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Production of gravitational waves in the early Universe is discussed in a cosmologically consistent
analysis within a first-order phase transition involving a hidden sector feebly coupled with the visible
sector. Each sector resides in its own heat bath leading to a potential dependent on two temperatures and on
two fields: one a standard model Higgs field and the other a scalar arising from a hidden sector Uð1Þ gauge
theory. A synchronous evolution of the hidden and visible sector temperatures is carried out from the reheat
temperature down to the electroweak scale. The hydrodynamics of two-field phase transitions, one for the
visible and the other for the hidden is discussed, which leads to separate tunneling temperatures and
different sound speeds for the two sectors. Gravitational waves emerging from the two sectors are
computed and their imprint on the measured gravitational wave power spectrum vs frequency is analyzed in
terms of bubble nucleation signature, i.e., detonation, deflagration, and hybrid. It is shown that the two-field
model predicts gravitational waves accessible at several proposed gravitational wave detectors: LISA,
DECIGO, BBO, and Taiji, and their discovery would probe specific regions of the hidden sector parameter
space and may also shed light on the nature of bubble nucleation in the early Universe. The analysis
presented here indicates that the cosmologically preferred models are those where the tunneling in the
visible sector precedes the tunneling in the hidden sector and the sound speed cs lies below its maximum,
i.e., c2s < 1

3
. It is of interest to investigate if these features are universal and applicable to a wider class of

cosmologically consistent models.

DOI: 10.1103/PhysRevD.110.015020

I. INTRODUCTION

The observation of gravitational waves in black hole
mergers in 2016 [1] opened up a new avenue to explore
fundamental physics in a broader context using stochastic
background of gravitational waves that arise from a variety
of phenomena including those from cosmic phase transi-
tions. The cosmic phase transitions occur at finite temper-
atures [2–6] and give rise to stochastic gravitational waves
[7–9]. Several other sources of stochastic gravitational
waves exist such as from the decay of the inflaton into
standard model particles at the end of inflation [10–12]. It is
also suggested that phase transitions may be linked to
generation of matter-antimatter asymmetry, and especially

to baryogenesis [13–17]. The study of cosmic phase
transitions involves finite temperature field theory which
has been investigated in several early works [18,19].
A significant amount of further work already exists in
this area, see, e.g., [20–43]. For reviews of phase tran-
sitions, see [44–46].
In the current analysis we discuss phase transitions

and gravitational wave generation from hidden sectors that
arise in supergravity, string, and extra-dimensional models,
which improves on some of the previous works in that
the analysis is cosmologically consistent. This implies a
number of things that we mention briefly. First, the
gravitational wave models need to satisfy constraints at
different temperatures, e.g., at the tunneling temperature
(10–100) GeV and at the big bang nucleosynthesis (BBN)
temperature ∼1 MeV which requires an extrapolation over
4–5 orders of magnitude. This is due to the fact that at the
tunneling temperature the phase transition is controlled in
part by the parameter α ¼ ϵ=ρ, where ϵ is the latent heat in
the phase transition and ρ is the total energy density, which
includes the energy density of the standard model and of
the hidden sector. In general, the hidden sector and the
visible sector are at different temperatures and we need to
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know their precise correlation as a function of temperatures
to compute α correctly. Further, as noted, we need to
extrapolate to BBN time which constrains the extra degrees
of freedom ΔNeff above the standard model prediction,
which requires we determine the hidden sector temperature
at BBN time. Often this correlation is done by assuming
separate entropy conservation in the visible sector and in
the hidden sector. In this case, the ratio ξðTÞ ¼ Th=T,
where Th is the temperature in the hidden sector and T is
the temperature in the visible sector, is correlated with the
ratio ξðT0Þ at temperature T0 so that

hheffðξðT0ÞT0Þ
hveffðT0Þ

ξ3ðT0Þ ¼
hheffðξðTÞTÞ
hveffðTÞ

ξ3ðTÞ; ð1:1Þ

where hveff and hheff are the entropy degrees of freedom at
their respective temperatures of the visible sector and of
the hidden sector. However, it was shown in [47,48] that the
separate entropy conservation approximation is highly
inaccurate and leads to erroneous results for ΔNeff by
up to 500%. There is another basic problem with relations
of the type above for cases where the decoupling in the dark
sector occurs below the mass threshold of the dark
particles. In this case the assumption of using thermal
equilibrium to compute the effective degrees of freedom in
the hidden sector breaks down as it gives essentially
hheffðT0Þ ¼ 0 requiring ξðT0Þ to blow up. Here the accurate
analysis used in this work is essential, as explained in
Appendix E.
In the analysis we carry out a synchronous evolution of

the temperatures in the visible and in the hidden sectors.
Central to the analysis is the evolution equation for ξðTÞ
which is solved together with the yield equations for the
particles in the hidden sector and the visible sector with an
assumed boundary condition on ξðTÞ at the reheat temper-
ature, which leads to an accurate prediction for ξðTÞ at any
temperature. There are also other aspects of the analysis
that we briefly comment on. In the current analysis, we
have nucleation arising from two bubble formations, one in
the visible sector and the other in the hidden sector, and we
give a combined treatment of both. This leads to two
different critical temperatures and tunnelings arising from
the visible sector and from the hidden sector. Further, often
in gravitational wave analyses a sound speed of c2s ¼ 1=3 is
assumed, which is the terminal relativistic speed of sound
waves in a fluid. However, in the presence of true (broken)
and false (symmetric) vacua for the visible and hidden
sectors four different possibilities for the sound speed arise:
with two possibilities for the visible sector depending on
whether the vacuum is true or false and similarly for the
hidden sector. We discuss these possibilities and show that
the gravitational wave power spectrum depends sensitively
on sound speed. Finally, we have investigated the possibil-
ity of identifying the nature of bubble dynamics and
nucleation, i.e., detonation, deflagration, and hybrid for

their possible imprint on the gravitational wave spectrum.
While we draw no firm conclusion, we notice that among
the candidate models that satisfy all the constraints (i.e.,
constraints from first-order phase transition, from relic
density, and from ΔNeff ), the hybrid nucleation modes
exhibit the largest gravitational wave power spectrum.
The outline of the rest of the paper is as follows: In

Sec. II we write the hidden sector model and discuss its
temperature-dependent potential including thermal contri-
butions to the field-dependent masses including the daisy
summed multiloop contribution. Then we define the two-
field potential including the temperature-dependent poten-
tial for the standard model Higgs field. In this section we
also give a brief discussion of synchronous evolution of
coupled hidden and visible sectors. In Sec. III we discuss
nucleation and vacuum decay during phase transition for
the case of a single field and then for the two-field case. In
Sec. IV we discuss the hydrodynamics of bubble formation
during phase transition. Here we discuss the sound velocity
in the visible and in the hidden sectors for symmetric and
broken phases and give an analysis of relativistic fluid
equations and of bubble dynamics. Gravitational wave
spectra arising from first-order phase transitions from the
visible and the hidden sectors are discussed in Sec. V. A
detailed numerical analysis of the gravitational wave power
spectrum is given in Sec. VI. Thus, in Sec. VI Awe exhibit
the parameter space of models investigated in Monte Carlo
simulations and the theoretical and experimental con-
straints placed on the allowed set of models. The nucleation
temperature and the resulting gravity power spectrum are
discussed in Sec. VI B. In Sec. VI C we discuss the effect of
sound velocity on the gravitational wave power spectrum,
and in Sec. VI D we investigate the dependence of sound
velocity on the nucleation temperature. An analysis of the
ΔNeff constraint is given in Sec. VI D 1. In Sec. VI E we
discuss the gravity power spectrum for different nucleation
modes, i.e., detonation, deflagration, and hybrid. It is
shown that a significant part of the parameter space of
the assumed hidden sector model can be accessed by the
planned space-based gravity experiments such as LISA,
DECIGO, BBO, Taiji, and others. Conclusions are given in
Sec. VII.
Additional details of the analysis are given in the

Appendixes A–E. Thus, in Appendix A, we give further
details of the temperature-dependent potential for the
hidden sector and computation of temperature-dependent
corrections to the bosonic masses for a Uð1Þ gauge theory
including the contribution of the daisy resummation. In
Appendix B, we give a summary of the known results on
the temperature-dependent Higgs potential for the visible
sector. In Appendix C, we give further details of visible and
hidden sector interactions that enter in the combined
analysis of the two sectors, and in Appendix D, we give
the scattering cross sections that enter in the yield equations
for the dark scalar, the dark fermion, and the dark gauge
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boson. Finally, in Appendix E, we discuss the energy and
pressure densities away from equilibrium as they are
relevant for freeze-out and decoupling in the hidden sector.

II. TWO-FIELD PHASE TRANSITION
INVOLVING THE STANDARD MODEL

AND A HIDDEN SECTOR

As noted in the Introduction, cosmological phase tran-
sitions have been investigated in a significant number of
previous works (for reviews, e.g., [45,49–51]). Most of the
previous works using beyond the standard model (BSM)
physics involve dynamics of only one field. Such an
analysis does not fully take into account the effect of the
standard model on computing the strength of the phase
transition α in tunneling and the proper imposition of the
ΔNeff constraint at BBN time. Thus, as noted earlier a more
complete analysis needs to consider an analysis involving
BSM physics along with the standard model, which in our
case implies a two-field analysis including the Higgs field
of the standard model along with the Higgs field of the
hidden sector. Further, since the visible sector and the
hidden sector would normally be in different heat baths,
the thermal potential governing the phase transition will
depend on two temperatures, one of the visible and the
other of the hidden sector. In the presence of a coupling
between the two, as is most likely via a variety of portals,
a synchronous evolution of the visible and the hidden
sector temperature is essential for reliable predictions of
phenomena related to the cosmological phase transition and
specifically on predictions of the power spectrum of gravity
waves resulting from the phase transition. This aspect of the
cosmological phase transition is one of the focus points of
the current analysis.

A. The hidden sector model and its
temperature-dependent potential

We discuss now the case of phase transitions that involve
two scalar fields, one of which is the standard models Higgs
field and the other is a hidden sector Higgs scalar. In this
case, we consider the Lagrangian of the form

L ¼ LSM þ ΔL; ð2:1Þ
whereLSM is the standard model Lagrangian, andΔL is the
hidden sector Lagrangian given by

ΔL ¼ −
1

4
AμνAμν − jð∂μ − igxAμÞΦj2 − Vh

effðΦÞ

− D̄

�
1

i
γμ∂μ þmD

�
D −

δ

2
AμνBμν − gxQDD̄γμDAμ;

ð2:2Þ

where Aμ is the gauge field of the Uð1ÞX of the hidden
sector, D is the dark fermion, Φ is a complex scalar

field, and Bμ is the gauge field of the Uð1ÞY , and
Aμν ¼ ∂μAν − ∂νAμ and Bμν ¼ ∂μBν − ∂νBμ. Thermal con-
tributions to the zero temperature potential Vh

effðΦÞ will
allow a first-order phase transition and a vacuum expect-
ation value growth for the scalar field Φ generating a mass
for the gauge boson Aμ and the scalar field in the hidden
sector. Thus, the effective temperature-dependent hidden
sector potential including loop corrections is given by

Vh
effðΦ;ThÞ ¼ V0h þ Vð0Þ

1h þ ΔVðThÞ
1h þ Vdaisy

h ðThÞ: ð2:3Þ

Here V0h is the zero temperature tree potential, Vð0Þ
1h is the

one-loop Coleman-Weinberg zero temperature contribu-

tion, ΔVðThÞ
1h is the one-loop thermal contribution,

Vdaisy
1h ðThÞ is the daisy contribution from multiloop sum-

mation, and divergences are canceled off by counterterms.
Thus, we have

V0h ¼ −μ2hΦΦ� þ λhðΦ�ΦÞ2; Φ ¼ 1ffiffiffi
2

p ðχc þ χ þ iG0
hÞ;

ð2:4Þ

where χc is the background field that enters in the tree level

potential. Further, Vð0Þ
1h ðχÞ, the one-loop effective potential

at T ¼ 0, is given by

Vð0Þ
1h ðχcÞ¼

X
i

Nið−1Þ2si
64π2

m4
i ðχcÞ

�
ln

�
m2

i ðχcÞ
Λ2
h

�
−Ci
�
; ð2:5Þ

where Ni is the degrees of particle i and where the field-
dependent masses of the hidden sector fields Aμ; χ; G0

h that
enter the potential are given by

m2
AðχcÞ ¼ g2xχ2c; m2ðχcÞ ¼ −μ2h þ 3λhχ

2
c;

m2
G0

h
ðχcÞ ¼ −μ2h þ λhχ

2
c: ð2:6Þ

For the one-loop thermal correction, we have

ΔVðThÞ
1h ðχc;ThÞ¼

T4
h

2π2

�
3JB

�
mA

Th

�
þJB

�
mχ

Th

�
þJB

�mG0
h

Th

��
;

ð2:7Þ

where Ji (i ¼ B;F) is defined so that at one loop

Ji

�
mi

Th

�
¼
Z

∞

0

dqq2 ln
h
1 ∓ exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

i =T
2
h

q �i
;

i ¼ ðB;FÞ; ð2:8Þ
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where ðB;FÞ stand for bosonic and fermionic cases. The
daisy loop contributions are only for the longitudinal mode
of A and χ and are given for mode i ¼ A; χ so that

Vdaisyði; ThÞ ¼ −
Th

12π
f½m2

i þ ΠiðThÞ�3=2 −m3
i g; ð2:9Þ

where ΠiðThÞ is thermal contribution to the zero temper-
ature mass m2

i . For the longitudinal mode of A and for χ
they are given by

ΠAðThÞ¼
2

3
g2xT2

h; ΠχðThÞ¼
1

4
g2xT2

hþ
1

3
λhT2

h: ð2:10Þ

A deduction of Eqs. (2.9) and (2.10) is given in
Appendix A. We note that the daisy resummation correc-
tion to the effective potential is equivalent to replacing the
particle mass in JB function so that

m2
i → ½mðThÞ

i �2 ≡m2
i þ ΠiðThÞ; ð2:11Þ

where ΠiðThÞ is the self-energy of the bosonic field for
particle i at finite temperature Th, known as “Debye mass.”
Making the replacement of Eq. (2.11), the effective
potential of Eq. (2.3) now takes the form

Vh
effðχc; ThÞ ¼ V0h þ Vð0Þ

1h ðχcÞ þ VT
1 ðχc; ThÞ

¼ μ2h
2
χ2h þ

λh
4
χ4h þ

X
i

gið−1Þ2si
64π2

m4
i ðχcÞ

�
ln

�
m2

i ðχcÞ
Λ2
h

�
− Ci

�

þ T4
h

2π2
X
B

gB

Z
∞

0

dqq2 ln

�
1 − exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ

h
mðThÞ

B

i
2
=T2

h

r ��

−
T4
h

2π2
X
F

gF

Z
∞

0

dqq2 ln

�
1þ exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ

h
mðThÞ

F

i
2
=T2

h

r ��
: ð2:12Þ

This is the potential that is used in the analysis here. In this
work we analyze a whole range of temperatures that
encompass the regions Th ≪ m, Th ≫ m and the regions
in between. For this reason we do not use high Th and low
Th expansions but rather use the full integral forms for JB
(and also for JF in the standard model case). Further details
on the thermal masses for the hidden sector are given in
Appendix A and a summary of the temperature-dependent
potential for the standard model including corrections due
to thermal masses and daisy contributions is given in
Appendix B.
Let us now consider the case of two sectors together but

with no interactions between the scalar fields so that the
scalar potential is simply a sum of potentials in the two
sectors, i.e.,

Veffðϕc; T; χc; ThÞ ¼ Vv
effðϕc; TÞ þ Vh

effðχc; ThÞ: ð2:13Þ

where Vv
effðϕc; TÞ is the effective temperature-dependent

Higgs potential in the standard model, which is well
known, but for easy reference it is given in Appendix B.
Here the minimization conditions are

Vv
eff;ϕc

¼ 0; Vh
eff;χc

¼ 0; Vv
eff;ϕcϕc

> 0; Vh
eff;χcχc

> 0; ð2:14Þ

which imply that if the minimization conditions are
individually satisfied in each sector then the minimization
of the potential overall is also satisfied for the combined
system of the visible and the hidden sectors. At the

minimum of the potential we define v ¼ ϕc and vh ¼ χc.
We note, however, that the two potentials are at different
temperatures, one at T and the other at Th, and for a
synchronous minimization to occur in the two sectors T and
Th must be related by

Th ¼ ξðTÞT; ð2:15Þ

where ξðTÞ is determined by a synchronous evolution of
the visible sector and the hidden sector from the reheating
scale to the low temperature scale, where phase transitions
occur with given initial condition on ξ0 at the reheat
temperature. In the absence of a synchronous evolution,
ξ has been used [52] as a free parameter. However, such a
procedure does not allow one to use temperature constraints
consistently at different temperatures such as at the time of
tunnelings, which occur at different temperatures for the
visible and the hidden sector and to correlate them with
the ΔNeff constraint the BBN time. In this work, we will
solve ξðTÞ as a function of T which gives more reliable
results. Further, as noted earlier we can reliably extrapolate
the data to BBN time to include the constraint from ΔNeff
[47,48,53] and from the relic density of dark matter.

B. Synchronous evolution of coupled hidden
and visible sectors

We discuss below an analysis for the evolution of ξðTÞ
which, in general, allows for any type of thermal contact
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between the visible and the hidden sectors. Since the
standard model explains quite accurately a large amount
of data at the electroweak scale, the couplings between the
hidden and the visible sectors need to be extra weak [54] or
feeble. Such couplings could arise via a Higgs portal [55],
kinetic mixing [56], or Stueckelberg mass mixing [57],
or both [58], as well as other possible combinations such
as a Stueckelberg-Higgs portal [59] or some higher-
dimensional operator connecting the two sectors.
Synchronous thermal evolution between the visible and
one hidden sector was discussed in [60], the case with two
hidden sectors was discussed in [61], and for multiple
hidden sectors in [62]. Here we give a brief review of
synchronous evolution central to the analysis of this work.
Thus, the energy densities for the visible and the hidden

sectors obey the following coupled Boltzmann equations in
an expanding universe:

dρv
dt

þ 3Hðρv þ pvÞ ¼ jv;

dρh
dt

þ 3Hðρh þ phÞ ¼ jh: ð2:16Þ

Here ρv and pv are the energy and momentum densities for
the visible sector, and where ðjv; jhÞ encode in them all the
possible processes exchanging energy between these sec-
tors. They are defined in Appendixes C and D. The total
energy density ρ ¼ ρv þ ρh satisfies the equation

dρ
dt

þ 3Hðρþ pÞ ¼ 0; ð2:17Þ

where p¼pvþph is the total pressure density. We intro-
duce the functions σi ¼ 3

4
ð1þ pi

ρi
Þ, where σ1 ¼ σv, σ2 ¼ σh,

where σi ¼ 3
4
for matter dominance, and σi ¼ 1 for radi-

ation dominance. Similarly, we define σ ¼ 3
4
ð1þ p

ρÞ. We
note that σv, σh, and σ are temperature dependent and this

dependence is taken into account in the evolution equa-
tions. Using σi and σ, the ρi and ρ evolution equations read

dρi
dt

þ4Hσiρi¼ ji;ði¼v;hÞ; dρ
dt

þ4Hσρ¼0: ð2:18Þ

We will use temperature instead of time and temperature of
the visible sector T as the clock. In this case we can write
the evolution equations in terms of T using the relation

dT
dt

¼ −4Hσρ

�
dρ
dT

�
−1
; ð2:19Þ

and dρi=dt ¼ ðdρi=dTÞðdT=dtÞ. Further, we can deduce
the following evolution equation for ξðTÞ which governs
the temperature evolution of the hidden sector relative to
that of the visible sector

dξ
dT

¼
�
−ξ

dρh
dTh

þ 4Hσhρh − jh
4Hσρ − 4Hσhρh þ jh

dρv
dT

��
T
dρh
dTh

�
−1
;

ð2:20Þ

where jh is defined in Eq. (D6). The above analysis is
general, allowing for any type of thermal contact via any
type of portal. In the analysis here we assume a kinetic
mixing and do not consider Stueckelberg mass mixing as it
would lead to millicharges for dark matter [57,63–65].
Thus, we include in the Lagrangian a term − δ

2
AμνBμν

where Bμν is the field strength of Uð1ÞY hypercharge field
Bμ. Further details of the interactions between the visible
and the hidden sector in the canonically diagonalized basis
are given in Appendix C.
The evolution equation for ξðTÞ, Eq. (2.20) involves jh

which depends on the yields of the hidden sector YD; Yγ0,
and Yχ (see Appendix D). We discuss the Boltzmann
equations for the yields below

dYD

dT
¼ −

s
H

�
dρv=dT

4σρ − 4σhρh þ jh=H

��
1

2
hσviDD̄→iīðTÞðYeq

D ðTÞ2 − Y2
DÞ −

1

2
hσviDD̄→γ0γ0 ðThÞ

�
Y2
D − Yeq

D ðThÞ2
Y2
γ0

Yeq
γ0 ðThÞ2

��
;

ð2:21Þ

dYγ0

dT
¼ −

s
H

�
dρv=dT

4σρ − 4σhρh þ jh=H

��
1

2
hσviDD̄→γ0γ0 ðThÞ

�
Y2
D − Yeq

D ðThÞ2
Y2
γ0

Yeq
γ0 ðThÞ2

�

þ 1

2
hσviχχ̄→γ0γ0 ðThÞ

�
Y2
χ − Yeq

χ ðThÞ2
Y2
γ0

Yeq
γ0 ðThÞ2

�
þ hσviiī→γ0 ðTÞYeq

i ðTÞ2

−
1

s
hΓγ0→iīðThÞiYγ0 þ hΓχ→γ0γ0 ðThÞi

�
Yχ − Yeq

χ ðThÞ
Y2
γ0

Yeq
γ0 ðThÞ2

��
; ð2:22Þ
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dYχ

dT
¼ −

s
H

�
dρv=dT

4σρ − 4σhρh þ jh=H

��
−
1

2
hσviχχ̄→γ0γ0 ðThÞ

�
Y2
χ − Yeq

χ ðThÞ2
Y2
γ0

Yeq
γ0 ðThÞ2

�

−
1

s
hΓχ→γ0γ0 ðThÞi

�
Yχ − Yeq

χ ðThÞ
Y2
γ0

Yeq
γ0 ðThÞ2

��
; ð2:23Þ

where s is the entropy density and yield for particle i is
defined by Yi ¼ ni=s. In the analysis here we take account
of the hidden sector energy density and pressure density, ρh
and ph, not only through thermal equilibrium analysis but
also by accounting for the contribution of relic abundance.
A further discussion of it is provided in Appendix E. For
the computation of the visible sector density and pressure
we use the precalculated values of gveff and hveff which are
tabulated results from micrOMEGAs [66]. We discuss next the
bubble nucleation for the case of the single field first and
then for the case of two fields.

III. NUCLEATION AND VACUUM DECAY

A. Single-field nucleation

Before proceeding to a discussion of nucleation for the
two-field case, we first summarize the first-order phase
transition involving the decay of the false vacuum into the
true vacuum involving bubble nucleation of a generic scalar
field ϕ. We define the temperature when bubbles start
to nucleate as Tn. Here at zero temperature the decay
probability per unit time and per unit volume is given by
Γ ¼ Ke−S4 , where S4 is the Euclidean action in four
dimensions and K is typically of the fourth-order power
of the energy involved in the phase transition [20]. At finite
temperature the decay probability per unit time and per unit
volume takes the form Γ ¼ KðTÞe−S3=T where T is the
temperature, and KðTÞ ∼ T4. Thus, for the case of a single
scalar field, S3ðTÞ is given by

S3ðTÞ ¼
Z

∞

0

4πr2dr
�
1

2

�
dϕ
dr

�
2

þ Vv
effðϕ; TÞ

�
; ð3:1Þ

with the scalar field satisfying the Euclidean O(3) sym-
metry equation of motion and the appropriate boundary
conditions

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ ∂

∂ϕ
Vv
effðϕ; TÞ; lim

r→∞
ϕ ¼ 0;

dϕ
dr

			
r¼0

¼ 0: ð3:2Þ

We use the Mathematica package FindBounce [67,68]
to numerically compute S3. Once S3ðTÞ is determined,
the nucleation temperature Tn is defined so that

Z
Tn

0

Γdt
H3

¼
Z

∞

Tn

dT
T

�
90

8π3geff

�
2
�
MPl

T

�
4

e−S3ðTÞ=T≃1: ð3:3Þ

This equation is well approximated by S3ðTnÞ
Tn

∼ 140. Then
the whole vacuum decay process can be characterized by
the following temperatures: (1) critical temperature Tc,
when the effective potential has two degenerate minima;
(2) nucleation temperature Tn, when the transition occurs
or when one bubble is nucleated in one casual Hubble
volume; and (3) destabilization temperature T0, when
the original vacuum is no longer a minimum or when
the potential barriers between the false vacuum and true
vacuum disappears.

B. Two-field nucleation

For the two-field nucleation, the calculation here will
become complicated because the over-undershoot imple-
mentation by some numerical analysis (like CosmoTransitions)
is not reliable anymore. The work of [69] discusses such a
problem in detail. Thus, here we provided a way that can
deal with such a situation with the potential given by
Eq. (2.13). For the visible (hidden) sector, there will be
corresponding temperatures Tc; Tn; T0 (Th;c; Th;n; Th;0)
with the following orders:

T0 < Tn < Tc ðTh;0 < Th;n < Th;cÞ: ð3:4Þ

Since we have ξðTÞ to give us the temperature ratio of two
sectors at each moment, if we know the temperature of the
visible sector, we can then easily find the temperature in the
hidden sector, with Eq. (2.15). Correspondingly, we define
another function

T ¼ ζðThÞTh; ð3:5Þ

which allows us to fix the temperature in the visible sector
given the temperature in the hidden sector. We note that
Eqs. (2.15) and (3.5) are equivalent so that ζðThÞ ¼ ξðTÞ−1.
It is convenient to use Eq. (2.15) [Eq. (3.5)] when the visible
(hidden) sector temperature T (Th) is used as the clock. Next
we discuss different cases for the nucleation process.
Case 1: For this case, we have one of the scalar field’s

nucleation occurring first and then the other scalar field
nucleation occurring separately at different time, which
means the first scalar field already reaches its destabili-
zation temperature before the other scalar field reaches

WAN-ZHE FENG, JINZHENG LI, and PRAN NATH PHYS. REV. D 110, 015020 (2024)

015020-6



its critical temperature, i.e., ðT0; TcÞ ∩ ðζðTh;0ÞTh;0;
ζðTh;cÞTh;cÞ ¼ ∅. For this case, the original vacuum
decays first to an intermediate vacuum and then decays
into the true vacuum. In this case, we can treat the
two-field nucleation as two single-field vacuum decay
problems. Here Tn and Th;n can be determined by
Eqs. (3.1)–(3.3).
Case 2: For the second case, we have the visible

scalar field nucleation and the hidden scalar field nucleation
going through the vacuum decay at the same time,
which means one of the scalar fields reaches its critical
temperature before the other scalar field reaches its
destabilization temperature, i.e., ðT0; TcÞ ∩ ðζðTh;0ÞTh;0;
ζðTh;cÞTh;cÞ ≠ ∅. For this case, it is possible that the
original vacuum decays directly to the final true vacuum
and we will have only one transition. Here let us first
assume that Tc < ζðTh;cÞTh;c, so we have

T0 < ζðTh;0ÞTh;0 < Tc < ζðTh;cÞTh;c: ð3:6Þ

Figure 1 shows a schematic diagram for such a case. If the
first nucleation occurs at Tc < T < ζðTh;cÞTh;c, then it will
be the same as in case 1 where there will be an intermediate

vacuum. If not, then we need consider the possibility that
the original vacuum decays directly to the final true
vacuum. According to Eq. (2.13), there is no interaction
between two scalar fields in the potential, i.e., there is no
term like ϕχ. In this case S3totalðTÞ is given by

S3totalðTÞ ¼
Z

∞

0

4πr2dr

�
1

2

�
dϕ
dr

�
2

þ 1

2

�
dχ
dr

�
2

þ Veffðϕ; T; χ; ξðTÞTÞ
�

¼
Z

∞

0

4πr2dr

�
1

2

�
dϕ
dr

�
2

þ Vv
effðϕ; TÞ

�
þ
Z

∞

0

4πr2dr

�
1

2

�
dχ
dr

�
2

þ Vh
effðχ; ξðTÞTÞ

�
¼ S3vðTÞ þ S3hðξðTÞTÞ: ð3:7Þ

Here the equations of motion are to be solved with EuclideanOð3Þ symmetry and with appropriate boundary conditions so
that

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ ∂

∂ϕ
Veffðϕ; T; χ; ξðTÞTÞ ¼

∂

∂ϕ
Vv
effðϕ; TÞ; lim

r→∞
ϕ ¼ 0;

dϕ
dr

				
r¼0

¼ 0: ð3:8Þ

d2χ
dr2

þ 2

r
dχ
dr

¼ ∂

∂χ
Veffðϕ; T; χ; ξðTÞTÞ ¼

∂

∂χ
Vh
effðχ; ThÞ; lim

r→∞
χ ¼ 0;

dχ
dr

				
r¼0

¼ 0: ð3:9Þ

Since the above two equations can be solved independently,
we can just treat each as a single-field case. To find Tn for
the case where the original vacuum decays directly to the
final true vacuum, we first assume that such a nucleation
happens at Tn;total and get

S3totalðTn;totalÞ
Tn;total

¼ S3vðTn;totalÞ
Tn;total

þ S3hðξðTn;totalÞTn;totalÞ
Tn;total

∼ 140;

ð3:10Þ

which tells us that S3vðTn;totalÞ
Tn;total

< 140. However, S3v=T is a

monotonic increasing function of T which leads to

∃Tn > Tn;total∶
S3vðTnÞ

Tn
∼ 140: ð3:11Þ

It tells us that, before the original vacuum decays directly
into the final true vacuum, it must decay into an inter-
mediate vacuum first. However, it takes some time for the
phase transition to complete after the temperature reaches

FIG. 1. Schematic plot for Case 2. S3ðTÞ=T vs T for S3v
and S3h.
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the nucleation temperature. Thus, it is possible that the
other sector also reaches its nucleation temperature during
this process. It will become more complicated but inter-
esting because now the gravitational wave will be gen-
erated by the collision of two types of bubbles from two
different sectors. We note, however, that the interaction
between the sectors is too feeble to produce any effect.
Further, we assume the phase transition is completed
immediately after it reaches the nucleation temperature to
avoid this problem altogether. Therefore, case 2 can be
treated the same as case 1 and we have shown that, in any
case, we can treat the problem as two single-field vacuum
decay problems. The whole transition will undergo
through two-step phase transition at two different nucle-
ation temperatures Tn and Th;n. For each phase transition,
there will be a “relative symmetry phase” and a “relative
broken phase.” A schematic diagram of the entire nucle-
ation process is given by Fig. 2.

IV. HYDRODYNAMICS OF BUBBLE FORMATION
DURING PHASE TRANSITION

To investigate the gravitational wave generation from
cosmological phase transition, we need to first study the
hydrodynamics of bubble formation during the phase
transition. One of the important elements in the hydro-
dynamics of bubbles is the sound velocity in the fluid in the
symmetric phase and in the broken phase and it is model
dependent. We discuss this next.

A. Sound velocities in the visible
and in the hidden sectors

Sound velocity in fluids is known to have a terminal
value so that c2s ¼ 1=3. However, its actual value depends
on whether the phase is unbroken or broken and on the type
of the broken phase. We start with the thermodynamic
quantities: energy density e, pressure p, and enthalpy
density w. They are, in general, given by the following
equations:

p ¼ −F ; e ¼ T
∂p
∂T

− p; w ¼ pþ e: ð4:1Þ

Here F is the free energy density where p is given by

pðϕ; T; χ; ThÞ ¼ pvðϕ; TÞ þ phðχ; ThÞ; ð4:2Þ

pvðϕ; TÞ ¼
π2

90
gveffT

4 − Vv
effðϕ; TÞ; ð4:3Þ

phðχ; ThÞ ¼
π2

90
gheffT

4
h − Vh

effðχ; ThÞ: ð4:4Þ

Correspondingly, we have

eðϕ; T; χ; ThÞ ¼ evðϕ; TÞ þ ehðχ; ThÞ þ emixðϕ; T; χ; ThÞ;
ð4:5Þ

FIG. 2. A schematic diagram for the two-step phase transition. The phase of the whole Universe transfers from the symmetry phase to
the relative broken phase before ultimately reaching the fully broken phase. The plots of Vv

eff vs ϕ and Vh
eff vs χ are shown for different

temperatures.
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evðϕ;TÞ¼T
∂pv

∂T
−pv; ehðχ;ThÞ¼Th

∂ph

∂Th
−ph; ð4:6Þ

emixðϕ; T; χ; ThÞ ¼ T2
∂ph

∂Th

∂ξ

∂T
; ð4:7Þ

and for the sound velocity c2s ¼ dp=de (total derivative
here), we have

c2sðϕ; χ;T; ThÞ ¼
∂ðpvÞ
∂T þ ∂ðphÞ

∂Th

∂ðThÞ
∂T

∂ðevÞ
∂T þ ∂ðehÞ

∂Th

∂ðThÞ
∂T þ ∂emix

∂T

; ð4:8Þ

where

∂Th

∂T
¼ ∂ðξTÞ

∂T
¼ ∂ξ

∂T
T þ ξðTÞ; ð4:9Þ

and where we used dpv
dT ¼ ∂pv

∂T ; devdT ¼ ∂ev
∂T since we are

interested in sound velocity in vacuums. Further, since
explicit integrals for ph, eh are known, and numerical
tables for the corresponding visible sector quantities
are known, an evaluation of ∂ðpvÞ=∂T; ∂ðevÞ=∂T and
∂ðphÞ=∂Th; ∂ðehÞ=∂Th can be numerically carried out.
According to the analysis in Sec. III, there will actually
be two sets of symmetry phase velocities and broken phase
velocities possible. For the visible scalar field nucleation,
the sound velocity in the symmetric phase and in the broken
phase, i.e., sound velocity outside and inside the bubble of
the visible scalar field nucleation, will be labeled cs;þ;v and
cs;−;v. Similarly, for the hidden scalar field nucleation, we
have cs;þ;h and cs;−;h.
We label vacua in the broken phase case for the visible

and hidden sectors to be ϕmin and χmin, and they are found
numerically. For the case when nucleation in the visible
sector occurs before nucleation in the hidden sector, i.e.,
Tn > ζðTh;nÞTh;n, these four velocities are given by

c2s;þ;v ¼ c2sð0; 0; Tn; ξðTnÞTnÞ;
c2s;−;v ¼ c2sðϕmin; 0; Tn; ξðTnÞTnÞ;
c2s;þ;h ¼ c2sðϕmin; 0; ζðTh;nÞTh;n; Th;nÞ;
c2s;−;h ¼ c2sðϕmin; χmin; ζðTh;nÞTh;n; Th;nÞ; ð4:10Þ

where the arguments of c2s;þ;v etc. are as defined in
Eq. (4.8). Thus, e.g., c2sðϕmin; 0; Tn; ξðTnÞTnÞ denotes
the velocity of the sound wave traveling inside the bubble
of the visible phase transition. The visible scalar field is in
its broken vacuum while the hidden scalar field is still in
its symmetric vacuum. The tunneling temperature of the
visible scalar field nucleation is Tn and the synchronous
temperature of the hidden scalar to it is ξðTnÞTn.

On the other hand, when Tn < ζðTh;nÞTh;n, these four
velocities are given by

c2s;þ;h ¼ c2sð0; 0; ζðTh;nÞTh;n; Th;nÞ;
c2s;−;h ¼ c2sð0; χmin; ζðTh;nÞTh;n; Th;nÞ;
c2s;þ;v ¼ c2sð0; χmin; Tn; ξðTnÞTnÞ;
c2s;−;v ¼ c2sðϕmin; χmin; Tn; ξðTnÞTnÞ: ð4:11Þ

B. Relativistic fluid equations and bubble dynamics

Next, we discuss hydrodynamics of the bubble expan-
sion [6,9,70–73]. First, we describe the plasma, as a
relativistic fluid, by its energy-momentum tensor

Tμν ¼ wuμuν þ pgμν: ð4:12Þ

Here we are using the metric gμν ¼ diagð−1; 1; 1; 1Þ where
w ¼ eþ p, and e and p are the energy density and pressure
as defined in Sec. IVA, and uμ ¼ γðvÞð1; v⃗Þðγ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Þ is the four-velocity field. The fluid equation

of motion is given by the conservation of Tμν,

∂μTμν ¼ μν∂μðuμwÞ þ uμw∂μuν þ ∂
νp ¼ 0: ð4:13Þ

The conservation equation can be projected into the
parallel and perpendicular directions to the flow direction
by using uμ ¼ γðvÞð1; v⃗Þ and ūμ ¼ γðvÞðv; v⃗=vÞ such that
ūμuμ ¼ 0; uν∂μuν ¼ 0; ū2 ¼ 1; u2 ¼ −1 which give

uν∂μTμν ¼ ∂μðuμwÞ þ uμ∂μp ¼ 0; ð4:14Þ

ūν∂μTμν ¼ ūνuμw∂μuν þ ūμ∂μp ¼ 0: ð4:15Þ

These are the continuity equation and the relativistic Euler
equation. Further, one assumes a spherically symmetric
configuration and since there is no characteristic distance
scale in the problem, the solution depends only on a self-
similarity coordinate η≡ r=t, where r is the distance to the
bubble center and t is the time since the bubble nucleation.
Further, we assume that the bubble reaches a constant
terminal velocity after a short expansion time. Thus, we
can assume that vb ¼ ηw. The above two equations then
take the form

ðη − vÞ ∂ηe
w

¼ 2
v
η
þ γ2ð1 − ηvÞ∂ηv; ð4:16Þ

ð1 − ηvÞ ∂ηp
w

¼ γ2ðη − vÞ∂ηv; ð4:17Þ
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where vðηÞ is the fluid velocity at r ¼ ηt in the frame of the
bubble center. Using the definition c2s ¼ dp=dT

de=dT , one gets the
following equations:

2
v
η
¼ γ2ð1 − vηÞ

�
μðη; vÞ2

c2s
− 1

�
dv
dη

; ð4:18Þ

dw
dη

¼ wγ2μðη; vÞ
�
1

c2s
þ 1

�
dv
dη

; ð4:19Þ

where μðη; vÞ ¼ η−v
1−ηv. In fact, with a steady terminal

velocity ηw, we can use this Lorentz-boost transformation
to transform between the bubble wall frame and center
of the bubble frame by the expressions μðηw; vÞ ¼ v̄ and
μðηw; v̄Þ ¼ v. In addition to the equations of motion of the
plasma given above, we also need junction conditions to
connect the symmetry phase and the broken phase. We use
subscriptsþ to denote the symmetric phase and − to denote
the broken phase. We note that the junction conditions are
to be used infinitely close to the boundary. Then assuming
the wall is expanding in the z direction, the matching
equations are

ðTzν
þ −Tzν

− Þnν¼0; ðTtνþ−Ttν
− Þnν¼0; nμ¼ð0;0;0;1Þ

ð4:20Þ
and we get the continuity equation in the bubble wall frame
to be

wþv̄þγ̄2þ ¼ w−v̄−γ̄2−; ð4:21Þ

wþv̄2þγ̄2þ þ pþ ¼ w−v̄2−γ̄2− þ p−: ð4:22Þ

Rearranging it, we can get the following equation:

v̄þv̄− ¼ pþ − p−

eþ − e−
; ð4:23Þ

v̄þ
v̄−

¼ e− þ pþ
eþ þ p−

: ð4:24Þ

With boundary conditions (4.23) and (4.24) and the
evolution equation (4.18), we can solve for vðηÞ, and there
are three different expansion modes: deflagration, hybrid,
and detonation. If the wall velocity of the bubble vw is
subsonic, i.e., vw < cs;−, it gives rise to deflagration where
a region of larger density precedes the bubble wall. For the
supersonic case where vw > cs;−, the higher density region
ahead of the wall does not materialize since the wall
velocity is larger than the sound velocity. This is the
detonation region. The region where vw ∼ cs is a mixture
of the two and is referred to as the hybrid region. Once we
determine vðξÞ we can apply Eqs. (4.19) and (4.21) to find

wðηÞ ¼ w0 exp

�Z
vðηÞ

v0

�
1þ 1

c2s

�
γ2μdv

�
: ð4:25Þ

The ratio of bulk kinetic energy over the vacuum energy
gives the efficiency factor κ as

κ ¼ 3

ϵη3w

Z
wðηÞv2γ2η2dη:

In most analyses of first-order phase transition (FOPT),
sound velocities are treated approximately often assuming
c2s;− ¼ c2s;þ ¼ 1

3
(see, e.g., [70,71]). In this case, the phase

transition strength α is given by

α ¼ T dΔVeff
dT − ΔVeff

ρrad
ð4:26Þ

or

α0 ¼ 4

3

ϵþ − ϵ−
wþ

¼
T
4
dΔVeff
dT − ΔVeff

ρrad
: ð4:27Þ

However, in this work we will take into account sound
velocity dependence in the analysis as in [74,75]. Here the
phase transition strength parameter is given by

αθ̄n ≡
Dθ̄ðTnÞ
3wn

θ̄≡ e −
p
c2s;−

; ð4:28Þ

DXðTnÞ ¼ XsðTnÞ − XbðTnÞ; ð4:29Þ

with X ¼ e, p, w and the efficiency factor is defined by

κ ¼ 4

αθ̄nη
3
w

Z
dηη2v2γ2

w
wn

: ð4:30Þ

In this case αθ̄n and κ are both velocity dependent, in that κ
depends on cs;þ, cs;−, αθ̄n and vw. We note that for the case
c2s;þ ¼ c2c;b ¼ 1=3, it is equivalent to the second definition,
Eq. (4.27). A Python snippet is provided in [74] and we
utilize it in our analysis.

V. GRAVITATIONAL WAVE SPECTRUM WITH
VISIBLE AND HIDDEN SECTORS

The phase transition phenomena is controlled by four
parameters, which are the nucleation temperature Tn, the
strength of the phase transition α, the inverse duration of the
transition β in comparison withHn whereHn is the Hubble
parameter at the time of nucleation and the bubble
wall velocity vw. Tn and α were discussed in Sec. IV.
The timescale of the phase transition is the inverse of the
parameter β defined by

β ¼ −
dðS3=TÞ

dt

				
t¼tn

≃
1

Γ
dΓ
dt

				
t¼tn

; ð5:1Þ
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where S3 is the Euclidean action as already defined.
Usually β is normalized by Hn and is given by

β

H
¼ T

dðS3ðTÞ=TÞ
dT

				
T¼fTn;Th;ng

: ð5:2Þ

We note here that a larger α means a stronger phase
transition and a larger value of β means a faster phase
transition.
The gravitational wave power spectrum has been dis-

cussed in a variety of settings (see, e.g., [31,36,71,76–88]).
It is given by

ΩGWðfÞ ¼
1

ρc

dρGW
d ln f

≃NΔ
�

κα

1þ α

�
p
�
H
β

�
q
sðfÞ;

ΩGW ≃ Ωϕ þ Ωsw þ Ωtb: ð5:3Þ

Here Ωϕ is the contribution to energy density of the
gravitational wave produced by dynamics of the scalar field,
Ωsw is the contribution from the sound waves, Ωtb is the
contribution by turbulence, ρc is the critical density, and f is
the frequency of the gravitational wave. The rest of the
parameters are as discussed in the text of this section.
Further, a detailed discussion of the various contributions
can be found in [52,89–92]. For the current analysis, all the
relevant parameters that enter in the computation of
Ωϕ;Ωsw;Ωtb which contribute in Eq. (5.3) are given in
Table I. However, we still need to consider the redshift both
on the energy density and frequency to deduce the power
spectrumΩ0

GWðf0Þ at current temperature T0 from the power
spectrumΩGW gotten at the tunneling temperature T tun. This
is accomplished by the following extrapolation [36,52]:

Ω0
GWðf0Þ ¼ RΩGW

�
a0
a
f0

�
; ð5:4Þ

where

a0
a

¼
�
heffðT tunÞ

hEQeff

�
1=3
�
T tun

T0

�
; ð5:5Þ

R≡
�
a
a0

�
4
�
H
H0

�
2

≃ 2.473 × 10−5h−2
�

hEQeff
heffðT tunÞ

�4=3�geffðT tunÞ
2

�
; ð5:6Þ

geffðT tunÞ ¼ gveffðT tunÞ þ gheffðT tunÞξðT tunÞ4; ð5:7Þ

heffðT tunÞ ¼ hveffðT tunÞ þ hheffðT tunÞξðT tunÞ3; ð5:8Þ

hEQeff ¼ 3.91þ hheffðTeqÞξðTeqÞ3: ð5:9Þ

In the above T tun ¼ Tn for the visible sector nucleation and
T tun ¼ ζðTh;nÞTh;n for the hidden sector nucleation.
It is also necessary to classify whether the bubble

wall velocity reaches a terminal velocity. If the bubble
wall keeps accelerating, it is called the runaway scenario.
If it reaches a terminal velocity, it is called a nonrunaway
scenario. A detailed discussion can be found in
[52,70,92,93]. To classify these two scenarios, a critical
phase transition strength α∞ is introduced. For the visible
sector and hidden sector nucleation, it is given by

αv∞¼ ðTnÞ2
ρradðTnÞ

� X
i¼bosons

ni
Δm2

i

24
þ

X
i¼fermions

ni
Δm2

i

48

�
; ð5:10Þ

αh∞¼ ðTh;nÞ2
ρradðζðTh;nÞTh;nÞ

� X
i¼bosons

ni
Δm2

i

24
þ

X
i¼fermions

ni
Δm2

i

48

�
:

ð5:11Þ

When α∞ > α, it is in the nonrunaway regime. In this case,
we have

κϕ ¼ 0; κsw ¼ κðα; c2s;þ; c2s;−; vwÞ: ð5:12Þ

When α∞ < α, it is in the runaway regime and we have

κϕ ¼ 1 −
α∞
α

; κsw ¼ α∞
α

κðα∞; c2s;þ; c2s;−; vwÞ: ð5:13Þ

The bubble wall velocity depends on the transition strength
α and on the friction between the scalar field and the
surrounding particle plasma, described by a friction
parameter. Thus, vw is highly model dependent. Since
the bubble wall is in the runaway region, it will keep
accelerating, and for that reason we take vw ∼ 1. In the
nonrunaway region, the bubble wall velocity reaches a
terminal value and is model dependent, so we treat it as a
free parameter. It is legal to do so since it is equivalent to
introducing additional particles that couple exclusively to

TABLE I. Values of the parameters N ; κ; p; q;Δ; fp; sðfÞ that
appear in the gravitational wave power spectrum of Eq. (5.3) for
the three different contributions: Ωϕ from the scalar field, Ωsw

from sound waves, and Ωtb from turbulence.

Scalar field Ωϕ Sound waves Ωsw Turbulence Ωturb

N 1 1.59 × 10−1 2.01 × 101

κϕ κ κsw ϵturbκsw
p 2 2 3

2

q 2 1 1
Δ 0.11v3w

0.42þv2w
vw vw

fp 0.62β
1.8−0.1vwþv2w

2βffiffi
3

p
vw

3.5β
2vw

sðfÞ 3.8ðf=fpÞ2:8
1þ2.8ðf=fpÞ3:8

ðf=fpÞ3ð 7
4þ3ðf=fpÞ2Þ

7=2 ðf=fpÞ3
ð1þf=fpÞ11=3ð1þ8πf=HÞ
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the scalar field and affect the friction parameter only (for
recent work on determining wall velocity from initial inputs
see, e.g., [74,75,94,95]).

VI. SIMULATION OF GRAVITATIONAL WAVE
POWER SPECTRUM

There are several ongoing gravitational wave experiments
and those being proposed that will probe gravitational waves
at different frequency regions and with different sensi-
tivity. These include Laser Interferometer Space Antenna
(LISA) [96–98], EPTA [99,100], aLIGO/aVIRGO/KAGRA

[101–106], BBO [107], DECIGO [108], Einstein Telescope
(ET) [109], Cosmic Explorer (CE) [110], Taiji [111],
TianQin [112], μAres [113], NANOGrav [114,115],
Parkes Pulsar Timing Array (PPTA) [116], International
Pulsar Timing Array (IPTA) [117], and Square Kilometer
Array (SKA) [118]. We plot the predictions of the hidden
sector model discussed here along with the expected reach of
proposed gravitational wave experiments. Figure 3 provides
an example of gravitational wave power spectrum with these
experimental constraints for model (a) of Table II. Since the
major parameters for the standard model (SM) are already
known, we have the visible sector nucleation temperature
to be about 161.284 GeV, the phase transition strength
αv ∼ 4 × 10−5, and the inverse duration of the transition
βv ∼ 2.7 × 106. As a result, the direct contribution from
the visible sector is very small, which is about
Ωvisibleh2 ∼ 10−30.
Based on the previous discussion, we calculate the phase

transition dynamics and the final gravitational wave power
spectrumwith different benchmarks on our model. For each
model, there are eight free parameters in total, which are
dark fermion mass mD, dark photon mass mγ0 , coupling of
dark photon and dark fermion gx, kinetic mixing δ, initial
temperature ratio ξ0, hidden Higgs field parameter μh, λh,
and the bubble wall velocity for hidden sector nucleation
vwh. Here we provide a table of benchmark models in
Table II with their outputs given in Table III.

A. Constraints and Monte Carlo simulation

In the beginning of this section we discussed eight
parameters that enter in the analysis of the gravitational
wave spectrum. For simulations we take the following
ranges for these parameters:

mD ∈ ð10−1; 104Þ GeV; mγ0 ∈ ð10−1; 104Þ GeV;
gx ∈ ð10−4; 100Þ; δ∈ ð10−12; 10−6Þ;
ξ0 ∈ ð0; 1Þ; μh ∈ ð10−1; 104Þ GeV;
λh ∈ ð10−5; 101Þ; vwh ∈ ð0; 1Þ: ð6:1Þ

TABLE II. A set of benchmarks covering a range of input parameters used in the computation of tunneling temperature in the hidden
sector and other relevant outputs in Table III that enter in the computation of the gravitational wave spectrum consistent with all
constraints on the dark photon [120]. These benchmarks pass all the constraints mentioned in Sec. VI A and are cosmologically
consistent candidate models for the computation of gravitational waves.

Number mD (GeV) mγ0 (GeV) gX δ (in 10−9) ξ0 μh (GeV) λh vwh

(a) 551.7 108.5 0.02059 0.01038 0.671 18.63 0.04973 0.5993
(b) 204.1 52.52 0.01975 0.01441 0.463 9.922 0.03953 0.5619
(c) 594.4 221.5 0.002922 0.0281 0.778 41.78 0.08802 0.9599
(d) 710 138.6 0.003161 0.03012 0.917 22.03 0.02939 0.6472
(e) 1111 113.7 0.02739 0.01174 0.821 18.49 0.03857 0.2674
(f) 2854 249.5 0.00821 0.03464 0.795 41.44 0.04183 0.5871
(g) 530.7 124.7 0.04001 0.02102 0.757 17.14 0.01621 0.6159

FIG. 3. An exhibition of the gravitational wave power spectrum
for model (a) in Table II illustrating the relative contributions
from sound wave and turbulence. This is a nonrunaway case and
Ωϕ ¼ 0. The solid lines are for the hidden sector phase transition
while the dashed lines are for the visible sector. In the analysis we
take ϵturb ¼ 0.1 as in [90,92]. The regions in color are the power-
law integrated sensitivity curves for different experiments,
including LISA [96–98], EPTA [99,100], HLVK ¼
aLIGO=aVIRGO=KAGRA [101–106], BBO [107], DECIGO
[108], ET [109], CE [110], Taiji [111], TianQin [112], μAres
[113], NANOGrav [114,115], PPTA [116], IPTA [117], and SKA
[118]. The data and calculations are from [119].
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In order to investigate the distribution of different nucle-
ation modes, as discussed in Sec. VI C, for each event we
select vwh corresponding to three different nucleation
modes so that the total number for each type of mode is
the same. In the Monte Carlo simulation we impose the
following constraints:
(1) FOPT constraints: For the first-order phase transi-

tion, we require that there must be a potential barrier
between the false vacuum and the true vacuum. The
further constraint is an upper limit of sound velocity
so that c2s ≤ 1=3.

(2) ΔNeff constraint at BBN: The number of effective
relativistic degrees of freedom Neff at BBN is one of
the important constraints on new physics beyond the
standard model of particle physics. The relevant
constraint is given by the allowed corridor for the
difference between the experimental result and the
standard model result at the BBN time represented
by ΔNeff. For the hidden sector model the extra
degrees of freedom are given by

ΔNeff ¼
4

7
gheff

�
11

4

�
4=3

ξ4: ð6:2Þ

Current experiment observations give us the con-
straint ΔNeff < 0.25 [121].

(3) Relic density constraint: After solving for the yield
equations, the relic densities for χ and D can be
gotten from their individual yields so that

Ωih2 ¼
s0miY0

i h
2

ρc
; i∈ ðD; χÞ; ð6:3Þ

where Y0
i is the yield for the ith particle and Ωih2 is

its relic density, while the total relic density is the
sum of them. In the analysis we use dark matter relic
density as an upper limit. Currently, it is given by the
Planck experiment [121] so that

ΩDMh2 ¼ 0.120� 0.001: ð6:4Þ

Specifically, we impose the constraint 0.01 <
Ωhiddenh2 < 0.12.

For each benchmark model, there will be a corresponding
power spectrum curve just like Fig. 3. However, plotting the
full curve for each model point would not be illuminating
because they would be space filling. For that reason we will
do a scatter plot on the gravitational wave power spectrum,
with each model point represented by the peak of its power
spectrum curve at the frequency where that peak occurs.
An illustration of it is given in Fig. 4.

B. Nucleation temperature and GW power spectrum

Nucleation temperature is one of the key factors in the
computation of the gravitational wave power spectrum. It
affects the spectrum in the following ways:
(1) It enters the phase transition strength α as discussed

below

α ¼ ϵ

ρrad
: ð6:5Þ

Although there are several different definitions to
the latent heat ϵ as discussed earlier, the total
radiation density of the Universe ρrad is the same
and is given by

ρrad ¼
π2

30
ðgveffðζTh;nÞTh;n

4ζ4 þ gheffðTh;nÞTh;n
4Þ:
ð6:6Þ

It tells us that α ∝ Th;n
−4. Thus, a smaller Th;n leads

to a larger α and a larger gravitational wave power
spectrum.

(2) According to Eq. (5.4), we have f0 ∝ Th;n, which
implies that a larger power spectrum will arise at
lower frequencies.

The analysis of Fig. 4 is consistent with the observation
above that a larger power spectrum will appear at a lower
frequency. We also note that, for the two-field case,

TABLE III. Computation of the nucleation temperature Th;n, sound velocities in the symmetric and broken phases c2s;þ;h; c
2
s;−;h, the

strength of the phase transition αh, the inverse duration of the transition βh=Hn, and the efficiency factor κh all for the hidden sector. Also
listed is the dark matter relic density ΩDMh2, frequency fðzÞ of the power spectrum at the peak value of the gravitational wave power
spectrum, and the gravitational wave power spectrum ΩGWh2 at peak value. DET, HYB, and DEF stand for the nucleation modes
detonation, hybrid, and deflagration.

Number Th;n ξðTnÞ c2s;þ;h c2s;−;h αh βh=Hn κh ΩDMh2 f½Hz� ΩGWh2 Mode

(a) 18.2 0.6724 0.307 0.306 0.0172 294.8 0.223 0.013 0.00257 1.591 × 10−13 HYB
(b) 18.02 0.4635 0.309 0.309 0.00053 1563. 0.0463 0.0267 0.0204 1.172 × 10−18 HYB
(c) 29.93 0.7794 0.309 0.308 0.043 158.8 0.0523 0.0198 0.0012 1.524 × 10−13 DET
(d) 35.52 0.9181 0.308 0.306 0.0151 871.3 0.0984 0.0385 0.0102 8.604 × 10−15 DET
(e) 19.73 0.8227 0.309 0.308 0.0367 319.7 0.0413 0.0115 0.0055 9.823 × 10−15 DEF
(f) 54.78 0.7956 0.318 0.317 0.0107 845.6 0.187 0.0228 0.0191 1.42 × 10−14 HYB
(g) 28.07 0.758 0.308 0.307 0.0127 565.9 0.175 0.0216 0.00631 2.843 × 10−14 HYB
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satisfaction of FOPTand other constraints is affected by the
order in which nucleation in the visible and in the hidden
sector occurs. Thus, we classify all FOPT events into two
groups: (1) the standard model Higgs scalar nucleation
happens first, i.e., ζðTh;nÞTh;n < Tn (red points) or (2) the
hidden Higgs scalar nucleation happens first, i.e.,
ζðTh;nÞTh;n > Tn (blue points). The analysis for these
two cases is shown in Fig. 5. Here the analysis shows that
after the FOPT constraints, ΔNeff constraint, and the relic
density constraint are taken into account most of the blue
points are eliminated, which implies that the hidden sector
nucleation occurs after nucleation in the visible sector.

C. Sound velocity and GW power spectrum

We discussed above the effect of sound velocity on the
final power spectrum via αðc2s;−;hÞ according to Eq. (4.28)
and via κðα; c2s;þ;h; c

2
s;−;h; vwÞ according to Eq. (4.30). To

demonstrate to what extent sound velocity can change the
power spectrum, we investigate the power spectrum for
model (b) from Table II keeping all parameters fixed except

for the sound velocity c2c;b;h. The analysis of Fig. 6 shows
that the changes to power spectrums can be as large as a
factor of Oð103Þ. This approach allows us to isolate the
effects of sound velocity from other factors, such as the
nucleation temperature noted earlier. The reason we need to
discuss this dependence is because there are multiple
different analyses on sound velocity among existing works
that lead to different results. We classify these as follows:
(A) This is the case when one considers just the hidden

sector and assumes that the sound velocity takes
its maximum value allowed in fluids which is
c2s ¼ 1=3. Such an assumption is the one most
commonly made, see, e.g., [52,122].

(B) Here one considers one hidden sector model but
including sound velocity dependence. For this class
of models α is given by Eq. (4.28) and κ will also be
velocity dependent. The sound velocity is given by

c2s ¼
dph=dTh

deh=dTh
; ð6:7Þ

FIG. 5. Monte Carlo analysis of gravitational wave power spectrum classified by two possible orderings in which nucleation occurs in
the visible and hidden sector with red model points for Tn > ζðTh;nÞTh;n and blue model points for ζðTh;nÞTh;n > Tn. Left: scatter plot
of the candidate models satisfying the FOPT constraints. Middle: same as the left panel satisfying the FOPT constraints and the ΔNeff
constraint. Right: same as the left panel with models satisfying the FOPT constraints, ΔNeff constraint, and the relic density constraint.
Here one finds that the residual set of models left after all the constraints are applied are those where the nucleation in the hidden sector
happens after nucleation in the visible sector.

FIG. 4. Gravitational wave power spectrum resulting fromMonte Carlo analysis on eight free parameters. Left: scatter plot of the peak
value of candidate models at the frequency where the peak value occurs after FOPT constraints are applied. Middle: same as the left
panel including FOPT constraints and the ΔNeff constraint. Right: same as the left panel including the FOPT constraints, ΔNeff
constraint, and the relic density constraint.
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where ph and eh are the pressure and the energy
density for the hidden sector. Analyses of this type
are discussed in, for example, [74,123].

(C) In this work, we discuss sound velocity involving
two sectors, i.e., the visible and the hidden, and take
into account velocity dependence, which is given by
Eq. (4.8). This type of analysis has not been
discussed in the existing literature to our knowledge.

Applying the above three types of analyses (A)–(C) to
model (b), we get sound velocities such that c2s;−;h;ðAÞ¼
0.333;c2s;−;h;ðBÞ¼0.234;c2s;−;h;ðCÞ¼0.309. Correspondingly,

the gravitational wave power spectrum for the three cases is
significantly affected due to variations in the sound velocity
as illustrated in Fig. 6.

D. Nucleation temperature and sound velocity

In this section, we will analyze how the sound velocity
depends on the nucleation temperature. Again, we will
focus on c2s;−;h, with sound velocity defined as by Eq. (4.8).
The scatter plot is shown in Fig. 7. We observe that some

of the points in Fig. 7 are gathered around the curve of

c2s ¼ dðpvÞ=dT
dðevÞ=dT . This phenomenon happens because the

visible sector dominates, i.e., we have the sound velocity
so that

c2sðϕ;χ;T;ThÞ¼
dðpvþphÞ=dT

dðevþehþemixÞ=dT
≃
dðpvÞ=dT
dðevÞ=dT

: ð6:8Þ

The reason that the visible sector can dominate is because
pv ∼ π2

90
gveffT

4 and ph ∼ π2

90
gheffT

4
h according to Eqs. (4.3),

(4.4) and T > Th when ξ < 1 and also gveff > gheff .
One may note from Fig. 7 that, for the case when

the hidden Higgs scalar nucleation occurs first, i.e.,
ζðTh;nÞTh;n > Tn, the red curve stays at c2 ∼ 1=3.
However, when the standard model Higgs scalar nucleation
occurs first, i.e., Tn > ζðTh;nÞTh;n, we have c2s systemati-
cally less than 1=3. The different behavior for the two cases
arises due to two different constraints, i.e., Eqs. (4.10)
and (4.11), for these two different cases. In the analysis of
Sec. VI B, it is found that most of events that pass all the
relevant constraints are those where Tn > ζðTh;nÞTh;n and
where the approximation c2s ∼ 1=3 is typically invalid. In
simple terms the cosmologically preferred model points are
those where Tn > ζðTh;nÞTh;n and c2s < 1=3.

1. ΔNeff vs ξðTÞ
According to Eq. (6.6), the hidden sector nucleation

happens at Th;n which lies in the range 18–55 GeV
according to Table III, while the BBN temperature is
Oð1Þ MeV. This means we need to extrapolate the Neff

FIG. 6. An exhibition of the gravitational wave power
spectrum for different types of sound velocities for a example
model. All other parameters, such as the nucleation temper-
ature, are kept fixed when c2s;−;h varies for cases A, B, and C
discussed in the text.

FIG. 7. Scatter plots for c2s;−;h vs ζðTh;nÞTh;n for a set of candidate models in the parameter ranges given by Eq. (6.1). Here the standard
model dominates over the hidden sector in the computation of sound velocity and the sound velocity is close to the one for the visible

sector, i.e., c2s ¼ dðpvÞ=dT
dðevÞ=dT shown by the red curve. The vertical black lines give the value of Tn. Left: scatter plot of c2s;−;h vs ζðTh;nÞTh;n

with inclusion of FOPT constraints. Middle: same as the left panel including the FOPT constraints and the ΔNeff constraint. Right: same
as the left panel with FOPT constraints, ΔNeff constraint, and the relic density constraint.
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between the two temperatures in a precise way so as to
take account of the ΔNeff constraint at BBN time, which
we take to be ΔNeff < 0.25. In some previous works
separate entropy conservation in the visible and hidden
sectors is used to extrapolate Neff from high temperatures
to low temperatures. Such a procedure is shown to be
flawed as it can yield highly inaccurate estimates on
ΔNeff . Thus, a more accurate analysis is needed as
discussed in Sec. II and Appendix E. An analysis relevant
to the current case is given in Fig. 8. Here we first show
that the two sectors decouple at 10−2 GeV and the dark
photon also decays out at 10−2 GeV. The left panel
exhibits the decoupling more clearly where ni

P
ihσvi

for all three hidden sector particles falls below HðTÞ at
T ∼ 10−2 GeV, which means the complete decoupling
of the hidden and visible sectors (see Appendix E),
and the density of dark relics freezes out as exhibited
in the left-middle panel. The right-middle panel exhibits
ξðTÞ vs T, which is used to constraint ΔNeff at the BBN
time as shown in the right panel. The right panel shows
that ΔNeff drops below the BBN constraint when decou-
pling happens.

E. Gravitational wave power spectrum and the
nucleation modes: Detonation, deflagration, hybrid

Now we discuss the gravitational wave power spectrum
for different nucleation modes: detonation, deflagration,
and hybrid. Chapman-Jouguet velocity [72,73,124] is
used in part to distinguish different bubble nucleation
modes, specifically the detonation and the hybrid modes.
It is given by [74,75]

vJ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3αθ̄ð1 − c2s þ 3c2sαθ̄Þ

p
1=cs þ 3csαθ̄

: ð6:9Þ

The bubble nucleation modes are distinguished by the
following constraints:
(1) Detonations: vw > cs;− and vw > vJ.
(2) Hybrid: vw > cs;− and vw < vJ.
(3) Deflagrations: vw < cs;−.

Here, vw is the bubble wall velocity. We apply such
classification to all data points in Monte Carlo analysis
to produce Fig. 9. The figure shows that the hybrid modes
are typically the ones with the highest power spectrum.

FIG. 8. Left: an exhibition of the decouplings of hidden sector particles with plots of ni
P

ihσvi and HðTÞ vs T for i ¼ D; γ0; χ. Here
we have nD

P
Dhσvi ¼ nDðhσviDD̄→iī þ hσviDD̄→γ0γ0 Þ, nγ0

P
γ0 hσvi ¼ nγ0 ðhσviDD̄→γ0γ0 þ hσviχχ̄→γ0γ0 þ hΓγ0→iīðThÞi þ hΓχ→γ0γ0 ðThÞiÞ,

nχ
P

χhσvi ¼ nχðhσviχχ̄→γ0γ0 þ hΓχ→γ0γ0 ðThÞiÞ. Left middle: an exhibition of the decay of dark photon γ0. The dark photon decays out at
about 10−3 GeV. Right middle: evolution of ξðTÞ vs T for model (e) of Table II. Right: ΔNeffðTÞ vs T. The red dashed line is the current
limit ΔNeff < 0.25.

FIG. 9. Gravitational wave power spectrum for Monte Carlo analysis classified by different nucleation modes: detonation,
deflagration, hybrid. Left: allowed set of models satisfying the FOPT constraints. Middle: same as the left panel with models
satisfying FOPT constraints and the ΔNeff constraint. Right: residual set of models satisfying the FOPT constraint,ΔNeff constraint, and
the relic density constraint.
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VII. CONCLUSION

In this work we have carried out a cosmologically
consistent analysis of gravity wave power spectrum arising
from a first-order phase transition involving two sectors:
the visible sector and the hidden sector, since the two
sectors are intrinsically entangled in several ways. Thus, the
Hubble expansion involves energy densities of all sectors,
hidden and visible. Further, the strength of the first-order
phase transition in the hidden sector at tunneling time Th;n

depends on αðTh;nÞ ¼ ϵ=ρrad where ϵ is the latent heat and
ρrad ¼ ρhradðTh;nÞ þ ρvradðTÞ where T ¼ ζðTh;nÞTh;n and
involves the evolution function ζðThÞ. The same evolu-
tion function enters when we impose the ΔNeff constraint
at BBN time. Thus, imposition of ΔNeff at BBN requires
a knowledge of the hidden sector temperature at BBN
time which in the visible sector is ∼1 MeV. Again one
needs the evolution function to deduce the effective
degrees of freedom in the hidden sector at the temperature
synchronous to ∼1 MeV in the visible sector. In brief,
since the visible and the hidden sectors reside in different
heat baths, a consistent analysis requires that one takes
into account the dependence of the effective potential on
two temperatures: one for the visible and the other for the
hidden. In this work, we have presented an analysis of the
gravitational wave power spectrum which takes into
account the synchronous evolution of the visible and
the hidden sectors. Within this framework we discuss
nucleation which involves bubble dynamics in two
sectors. The analysis involves a solution to the evolution
function ξðTÞ ¼ Th=T along with a solution to yield
equations for the hidden sector particles. Thus, the
formalism discussed in this work allows one to correlate
physics at nucleation time and at BBN time and allows
for precision computation of ΔNeff at BBN and of relic
density. The formalism presents an improvement over
current analyses where synchronous evolution of the
visible and the hidden sectors is not utilized.
Several aspects of the gravitational wave power spectrum

are analyzed within the two temperature evolution formal-
ism. Thus, we analyze the sensitivity of the gravitational
wave power spectrum to sound speed for symmetric and
broken phases. The analysis includes nucleation involving
two fields, one from the hidden and the other from the
visible. Here it is shown that, for the case two-field
nucleation, models that pass all the constraints are those
where the tunneling in the visible sector precedes tunneling
in the hidden sector. Further, we discuss the possible
imprint of the nucleation modes, i.e., detonation, deflagra-
tion, and hybrid on the characteristics of the gravitational
power spectrum.We show that a part of the parameter space
of the specific gauged Uð1Þ extension of the standard
model discussed here is testable at the proposed gravita-
tional wave detectors.
Finally, we mention below the novel material contained

in the paper.

All the published works on gravitational wave produc-
tion in hidden sector models thus far, that we are aware
of, do not qualify as cosmologically consistent models
since there is no synchronous thermal evolution of the
visible and the hidden sectors in these works, and our work
is the first one that has accomplished that. Details of how a
synchronous evolution of the visible and the hidden sectors
is achieved in a two sector/two temperature universe is
discussed in detail in Secs. II–IV and in Appendixes A–E.
Thus, currently this paper is the only cosmologically
consistent model and no comparable analysis exists in
the literature. This is reflected in the first three words of the
title of this paper: “Cosmologically consistent analysis.”
This paper is the first work where the imprint of different

nucleation modes, i.e., detonation, deflagration, and hybrid,
on the gravitational wave power spectrum is analyzed (see
Fig. 9). This aspect of the paper is of great significance
since it tells us that experimental data on gravitational
waves can be used to probe the very early history of the
Universe when the current Universe was in the process of
creation via bubble formation. No comparable analysis
exists in any of the previous works.
Among other novel things, in this work we discussed

sound speeds involving two sectors (see Sec. IV), i.e., the
visible and the hidden, which have a very significant effect
on the gravitational power spectrum when both sound
speeds are taken into account as seen in Fig. 6. Here the
very large effect that inclusion of sound speeds of both the
visible and of the hidden sector can generate on the power
spectrum is exhibited. This type of analysis has not been
discussed in the existing literature to our knowledge, and
thus our analysis is more complete than what appears in the
previous works for the two sector case.

Note added. Recently, the Ref. [125] appeared which uses
dimensionally reduced 3D thermal field theory to minimize
the uncertainty of the gravitational wave signal. This work
along with those referenced in it are a useful tool in making
the thermal analysis more precise. It is of interest to extend
the analysis of this work to a two sector/two temperature
case so as to be applicable to gravitational power spectrum
involving the standard model and the hidden sector dis-
cussed in this work.
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APPENDIX A: THERMAL MASS CALCULATION
FOR A GENERAL Uð1Þ THEORY

We discuss here the calculation of thermal masses for
the hidden sector Lagrangian given by Eqs. (2.2) and (2.4).
The calculation is done in the high temperature regime,
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where the temperature is much higher than the energy scale of the particles’ masses. We also take all the external momenta
to zero. In thermal field theory, at some nonzero temperature T, the 1PI graphs are defined in the Euclidean space (t ¼ iτ)
with a periodicity in τ. The computations are governed by the conventional Feynman rules, while replacing the k0 integral
by a sum over Matsubara frequencies [126] so that

Z
d4k
ð2πÞ4 fðk

0;kÞ → T
X
n

Z
d3k
ð2πÞ3 fðk

0 ¼ iωn;kÞ; ωb
n ¼ 2nπT; ωf

n ¼ ð2nþ 1ÞπT; ðA1Þ

where ωb
n is for bosonic modes and ωf

n is for fermionic modes. For the rest of the calculation it is useful to define a
function qðTÞ so that

qðzÞ ¼ 1þ 2ς

ez=T − ς
; ðA2Þ

with ς ¼ þ1 for bosons and ς ¼ −1 for fermions. Some of the integrals that appear in the thermal masses can then be given
in terms of ξðzÞ. Thus, we have

T
X
n

Z
d3k
ð2πÞ3

1

ω2
n þ jkj2 ¼

Z
∞

0

dkk2

2π2
qðkÞ
2k

¼



T2=12 bosons

−T2=24 fermions
ðA3Þ

T
X
n

Z
d3k
ð2πÞ3

ω2
n

ðω2
n þ jkj2Þ2 ¼

Z
∞

0

dkk2

2π2
kþ 2TqðkÞ − kq2ðkÞ

8kT
¼


−T2=24 bosons

T2=48 fermions
ðA4Þ

T
X
n

Z
d3k
ð2πÞ3

jkj2
ðω2

n þ jkj2Þ2 ¼
Z

∞

0

dkk2

2π2
−kþ 2TqðkÞ þ kq2ðkÞ

8kT
¼


T2=8 bosons

−T2=16 fermions
ðA5Þ

where we dropped the nonthermal contribution in the integral which is UV divergent and is removed by the counterterms.
There are no thermal corrections to the fermion masses, and only the scalar boson and the longitudinal components of the
gauge boson gain thermal corrections.

1. Thermal mass correction to scalar χ

We discuss the thermal corrections to the scalar boson first. Here the thermal mass corrections come from the scalar
loops, from the neutral Goldstone loop, and from the gauge boson loop as shown in Fig. 10.
The scalar loop contribution from χ4 term is given by

scalar loop from χ4 ¼ 3λhi
Z

d4k
ð2πÞ4

1

k2
→ 3λhT

X
n

Z
d3k
ð2πÞ3

1

ω2
n þ jkj2 ¼

λh
4
T2: ðA6Þ

FIG. 10. Left: thermal mass correction to the scalar field χ complex scalar loop exchange indicated by the dashed line. Middle: same as
the left figure except that the thermal loop correction is from the Goldstone loop (small dashed line). Right: same as the left figures
except that the thermal loop correction is from the Uð1Þ gauge field loop (wavy line).
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The prefactors can be understood as the following: The contraction of hχðxÞj λh
4
χχχχðzÞjχðyÞi has in total 4 × 3 ways and

gives rise to a factor 3λ, and the additional I in the front is from the computation of the amplitudes, i.e., iM. The scalar loop
contribution from χ2ðG0

hÞ2 term is given by

Goldstone loop from χ2ðG0
hÞ2 ¼ λhi

Z
d4k
ð2πÞ4

1

k2
→ λhT

X
n

Z
d3k
ð2πÞ3

1

ω2
n þ jkj2 ¼

λh
12

T2; ðA7Þ

where the contraction of hχðxÞj λh
2
χχðzÞG0

hG
0
hðzÞjχðyÞi has two ways and thus gives rise to a factor 2 × ð−i λh

2
Þ ¼ −iλh. Thus,

the total scalar thermal contribution is the sum of the two above results,

scalar andGoldstone loops ¼ λh
4
T2 þ λh

12
T2 ¼ λh

3
T2; ðA8Þ

which is different from the SM Higgs thermal mass λ
2
T2, owing to the fact that there are also contributions from the two

charged Goldstone bosons. The gauge boson loop contributions to the scalar mass is given by

Gauge boson loop ¼ iðig2xÞ
Z

d4k
ð2πÞ4 Tr½ΔμνðkÞ� → 3g2xT

X
n

Z
d3k
ð2πÞ3

1

ω2
n þ jkj2 ¼

g2x
4
T2; ðA9Þ

where ΔμνðkÞ is the gauge boson propagator in the Landau
gauge given by ΔμνðkÞ ¼ −i

k2 ðgμν − kμkν

k2 Þ. The contraction of
hχðxÞj 1

2
gx2χχðzÞAAðzÞjχðyÞi gives rise to a total front

factor 2 × ði 1
2
g2xÞ ¼ ig2x.

Thus, in this case the total thermal mass for the dark
scalar field ΠχðTÞ is given by

Πχ ¼
1

3
λhT2 þ 1

4
g2xT2: ðA10Þ

2. Thermal mass for the Uð1Þ gauge boson

Next we compute the thermal mass for the longitudinal
contribution to the Uð1Þ gauge boson mass γ0. Here the
polarization tensors of vector bosons can split into com-
ponents of longitudinal (L) and transverse (T) polarization
so that

Πμν ¼ ΠTTμν þ ΠLLμν ðA11Þ

with projection operators Tμν ¼ diagf0; 2; 2; 2g and Lμν ¼
diagf−1; 0; 0; 0g in the IR limit [127]. The gauge boson
thermal mass corrections come from scalar and fermion

contributions: In this case the thermal mass corrections to
the γ0 mass come from scalar and fermion loop contribu-
tions as shown in Fig. 11. The calculation of the scalar loop
contribution is easier to be performed considering the
complex Uð1ÞX field Φ which has 2 degrees of freedom
and it represented by the double dashed line in Fig. 11. The
corresponding Lagrangian reads

L ⊃ jDμΦj2 → g2xA2ΦΦ� þ igxAμðΦ�
∂
μΦ −Φ∂

μΦ�Þ;
ðA12Þ

which gives i2g2x for the four-point vertex AAΦΦ� and
−2gxkμ for the three-point vertex AμΦΦ�. The scalar loop
contribution is

scalar loop

¼ 2 ×
i
2

Z
d4k
ð2πÞ4

�
ði2g2xgμνÞ

i
k2

þ ð2gkμÞð−2gxkνÞðiÞ2
ðk2Þ2

�
;

ðA13Þ

where the prefactor 2 is fromΦ being a complex scalar, and
1=2 is the symmetric factor due to the two external gauge

FIG. 11. Thermal mass corrections to the gauge boson mass from the complex scalar loop with a four point vertex (left) and with a
three point vertex (middle), and from the Dirac fermion loop (right).
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boson legs. One still needs to multiply the 2 from the complex Φ. For the nonzero contribution to the longitudinal part
we get

ΠL ¼ −Π00 ¼ i2g2x

Z
d4k
ð2πÞ4

�
1

k2
−

2k20
ðk2Þ2

�
→ 2g2xT

X
n

Z
d3k
ð2πÞ3

�
1

ω2
n þ jkj2 −

2ω2
n

ðω2
n þ jkj2Þ2

�

¼ g2x
3
T2: ðA14Þ

The Uð1ÞX charged fermion loop contribution given by the right diagram in Fig. 11 is given by

fermion loop ¼ ð−Þi
Z

d4k
ð2πÞ4 ðigxÞ

2
ðiÞ2Trðγμ=kγν=kÞ

ðk2Þ2 ¼ −i4g2x
Z

d4k
ð2πÞ4

2kμkν − k2gμν

ðk2Þ2 ; ðA15Þ

which gives contribution to ΠL so that

ΠL ¼ −Π00 ¼ i4g2x

Z
d4k
ð2πÞ4

k20 þ jkj2
ðk2Þ2 → −4g2xT

X
n

Z
d3k
ð2πÞ3

ω2
n þ jkj2

ðω2
n þ jkj2Þ2 ¼

g2x
3
T2: ðA16Þ

This is the contribution from a Dirac fermion exchange. For
a chiral fermion exchange, either left- or right-handed, the

contribution to the thermal mass is g2x
6
T2. For an Abelian

gauge theory there is no gauge boson loop contribution.
From the above analysis we deduce that, if in addition to

the complex scalar field Φ, there are n numbers of dark
chiral fermion Xi (either left- or right-handed) with the
Uð1ÞX charge Qi, then the thermal mass for the dark sector
gauge boson γ0 is given by

Πγ0 ¼
1

3
g2xT2 þ

Xn
i¼1

1

6
g2xQ2

i T
2; ðA17Þ

where the first term on the right-hand side arises from a
complex scalar loop and the second term from N chiral
fermion loops.

3. Daisy resummation

As discussed in a number of works in temperature-
dependent perturbation theory, the summation over higher
loops can produce the same size correction as the one loop
and should be taken into account [44,127–129]. Thus, one
finds that at the nth order, the n-loop daisy diagram with
n − 1 petals (see Fig. 12), also called the ring diagram,
gives the dominant contribution. The daisy diagrams can be
resumed by adding up propagators with increasing number
of attached loops. Each loop can contribute a thermal mass
correction ΠðThÞ ¼ Π1ðThÞ, where Π1ðThÞ is the one-loop
thermal mass correction, derived above. The sum of all the
propagators can be written as

1

p2 −m2
þ ΠðThÞ
ðp2 −m2Þ2 þ

Π2ðThÞ
ðp2 −m2Þ3 þ � � �

¼ 1

p2 −m2 − ΠðThÞ
;

which is equivalent to adding a thermal contribution to the
mass in the propagator, i.e.,

m2ðχcÞ → m2ðχcÞ þ ΠðThÞ: ðA18Þ

Now the one-loop contribution at zero temperature is
given by

Vð0Þ
1h ðχcÞ ¼

X
i

Ni

2

Z
d4kE
ð2πÞ4 ln½k

2
E þm2

i ðχcÞ�; ðA19Þ

where i runs over all the particles that enter the loop and Ni
are the degrees of freedom for particle i. The regularized
and renormalized one-loop potential as given by the right-
hand side under the MS scheme is the familiar Coleman-
Weinberg potential. From here on we follow the procedure

FIG. 12. A daisy or ring diagram which contributes to thermal
potential.
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in the preceding analysis and using the imaginary time formalism we replace the integral over k0E by a summation over the
Matsubara frequencies as given by Eq. (A1), where ωb

n are for bosons and ωf
n are for fermions and ΔVTh

1hðχc; ThÞÞ at finite
temperature is given by

ΔVTh
1hðχc; ThÞ ¼

X
i

NiTh

2

Xþ∞

n¼−∞

Z
d3k
ð2πÞ3 ln½k

2 þ ω2
n þm2

i ðχcÞ�: ðA20Þ

After the replacement Eq. (A18), the thermal one-loop potential ΔVðThÞ
1h ðχc; ThÞ reads

ΔVðThÞ
1h ðχc; ThÞ →

X
i

NiTh

2

(X
n≠0

Z
d3k
ð2πÞ3 ln½k

2 þ ω2
n þm2

i ðχcÞ� þ
Z

d3k
ð2πÞ3 ln½k

2 þm2
i ðχcÞ þ ΠðThÞ�

)

¼
X
i

NiTh

2

(X
n≠0

Z
d3k
ð2πÞ3 ln½k

2 þ ω2
n þm2

i ðχcÞ� þ
Z

d3k
ð2πÞ3 ln½k

2 þm2
i ðχcÞ�

þ
Z

d3k
ð2πÞ3 ln

�
1þ ΠðThÞ

k2 þm2
i ðχcÞ

�)

¼
X
i

NiTh

2

Xþ∞

n¼−∞

Z
d3k
ð2πÞ3 ln½k

2 þ ω2
n þm2

i ðχcÞ� þ
X
i

N̄iTh

2

Z
d3k
ð2πÞ3 ln

�
1þ ΠðThÞ

k2 þm2
i ðχcÞ

�

¼ ΔVðThÞ
1h ðχc; ThÞ þ Vdaisy

h ðχc; ThÞ;
where N̄i are the bosonic degrees of freedom which incur the mass shift. The daisy diagram contribution to the effective
potential from one particle is computed to be

Vdaisy
h ðχc; ThÞ ¼

Th

2

Z
d3k
ð2πÞ3 ln

�
1þ ΠðThÞ

k2 þm2ðχcÞ
�
¼ lim

Λ→þ∞

Th

4π2

Z
Λ

0

dkk2 ln

�
1þ ΠðThÞ

k2 þm2ðχcÞ
�

¼ lim
Λ→þ∞

Th

4π2
×
1

3



2ΛΠðThÞ þ Λ3 ln

�
1þ ΠðThÞ

m2ðχcÞ þ Λ2

�
þ 2m3ðχcÞtan−1

�
Λ
m

�

− 2½m2ðχcÞ þ ΠðThÞ�3=2tan−1
�

Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðχcÞ þ ΠðThÞ

p ��

→ −
Th

12π
f½m2ðχcÞ þ ΠðThÞ�3=2 −m3ðχcÞg; ðA21Þ

where on the last line we drop the divergent pieces which
are canceled by counterterms, and tan−1ð Λ

m×
Þ → π

2
when

taking Λ → þ∞ where m× is a mass taken positive.

APPENDIX B: EFFECTIVE THERMAL
POTENTIAL OF THE VISIBLE SECTOR

The effective Higgs potential in the standard model,
including the temperature-dependent part, is well known. It
is given by the sum of the zero temperature tree and zero
temperature Coleman-Weinberg one-loop potential [130],
temperature-dependent one-loop correction, and “daisy
diagrams” [44,45,49,128,129,131–133]. We give a brief
discussion of it here for completeness. Thus, consider the
tree level potential for the standard model with the complex
Higgs doublet field H so that

VðH;H†Þ ¼ −μ2H†H þ λðH†HÞ2: ðB1Þ

We write the doublet of the Higgs field H so that

H ¼
 

Gþ
ðϕcþϕþiG3Þffiffi

2
p

!
; ðB2Þ

where ϕc is the background fields, ϕ is the Higgs field, and
Gþ ¼ ðG1 þ iG2Þ=

ffiffiffi
2

p
whereG1;2;3 are the three Goldstone

bosons. The tree level potential is given by

V0ðϕcÞ ¼ −
μ2

2
ϕ2
c þ

λ

4
ϕ4
c: ðB3Þ

To one-loop order, the effective potential of the standard
model including temperature-dependent contributions is
given by

Veffðϕc; TÞ ¼ V0ðϕcÞ þ Vð0Þ
1 ðϕcÞ þ ΔVðTÞ

1 ðϕc; TÞ
þ Vdaisyðϕc; TÞ þ δVðTÞðϕc; TÞ; ðB4Þ
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where V0Þ
1 is the zero temperature one-loop potential,

ΔVðTÞ
1 is the temperature-dependent one-loop contribution,

Vdaisy is the daisy loop contribution, and δVðTÞ are the

counterterms to remove divergent terms. Thus, Vð0Þ
1 ðϕcÞ is

given by

Vð0Þ
1 ðϕcÞ ¼

X
i

Nið−1Þ2si
64π2

m4
i ðϕcÞ

�
ln

�
m2

i ðϕcÞ
Λ2

�
− Ci

�
;

ðB5Þ

where the sum i runs over all particles in the theory with Ni
degrees of freedom for particle iwith massmiðϕcÞ and spin
si, Λ is the renormalization scale, and Ci equals 5=6 for
gauge bosons and 3=2 for fermions and scalars in MS
renormalization. The relevant contribution arises from the
gauge bosons Z and W�, the top quark, the Higgs boson,
and the Goldstone bosons. Thus, for the SM i runs through
fZ;W; t; H;G3; G�g and the corresponding front factors
are Ni ¼ f3; 6; 12; 1; 1; 1; 1g. The field-dependent masses
m2

i ðϕcÞ are given by

m2
hðϕcÞ ¼ −μ2 þ 3λϕ2

c; m2
t ðϕcÞ ¼

1

2
y2tϕ2

c; ðB6Þ

m2
WðϕcÞ ¼

1

4
g22ϕ

2
c; M2

ZðϕcÞ ¼
1

4
ðg22 þ g2YÞϕ2

c; ðB7Þ

mG3
¼ mG� ¼ −μ2 þ λϕ2

c: ðB8Þ

The thermal correction in one-loop order arise from
bosons and fermions which couple to the Higgs field
and is given by

ΔVðTÞ
1 ðϕ; TÞ ¼ T4

2π2

�
6JB

�
mW

T

�
þ 3JB

�
mZ

T

�
þ JB

�
mh

T

�

þ 3JB

�
mG

T

�
− 12JF

�
mt

T

��
; ðB9Þ

where the functions JB and JF are defined as in Eq. (2.8).
Further, as noted earlier one needs to include the daisy
resummation contribution to the potential, which in this
case is given by

Vdaisy
1 ðϕ; TÞ

¼ T
12π

X
B0¼Z;W;H

gB0 fm3
B0 ðϕÞ − ½m2

B0 ðϕÞ þ ΠB0 ðTÞ�3=2g;

ðB10Þ

where the sum runs only over scalars and longitudinal
vectors. Here gB0 ¼ f1; 2; 1g for B0 ¼ fZ;W;Hg, and there

are no contributions to the transverse modes and to the
fermion masses. Thus, the thermal contributions to the
masses ΠB0 ðTÞ are given by [127]

ΠHðTÞ ¼
�
1

6
ð3g22 þ g2YÞ þ

1

4
y2t þ

1

2
λ

�
T2; ðB11Þ

ΠWðTÞ ¼ ΠZðTÞ ¼
11

6
g22T

2; ðB12Þ

at the leading order in T2 where yt is defined so that
mt ¼ 1ffiffi

2
p ytv and v ≃ 246 GeV.

APPENDIX C: FURTHER DETAILS OF VISIBLE
AND HIDDEN SECTOR INTERACTIONS

As noted in Sec. II the analysis of synchronous
evolution is very general and applicable to a wide array
of portals connecting the hidden and the visible sectors.
In this work for the specific hidden sector with a Uð1Þ
gauge invariance broken by the Higgs mechanism, we
used the kinetic mixing between the hidden and the
visible sectors as noted in Sec. II B. Here one includes a
mixing term − δ

2
AμνBμν in the Lagrangian, where Aμν is

the field strength of the hidden sector Uð1Þ field Aμ and
Bμν is the field strength of the Uð1ÞY hypercharge field Bμ

of the visible sector. Since the standard model is based on
the group SUð2Þ ×Uð1ÞY we will have a coupling of three
gauge fields Aμ

3; B
μ; Aμ, where Aμ

3 is the third component
of the SUð2ÞL gauge field Aμ

a (a ¼ 1; 2; 3) of the standard
model. After electroweak symmetry breaking and in the
canonical basis where the kinetic energies of the gauge
fields are diagonalized and normalized, the physical
fields are Zμ; Aμ

γ ; A
μ
γ0 , where Z is the Z boson of the

standard model, Aγ is the photon, and Aγ0 is the dark
photon. Thus, the couplings governing the dark sector
and the feeble interactions of the dark sector with the
visible sector are given by

ΔLint ¼ D̄γμðgγ0Aγ0
μ þ gZZμ þ gγA

γ
μÞD

þ g2
2 cos θ

ψ̄fγ
μ½ðv0f − γ5a0fÞAγ0

μ �ψf − ΔVh;ΔVh

¼ 1

2
m2

χχ
2 þ 1

2
m2

γ0A
γ0
μAγ0μ þ g2xvhχA

γ0
μAγ0μ

þ 1

2
g2xχ2A

γ0
μAγ0μ; ðC1Þ

v0f ¼ − cosψ ½ðtanψ − sδ sin θÞT3f

− 2sin2θð−sδ csc θ þ tanψÞQf�; ðC2Þ

a0f ¼ − cosψðtanψ − sδ sin θÞT3f: ðC3Þ
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Here sδ ¼ sinh δ and cδ ¼ cosh δ, and f runs over all SM
fermions, mγ0 ¼ gxvh and mχ ¼

ffiffiffiffiffiffiffi
2λh

p
vh. Further, T3f is

the third component of isospin, and Qf is the electric
charge for the fermion. The couplings gZ, gγ , and gγ0 that
appear above are given by

gγ0 ¼ gXQXðR11 − sδR21Þ;
gγ ¼ gXQXðR13 − sδR23Þ;
gZ ¼ gXQXðR12 − sδR22Þ: ðC4Þ

Here the matrix R is given by Eq. (23) of [58] and it
involves three Euler angles ðθ;ϕ;ψÞ which are given by

tanϕ ¼ −sδ; tan θ ¼ gY
g2

cδ cosϕ;

tan 2ψ ¼ 2δ̄m2
Z sin θ

m2
γ0 −m2

Z þ ðm2
γ0 þm2

Z −m2
WÞδ̄2

; ðC5Þ

where δ̄ ¼ −δ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
. In addition to the above, there is

also a modification of the standard model couplings.
Thus, in the canonically diagonalized basis the couplings
of Zμ and Aγ

μ are given by [58,63]

ΔL0
SM ¼ g2

2 cos θ
ψ̄fγ

μ½ðvf − γ5afÞZμ�ψf þ eψ̄fγ
μQfA

γ
μψf:

ðC6Þ

Modifications to the visible sector interactions appear in
the vector and axial vector couplings so that (see
[60,61,65,134])

vf ¼ cosψ ½ð1þ sδ tanψ sin θÞT3f

− 2sin2θð1þ sδ csc θ tanψÞQf�;
af ¼ cosψð1þ sδ tanψ sin θÞT3f: ðC7Þ

APPENDIX D: SCATTERING CROSS SECTIONS
FOR ξðTÞ AND YIELD EQUATIONS FOR THE

HIDDEN SECTOR FIELDS

The analysis of yields in Eqs. (2.21)–(2.23) requires
several cross sections. The cross sections σDD̄→γ0γ0 , σDD̄→iī,
σiī→γ0γ0 , and Γγ0→iī are given in [47,61]. The additional cross
section needed is σχχ→γ0γ0 . The Feynman diagrams for it are
in Fig. 13. This cross section is given by

σχχ→γ0γ0 ðs; ThÞ ¼
g4xð12m4

γ0 − 4m2
γ0sþ s2Þ

512πmγ0s2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs− 4m2

χÞðs− 4m2
γ0 Þ

q
ðm2

χ − sÞ2ðm4
χ − 4mχ2m2

γ0 þm2
γ0sÞ

ð8g4xv4hðm2
χ − sÞ2

þ ðm2
χ − sÞ2ðm4

χ −m2
χm2

γ0 þm2
γ0sÞÞ þ

8g2xv2h
2m4

χ − 3m2
χsþ s2

ðlogAðm2
χð2v2hg2x − 3sÞ þ sð2v2hg2x þ sÞ þ 2m4

χÞÞ
!
;

ðD1Þ

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4m2

χÞðs −m2
γ0 Þ

q
− 2m2

χ þ s

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4m2

χÞðs −m2
γ0 Þ

q
− 2m2

χ þ s
; ðD2Þ

where s is the Mandelstam variable. The cross section for the reverse process is then given by

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

χ

q
σχχ→γ0γ0 ðs; ThÞ ¼ 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

γ0

q
σγ

0γ0→χχðs; ThÞ: ðD3Þ

FIG. 13. The Feynman diagram for the annihilation process χχ → γ0γ0.
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Additionally, we also need the decay width for the process χ → γ0γ0. This is given by

Γχ→γ0γ0 ðsÞ ¼
g4xv2h

128πmχm4
γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
γ0

m2
χ

s
ð−4m2

χm2
γ0 þm4

χ þ 12m4
γ0 Þ: ðD4Þ

We also define here jh that enters Eq. (2.20),

jh ¼
X
i

½2Yeq
i ðTÞ2Jðiī → DD̄ÞðTÞ þ Yeq

i ðTÞ2Jðiī → γ0ÞðTÞ�s2 − Yγ0Jðγ0 → iīÞðThÞs; ðD5Þ

Yeq
i ¼ neqi

s
¼ gi

2π2s
m2

i TK2ðmi=TÞ; ðD6Þ

whereK2 is the modified Bessel function of the second kind and degree two. Further, gi is the number of degrees of freedom
of particle i and massmi and the source functions J are defined so that The J functions that appear in Eq. (D5) are defined as

neqi ðTÞ2Jðiī → DD̄ÞðTÞ ¼ T
32π4

Z
∞

s0

dsσDD̄→iīsðs − s0ÞK2ð
ffiffiffi
s

p
=TÞ; ðD7Þ

neqi ðTÞ2Jðiī → γ0ÞðTÞ ¼ T
32π4

Z
∞

s0

dsσiī→γ0sðs − s0ÞK2ð
ffiffiffi
s

p
=TÞ; ðD8Þ

nγ0Jðγ0 → iīÞðThÞ ¼ nγ0mγ0Γγ0→iī; ðD9Þ

neqi ðTÞ2hσviiī→γ0 ðTÞ ¼
T

32π4

Z
∞

s0

dsσðsÞ ffiffiffi
s

p ðs − s0ÞK1ð
ffiffiffi
s

p
=TÞ; ðD10Þ

where K1 is the modified Bessel function of the second
kind and degree one and s0 is the minimum of the
Mandelstam variable s. We note that there are additional
contributions one can include in the analysis, i.e.,
iī → γ0γ; γ0Z; γ0γ0. Their contributions are relatively small
compared to iī → γ0 and are neglected.

APPENDIX E: ENERGY AND PRESSURE
DENSITIES AWAY FROM EQUILIBRIUM

If one assumes that the hidden sector was in thermal
equilibrium at all times, then the particle distributions will
follow the Fermi-Dirac or Bose-Einstein statistics as appro-
priate. In this case, the energy density ρh and the pressure
density ph in the hidden sector are given by [135,136]

ρh ¼
X
i

ρi ¼
X
i

giT4
h

2π2

Z
∞

xi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2i

p
ex � 1

x2dx; i∈ fγ0; D; χg;

ph ¼
X
i

pi ¼
X
i

giT3
h

6π2

Z
∞

xi

ðx2 − x2i Þ
3
2

ex � 1
dx; i∈ fγ0; D; χg;

ðE1Þ

where gγ0 ¼ 3, gD ¼ 4, gχ ¼ 3, xi ¼ mi
Th

and plus is for
fermions, while minus is for bosons. If a massive particle

remained in thermal equilibrium until today, its energy
density, ρi ∼ ðmi=TÞ3=2 exp ð−mi=TÞ, would be negligible
because of the exponential factor. However, as pointed out
in [137] if the interactions of the particles freeze out
before complete annihilation, the particles may have a
significant relic abundance today. Often in the discussion
of freeze-out, it is generally assumed that ρ ¼ ρeq where
ρeq refers to the equilibrium density. However, the more
precise way to compute the energy density in a freeze-out
situation is to take

ρh ¼ ρh;eq þ ρh;relic: ðE2Þ

As suggested in [137], ρh;relic could be computed using
the yield equation to obtain the number density

Yh;relic ¼
nh;relic
s

⇒ nh;relic ¼ Yh;relics; ðE3Þ

which allows a computation of the number density nh;relic
from where we can compute the ghn;relic so that

nh;relic ¼
ζð3Þ
π2

ghn;relicT
3
h: ðE4Þ
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Next we set the effective energy degrees of freedom from
the relic density so that

ghρ;relic ¼ ghn;relic ðE5Þ
and use the relation

ρh;relic ¼
π2

30
ghρ;relicT

4
h ðE6Þ

to find ρh;relic and ρh. In most cases, this analysis is not
necessary since ρh;relic ≪ ρh;eq. However, such an analysis

becomes relevant when we are dealing with the decou-
pling of the entire hidden sector since in this situation
we have ρh;relic ≫ ρh;eq. A similar analysis holds for the
pressure density ph. Aside from the correction to the
density discussed above, the density of the hidden sector
should freeze out when the two sectors are fully
decoupled. This analysis will be similar to the analysis
in cannibalism dark matter [138]. For the current model,
the decoupling happens when (i) all interactions between
the hidden sector and the visible sector decouple and
(ii) the dark photon decays out.
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