð3Þχ χ̂3 þ λð4Þχ χ̂4

�

−m2
hχ ĥ χ̂−

�
λhη
2
ð1− ξÞη2ĥ2 þ λhηv

ffiffiffiffiffiffiffiffiffiffi
1− ξ

p
η2h

�
−
�
3
m2

η

v2χ
η2χ̂2 þ 2

m2
η

vχ
η2χ̂

�

− ð6λhξð1− ξÞĥ2χ̂2 þ 4λhv
ffiffiffi
ξ
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ð1− ξÞĥ2χ̂ þ 4λh

ffiffiffi
ξ
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ð1− ξÞ32ĥ3χ̂Þ − λhη
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ð1− ξÞξ
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η2ĥ χ̂

þ
�
1þ 2

ffiffiffiffiffiffiffiffiffiffi
1− ξ

p h
v
þ ð1− ξÞh

2

v2
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξð1− ξÞ

p
ð2þ γV2Þ ĥ χ̂

v2
þ ð2þ γV2Þ χ̂

vχ
þ
�
1þ 3

2
γV2

�
χ̂2

v2χ

�

·

�
M2

WW
þ
μ W−μ þM2

Z

2
ZμZμ

�
− λðSMÞ

ψ v

�
1þ 1− 2ξffiffiffiffiffiffiffiffiffiffi

1− ξ
p ĥ

v
−
ξð3− 2ξÞ
2ð1− ξÞ

ĥ2
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−

ξ

2ð1− ξÞ
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ξ
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ξ
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v2
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ψ̄fψf
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�
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1

2
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v2χ

�
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μνGaμν þ αem
8π

ðbemIR − bemUVÞ
�
1þ χ̂

vχ
−
1

2

χ̂2

v2χ

�
FμνFμν

þ effective interaction terms for hgg; hhgg; hγγ; ηηgg; ηηγγ; χgg; χγγ… ðA1Þ

where λðSMÞ
ψ is the Yukawa coupling of the Standard Model, γψ and γV2 parametrise the breaking of conformal invariance of

the fermion sector and the gauge boson sector respectively. The contributions from gauge coupling are small compared to
ones from fermions, and thus become negligible, that is, γV2 ≃ 0. The loop effects might be crucial for phenomenology of
Higgs and dilaton, and thus we present the effective interactions with loop corrections explicitly as follows [47,82]:

LðloopÞ
eff ¼ αs

12π
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h
v
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W
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�
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W
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χ

��
χ̂

vχ
FμνFμν
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32π

cηfð2Þ
2

AQ

�
4m2

t

m2
η

�
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μνGaμν þ 3αem
16π

cηfð2Þ
2

Q2
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�
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t
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η

�
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v2
FμνFμν ðA2Þ

Where AQ, AW and AH
W are loop functions which can be found in Refs. [47,82]. By expanding the potential of dilaton, we

can extract the mass and dominant self-interaction couplings as follows,

m2
χ ¼ V 00ðvχÞ − 3λhξv2

λð3Þχ ¼ 1

6
V 000ðvχÞ − λhvξ

3
2

λð4Þχ ¼ 1

24
V 0000ðvχÞ −

λh
4
ξ2 ðA3Þ
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where some approximations have been applied and

V 00ðvχÞ ¼ −ð4cχvχ2γϵgχ2Þ

V 000ðvχÞ ¼
2gχ2vχ
cϵ

�
−48cχ2cϵ2 − 2cχcϵðγϵðγϵ þ 24Þ þ 104Þ þ 30cχcϵ
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16cχcϵ þ ðγϵ þ 4Þ2

q

þ ðγϵ þ 4Þðγϵ þ 11Þ
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ðA4Þ

For the annihilation of η, the derivative coupling of η can be determined by pμ
1 ≈ pμ

2 ≈ ðmη; 0Þ. The interactions between η
and h are given by

F ðdÞ
ηηĥ ĥ
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Finally we obtain the effective Lagrangian modified by the derivative couplings for s-channel annihilation:
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The calculation of t,u channel is similar and only requires the replacement of the corresponding momenta.
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APPENDIX B: FIELD DEPENDENT MASS MATRIX ELEMENTS

The specific form of effective masses with Landau gauge is

m2
Wðχ1; χ2; χ3Þ ¼

m2
W0

v2
χ2; m2

Zðχ1; χ2; χ3Þ ¼
m2

Z0

v2
χ2; mCFT ¼ g2χχ2 ðB1Þ
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�
μ2h
2v2χ

þ λh
4
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The mass matrix for χð1;2;3Þ is given by

M2
S ¼

0
B@

m2
11 m2

12 m2
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m2
12 m2

22 m2
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m2
13 m2

23 m2
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where

∂
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∂
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�
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Solving the RGE with the initial condition ϵðχÞ ¼ ϵðvχÞ, the CFT deformation coefficient yields

ϵðχÞ ¼ 8cχg2χγϵðχ=vχÞγϵ
γϵ
�
4þ γϵ þ
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16cϵcχ þ ð4þ γϵÞ2

q �
þ 8cϵcχð1 − ðχ=vχÞγϵÞ
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We can use the RGE to simplify the calculation
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χ
∂ϵ

∂χ
≃ γϵϵþ

cϵ
g2χ

ϵ2: ðB14Þ

The derivatives are written as
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The effective mass of top quark is given by

mtðχ1; χ2; χ3Þ ¼
mt0χ1

v
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1 −

�
χ1
χ

�
2

−
�
χ2
χ

�
2

s

ðB16Þ
The VEV at T ¼ 0 yields

hχ1i ¼ hhi ¼ v ≈ 246 GeV

hχ2i ¼ hηi ¼ 0

hχ3i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hχi2 − hχ1i2 − hχ2i2
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and
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(
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APPENDIX C: HIGH TEMPERATURE
EXPANSION OF THE EFFECTIVE POTENTIAL

We consider the high temperature corrections by assum-
ing T2 ≫ m2

i and the thermal function can be expanded as
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which yields
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where b sums over χi;Πj;W�; Z;ϕCFTði; j ¼ 1; 2; 3Þ and
f ¼ t. In order to simplify the expressions, we turn to the
basis with χ1, χ2 and χ. Plugging the expression of effective
masses into the formula, we obtain
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v2χ
Þ

!
χ21T

2

þ 1

24

�
4λhηþ 3ληþ

μ2η
v2χ

�
χ22T

2

−
1

4

m2
t

v2ð1− v2

v2χ
Þ
1

χ2
χ21T

2−
1

4

m2
t

v2ð1− v2

v2χ
Þ
1

χ2
χ21χ

2
2T

2

þ 1

24

��
4μ2hþμ2η

v2χ
þ 45

4
N2g2χ

�
χ2−

∂
2ðϵðχÞχ4Þ
∂χ2

�
T2

ðC3Þ

Finally, the effective potential is given by

Veffðχ1;χ2;χÞ ¼ V0ðχ1;χ2;χÞþVT
1 ðχ1;χ2;χÞ

¼ 1

2

�
χ2

v2χ
μ2hþ chT2

�
χ21þ

1

2

�
χ2

v2χ
μ2η þ cηT2

�
χ22

þ 1

4

�
λh −

4dh
χ2

T2

�
χ41þ

λhη
4
χ42

þ 1

2

�
λhη−

2dhη
χ2

T2

�
χ21χ

2
2

þðcχg2χ − ϵðχÞ− κðχ;TÞÞχ4 ðC4Þ

The coefficients are shown explicitly as follows,
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ch ¼
1

12

 
6m2

W

v2
þ 3m2

Z

v2
þ 6λh þ λhη þ

μ2h
v2χ

þ 6m2
t

v2ð1 − v2

v2χ
Þ

!

cη ¼
1

12

�
4λhη þ 3λη þ

μ2η
v2χ

�

dh ¼ dhη ¼
1

4

m2
t

v2
�
1 − v2

v2χ

�

κðχ; TÞ ¼ −
1

24

��
4μ2h þ μ2η

v2χ
þ 45

4
N2g2χ

�
1

χ2
−
∂
2ðϵðχÞχ4Þ
∂χ2

1

χ4

�
T2 ðC5Þ

In the case of 2-step phase transitions, we can approximately calculate the PT in the Higgs direction by fixing the dilaton
field with its VEV in the second step of phase transitions.
In the canonical basis which parametrizing the scalar fields as χ1, χ2, and χ3, the effective potential is given by

Veffðχ1; χ2; χ3Þ ¼ V0ðχ1; χ2; χ3Þ þ Vð1Þ
T ðχ1; χ2; χ3Þ

¼ T2

24
χ21

�
22

μ2h
2v2χ

þ 2
μ2η
2v2χ

þ 6λh þ λhη þ
6m2

W

v2
þ 3m2

Z

v2
þ 6m2

t

v2ð1 − v2

v2χ
Þ þ 20cχg2χ þ

45

4
N2g2χ

�

þ T2

24
χ22

�
8
μ2h
2v2χ

þ 16
μ2η
2v2χ

þ 3λη þ 4λhη þ 20cχg2χ þ
45

4
N2g2χ

�

þ T2

24
χ23

�
8
μ2h
2v2χ

þ 2
μ2η
2v2χ

þ 20cχg2χ þ
45

4
N2g2χ

�

−
T2

4

m2
t

v2ð1 − v2

v2χ
Þ

χ41
χ21 þ χ22 þ χ23

−
T2

4

m2
t

v2ð1 − v2

v2χ
Þ

χ21χ
2
2

χ21 þ χ22 þ χ23

þ
�
μ2h
2v2χ

þ λh
4
þ cχg2χ

�
χ41 þ

�
μ2η
2v2χ

þ λη
4
þ cχg2χ

�
χ42 þ cχg2χχ43

þ
�
μ2η þ μ2h
2v2χ

þ λhη
2

þ 2cχg2χ

�
χ21χ

2
2 þ

�
μ2η
2v2χ

þ 2cχg2χ

�
χ22χ

2
3 þ

�
μ2h
2v2χ

þ 2cχg2χ

�
χ21χ

2
3

− ϵðχÞðχ21 þ χ22 þ χ23Þ2 −
T2

24
χ2
�
ð4þ γϵÞð5þ γϵÞϵðχÞ þ

cϵ
g2χ

ð9þ 3γϵÞϵ2ðxÞ þ 2

�
cϵ
g2χ

�
2

ϵ3ðχÞ
�

ðC6Þ

The expression of the effective potential in canonical
basis can be used to calculate the thermal masses of χ1,
χ2, and χ3. This kind of parametrization is valid for the
origin χ ¼ 0 as well since the coordinate singularity is
eliminated.

APPENDIX D: TRIANGULAR POTENTIAL
APPROXIMATION SOLUTION

OF TUNNELING RATE

In this section, we follow the method given by Ref. [68]
to derive the thermal tunneling rate for an approximate
single-field solution. According to the shape of dilaton
potential, we approximate the barrier with a triangular
potential (see Fig. 11). The thermal tunneling rate is
determined by the Oð3Þ-symmetric action S3 defined by

FIG. 11. Schematic diagram of the triangular potential approxi-
mation and the related parameters.
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S3
T

¼ 1

T

Z
d3x

�
1

2
ð∇ϕÞ2 þ Vðϕ; TÞ

�

¼ 4π

T

Z
r2dr

�
1

2

�
∂ϕ

∂r

�
2

þ Vðϕðr; TÞ; TÞ
�

ðD1Þ

The equation of motion yields

∂
2ϕ

∂r2
þ 2

r
∂ϕ

d∂r
¼ V 0ðϕðr; TÞ; TÞ ðD2Þ

where V 0 ≡ ∂V=∂ϕ. In the calculation, we assume the
starting point ϕ0 is smaller than the true vacuum ϕ− and in
this case the boundary conditions are

	
ϕðrÞ ¼ ϕþ; ϕ̇ðrÞ ¼ 0; r ¼ Rþ
ϕðrÞ ¼ ϕ0; ϕ̇ðrÞ ¼ 0; r ¼ 0

ðD3Þ

where ϕþ is the false vacuum. To simplify the calculation,
we define the magnitudes of the gradients of the potential as

λ�¼ΔV�
Δϕ�

;Δϕ�¼�ðϕTÞ; ΔV�¼ðVT−V�Þ ðD4Þ

where ϕT and VT are the maximum points and maximum
values of the effective potential. We can view the effective
potential as a piecewise function which is the benefit of
using a line segment approximation and solve for the
expected value of the field on either side of the maximum.
That is

(
1
r2 ∂r

�
r2 ∂ϕ

∂r

�¼−λ− ⇒ r2 ∂ϕ
∂r



r
0
¼−

R
r
0 λ−r

2dr; 0≤ r≤RT

1
r2 ∂r

�
r2 ∂ϕ

∂r

�¼ λþ ⇒ r2 ∂ϕ
∂r



Rþ
r ¼ R Rþ

r λþr2dr; RT ≤ r≤ Rþ

ðD5Þ

The solutions become(
ϕRðrÞ ¼ ϕ0 −

λ−
6
; 0 ≤ r ≤ RT

ϕLðrÞ ¼ ϕþ þ λþ
6r ½r3 þ 2R3þ − 3R2þr�; RT ≤ r ≤ Rþ

ðD6Þ

Plugging into the boundary conditions and the continuity
conditions

ϕLðRTÞ ¼ ϕRðRTÞ; ϕ̇LðRTÞ ¼ ϕ̇RðRTÞ ðD7Þ

and all parameters can be expressed in terms of RT

	R3þ ¼ ð1þ cÞR3
T

Δϕþ ¼ λþ
6
ð1þ 2ð1þ cÞ − 3ð1þ cÞ23ÞR2

T

ðD8Þ

where c ¼ λ−
λþ
, which totally depends on the shape of

effective potential. In order to calculate the action, we also
need the expression of the effective potential. Similar to the
calculation of field value, we divide the effective potential
into the left and right sides and treat them respectively

	
Vðϕðr; TÞ; TÞR ¼ V− þ λ−ðϕ− − ϕLðrÞÞ; 0 ≤ r ≤ RT

Vðϕðr; TÞ; TÞL ¼ Vþ þ λþðϕLðrÞ − ϕþÞ; RT ≤ r ≤ Rþ
ðD9Þ

The action yields

S3
T
¼ 4π

T

Z
RT

0

r2dr

�
1

2

�
∂ϕR

∂r

�
2

þVðϕðr;TÞ;TÞR
�

þ 4π

T

Z
Rþ

RT

r2dr

�
1

2

�
∂ϕL

∂r

�
2

þVðϕðr;TÞ;TÞL
�

ðD10Þ

Substitute Eqs. (D6) and (D9) into the above formula, after
some tedious calculation we finally obtain

S3
T

¼ 4π

T
½ðF ð1Þ þ F ð2ÞÞR5

T þ ðT ð1Þ þ T ð2ÞÞR3
T � ðD11Þ

where

F ð1Þ ¼ −
1

90
λ2−; T ð1Þ ¼ 1

3
ðV− þ λ−Δϕ−Þ; T ð2Þ ¼ −

ΔVþ
3

c

F ð2Þ ¼ λ2þ
3

�
−

2

15
þ 1

2
ð1þ cÞ23 − 1

3
ð1þ cÞ − 1

5
ð1þ cÞ53 þ 1

6
ð1þ cÞ2

�
ðD12Þ

The tunneling rate can be estimated by

Γ ∝ e−SE ðD13Þ

where
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SE ¼ S3
T
ðϕðrÞÞ − S3

T
ðϕþÞ ðD14Þ

In our model, when the tunneling occur, the absolute value of the maximum potential VT is relatively small and can be
approximated by ∼0. The coordinate is chosen such that ϕþ ¼ 0. The parameters in the approximate calculation can be
concretely represented by the parameters in the dilaton model

ΔVþ ≈ −Vþ ¼ π2

8
N2T4; ΔV− ¼ −V− ¼ 1

16
m2

χv2χ

ϕþ ¼ 0; ϕ− ¼ vχ ; ϕT ¼ Δϕþ ∼ a · T=gχ ; Δϕ− ¼ vχ − a · T=gχ

RT ¼
"

6Δϕþ
λþ
�
1þ 2ð1þ cÞ − 3ð1þ cÞ23�

#1
2

ðD15Þ

where we have made a linear approximation forΔϕþ with a
proportional coefficient a. By experimenting with different
parameter points, we set a as 10.

APPENDIX E: CALCULATION OF NUCLEATION
CONDITION IN SUPERCOOLED

PHASE TRANSITION

The nucleation rate is given by Eq. (30)

Γ ≈ AT4e−SðTÞ: ðE1Þ

The nucleation criterion requiresZ
tn

tc

dt
Γ
H3

¼ 1: ðE2Þ

which means at least one bubble is generated per Hubble
volume per Hubble time. For simplicity, We expand the
action with T − T0 to the linear order,

SðTÞ ≈ SðT0Þ þ
dS
dT






T¼T0

ðT − T0Þ

¼ SðT0Þ þ
dS
dT






T¼T0

ðT − T0Þ

¼ SðT0Þ þ S0ðT0ÞðT − T0Þ: ðE3Þ

In the case of vacuum energy domination, by assuming a
constant vacuum energy, we have

Hvac ¼
ffiffiffiffiffiffiffiffiffiffi
ρvac
3M2

Pl

r
; aðtÞ ¼ a0eHvacðt−tcÞ: ðE4Þ

Since sa3 ¼ const, we can find

dt ¼ −ðHvacTÞ−1dT; T ¼ T0e−Hvacðt−tcÞ: ðE5Þ

The nucleation condition now becomes

1¼
Z

tn

tc

dt
Γ

H3
vac

¼
Z

Tc

Tn

dT
Γ

H4
vacT

¼ A
H4

vac

Z
Tc

Tn

dTe−SðTÞT3

≈
A

H4
vac

Z
∞

Tn

dTe−SðTÞT3

≈
A

H4
vac

Z
∞

Tn

dTe−½SðTnÞþS0ðTnÞðT−TnÞ�T3

¼ A
H4

vac
e−½SðTnÞ−S0ðTnÞTn�

Z
∞

Tn

dTe−S
0ðTnÞTT3

¼ AT4
n

H4
vac

e−SðTnÞð6β̃−4n þ6β̃−3n þ3β̃−2n þ β̃−1n Þ;

ðE6Þ
thus

SðTnÞ ≃ 4 ln

�
Tn

Hvac

�
þ ln ð6β̃−4n þ 6β̃−3n þ 3β̃−2n þ β̃−1n Þ;

ðE7Þ
where β≡ −dS=dt ¼ HTdS=dT; β̃≡ β=H.
Since the supercooled FOPTs are mainly determined by

the dilaton, we can simplify the discussion by approxi-
mating the full potential with the dilaton potential,

V0ðχÞ ¼ ½cχg2χ − ϵðχÞ�χ4; ðE8Þ

with gχ ¼ 4π=
ffiffiffiffi
N

p
, and

ϵðχÞ ¼ 8cχg2χγϵðχ=vχÞγϵ

γϵ

�
4þ γϵ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16cϵcχ þ ð4þ γϵÞ2

q �
þ 8cϵcχð1 − ðχ=vχÞγϵÞ

ðE9Þ
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The renormalization group equation for ϵðχÞ is given by

∂ϵðχÞ
∂ ln χ

¼ γϵϵ
2ðχÞ þ cð1Þϵ2ðχÞ: ðE10Þ

There are two minima of the potential. One is the high
temperature vacuum χ ¼ 0, while the other one is the
physical vacuum χ ≃ vχ . The mass and the potential
corresponding to the latter are

m2
χ ≃ −4γϵcχg2χv2χ ; V0ðvχÞ ≃

γϵcχg2χ
4

v4χ ¼ −
1

16
m2

χv2χ :

ðE11Þ

Once the finite temperature corrections are included, the
potential for these two vacuum are given by

Vð0; TÞ ¼ −
π2

8
N2T4; Vðvχ ; TÞ ≃ −

1

16
m2

χv2χ ; ðE12Þ

Below the critical temperature, the energy density differ-
ence of these two vacuum is

ρvac ¼ Vð0; TÞ − T
∂V
∂T






χ¼0

−
�
Vðvχ ; TÞ − T

∂V
∂T






χ¼vχ

�

¼ −
π2

8
N2T4 − T

�
−
π2

2
N2T3

�
þ 1

16
m2

χv2χ

¼ 3π2

8
N2T4 þ 1

16
m2

χv2χ ðE13Þ

The Friedmann equation is given by

H ¼ da
adt

¼
ffiffiffiffiffiffiffiffiffiffi
ρvac
3M2

Pl

r

¼ 1ffiffiffi
3

p
MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16
m2

χv2χ þ
3π2

8
N2T4

r

¼ mχvχ
4
ffiffiffi
3

p
MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6π2N2T4

m2
χv2χ

s

≡ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qa−4

q
ðE14Þ

It can be solved with initial condition að0Þ ¼ 1, and the
result is

aðtÞ ¼ q1=4sinh1=2
�
2ptþ arcsinh

�
1ffiffiffi
q

p
��

≃ ept ðE15Þ

Therefore, we can treat Hvac as a constant with a value of

Hvac ¼
mχvχ

4
ffiffiffi
3

p
MPl

ðE16Þ

Finally, we obtain the nucleation condition for NMCHMχ

SðTnÞ ¼ 4 ln

�
4
ffiffiffi
3

p
MPlTn

mχvχ

�
þ ln ð6β̃−4n þ 6β̃−3n þ 3β̃−2n þ β̃−1n Þ

≃ 4 ln

�
4
ffiffiffi
3

p
MPlTn

mχvχ

�
− lnðβ̃nÞ

≃ 131.98 − 4 ln

�
mχ

1 TeV

�
− 4 ln

�
vχ

2.5 TeV

�
þ 4 ln

�
Tn

100 GeV

�
− ln

�
β̃n
100

�
: ðE17Þ
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