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In this paper, we conduct a comprehensive study of the next-to-minimal composite Higgs model
(NMCHM) extended with a dilaton field y (denoted as NMCHM,). A pseudo-Nambu-Goldstone
boson (pNGB) 7, resulting from the SO(6) — SO(5) breaking, serves as a dark matter (DM)
candidate. The inclusion of the dilaton field is helpful for evading the stringent constraints from dark
matter direct detection, as it allows for an accidental cancellation between the amplitudes of DM-
nucleon scattering, an outcome of the mixing between the dilaton and Higgs fields. The presence of
the dilaton field also enriches the phase transition patterns in the early universe. We identify two
types of phase transitions: (i) a 1-step phase transition, where the chiral symmetry and electroweak
symmetry breaking (EWSB) occur simultaneously, and (ii) a 2-step phase transition, where the chiral
symmetry breaking transition takes place first, followed by a second phase transition corresponding to
EWSB. Since the first-order phase transitions can be strong due to supercooling in our model, we
also examine the stochastic background of gravitational waves generated by these phase transitions.
We find that these gravitational waves hold promise for detection in future space-based gravitational
wave experiments, such as LISA, Taiji, BBO, and DECIGO.

DOI: 10.1103/PhysRevD.110.015023

I. INTRODUCTION

The composite Higgs model (CHM) is one of the most
compelling models beyond the Standard Model (SM) for
addressing the hierarchy problem [1-10]. In this paradigm,
the Higgs boson is not viewed as a fundamental particle
but emerges as a pseudo-Nambu-Goldstone boson (pNGB)
corresponding to the spontaneous breaking of an approxi-
mate global symmetry. The minimal composite Higgs
model (MCHM) [2,3], which is the minimal realistic
CHM that possesses a custodial symmetry, is built on
the symmetry breaking pattern SO(5) — SO(4). However,
this minimal realization does not introduce any new
degrees of freedom that could serve as a dark matter
candidate.

A natural extension to include a dark matter candidate is
to consider the next-to-minimal composite Higgs model
(NMCHM), which is based on the symmetry breaking
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pattern SO(6) — SO(5) [11]. This pattern of symmetry
breaking implies the existence of five pNGBs, four of
which correspond to the Higgs fields, while the remaining
one corresponds to a new scalar boson 7, potentially
serving as the weakly interacting massive particle (WIMP)
dark matter candidate. Note that the Z, symmetry asso-
ciated with  — —» can be violated by the Wess-Zumino-
Witten (WZW) terms in the SO(6) — SO(5) model.
Therefore, we will consider an O(6) - O(5) model
[12—14], which assumes that the Z, symmetry is respected
by the whole strong sector. Moreover, if the NMCHM is
equipped with an approximate conformal symmetry,
for instance, when it is built on the 5D duality framework
[15,16], both the scale invariance and the chiral symmetry
can be broken simultaneously during a confinement
phase transition (PT). The spontaneous breaking of this
approximate scale invariance also results in a pNGB,
known as a dilaton y (its dual counterpart in 5D theory is
the radion [15-17]).

In this work, we will conduct a comprehensive study of
the NMCHM extended with y, which we refer to as
NMCHM,. We also make the assumption that the con-
formal symmetry breaking scale of NMCHM,,, which is
determined by the vacuum expectation value (VEV) of the
dilaton, coincides with the confinement scale. Nonetheless,
this condition is not generally required. A potential of the
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dilaton can be generated due to the explicit breaking of
conformal symmetry, and this will govern both the vacuum
expectation value (VEV) and the mass of the dilaton. If the
effect of explicit breaking is small, the theory would remain
near a fixed point over a large scale range from the
ultraviolet (UV) scale to the confinement scale, exhibiting
a walking behavior.'

In the NMCHM,,, the dilaton can influence dark matter
(DM) phenomenology in two ways. First, the dilaton field
can mix with the Higgs field, potentially leading to a
suppression of the DM-nucleon scattering amplitude if an
accidental cancellation occurs. This could help the DM
evade stringent constraints from direct detection. Second, if
m, > m,, the DM candidate 7 could open an annihilation
window, 1 +# — y + y. This would enhance the annihi-
lation cross section, impacting both indirect detection and
the relic density.

It has been proposed that the MCHM, when com-
bined with a dilaton field, can achieve a strong first-
order electroweak phase transition, particularly in the
context of a supercooled phase transition [20-28]. We
can anticipate that this would also occur in the
NMCHMI. As we know, the strong first-order electro-
weak phase transition is not only essential for electro-
weak baryogenesis [26,29-38], but it also provides a
source of stochastic background of gravitational waves
(GWs). These GW signals are promising to be detected
in future experiments, such as LiSA, TianQin, Taiji,
BBO, and DECIGO [39-43].

This paper is organized as follows. In Sec. II, we discuss
the basic construction of the NMCHM,,, which includes the
effective Lagrangian and the effective potential. In Sec. III,
we analyze the DM phenomenology, taking into account
constraints from direct detection, indirect detection, and
relic density. In Sec. IV, we investigate the phase transition
dynamics of the NMCHM,, in conjunction with the results
from the DM phenomenology. In Sec. V, we discuss the
GWs produced by the FOPTs. Finally, we present our
conclusion in Sec. VL.

II. MODEL CONSTRUCTION
A. Effective theory of dilaton

In the next-to-minimal composite Higgs model
(NMCHM), an approximate conformal symmetry is typ-
ically assumed. The strong dynamics in the infrared region
(IR) lead to a condensate of techni-quarks, resulting in
the spontaneous breaking of both chiral symmetries and
conformal symmetry at the IR scale f. The Goldstone

'While we refer to the behavior here as “walking” for
visualization purposes, it is in reality a tuning model with fixed
points set to be real, which differs from the complex ones found
in the true walking model. This signifies the emergence of a
tachyon in the 5D dual theory [18,19].

boson corresponding to the breaking of scale invariance is
referred to as the dilaton, y. If the conformal invariance is
explicitly broken by quantum effects, a potential for the
dilaton can develop, causing the dilaton field’s excitation to
become massive. We will follow the derivations and
conventions constructing the dilaton potential as presented
in Refs. [20,21], focusing exclusively on the case of the
mesonlike dilaton.

Given that both the Higgs boson and the dilaton
originate from the same underlying strongly-coupled
sector, the vacuum expectation value (VEV) of the
dilaton, v,, is equal to the global symmetry breaking
scale f. We assume that the main source of the violation
of conformal invariance arises from the ultraviolet (UV)
theory. Consequently, the breaking effects infiltrate the
effective theory through the renormalization group equa-
tion (RGE) as follows:

dloge(y) (1)

s _ 1

08 _ .+ ey, m
where ¢ =c¢, /g2, with ¢, assumed to be tiny to

generate a flat potential. Thus, the effective potential
of the dilaton with a nonzero VEV can be expressed as
follows [20,21]:

V(x) = CIN 2" = [c, 97 — e(o)r* (2)

where ¢, is an O(1) coefficient, g, = 47/ VN, as per the
large-N expansion description [44] and the detailed
expression of the CFT deformation coefficient ¢(y) can
be found in Eq. (B13).

B. The next-to-minimal composite Higgs model

For this study, we use a model where all the SM fermions
fall under the 6 + 6 representation of SO(6) as a benchmark
(fermions in higher dimensional representations have been
examined in Refs. [22,45]). The Goldstone bosons, which
correspond to global SO(6) symmetry breaking, are encoded
in the X field. This field is defined by rotating the vacuum
using a Goldstone matrix, denoted as X(x)= e/,
Typically, it is expressed using the following patterns of
parametrization:

1
:v—(hl,hz,h3,h4,r/,\/v§—h2—;72), (3)

X

~

T RN s
where h; = v, sin -7, i(i)=1,2,3,4,n=0, sin -7 and

=353 (x)% h?= 3% h2 By choosing the unitary
gauge hy = hy, = hy = 0and h = h3, these parametrizations
are reduced to:
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However, we will use the expression in the second line as it is
more conducive for discussing phenomenologies. Note that
in this parametrization, /& and # are independent with y.

The leading order of the chiral Lagrangian, derived from
the Callan-Coleman-Wess-Zumino (CCWZ) construction,
can be expressed as follows:

y _f
Lt =5 (D2 (D'E)
1 1 1 (hd,h +nd,n)?
S0,h*h A+ S 0oy + St
AR S R
h? M
s (M%VW,jW—ﬂ + TZZ,,Z”) . (5)

The effective Lagrangian of the fermion sector can be
constructed either by spurions, which restore the broken
symmetries, or by directly integrating out the heavy
resonances. Finally, we obtain the following [22]:

T (2ol (- ) - ()

(- G- ()

where ¢, = cos{, s, =sin{ and ¢ represents the mixing
angle for embedding up-type quarks into the 6 representa-
tion of SO(6) which is the 8 defined in Eq. (3.6) of Ref. [46]
and Eq. (3.16) of Ref. [22]. We take the value of the mixing
angle ¢ to be z/2 to ensure the - —y symmetry is
unbroken, in order to get a stable dark matter candidate.
The ellipses denote the other flavors of quarks, which are
also under the 6 + 6 representation of SO(6). The form
factors I17, I17, IT{,, and IT| have a detailed construction that
can be found in Refs. [6-8,11,13,22].

1/ y\2 1/ y\2
L === 0,hd*h+=|=| 0,no"
eff 2 (1}){) " + ) (%{) ;17] n +=

R xN* M
+7(v_x> (MWW,J{W H 22,7

h_

X

C. Dilaton extension of the NMCHM

We can incorporate the dilaton field into our model
by considering it as a spurion that compensates for the
scale transformation of the effective Lagrangian for the
NMCHM. Alternatively, we can promote the global sym-
metry breaking scale f to a dynamic field y. The dilaton
extension of the NMCHM (denoted as NMCHM,) results
in the following effective Lagrangian:

(hah—i—n ) 1

0 yo*
<UX) )( —h? - +2M X

ol sl (- -2

hy._
“Iptg +He. = Veg(hon,y)
v,

Mo 1_ _ - 1)2_
JSGr 2

s Aem em em v
+ S_(b%R - biy) log< )Ga G+ 87 (big' = biv) 10g< >F . (7)
Uy
The effective potential term becomes
AN, A A
Vege(ho . x) = <v—> <7h WSt T St S )+ et — Qo (8)
X
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If the IR contribution predominates, the effective potential is
dictated by the effective Lagrangian resulting from integrat-
ing out the heavy resonances. Consequently, the coefficients
in the potential are interrelated, as they can all be represented
in terms of integrals of the form factors. [22]. The Weinberg
sum rules are also taken into account to eliminate the
divergence [6]. Note that the last line of Eq. (7) demonstrates
the interactions between the dilaton and the SM gauge
bosons, facilitated by trace anomalies [47]. The parameter
byy receives contributions from both the strongly-coupled
sector and elementary fields, whereas by receives additional
contributions from light degrees of freedom that emerge after
the spontaneous breaking of SO(6) symmetry. The values of
these parameters are model-specific.

To render the kinetic terms of physical fields canonical,
we can choose the parametrization of the fluctuations
around the vacuum as follows:

h=uv++/1-¢h,

n=mn xy=v,+% (9)

where &=1?/v2 quantifies the extent of the vacuum
misalignment angle. Finally, the complete effective
Lagrangian is presented in Appendix A.

III. DARK MATTER PHENOMENOLOGY

It is straightforward to verify that the Lagrangian
Eq. (A1) presented in Appendix A remains invariant under
a Z, transformation, 7 — —n. We assume that this sym-
metry is maintained throughout the composite sector, and
higher derivative terms involving Wess-Zumino-Witten
terms are absent. Under these conditions, 7 is protected
by the Z, symmetry and thus can serve as a viable dark
matter (DM) candidate.

Direct detection experiments for DM can impose strin-
gent constraints on the parameter space of WIMP DM. In
the following discussion, we will use the upper bound of
the DM-nucleon cross-section adopted from the LUX-
ZEPLIN (LZ) experiment [48]. In the context of our model,
there are basically three kinds of interaction vertices related
to the direct detection: the Higgs portal #-n-h, the dilaton
portal n-n-y, and the contact interactions with fermions
n-n-f-f. The first two interactions contribute to the DM-
nucleon scattering through t-channel processes mediated by
Higgs and dilaton. The contact interactions between the
DM and quarks are relatively suppressed as they are
induced by higher dimensional operators. The effective
Lagrangian for these interactions is formulated as follows:

S M, ; ¥
diest = =5, 0k = Dy /1 =GR+ /& (O’
m? £
=22y + ———— 0Py 10
Wﬂ%+%1_®MﬂWW7 (10)

Since the incoming and outgoing # are on-shell state during
the DM-nucleon scattering process, we can use integration

by part and equation of motion to rewrite the derivative
terms. Finally, the portal interactions can be expressed as

Ly = —Anyv/1 = Enth
m2 2m?2 m2

Loy ==\ EL o ——L g = =337, (11)
v v, v,

On the other hand, the Higgs field and dilaton field are
mixing, and thus we should diagonalize their mixing mass
matrix to figure out the mass eigenstates (/1. ).

h, = cos Oh + sin 67, Xy =cosOy —sin6h. (12)
where 0 is the mixing angle. &), is regarded as the SM-like
Higgs boson whose mass is about 126 GeV. If we consider
the physical mass of Higgs and dilaton as input parameters,

the mass matrix elements can be written in terms of 6,
physical mass my,, and m,, in the following way

2 _ 2.0 2.2 2 _ 2.0 2.2
mj, = Comy, + Sgmy,, nmy, = Comy + Syhty, ,
2 _ 2 2
mj, = s909(mhp —my ). (13)

The mass mixing term is induced by CFT violation and shift
symmetry violation which can be parametrized as [49]:

m%l)( & g(szI"U;%/II%/ (7vi01ation) . (14)

where ¥iolation 15 an undetermined parameter depending on
UV theory. In practice, we will use the mixing angle € as
an input instead of the mixing mass-squared. The spin-
independent DM-nucleon scattering cross section og; can be
computed as:

2,,2
uemy C‘gahp _ Sg(,llp n C@d)(p Sgahp
X 2 2

Arv?m? m% m2 my,
P 14

+L 2F2
2(1=¢&)w| N

e [(Ce + sgw,)an,  (cow, —sp)a,,

051

n Xp

 AnvPm? mj, * my,
S
——| Fy, 15
g )

mym,

where @, = VE + Yy)s = T is the reduced mass,

and Fy ~ 0.3 is the hadron matrix element [ 14]. The effective
coupling coefficients between (%,.y,) and DM 75 are
encoded in

2

m
ah,, = 31)—”5& +/1h,71)\/ 1- 56‘0,

X
m; I
a)(p = 31)_09 - /lh,?v 1- §S6. (16)
X
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The DM-nucleon cross section estimated by Eq. (15) with different mixing angle #. Other parameters are chosen to be

Ay = 0.01, v, =2 TeV, m, = 600 GeV. The gray shaded area is excluded by the LUX-ZEPLIN (LZ) bound and the red solid lines

denote the theoretical calculation of the spin independent scattering cross section. Different mixing angle leads to different exclusion
range of DM mass, with & = —0.02 for the left panel and & = 0.01 for the right panel. The accidental cancellation occurs only if 0

is negative.

Due the mass mixing between the 4 and }, the cross-section is
different from the ordinary NMCHM without dilaton. In
NMCHM,,, model, the scattering amplitude could happen to
be suppressed due to an accidental cancellation between the
diagrams induced by %, and y, mediation [50]. In such
situation, the DM-nucleon scattering cross section can
circumvent the stringent constraint from direct detection
data (see Fig. 1).

In addition to direct detection, indirect detection bound
and observed relic density of DM also strictly constrain on
the parameter space of WIMPs. Both of these constraints
are sensitive to the annihilation of cold dark matter, and
we find the dominant annihilation channels are 1 + 7 —
h, +h,andn +n =y, +x,if m, > m, .Forthe indirect
detection constraint, we use the bound implied by the
gamma-ray data from Major Atmospheric Gamma-ray

v, =2 TeV, Ay, =0.01, 0= —0.02

104 T LI T T | T T T T T T T T]
v|Planck
: . ]
Fermi-LAT 4
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O 10° i =
EX ’;'ﬂ _-’t~\ ]
A ]
oo oe REETUN S 4
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¢ : Lz
102 1 1 L |: Ll L T N B B B 1
10? 103 10
my, [GeV]

Imaging Cherenkov (MAGIC) telescopes and the Fermi
Large Area Telescope (LAT) [51]. For the relic density, we
adopt result Qpy; = 0.12 from the Planck experiment [52].
The numerical package microOMEGAs [53] is used to
compute the DM annihilation cross section, relic density,
and DM-nucleon scattering cross section. In Fig. 2, we
show all these constraints in m, —m, plane for two
benchmark models with different 6. In both cases, there
are available parameter region surviving from all the DM
constraints and the mass of DM # is about 300 GeV-
600 GeV. For comparison, the projected sensitivities for
direct detection experiment PandaX-nT 200 tonne-year
(blue dashed-dotted lines) [54], indirect detection experi-
ment CTA (cyan dashed lines) [55], and Fermi-LAT
18 years + LSST (green dashed lines) [56] are also plotted.
The arrows pointing outward the sensitivity lines

v, =2 TeV, Ay, =0.01, 6=0.01

104 T TT LI B B | T T T T T T T T
1 -
Planck! b
1 :
1
1 -
1
— g
Fermi-LAT i
>
3 10
< 10 ’/ —:
S S | ]
S Lot T 1
% , u 9
. 1 4
/ 1
' . i
- . :
b p . 4
. . 1 LZ
0 1
2 1 1 L |l (| L T N N B I
10?2 103 104
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FIG.2. The exclusion regions with different mixing angle § = —0.02 on the left and & = 0.01 on the right. The blue and green regions
are excluded by the LZ experiment [48] and the Fermi-MAGIC indirect detection respectively [51]. The red solid lines denote the DM
relic density Qpy /> = 0.12 observed by Planck experiment [52]. The future sensitivity of the PandaX-nT [54] is denoted by blue
dashed-dotted lines, while the sensitivities of CTA [55] and Fermi-LAT 18 years + LSST [56] are denoted by cyan and green dashed
lines. The arrows pointing outward the sensitivity lines correspond to the detectable regions.
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correspond to the detectable regions. In the left panel of
Fig. 2 corresponding to the case of & = —0.02, we find that
the parameters implied by the observed relic density can be
tested by the sensitivity of direct detection experiment
PandaX-nT. In the right panel corresponding to the case of
0 = 0.01, the sensitivity of PandaX-nT can cover the whole

parameter space of our interests (therefore the blue dashed-
dotted lines are absent). In both panels, we can see that the
sensitivity of CTA is capable to cover the parameters
implied by the relic density as well, while Fermi-LAT
18 years + LSST can test the mass region below
~300 GeV.

my =1TeV, v, =2TeV, 6= —0.02

10°

ool

102 103 104

my, [GeV]

- vy, =2 TeV, Ay =0.01, = —0.02

: Fermi-LAT

103
m, [GeV]

vy = 2.5 TeV

my =1TeV, v, =2.5TeV, = —0.02
10°

102 103 104
m,, (GeV)

m, =1TeV, v, =3 TeV, = —0.02

10°

- v, =2.5 TeV, A, =0.01, 6= —0.02

103
my, [GeV]

vy =3 TeV, Ay =0.01, = —0.02

my, [GeV)

m, [GeVI

FIG. 3. The parameter constraint from DM phenomenology. The legend is as same as the illstration in Fig. 2. On the left panel we scan

the m, — 4, plane with fixed dilaton mass
coupling 4, = 0.01.

m, =1 TeV while on the right panel we scan m, —m, plane fixed Higgs-DM
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In Fig. 3, we fix the mixing angle § = —0.02 and scan
the m, — 4, plane (left hand side) and m, —m, plane
(right hand side) with different dilaton VEV v, =2 TeV,
2.5 TeV, 3 TeV. For the panels in the left, the regions around
m, = 500 GeV are excluded by the indirect detection
bound. It is caused by the resonant effect due to the energy
of incoming states reaches the mass pole at m,. Since the
annihilation cross section changes rapidly around this
resonant region, the mass preferred by relic density is
restricted in a a narrow interval. Note that there is another
red contour of relic density appears in the region of
700 GeV < m, <1 TeV in the case of v, =3 TeV. The
nearly vertical line located at the value 700 GeV can be
understood as the result of the resonance, while the vertical
line located at the value 1 TeV is due to the opening of
n-+n— x,+x, channel. Since the coupling of DM and
dilaton is proportional to m,Z,, the annihilation probability of
1 turns out to be larger with the increase of m,, and thus
reduce the dark matter relic density. As a result, the relic
density in the large DM mass region is too small to meet the
observed data. We also plot the projected sensitivity curves
of direct and indirect detection experiments in all the panels
of Fig. 3, and the convention of the line styles are the
same as Fig. 2. We can see that the combination of these
sensitivities can cover most of the parameter space, there-
fore our model can be examined in the future.

For the panels in the right, which show the constraints on
the m,-m, plane, we can also find that a region with
m,/m, =2 is excluded by the indirect detection due to
the resonant effect. In cases of v, = 2.5 TeV and 3 TeV,
there is another contour of Qpy4% = 0.12 near the region
m, ~ 700 GeV. The reason is that the nn — yy process
dominates the DM annihilation in this region, and there are
interference among the s, f, u-channels and the contact
interaction channel diagrams. In the limit of 6 — 0, the
annihilation cross section can be approximated by

A eemy 2 (4w
m:| (4m2-m>)™" \ v, 2mi—m2 \ v,

n 7 n X

272

14m,7}

| -
Uy

ol X

(17)

The minimum of the annihilation cross section is found to
locate at m, = 562 GeV for v, = 2 TeV, at m,, ~ 639 GeV
for v, = 2.5 TeV, and at m, %708 GeV for v, = 3 TeV.
We can see that these m, can match the median point between

the intersection points of the red contours and the m, axis.
|

2 2
My 4 wooA
Vixaxs) = <—h+—h+ clg)%);/f + <_'7+_'7+ c

207 4 20; 4

I Hi
P o )22 4+ (2
+ <21]§ +2¢,9, | x5x5 + 20% +

zcxg;)mz )+ R

IV. PHASE TRANSITION DYNAMICS
OF NMCHM,,

A. The effective potential

Before we start exploring the features and the patterns of
PTs, it is imperative to have a thorough understanding of
the effective potential [57-62]. Typically, the effective
potential of the next-to-minimal composite Higgs model
with dilaton (NMCHM,,), which encompasses the Higgs
boson, the dark matter, and the dilaton is comprised of the
following components:

(18)

In the composite Higgs model, the potential of pNGBs
originates from the explicit breaking of global symmetry.
This is already at one-loop order and is renormalized by the
Weinberg sum rules, as discussed in Sec. II. Consequently,
there is no necessity to incorporate an additional zero-
temperature one-loop correction to the potential. The daisy
resummation is also omitted due to its negligible impact on
the PT dynamics. Before computing the finite-temperature
terms, we should transform the kinetic terms of %, # in
Eq. (7) into canonical forms. This can be done by rewriting
the effective Lagrangian in terms of 1 = hy/ v, 1=y /v,,
and then the effective potential Eq. (8), now denoted as
V(fl, i1, x), will possess following form:

Vi) =% (L L) + Lo Lo
’rlvx - U)% 2/'£h 2”7[’7 4 h 4 V[r]
[Ty
+§/1hnh i+ Volx). (19)
where v, is the VEV of y at zero temperature and
Volr) = c gt — e()x*. (20)

To compute the finite temperature effective potential and
circumvent the singularity at the origin y = 0, we introduce
the canonical field variables y, y,, and y3 as replacements
for A, 77, and y. The scalar fields are redefined such that
n=h, yo =7, and y3 = /x> — 13 — x3. Then the zero-
temperature potential in terms of the new field variables are
given by

2 2

2+

gﬁ)xi + o, g+ ( e
X

A
- 7” + 26;(9;%))(%)(5
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The finite-temperature terms are vital in accomplishing
the first-order phase transition. These terms induce a dip at
the origin of the scalar field coordinates, thereby forming a
barrier between the origin (y1,x2,x3) = (0,0,0) (decon-
fined phase) and the EW vacuum (y;.x,.x3) = (v.0,v,)
(confined phase). Following the strategy outlined in
Ref. [20], we assume that the theory in the deconfined phase
is characterized by a free energy given by F ~ —cN>T*,
where ¢ = 7%/8 corresponds to the N' = 4SU(N) super-
Yang-Mills theory. As the temperature decreases, the vacuum
configuration (y1,y,,y3) undergoes a transition from the
origin to the EW vacuum or an intermediate state due to
quantum tunneling effect. In the confined phase (y 2 T'/g,),
most of confined states have masses larger than temperature
and their thermal corrections can be neglected. In the low-
energy effective theory, only the light degrees of freedom
need to be considered. These include the SM gauge bosons W
and Z, the SM quark ¢, the Goldstone bosons arising from
SSB, the dilation y, and the CFT resonances from the
composite sector. The free energy for the confined phase
can be expressed as

Fﬁv(%l$)(2?)(3)+VT(){1’)(29)(3)' (22)
The second term represents the finite temperature potential
[61]

”iT4 mlz X2 X
Vil xa.x3) = Z 22 Jb[ (Zngz 3)]

i=bosons
nT* [mi (e xa.x3)
- Z 272 ‘]f[ T2 :|’ (23)

i=fermions

where the expressions for the effective masses m? of each
particle species are detailed in appendix B. The degrees of
freedom for each types of particles are given by

ny =3, n, =12, ng = 3,

13
45,
ZnCFT = IN .

Note that we have simplified the contributions of CFT
resonances by assuming that all of them are bosonic states,
as suggested by Ref. [20]. The value of ncgr is chosen to
reproduce the free energy of the deconfined phase in the y —
O limit. This assumption defines an interpolation of the
effective potential between the interval 0 < y < 7/g,. The
functions Jy, ;) in Eq. (23) are standard and defined as follows:

Jolx] = / ” dkk? log [1 —eV k2+X] ,
0
Jelx] = /oo dkk* log [1 +eV kZ”]

0

(24)

(25)

B. Phase transition and bubbles nucleation

To gain an intuitive understanding of the first-order phase
transition, we can simplify the analysis by neglecting the y,
and y, directions for the moment. This approximation is
motivated by the large number of degrees of freedom in the
CFT sector whose masses are ~g,y ~ g,x3. Consequently,
the potential barrier is predominantly determined by ys.

As temperature decreases, the free energy of the symmetry-
preserving vacuum (y; = 0) increases and equals that of the
symmetry-breaking vacuum (y3 = v,) at a critical temper-
ature T.. Consequently, the symmetry-preserving vacuum
becomes a false vacuum, prone to quantum tunneling to the
true vacuum (y3 = v,). This process leads to the random
formation of true vacuum bubbles throughout the universe.

To estimate the critical temperature 7., we approximate
the free energy of the symmetry-breaking vacuum by
considering only the zero-temperature terms, since the
Jb(f)(mz /T?) terms are exponentially suppressed in the
limit m/T > 1. This yields the free energy:

F(ys = I)NV)I;HH:&C gov

1
Re] vy = ——mvy,  (26)

16 XX
which agrees with the result obtained in Ref. [20]. For the
symmetry-preserving vacuum, we approximate the free
energy as F(0) ~ —cNT*. Solving for T,, we find

7 1 1 m,v,\
——NT{=——m22 =T, = —L) (27
8 ¢ 16" ‘ (27:2)%( N ) 27)

At the critical temperature 7., the tunneling probability is
still too low to produce bubbles, so the phase transition does
not occur yet. The universe remains in the false vacuum state
until a bubble is able to be produced within the Hubble
volume per Hubble time. The temperature corresponding to
this is called the nucleation temperature 7',. The computa-
tion of the nucleation temperature 7', is detailed in
Appendix E. It is worth noting that, in the NMCHM,
model, T, can be much lower than the critical temperature, a
situation known as supercooling, especially when N is large
and the dilaton mass m, is small [20]. However, to ensure

X
dilaton potential to be bounded from below, it requires

Ce < T moN > 4(4r)*civl,
c

x

(28)

which sets a lower bound of m, for a given N.
Supercooling occurs in this model because the effective
potential for the dilaton has a very wide barrier between
x =0andy ~ v, (see a schematic plot in Fig. 4 for a chosen
set of benchmark parameters), which is common in nearly
conformally symmetric models [63]. This barrier significantly
suppresses the tunneling rate. However, it is possible that
bubble nucleation never occurs because the false vacuum
decay rate always stays below the Hubble rate. In such cases,
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the supercooled state would end through the growth of
quantum fluctuations [64]. This type of situation is beyond
the scope of our research, and we only consider the case of
phase transitions that can be accomplished by vacuum decay.
When the yq, y, directions are included, the overall phase
transition behavior from the deconfined phase to the confined
phase remains essentially unchanged. However, the EW
symmetry can be preserved during the confinement transition,
followed by a second phase transition that spontaneously
breaks the EW symmetry. In the y > T/g, region, the
minimum of the potential along the y5; direction is almost
T-independent, and thus we can treat y as a constant when we
determine the second step phase transition. The concrete
expression of the free energy with respect to y, ¥, and y is
given in Appendix C. From Egs. (C4) and (C5), we can obtain
the critical temperature 7" at which & = 0 is no longer the
local minimum.

Verr[GeV?]
1.0x 10"}

5.0x10" |

. . . . Ge
1500 2000 2500 3000 XGeV]

-5.0x 19"}

-1.0x10X |

-1.5x 10!

FIG. 4. The effective potential in the yx direction at
T =T.=397 GeV. The parameters are chosen as N =7,
m, =2 TeV, v, =25 TeV. It can be seen that the barrier
between the two minima of the effective potential is wide.

2

— 1243

Lii+ et =0=Th =
Uy

where we have made an approximation y = v, in the second
equality. Note that our numerical computation, which will be
presented in the next subsection, indicates that a phase with
x> # 0 does not exist in the parameter space of interest.

The transition rate from the false vacuum to the true
vacuum (the bubble nucleation rate) per unit time per unit
volume is given by:

[~ AT*eSE, (30)

where Sg is the Euclidean action of the bounce solution.
Assuming a spherical solution, the equation of motion
(EOM) becomes:

&¢ d-1d§ ov($.T)
dr? r

- - d¢
dr - a(; ’ ¢(°°> - ¢false7 E

r=0
(31)

where the d = 3 or 4 depending on the dimension of the
spherical solution considered. In principle, Si is deter-
mined by

,s4<T>} (32)

Sy _ 4w [« drr? [l@ 49 + Ver((r). T)] . (33)
0

T T 2dr dr
o 1dd dé -
so=22 [“are [ L v o

2 2 2
(62’2W+3%+6ﬂ,, Ay
d X

~ 140 GeV, (29)

6m? )
?(1-5)

X

Note that in the case of supercooling, since the evolution of
the universe is dominated by vacuum energy instead of
radiation energy, the nucleation condition in our model is
modified to

Sp(Ty) = 131.98 — 41| — ) — 41n( -2
Bl oo 1 TeV 2.5 TeV

T, P
+41r1(100 GeV> 1n<100>’ (35)

where /3 is the inverse of the duration of phase transition.
More details can be found in Appendix E.

C. Numerical results

The most relevant model parameters related to the phase
transition in our model are the color number N, the dilaton
VEV v, and the dilaton mass m1,. In our numerical analysis,
we scan the parameter space of

N = 3-10,
3 TeV,

v, =2 TeV, 2.5 TeV,
m, € [10%,10*] GeV (36)

to explore the impact of these parameters on the phase
transition. Other parameters are fixed by

v, = 246 GeV,
m, =1 TeV,

¢, =0.5,
Ay = 0.05,

c. = 0.001,
Ay = 001, (37)

As discussed in the previous subsection, the dilaton (y3)
direction dominates the phase transition in our model.
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V4 v].0,v]) X3

T, T,
,,,,,,, SO0V

(0,0.v))

4
y4)
FIG.5. The PT patterns with 1-step PT on the left and 2-step PT
on the right.

Moreover, the phase transition of confinement is expected
to be first order since the finite-temperature effective
potential always exhibits a barrier between the deconfined
phase and the confined phase. Our numerical calculations,
performed using the cosmoTransitions package [65],

Potential contour at =200 GeV

1500

x3(GeV]
2
o

-400 -200 0

x1(GeV]

200 400

confirms that there are two distinct patterns of phase
transitions: 1-step FOPTs and the 2-step FOPTs.
Figure 5 shows schematic pictures of these two patterns.
Figure 6 shows an example of 2-step phase transition
trajectories and potential contours in the y;-y3 plane.
The black curve in the left panel corresponds to the
tunneling path of first step, while the black curve in the
right panel corresponds to the tunneling path of second
step. Our calculations also show that the confinement
transition (either the 1-step transition or the first step of
the 2-step phase transition) is supercooled, meaning that
T,<T,[19,63,60,67].

In the case of 1-step phase transition, due to the low
tunneling rate in the dilaton direction, (0,0, v,) is no longer
a minimum before the tunneling toward (v, 0, v,) directly.
Therefore the phase transition from (0, 0, 0) to (0,0, ”x)
would never occur. In Fig. 7, we plot the evolution of x4

Potential contour at T'=142.3 GeV
2000 e

1999.5

1999

x3lGeVl

1998.5

i

1998
-10 10 20 30 40 50 60 70 80

x1/GeV]

FIG. 6. The 2-step FOPT potential contours at y; — y3 plane with N = 8, v, = 2 TeV, m, = 3 TeV. The red contours corresponds to

4

large potential value, while the blue contours corresponds to small potential value. The black curves represent the tunneling paths,
(0,0,0) = (0,0, v,!) (left panel) and (0,0, v,!) = (v;2,0,v,2) (right panel).

One step FOPT at axis v;
500

400

300

v [GeV]

200

0 200 400 600 800
T(GeV]

1000

One step FOPT at axis v
2500 —————F—F——"—+T7 """ T——T—T 7T

2000

N

1500

GeV]

= 1000

500

400 600
T(GeV]

1000

FIG.7. Evolution of the minima in y; and y5 directions for the 2-step FOPT. The red, green, and blue curves represent phases (0, 0, 0),

(0,0,27), and (v! ,0, vl ), respectively.
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TABLE I. The comparison between numerical and analytical
approximation results of critical dilaton masses which dividing

two PT patterns. We have fixed v, =2TeV, m, =1TeV and

Ay = 0.01. mi':ilim) and mg}:‘e °) are the numerical and analytical

approximations of critical dilaton masses while Ts,"um)

() are the nucleation temperatures corresponding to them,

respectively.

and

N T [GeV] T8 [GeV] m™™ [GeV] m™ [GeV]
4 152793 140.000 1291.549 945.374
7 145273 140.000 1707.353  1553.890
10 146317 140.000 2056.512  2129.810

and y; with temperature in the case of a 1-step phase
transition, for fixed values of N =38, v, = 2 TeV,
and m, = 1.5 TeV.

We also find that the most sensitive parameter to the
phase transition pattern is the dilaton mass m,,. The critical
dilaton mass that distinguishes two phase transition pat-
terns can be figured out analytically using the action
approximation methods [68]. The details of derivation
can be found in Appendix D. We compare the numerical
results for the critical dilaton mass and corresponding
nucleation temperatures with the analytical approximation
results in Table L.

Note that in the parameter space we considered, the
quantum tunneling process can overwhelm the thermal
fluctuation when N > 7 and dilaton mass is small, leading
to low temperature nucleation. In this case, the Euclidean
action S is determined by 4-d action S4 for the bounce
solution. In Fig. 8, we compare the 3-d action S5/T (blue
line) with the 4-d action S, (green line) for fixed values of
N =38, v, =2TeV, m, = 1.5 TeV (left panel), 700 GeV
(right panel). The black dashed line represents the nucle-
ation condition given by Eq. (35). The nucleation

action, N=8, v, =2 TeV,m, =1.5 TeV

nucleation condition

0 20 40 60 80 100 120 140
T1GeV]

10!

FIG. 8.

temperatures for these two types of actions, denoted as
T,, and T, are determined by the intersecting points of the
dashed line with the blue (S3/7T) and green (S,) lines. We
can see that for large dilaton mass (left panel), 7, > T,
while for small dilaton mass (right panel), T,,, < T,,.

In order to conduct a comprehensive analysis of the
parameter space, we scan the m, — m,, parameter space and
display the constraints from the DM phenomenology along
with the phase transition patterns in Fig. 9. We present three
rows of panels corresponding to N = 4, 7, 10, and in each
row, we feature three panels corresponding to v, = 2 TeV,
2.5 TeV, and 3 TeV. These plots confirm that from 10 GeV
to 10 TeV, the DM mass is almost irrelevant to the phase
transition. The region shaded in cyan indicates a potential
unbounded from below [refer to the condition provided in
Eq. (28). We also exclude the region corresponding to 7', <
1 GeV (represented in yellow) to prevent any significant
impact from strong FOPTs on the BBN. The orange dashed
line demarcates the boundary between 1-step FOPTs and 2-
step FOPTs. As previously discussed, a smaller dilaton
mass results in a lower tunneling rate, making 1-step phase
transition more likely. Conversely, a larger dilaton mass
leads to a higher tunneling rate, favoring a 2-step phase
transition. In Table II, we provide some benchmark points
for these two types of phase transition patterns.

In conclusion, Fig. 9 shows that our model can simulta-
neously provide a viable DM candidate and achieve strong
FOPTs at the same time. The DM mass is constrained
within a range of 200 GeV to 1 TeV.

Note that the mass and coupling strength of the DM
candidate # in our model suggest that # falls within the
WIMPs DM paradigm. However, supercooling might
influence the production of DM and potentially skew
our calculations of the DM relic density. More specifically,
n is a pNGB which originates from the confinement of
the techni-quarks in the composite sector. Before the

action, N=38, v, =2 TeV,m, =700 GeV

10*

nucleation condition

0 20 40 60 80 100 120 140
TGeV]

Evolution of S4 and S5/T for fixed values of N = 8, v, =2 TeV. The blue and green lines correspond to S3/T and Sy,

respectively. The black dashed line represents the nucleation condition.
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N=4, v, =2 TeV, Ay, =0.01

m, [GeV]

N=17, vy =25 TeV, A, =0.01

m, [GeV]

N=4, v,=2.5TeV, A, =0.01

N=4, v, =3 TeV, Ay, =0.01
7

two-step FOPT
one-step FOPT

T, <1 GeV
T, <1GeV

Unstable vacuum
Unstable vacuum

10° 104 103
m, [GeV]

N=T7, vy,=3TeV, A\, =0.01
T

Planck

one-step FOPT

T, <1GeV

Unstable vacuum

Unstable vacuum

10° 104 103
m, [GeV]

H  EY el =
O 10 9 10°
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£ £
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>
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O 10%
=
13

T, <1GeV

Unstable vacuum

102
102 10° 10* 10
m, [GeV]

N=10, v, =25 TeV, Ay, =0.01

m,, [GeV]

10t N=10, v, =3 TeV, A, =0.01
T

Planck
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FIG. 9. The PT patterns and DM phenomenology in m, — m,, plane for N = 4,7, 10 and v, = 2 TeV, 2.5 TeV, 3 TeV. The cyan and
yellow regions are excluded by the potential that is unbounded from below and the low nucleation temperature effect on the BBN. The
orange dashed lines divide two areas of the 1-step FOPTs and 2-step FOPTs. The region below the gray dashed lines can be probed by

the future space-based GW interferometer LISA [39].

TABLEII. PT benchmark points. T, and T, are the critical and
nucleation temperature of the first step FOPTs (dilaton domina-
tion) respectively.

N m, [GeV] v, [TeV] Pattern T, [GeV] T, [GeV]

BP, 4 800 25  lstep 297 7.78
BP, 4 2000 25  2step 521 256
BP; 4 8000 25  2step 1070 922
BP, 7 800 25  l-step 238 5.00
BP; 7 2000 25  2step 397 160
BP, 7 8000 25  2step 813 685
BP, 10 800 25  lstep 203 5.14
BP; 10 2000 25  lstep 334 114
BP, 10 8000 25  2step 685 568
BP,, 7 2000 20  2step 357 186
BP,, 7 2000 30  lstep 434 127

confinement phase transition occurs, the universe contains
only deconfined techniquarks in thermal equilibrium with
the SM particles, not 5. Therefore, it is crucial to compare
the DM freeze-out temperature with the nucleation temper-
ature. The freeze-out temperature of WIMPs DM can be
estimated as follows:

m
Tro =~ Z_g : (38)
If T, is lower than Tgg, then the reheating after the
supercooled phase transition should be taken into account
[19,69]. During the strong FOPT, the latent heat between
the deconfined and confined phases is released, with the
majority of the energy being transferred into the plasma,
resulting in reheating the universe. At the end of the PT, the
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free energy of the deconfined phase, Fye ~—T4, is
negligible compared to the free energy of the confined
phase, F.,. Consequently, the latent heat between the two
phases can be approximated by the free energy of the
deconfined phase at the critical temperature 7. of the phase
transition. Assuming that the latent heat is entirely trans-
ferred to the radiation plasma, we can estimate the reheat-
ing temperature as follows:

R L
Fdec_]:con: th i@N Tc:%g*Trh = Trh

~ (45 )i\/ﬁTc, (39)

where g, is the effective degrees of freedom after reheating.
If Trg < Ty, then n will thermalize after reheating, and the
DM production scenario is similar to that of the traditional
WIMPs DM. However, if Trg > Ty, then 5 will instanta-
neously freeze-out as soon as they are produced by the
oscillating inflaton field (y). Our numerical calculations
indicate that, within the parameter space of interest, the
critical temperature is typically around several hundred
GeV, even in scenarios where supercooling occurs.
Therefore, the situation of Tgg > Ty, ~ T, only arises
when m, 2 O(10) TeV. Given that our main focus is on
a scale where my,, v, < 10 TeV, the traditional WIMPs
paradigm is consistently applicable.

V. GRAVITATIONAL WAVES

In the previous section, we discussed the PT patterns of
our model and found that strong FOPTs exist. The
occurrence of these strong FOPTs in the early universe
can generate a stochastic background of GWs. The most
important PT parameters that characterize the GWs are the
ratio of vacuum energy density to radiation energy density
a, the inverse of PT duration in unit of Hubble time B and
the bubble wall velocity &,,:

a= Prac , p=- l é =T ﬁ .
Prad H dt dT

(40)

We will focus on the GWs produced by the confinement
transition, which is governed by the dilaton field. In the
scenario of a 2-step phase transition, the SM particles in
the plasma remain massless after the confinement transition.
The coupling between the SM particles and the dilaton is
suppressed by 72/ v2, making the friction to the bubble walls
negligible. In the scenario of a 1-step phase transition,
typically supercooled, the nucleation temperature is so
low that the friction from the plasma is negligible. The
production of gravitational waves in such a supercooled
phase transition has been extensively studied [70-74]. Given
that the friction from the plasma is negligible in both phase
transition patterns, the bubble walls are runaway [75],

allowing us to set &, ~ 1 in our calculation. Consequently,
the energy density of GWs is primarily contributed by the
collision of bubble walls, as given by [76-78],

100\ /3 0.44& 1
Qcoll’lz =1.67 x 10_5 —éw:,’N—z
G 1+ 8.28&;, p
Kpa \ 2
X (1 _/’_a) Ccol(f/fcol)' (41)

In this equation, we will assume that the energy fraction of
the bubble collision, denoted by «, is approximately 1. The
spectral shape function, C, is defined as [77]:

_ 3'8(f/fcol)2‘9
Ccol (f/fcol) - 0.9 + 2'9(f/fcol)3A8 ’ (42)

where the peak frequency is given by:

T g 1/6
—1.65x 10 Hz | (=
Jeor = 1.65 10 Z(IOO GeV) (100)

y 1.96p
1-0.051¢&, +0.88£2,°

(43)

As previously discussed, a smaller dilaton mass results in
a more supercooled phase transition, which in turn leads to
a larger value for & and a smaller value for . Consequently,
according to Eq. (41), the peak amplitude of the GW energy
density is enhanced. The GW spectra for the benchmark
points listed in Table III are presented in Fig. 10. In the left
panel, we fix N =7 and display the spectra for different
dilaton masses m,,. Conversely, in the right panel, we fix the
dilaton mass m, = 800 GeV and illustrate the spectra for
different values of N. The GW frequency band is chosen to
be within the range of (10™ Hz, 1 Hz), which will be
detectable in the future space-based GW interferometers
experiments, such as LISA, TianQin, Taiji, BBO, and
Ultimate DECIGO. As observed in the left panel, if
m, <1 TeV, the GW amplitude can meet the sensitivity
of LISA, Taiji, BBO, and Ultimate DECIGO. However, if
m,, 2 2.5 TeV, the amplitude can only meet the sensitivity
requirements of BBO and Ultimate DECIGO. From the
right panel, it can be seen that different values of N only

TABLEIII.  The benchmark points for plotting the GW spectra.

Pattern N m, [GeV] T, [GeV] a s

BP, lstep 7 800 500 1.31x 107 4.71 x 10
BP;, 2-step 7 2510 232 221 x 10" 2.40 x 102
BP, 2-step 7 8000 685  2.96 x 10° 1.30 x 10°
BP;, l-step 4 800 778 2.21 x 10° 6.22 x 10!
BP; l-step 10 800 514 117 x 107 5.36 x 10!
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GW spectra, N=7, v, =2.5 TeV
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FIG. 10. The GW spectra (solid lines) of the benchmark points in Table III. The sensitivity curves (dashed lines) of LISA [39], TianQin

[40], Taiji [41], BBO [42], and DECIGO [43] are presented for comparison.

slightly affect the peak, and all spectra with m, = 800 GeV
are expected to be detectable by LISA and Taiji.

In order to compare the sensitivity of GW detection with
current dark matter constraints, we also show the limit of
parameter region which can reach the sensitivity of the
future space-based GW interferometer LISA in Fig. 9 (the
area below the gray dashed line is detectable). We can see
that there are some blind spot parameter regions for current
direct and indirect DM detection experiments below
m, ~ 2 TeV, and the GW detection experiment LISA
provide a complementary exploration technique to probe
these region.

VI. CONCLUSION

In this paper, we have conducted a detailed examination
of the NMCHM extended with a dilaton y, including
aspects of DM phenomenology, cosmological phase tran-
sition dynamics, and gravitational waves (GW). Due to the
mixing between the dilaton and Higgs fields, an accidental
cancellation of the DM-nucleon scattering amplitude can
occur, allowing some parameter space to evade the strin-
gent constraints of DM direct detection. We have also
investigated the impact of DM indirect detection and relic
density on the parameter space. A key distinction of our
model from the standard NMCHM is the existence of
the ny — yy channel, which can significantly alter the DM
annihilation cross section when m, > m,,. We also find that
the future DM direct and indirect detection experiments are
capable of probing most of the parameter space of our
interests.

Our model can easily achieve strong FOPTs within our
parameter space of interest. This is not surprising, as it is a
common characteristic of composite models with near
conformal symmetry. We have identified two patterns of
phase transition: 1-step and 2-step phase transitions. The
type and strength of the phase transition are primarily

influenced by the dilaton mass, the VEV of the dilaton
field, and the color number N of SU(N) strong interaction
in the composite sector. For a given set of N and v,, we
can determine the critical dilaton mass that separates the
two phase transition patterns using an approximation.
Supercooling is a significant feature in this model. As N
increases and m, decreases, supercooling progressively
intensifies. This could potentially lead to late-time inflation,
as the vacuum energy will dominate the universe at low
temperatures. Following the supercooled phase transition, the
universe will reheat, which could modify the production
mechanism of DM. However, our calculations show that
within the range of m, < 10 TeV, the traditional thermal
freeze-out mechanism still holds. By combining the results
from DM phenomenology and phase transition studies,
we find that wihin a range of 200 GeV < m, < 1 TeV, our
model is consistent with all DM constraints and can simulta-
neously achieve a strong first-order phase transition.

Finally, we have also explored the stochastic background
of gravitational waves produced by the FOPT, which are
anticipated to be stronger than those produced by the
traditional electroweak phase transition. The spectra of
these GWs are expected to be detected by future space-
based GW interferometer experiments. In particular, a GW
spectra for m, <2 TeV is hopeful to be probed by the near
future GW experiment LISA. Our research can also be
applied to electroweak baryogenesis, a topic we plan to
investigate in our future studies.
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APPENDIX A: EFFECTIVE LAGRANGIAN
OF NMCHM,,

The full Lagrangian of the NMCHM, model can be
derived using spurion techniques [79-81]. By expanding
the Higgs field and the dilaton field around their respective
VEVs, we can obtain

! ! Lo ¢ h (el & &R gh, 28 3h
L oheno = aha"h 0,n0"n + =0,y o" — — =+2% = ah
pheno = 5 OuMO%I +5 0,10 + 5 0k ’H(W—gv 2i=¢) 2 21— 2 2+\/‘Ev+\/ =7 ) (k)
EF R & N\, o ¢ n E0+9hy 28 i
== = — | (0 - — 6ha“
+<2v2+\/gv+2(1—§)02 O\ A=z 1o v T visEe
5 ) . 1 ) 2
- (42019 + o1 - 0 + 1 - §)2h4> - (5"1%'12 ) - (e + 400 + 40
2 5o (Am 272 2 252 m;
—myhy =\ = (L= + Ao/ 1= Sr'h | = 11)( +2—n;(
vy Uy
—(6ﬂh5<1—§)ﬁ”2+4zhvf L= Ry + 40/ E(1 = O2°) = duy /(1 = P h
h v % 3 7’
+<1+2 T+ ( +2\/ 1—¢ 2+]/Vz—)2( (2+yvo)1+<1+§yvz)%>
Uy ¥
M; 1-26h_§B-29° & n
(MWW 227 70 ) — M 1 - - L
( W T ) v v +\/1—§v 2(1=&) v* 2(1=¢)v?
57 )
X X X7\ -
+7w)\/ \/ cf 14y, — 25)?+§7Wﬁ>’l/fl//f
20— ) (14 2= 1) o gow 4 em e — e (14 2 1)
gr ROV v, 20 gr ROV v, 20
+ effective interaction terms for hqg, hhgg, hyy,nngg, nyy, x99, xvy--- (A1)
where A.S,S M is the Yukawa coupling of the Standard Model, y,, and yy parametrise the breaking of conformal invariance of

the fermion sector and the gauge boson sector respectively. The contributions from gauge coupling are small compared to
ones from fermions, and thus become negligible, that is, y,2 =~ 0. The loop effects might be crucial for phenomenology of
Higgs and dilaton, and thus we present the effective interactions with loop corrections explicitly as follows [47,82]:

loo as h a ,auy A h a (apy em
‘ciffm 122 () — GG+ 471(291( _( ))2G G + <Q2h
+7 C)}{C(l)A 4m12 zGa G Fem 4CZ
2 v
8t \ 2 my, 1)}( V3 3
"
a Sre) , (4mi\n 3a,m i)
A a Gapy |
2z 2 < m% 2 G””G 167 2

4dm
A t
7 Q(m”

-

AM? h
h AH w _F Fu
*eww W<mz )) "
F, F*"

4m, s AMIN\N X
;( w()“tW m)z{ v, Iz

2
n
) — F, "

(A2)

Where A, Ay and A} are loop functions which can be found in Refs. [47,82]. By expanding the potential of dilaton, we
can extract the mass and dominant self-interaction couplings as follows,

m; =V"(v,)
@ _1

j.)( — 6 V/II(UX
4) 1 "

A — V

— 34,607

— A&

/111

v) =5 & (A3)
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where some approximations have been applied and

VN(U)() = _(4C)(U;(2}/eg;(2)
)= ZQXZUX

Ce

00 o -7~

V" (v, (—48@{%62 ~2c,¢.(relre +24) + 104) +30c, 0/ 16c,¢. + (1 +4)°

V(p,) = 2 (96c§cg (\/ 16¢,cc + (7, +4)2 - 15) +2¢,c, <yg (\/ 16¢,cc + (e +4)2 = 50)

€

+ 48y, (\/16(:1@6 F(re+4)2 - 15) 47 (53\/16%% + (e +4)2 - 328))

(e + 4 relre +42) +203) (1166, + (e +4) — 7. =4)) (A4)

For the annihilation of 7, the derivative coupling of 7 can be determined by p/ ~ ph ~ (m”, 0). The interactions between 7
and & are given by

F _—l< ( )(Pl‘P3+P1'P4+P2'P3+P2'P4)7_1_5193'1747

lml;;l o 1-— 5
s-channel . f(f + 1) 4m% A 5 252 2m,2, - mi )
= - L e T A5
l< 1-¢ 27 1 1-¢ 2 n (AS)
27 2
d _ . ) ) ﬂ_s—chﬁegmel . I 4m,1 27
f}’]l’]ili l l_g(pl p3+p2 p3) v - l m v 7]]’1 (A6)
. & n*7? s-channel m2
féilx =—i-4- (5 (=p1 -pz)7”é““‘* —i- —25U—jn2;(2 (A7)
(d) . 7]2)? s-channel m,% 2n
Fog =12 VE=prp) === =i =2V tny (A8)
5 27 5 3 2 2 2
(d)  _ .. 28 . ) nhy s-channel . 2& 41’}’!,7 —my, +my, 27 A
F iy = 71 1_5(172 Pat P P4)—v2 = l N ¥ nhy (A9)

Finally we obtain the effective Lagrangian modified by the derivative couplings for s-channel annihilation:

Lopy = —121]_;_ zgv_ﬂ ? _ _14,;,_)%27,124:
Ly = —4’;157 _» é_ﬂ n;_ _6,;1_5,72%

The calculation of t,u channel is similar and only requires the replacement of the corresponding momenta.
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APPENDIX B: FIELD DEPENDENT MASS MATRIX ELEMENTS
The specific form of effective masses with Landau gauge is

2 2
myy, myz
Uz“)ﬁ, my(x1. x2.03) = vzoxz, mepr = g (B1)

m%v()h’)(z’m) =

2

i

2 An 2 M%+ﬂi lhn 2 Hi, 4
mi (1. 02.03) = 12 5 2+4+692 xi+2 + =+ 2¢,9; |x3 +2 B 2+2 20 13— = (e()x*)  (B2)

2 /‘% Ay 2.2 '“% + u; Ay 2.2 '“% 2.2 9
m22()(17)(2’)(3) =12 2UZ+Z+C;(9;( )(2—'_2 +7+2c;(g;( X1 +2’ 202+20)(g;( X3~ 2(6()() ) (B3)
¥ % /%)

21))2(
2
m%?a()(l?)(ZvZS) = lzc)(gjzf)(fa =+ 2<2 2 + 2C;(9)(>Z] =+ 2<2 2 + 26)(.9)())(2 0 32 (6(){) ) (B4)
2 2 2
My + MG, Ay 0
2 =444 2 4 B5
i ) = (g B 20,2 vt = 5 et (85)
o) —4(”—% 26,6 s - LA (B6)
2v; 0)(15)(3
2 , 9 4
s 220) = 4 (s 267 s = el (87
m%l;n = mlz_l)(z = m12_1)53 = O (Bg)
A 1y #
2 _ 9 Hy h 2 Hp M\ o Bh o B9
e [(2y2+ 2 JFT T 2y§+ 2 )(2+2v§)(3 (B9)

The mass matrix for y(;»3) is given by

2 2
my my My

2 2 2 2
Ms= | mj, m3 my |. (B10)

2 2
myz  Ma3 M3y

where
* ey i . X[ .
el = (2 et ) 4 (et B11)
> Xixj (0 xixj [ & o
S ele) == (S et ) 4 (T tetonh). 4 B12)

Solving the RGE with the initial condition e(y) = €(v,), the CFT deformation coefficient yields

8¢, gore(x/v,)"
Ve (4 +7e+ \/166661 + (4 + 76)2> + 8cec, (1= (x/v,)7)

e(y) = (B13)

We can use the RGE to simplify the calculation
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)(a_y€€+_;(€ (B14)
The derivatives are written as
%@mfwwﬂm+nwm+§ém
‘¥wmfhw{@+wm+ymw+%w+mwém+4ffém] (B15)
o ‘ ‘ 9 ‘ 7

The effective mass of top quark is given by

%4 )( )(
m (i a2 03) = i \/ : 2)
X
(B16)
The VEV at T = 0 yields
(r1) = (h) = v~ 246 GeV
(x2) =) =0
() = 0 — ) — ) = -2 (B17)
and
4z m)%
9 =—F7=> Ye— b}
VN dc,q,v;
v
2
T 0 n 1
2 1,2
Hyp = =My
{ P (B19)
Ay =—"%=3k

APPENDIX C: HIGH TEMPERATURE
EXPANSION OF THE EFFECTIVE POTENTIAL

We consider the high temperature corrections by assum-
ing 72 > m? and the thermal function can be expanded as

m? a7l m2 1
J =——+—=—=+40
B [TZ] s e (T3>
m 7 4 2 .2 1
Pt S T
T 360 24T T
which yields

1 1
V= i anmi()(l K2 )T+ a3 Z”fmjzr()(l K2 X0)T?
b f

(€2)

(C1)

I
where b sums over y;,IT;, W=, Z, pepr(i, j = 1,2,3) and
f = t. In order to simplify the expressions, we turn to the
basis with yq, ¥, and y. Plugging the expression of effective
masses into the formula, we obtain

1 [ m? m3 A%
VT:ﬁ[6—;Vﬁ+3—ZZ)(%+,uﬁ <—> + 327 + A2
v v,

X
‘Hl%(—) + 3407 + A1
Uy

(=) )

Hi Ha o~ (e )x
i ala a(Zz) )}Tz
X
6m3, 3mZ Ui 6m? 5
- T2
24( i x+02( -5) A
1 i 5
5 (42434, + )(zT
1 m? I, 1 m? 1
- T2__7’ 272
41)2(1—1”:—;))(2%1 422(1— y))(ﬂ(l)(z
1 [ (43 —I—,un 45 % (e(n)x)
_ N2 2 T2
+24[< Z g = P
(C3)

Finally, the effective potential is given by

=Volrixa:) +Vix2.2)
Vs 2 AR r 2 2).2
:§<U_)2(ﬂh+chT Xty U_)Q(/‘n"'_ch Y%

1 4d An
+ (ﬂh —X—hﬂ)ff +—

Vet (X1:22:X)

(C4)

The coefficients are shown explicitly as follows,
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6ms3, 3mZ
2

1
cp ==
P12

12
6+ gy +E

6m?
F 2(1—)
1 U2
c”—ﬁ<4/1hn+3ln+v—§)
1 2
dy = dpy =~ —F "

k(. T) = — =

45
24

4

v
42 +
|:<ﬂh2”q+
Uy

field with its VEV in the second step of phase transitions

eff(ZlJ(ZJQ)

Volxix2, )(3) + V(l)(ﬂh,){z x3)
T2

1
N3g ) — = —
) 2 7
In the case of 2-step phase transitions, we can approximately calculate the PT in the Higgs direction by fixing the dilaton
Vv

In the canonical basis which parametrizing the scalar fields as y;, y», and y3, the effective potential is given by

PHYS. REV. D 110, 015023 (2024)

P(eler) 1.0

oy?

(C5)

m2,  3m> 6m?> 45
220 49 64, + A W Z ! 20 N2g?
24)“{ 207 it vﬁ R R T 0+ NG
”1
T2 2 45
o [822+16 + 34, + 44y, + 20c, g2 + 4N2g§}
)(
T2 u U 45
+24)(3[82h2+22"2+20c gZ+4N294
rom o room X5
YR -Hxi+n+n AR -na+6+a
2
U A U Ay
+ (2_Zz+zh+ ngﬂz())(? + (2 172 + 4 L+ C191>)(2 + 0191)53
X
N ﬂ%+ﬂ%+ﬂhn
21))% 2

12
+2¢ 9;(>)(1)(2 + (2 g
el 5+ AP — 2 4+ 6 + et
The expression of the effective potential in canonical
basis can be used to calculate the thermal masses of y;
2, and y3. This kind of parametrization is valid for the
eliminated

origin y =0 as well since the coordinate singularity is

u
+2c¢ 9){))(2)(2 ( .

20 2 +2C g)())(l)(3

(9 + 37,)€*(x) +2 (;—) 263(;()} (C6)

APPENDIX D: TRIANGULAR POTENTIAL
APPROXIMATION SOLUTION
OF TUNNELING RATE

In this section, we follow the method given by Ref. [68]
to derive the thermal tunneling rate for an approximate

single-field solution. According to the shape of dilaton
potential, we approximate the barrier with a triangular
potential (see Fig. 11). The thermal tunneling rate is
determined by the O(3)-symmetric action S3 defined by

@..7.)

FIG. 11.
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S_T3 _ % / Px F (Vo) + V(. T)}

4T”/ d[ (‘;—‘f) +V(¢(r,T),T)] (D1)

The equation of motion yields

Ph  20p

or> | rdor = V(. 1).T)

(D2)
where V' =9V /d¢p. In the calculation, we assume the
starting point ¢ is smaller than the true vacuum ¢_ and in
this case the boundary conditions are

{ d(r) = -,
#(r) = do,

where ¢, is the false vacuum. To simplify the calculation,
we define the magnitudes of the gradients of the potential as

AV,
Ag

where ¢p7 and V7 are the maximum points and maximum
values of the effective potential. We can view the effective
potential as a piecewise function which is the benefit of
using a line segment approximation and solve for the
expected value of the field on either side of the maximum.
That is

-

50,(75) =

I

Ay = App=£(¢r). AVi=(Vr-Vy) (D4)

- :>r2‘)4'|O — JsA_r*dr, 0<r<Ry

Ay = rZ‘;ir’|§+ :ff+,1+r2dr, Rr<r<R,

Plugging into the boundary conditions and the continuity
conditions

¢L(Rr) = ¢r(Ry). ¢L(RT) = ¢R(RT) (D7)
and all parameters can be expressed in terms of Ry
{ R} = (1+ )R} 8)
Apy =% (1+2(1+¢)=3(1 + )R}

where ¢ = *, which totally depends on the shape of

effective potentlal. In order to calculate the action, we also
need the expression of the effective potential. Similar to the
calculation of field value, we divide the effective potential
into the left and right sides and treat them respectively

{ V(g(r,T),T)g =V_+ (- —¢.(r)), 0<r<Ry
V(p(r,T),T), =V, +2(p(r) —¢y), Rr<r<R,
(D9)

The action yields

Sy 4r [Rr 1 /0
73:7” ; rdr[§<%) +V(¢(r,T),T)R]

4z [R. o, \ 2
+7 . rzdrk(W) +V(¢(r,T),T)L} (D10)

(D5) Substitute Egs. (D6) and (D9) into the above formula, after
. some tedious calculation we finally obtain
The solutions become
A
dr(r) = do — =, 0<r<Ry S_;:47ﬂ[(j-'(1) 4+ FOVRS 4 (T 4 TO)RY]  (D11)
PL(r) =+ [P +2R3 —3R%r], Rp<r<R,
(Do) where
|
1 1 AV
) = __— 22 70 = _(Vv A 7@ = _— +
F 901—7 3( —+l— ¢—>7 3 Cc
22 2 1 1 1 s 1
@) ="F|-= 1+c)—=(1 ——(14cp+=(1 2 D12
F 3 15+2( +¢) 3)( +¢) 5( +c)+6( +c) (D12)
The tunneling rate can be estimated by
[ e5e (D13)

where
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_ S

S3
Sg = T (¢(r)) _7(¢+)

(D14)

In our model, when the tunneling occur, the absolute value of the maximum potential V is relatively small and can be

approximated by ~0. The coordinate is chosen such that ¢, = 0. The parameters in the approximate
concretely represented by the parameters in the dilaton model

p 1
AV, ~ -V, =—NT%, AV_=-V_

8 :Rm)(v){

calculation can be

¢+:0’ (]’)_:UZ, ¢T:A¢+Na‘T/g)(’ A¢_:UI—G'T/QX
1
6A 2
Ry = e : (D13)
A (1+42(1+¢)=3(1 +c¢))
[
where we have made a linear approximation for A¢, with a dt = —(H g T)—1 dT, T = Tog_H\'uc(t_tL‘). (E5)

proportional coefficient a. By experimenting with different
parameter points, we set a as 10.

APPENDIX E: CALCULATION OF NUCLEATION
CONDITION IN SUPERCOOLED
PHASE TRANSITION

The nucleation rate is given by Eq. (30)

'~ AT*eS(7), (El)
The nucleation criterion requires
tl’l F
dt— = 1. E2
[ (E2)

which means at least one bubble is generated per Hubble
volume per Hubble time. For simplicity, We expand the
action with T — T, to the linear order,

ds
S(T) ~ S(Ty) +ﬁ - (T —-Ty)
ds
= S(T — T-T
S(To) +dT T:TO( 0)

= 8(To) + 8" (To)(T = Ty). (E3)

In the case of vacuum energy domination, by assuming a
constant vacuum energy, we have

The nucleation condition now becomes

Iy r T, r
1= [ "di—= / dT——
te H vac Ty H vacT

_ A isr)-s (T / ® T e-STITT3
T

AT* - - - -
= e ST(68 + 657 +3Bn > + B,
HV&C

(E6)

thus

S(T,) ~4In (; ) +1In (65,* + 6677 + 367 + B,

vac

(E7)

where f# = —dS/dt = HTdS/dT, = p/H.

Since the supercooled FOPTSs are mainly determined by
the dilaton, we can simplify the discussion by approxi-
mating the full potential with the dilaton potential,

o pvac . H, (l—l‘)
H,. = , a(t) = age'veli=le), E4
© =\ 3z W= (E4) Volr) = le, — (), (E8)
Since sa® = const, we can find with g, = 4r/ /N, and
) = beyireal)" (59

e (4 7o+ \[16c0, + (4 + n)2> +8c.c, (1= (x/v,)")
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The renormalization group equation for €(y) is given by

oe(y) _

dlny

7e€2(y) + e (y). (E10)

There are two minima of the potential. One is the high
temperature vacuum y = 0, while the other one is the
physical vacuum y ~wv,. The mass and the potential
corresponding to the latter are

2 2 766;(9)2( 4 [
my =~ —4}/6019)2{01, Vo(v,) = 1 U= —1—6m){v)(.
(E11)

Once the finite temperature corrections are included, the
potential for these two vacuum are given by

1
V(v,.T) ~——miv}

7[2
V(0,T) = —§N2T4, TR

(E12)

Below the critical temperature, the energy density differ-
ence of these two vacuum is

ov ov
Pvac = V(07 T) -T— - <V<U)(’ T) -T— )
T, or|,_,,
n? n? 1
= —§N2T4 - T<—?N2T3> + Em§v§
3n? 1
= TN2T4 + Emﬁu}; (E13)
|
4/3Mp T
S(T,) = 41n <@
My Uy
4v/3Mp T -
~41In (\/_P'"> —1n(3,)
m,v,

~131.98 —dln( % ) —am(—% Y vam(— " ) P
= 1 TeV 25 TeV 100 GeV 100)°

The Friedmann equation is given by

_da _ [pyac
adt 3IM3,
1 1 372
— 2.2 _N2T4
V3Mp V 16 it 8
m,v, 672N2T*

= +
4v/3Mpy myvy

=py\/1+ga™*

It can be solved with initial condition a(0) = 1, and the
result is

(E14)

1
a(t) = g'/*sinh!/? {2pt + arcsinh (—)] ~ P! (E15)
Va

Therefore, we can treat H,,. as a constant with a value of

m,v
H, =—%*%* El16
© = v3Mn (E16)

Finally, we obtain the nucleation condition for NMCHM,,

> +1n (65, + 667 + 3622 + )

(E17)

[1] H. Georgi and D. B. Kaplan, Composite Higgs and custodial
SU(2), Phys. Lett. 145B, 216 (1984).

[2] K. Agashe, R. Contino, and A. Pomarol, The minimal
composite Higgs model, Nucl. Phys. B719, 165 (2005).

[3] K. Agashe and R. Contino, The minimal composite Higgs
model and electroweak precision tests, Nucl. Phys. B742, 59
(2006).

[4] G. Cacciapaglia and F. Sannino, Fundamental composite
(Goldstone) Higgs dynamics, J. High Energy Phys. 04
(2014) 111.

[5] C. Csaki, S. Lombardo, and O. Telem, TASI lectures on
non-supersymmetric BSM models, in Proceedings, Theo-
retical Advanced Study Institute in Elementary Particle
Physics: Anticipating the Next Discoveries in Particle

015023-22


https://doi.org/10.1016/0370-2693(84)90341-1
https://doi.org/10.1016/j.nuclphysb.2005.04.035
https://doi.org/10.1016/j.nuclphysb.2006.02.011
https://doi.org/10.1016/j.nuclphysb.2006.02.011
https://doi.org/10.1007/JHEP04(2014)111
https://doi.org/10.1007/JHEP04(2014)111

DARK MATTER PHENOMENOLOGY AND PHASE TRANSITION ...

PHYS. REV. D 110, 015023 (2024)

Physics (TASI 2016): Boulder, CO, USA, 2016, edited by R.
Essig and 1. Low (World Scientific Press, Singapore, 2018),
pp. 501-570; arXiv:1811.04279.

[6] D. Marzocca, M. Serone, and J. Shu, General composite
Higgs models, J. High Energy Phys. 08 (2012) 013.

[7] G. Panico and A. Wulzer, The Composite Nambu-Goldstone
Higgs (Springer, Cham, 2016), Vol. 913.

[8] J. P. H. Daza, Composite Higgs models, Ph.D. thesis, Sao
Paulo U., 2019, arXiv:1908.10204.

[9] J. Erdmenger, N. Evans, W. Porod, and K.S. Rigatos,
Gauge/gravity dynamics for composite Higgs models and
the top mass, Phys. Rev. Lett. 126, 071602 (2021).

[10] J. Erdmenger, N. Evans, W. Porod, and K.S. Rigatos,
Gauge/gravity dual dynamics for the strongly coupled sector
of composite Higgs models, J. High Energy Phys. 02 (2021)
058.

[11] B. Gripaios, A. Pomarol, F. Riva, and J. Serra, Beyond the
minimal composite Higgs model, J. High Energy Phys. 04
(2009) 070.

[12] M. Frigerio, A. Pomarol, F. Riva, and A. Urbano, Composite
scalar dark matter, J. High Energy Phys. 07 (2012) 015.

[13] D. Marzocca and A. Urbano, Composite dark matter and
LHC interplay, J. High Energy Phys. 07 (2014) 107.

[14] S. Xu and S. Zheng, Identifying minimal composite dark
matter, Int. J. Theor. Phys. 62, 101 (2023).

[15] N. Arkani-Hamed, M. Porrati, and L. Randall, Holography
and phenomenology, J. High Energy Phys. 08 (2001) 017.

[16] R. Rattazzi and A. Zaffaroni, Comments on the holographic
picture of the Randall-Sundrum model, J. High Energy
Phys. 04 (2001) 021.

[17] W.D. Goldberger and M. B. Wise, Modulus stabilization
with bulk fields, Phys. Rev. Lett. 83, 4922 (1999).

[18] A. Pomarol, O. Pujolas, and L. Salas, Holographic con-
formal transition and light scalars, J. High Energy Phys. 10
(2019) 202.

[19] P. Baratella, A. Pomarol, and F. Rompineve, The super-
cooled universe, J. High Energy Phys. 03 (2019) 100.

[20] S. Bruggisser, B. Von Harling, O. Matsedonskyi, and G.
Servant, Electroweak phase transition and baryogenesis in
composite Higgs models, J. High Energy Phys. 12 (2018)
099.

[21] S. Bruggisser, B. von Harling, O. Matsedonskyi, and G.
Servant, Status of electroweak baryogenesis in minimal
composite Higgs, J. High Energy Phys. 08 (2023) 012.

[22] L. Bian, Y. Wu, and K.-P. Xie, Electroweak phase transition
with composite Higgs models: Calculability, gravitational
waves and collider searches, J. High Energy Phys. 12 (2019)
028.

[23] D.J. H. Chung, A.J. Long, and L.-T. Wang, 125 GeV Higgs
boson and electroweak phase transition model classes, Phys.
Rev. D 87, 023509 (2013).

[24] D. Croon, TASI lectures on phase transitions, baryogenesis,
and gravitational waves, Proc. Sci. TASI2022 (2024) 003.

[25] H. H. Patel and M. J. Ramsey-Musolf, Stepping into electro-
weak symmetry breaking: Phase transitions and Higgs
phenomenology, Phys. Rev. D 88, 035013 (2013).

[26] A. Mazumdar and G. White, Review of cosmic phase
transitions: Their significance and experimental signatures,
Rep. Prog. Phys. 82, 076901 (2019).

[27] S. Inoue, G. Ovanesyan, and M. J. Ramsey-Musolf, Two-
step electroweak baryogenesis, Phys. Rev. D 93, 015013
(2016).

[28] D. Curtin, P. Meade, and H. Ramani, Thermal resummation
and phase transitions, Eur. Phys. J. C 78, 787 (2018).

[29] A.G. Cohen, D. B. Kaplan, and A. E. Nelson, Spontaneous
baryogenesis at the weak phase transition, Phys. Lett. B 263,
86 (1991).

[30] A.G. Cohen, D. B. Kaplan, and A. E. Nelson, Progress in
electroweak baryogenesis, Annu. Rev. Nucl. Part. Sci. 43,
27 (1993).

[31] M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys.
71, 1463 (1999).

[32] J. M. Cline, Baryogenesis, arXiv:hep-ph/0609145.

[33] N. Petropoulos, Baryogenesis at the electroweak phase
transition, arXiv:hep-ph/0304275.

[34] G. A. White, A Pedagogical Introduction to Electroweak
Baryogenesis (Morgan & Claypool, 2016), 10.1088/978-1-
6817-4457-5.

[35] A. Braconi, Bubble Nucleation and the Electroweak Phase
Transition (University of California, Irvine, 2021).

[36] J.R. Espinosa, B. Gripaios, T. Konstandin, and F
Riva, Electroweak baryogenesis in non-minimal
composite Higgs models, J. Cosmol. Astropart. Phys.
01 (2012) 012.

[37] S. De Curtis, L. Delle Rose, and G. Panico, Composite
dynamics in the early universe, J. High Energy Phys. 12
(2019) 149.

[38] M. Chala, G. Nardini, and I. Sobolev, Unified explanation
for dark matter and electroweak baryogenesis with direct
detection and gravitational wave signatures, Phys. Rev. D
94, 055006 (2016).

[39] P. Amaro-Seoane et al. (LISA Collaboration), Laser inter-
ferometer space antenna, arXiv:1702.00786.

[40] J. Mei et al. (TianQin Collaboration), The TianQin project:
Current progress on science and technology, Prog. Theor.
Exp. Phys. 2021, 05A107 (2021).

[41] W.-H. Ruan, Z.-K. Guo, R.-G. Cai, and Y.-Z. Zhang, Taiji
program: Gravitational-wave sources, Int. J. Mod. Phys. A
35, 2050075 (2020).

[42] C. Cutler and J. Harms, BBO and the neutron-star-binary
subtraction problem, Phys. Rev. D 73, 042001 (2006).

[43] H. Kudoh, A. Taruya, T. Hiramatsu, and Y. Himemoto,
Detecting a gravitational-wave background with next-gen-
eration space interferometers, Phys. Rev. D 73, 064006
(2006).

[44] G. Panico and A. Waulzer, The Composite Nambu-
Goldstone Higgs, Lect. Notes Phys. 913, 1 (2016).

[45] K.-P. Xie, L. Bian, and Y. Wu, Electroweak baryogenesis
and gravitational waves in a composite Higgs model with
high dimensional fermion representations, J. High Energy
Phys. 12 (2020) 047.

[46] M. Redi and A. Tesi, Implications of a light Higgs in
composite models, J. High Energy Phys. 10 (2012) 166.

[47] Z. Chacko and R.K. Mishra, Effective theory of a light
dilaton, Phys. Rev. D 87, 115006 (2013).

[48] J. Aalbers et al. (LZ Collaboration), First dark matter search
results from the LUX-ZEPLIN (LZ) experiment, Phys. Rev.
Lett. 131, 041002 (2023).

015023-23


https://arXiv.org/abs/1811.04279
https://doi.org/10.1007/JHEP08(2012)013
https://arXiv.org/abs/1908.10204
https://doi.org/10.1103/PhysRevLett.126.071602
https://doi.org/10.1007/JHEP02(2021)058
https://doi.org/10.1007/JHEP02(2021)058
https://doi.org/10.1088/1126-6708/2009/04/070
https://doi.org/10.1088/1126-6708/2009/04/070
https://doi.org/10.1007/JHEP07(2012)015
https://doi.org/10.1007/JHEP07(2014)107
https://doi.org/10.1007/s10773-023-05352-6
https://doi.org/10.1088/1126-6708/2001/08/017
https://doi.org/10.1088/1126-6708/2001/04/021
https://doi.org/10.1088/1126-6708/2001/04/021
https://doi.org/10.1103/PhysRevLett.83.4922
https://doi.org/10.1007/JHEP10(2019)202
https://doi.org/10.1007/JHEP10(2019)202
https://doi.org/10.1007/JHEP03(2019)100
https://doi.org/10.1007/JHEP12(2018)099
https://doi.org/10.1007/JHEP12(2018)099
https://doi.org/10.1007/JHEP08(2023)012
https://doi.org/10.1007/JHEP12(2019)028
https://doi.org/10.1007/JHEP12(2019)028
https://doi.org/10.1103/PhysRevD.87.023509
https://doi.org/10.1103/PhysRevD.87.023509
https://doi.org/10.22323/1.439.0003
https://doi.org/10.1103/PhysRevD.88.035013
https://doi.org/10.1088/1361-6633/ab1f55
https://doi.org/10.1103/PhysRevD.93.015013
https://doi.org/10.1103/PhysRevD.93.015013
https://doi.org/10.1140/epjc/s10052-018-6268-0
https://doi.org/10.1016/0370-2693(91)91711-4
https://doi.org/10.1016/0370-2693(91)91711-4
https://doi.org/10.1146/annurev.ns.43.120193.000331
https://doi.org/10.1146/annurev.ns.43.120193.000331
https://doi.org/10.1103/RevModPhys.71.1463
https://doi.org/10.1103/RevModPhys.71.1463
https://arXiv.org/abs/hep-ph/0609145
https://arXiv.org/abs/hep-ph/0304275
https://doi.org/10.1088/978-1-6817-4457-5
https://doi.org/10.1088/978-1-6817-4457-5
https://doi.org/10.1088/1475-7516/2012/01/012
https://doi.org/10.1088/1475-7516/2012/01/012
https://doi.org/10.1007/JHEP12(2019)149
https://doi.org/10.1007/JHEP12(2019)149
https://doi.org/10.1103/PhysRevD.94.055006
https://doi.org/10.1103/PhysRevD.94.055006
https://arXiv.org/abs/1702.00786
https://doi.org/10.1093/ptep/ptaa114
https://doi.org/10.1093/ptep/ptaa114
https://doi.org/10.1142/S0217751X2050075X
https://doi.org/10.1142/S0217751X2050075X
https://doi.org/10.1103/PhysRevD.73.042001
https://doi.org/10.1103/PhysRevD.73.064006
https://doi.org/10.1103/PhysRevD.73.064006
https://doi.org/10.1007/978-3-319-22617-0
https://doi.org/10.1007/JHEP12(2020)047
https://doi.org/10.1007/JHEP12(2020)047
https://doi.org/10.1007/JHEP10(2012)166
https://doi.org/10.1103/PhysRevD.87.115006
https://doi.org/10.1103/PhysRevLett.131.041002
https://doi.org/10.1103/PhysRevLett.131.041002

ZHANG, ZHANG, CAI, and ZHANG

PHYS. REV. D 110, 015023 (2024)

[49] S. Bruggisser, B. von Harling, O. Matsedonskyi, and G.
Servant, Dilaton at the LHC: Complementary probe of
composite Higgs, J. High Energy Phys. 05 (2023) 080.

[50] W. Chao, H.-K. Guo, and J. Shu, Gravitational wave signals
of electroweak phase transition triggered by dark matter,
J. Cosmol. Astropart. Phys. 09 (2017) 009.

[51] M. L. Ahnen et al. (MAGIC, Fermi-LAT Collaborations),
Limits to dark matter annihilation cross-section from a
combined analysis of MAGIC and Fermi-LAT observations
of dwarf satellite galaxies, J. Cosmol. Astropart. Phys. 02
(2016) 039.

[52] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020); 652, C4(E) (2021).

[53] G. Bélanger, F. Boudjema, A. Pukhov, and A. Semenov,
mictOMEGAs4.1: Two dark matter candidates, Comput.
Phys. Commun. 192, 322 (2015).

[54] A. Abdukerim et al. (PandaX Collaboration), PandaX-xT: A
Multi-ten-tonne Liquid Xenon Observatory at the China
Jinping Underground Laboratory, arXiv:2402.03596.

[55] A. Acharyya et al. (CTA Collaboration), Sensitivity of the
Cherenkov Telescope Array to a dark matter signal from the
Galactic centre, J. Cosmol. Astropart. Phys. 01 (2021) 057.

[56] W. Hofmann and R. Zanin, The Cherenkov Telescope
Array, arXiv:2305.12888.

[57] M. Laine and A. Vuorinen, Basics of thermal field theory,
Lect. Notes Phys. 925, 1 (2016).

[58] A.D. Linde, Phase transitions in gauge theories and
cosmology, Rep. Prog. Phys. 42, 389 (1979).

[59] A.D. Linde, Fate of the false vacuum at finite temperature:
Theory and applications, Phys. Lett. 100B, 37 (1981).

[60] M. Sher, Electroweak Higgs potentials and vacuum stability,
Phys. Rep. 179, 273 (1989).

[61] M. Quiros, Finite temperature field theory and phase
transitions, in ICTP Summer School in High-Energy
Physics and Cosmology (1999), pp. 187-259; arXiv:
hep-ph/9901312.

[62] M. B. Hindmarsh, M. Liiben, J. Lumma, and M. Pauly,
Phase transitions in the early universe, SciPost Phys. Lect.
Notes 24, 1 (2021).

[63] B. von Harling and G. Servant, QCD-induced electroweak
phase transition, J. High Energy Phys. 01 (2018) 159.

[64] Y. Bea, J. Casalderrey-Solana, T. Giannakopoulos, A.
Jansen, S. Krippendorf, D. Mateos, M. Sanchez-
Garitaonandia, and M. Zilhdo, Spinodal gravitational waves,
arXiv:2112.15478.

[65] C.L. Wainwright, cosmoTransitions: Computing cosmo-
logical phase transition temperatures and bubble profiles
with multiple fields, Comput. Phys. Commun. 183, 2006
(2012).

[66] G. Nardini, M. Quiros, and A. Wulzer, A confining strong
first-order electroweak phase transition, J. High Energy
Phys. 09 (2007) 077.

[67] K. Agashe, P. Du, M. Ekhterachian, S. Kumar, and R.
Sundrum, Cosmological phase transition of spontaneous
confinement, J. High Energy Phys. 05 (2020) 086.

[68] M. J. Duncan and L. G. Jensen, Exact tunneling solutions in
scalar field theory, Phys. Lett. B 291, 109 (1992).

[69] I. Baldes, Y. Gouttenoire, and F. Sala, String fragmentation
in supercooled confinement and implications for dark
matter, J. High Energy Phys. 04 (2021) 278.

[70] X. Wang, F.P. Huang, and X. Zhang, Phase transition
dynamics and gravitational wave spectra of strong first-
order phase transition in supercooled universe, J. Cosmol.
Astropart. Phys. 05 (2020) 045.

[71] R. Jinno, H. Seong, M. Takimoto, and C. M. Um, Gravi-
tational waves from first-order phase transitions: Ultra-
supercooled transitions and the fate of relativistic shocks,
J. Cosmol. Astropart. Phys. 10 (2019) 033.

[72] M. Lewicki and V. Vaskonen, Gravitational wave spectra
from strongly supercooled phase transitions, Eur. Phys. J. C
80, 1003 (2020).

[73] J. Ellis, M. Lewicki, J.M. No, and V. Vaskonen,
Gravitational wave energy budget in strongly supercooled
phase transitions, J. Cosmol. Astropart. Phys. 06 (2019)
024.

[74] L. Sagunski, P. Schicho, and D. Schmitt, Supercool exit:
Gravitational waves from QCD-triggered conformal sym-
metry breaking, Phys. Rev. D 107, 123512 (2023).

[75] D. Bodeker and G. D. Moore, Can electroweak bubble walls
run away?, J. Cosmol. Astropart. Phys. 05 (2009) 009.

[76] S.J. Huber and T. Konstandin, Gravitational wave produc-
tion by collisions: More bubbles, J. Cosmol. Astropart.
Phys. 09 (2008) 022.

[77] T. Konstandin, Gravitational radiation from a bulk flow
model, J. Cosmol. Astropart. Phys. 03 (2018) 047.

[78] D. Cutting, M. Hindmarsh, and D.J. Weir, Gravitational
waves from vacuum first-order phase transitions: From the
envelope to the lattice, Phys. Rev. D 97, 123513 (2018).

[79] K. Blum, M. Cliche, C. Csaki, and S.J. Lee, WIMP dark
matter through the dilaton portal, J. High Energy Phys. 03
(2015) 099.

[80] M. Kim, S.J. Lee, and A. Parolini, WIMP dark matter in
composite Higgs models and the dilaton portal, arXiv:
1602.05590.

[81] L. Baldes, Y. Gouttenoire, F. Sala, and G. Servant, Supercool
composite dark matter beyond 100 TeV, J. High Energy
Phys. 07 (2022) 084.

[82] M. Spira, Higgs boson production and decay at hadron
colliders, Prog. Part. Nucl. Phys. 95, 98 (2017).

015023-24


https://doi.org/10.1007/JHEP05(2023)080
https://doi.org/10.1088/1475-7516/2017/09/009
https://doi.org/10.1088/1475-7516/2016/02/039
https://doi.org/10.1088/1475-7516/2016/02/039
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1016/j.cpc.2015.03.003
https://doi.org/10.1016/j.cpc.2015.03.003
https://arXiv.org/abs/2402.03596
https://doi.org/10.1088/1475-7516/2021/01/057
https://arXiv.org/abs/2305.12888
https://doi.org/10.1007/978-3-319-31933-9
https://doi.org/10.1088/0034-4885/42/3/001
https://doi.org/10.1016/0370-2693(81)90281-1
https://doi.org/10.1016/0370-1573(89)90061-6
https://arXiv.org/abs/hep-ph/9901312
https://arXiv.org/abs/hep-ph/9901312
https://doi.org/10.21468/SciPostPhysLectNotes.24
https://doi.org/10.21468/SciPostPhysLectNotes.24
https://doi.org/10.1007/JHEP01(2018)159
https://arXiv.org/abs/2112.15478
https://doi.org/10.1016/j.cpc.2012.04.004
https://doi.org/10.1016/j.cpc.2012.04.004
https://doi.org/10.1088/1126-6708/2007/09/077
https://doi.org/10.1088/1126-6708/2007/09/077
https://doi.org/10.1007/JHEP05(2020)086
https://doi.org/10.1016/0370-2693(92)90128-Q
https://doi.org/10.1007/JHEP04(2021)278
https://doi.org/10.1088/1475-7516/2020/05/045
https://doi.org/10.1088/1475-7516/2020/05/045
https://doi.org/10.1088/1475-7516/2019/10/033
https://doi.org/10.1140/epjc/s10052-020-08589-1
https://doi.org/10.1140/epjc/s10052-020-08589-1
https://doi.org/10.1088/1475-7516/2019/06/024
https://doi.org/10.1088/1475-7516/2019/06/024
https://doi.org/10.1103/PhysRevD.107.123512
https://doi.org/10.1088/1475-7516/2009/05/009
https://doi.org/10.1088/1475-7516/2008/09/022
https://doi.org/10.1088/1475-7516/2008/09/022
https://doi.org/10.1088/1475-7516/2018/03/047
https://doi.org/10.1103/PhysRevD.97.123513
https://doi.org/10.1007/JHEP03(2015)099
https://doi.org/10.1007/JHEP03(2015)099
https://arXiv.org/abs/1602.05590
https://arXiv.org/abs/1602.05590
https://doi.org/10.1007/JHEP07(2022)084
https://doi.org/10.1007/JHEP07(2022)084
https://doi.org/10.1016/j.ppnp.2017.04.001

