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We identify a new resonance, axion magnetic resonance, that can greatly enhance the conversion rate
between axions and photons. A series of axion search experiments rely on converting them into photons
inside a constant magnetic field background. A common bottleneck of such experiments is the conversion
amplitude being suppressed by the axion mass when ma ≳ 10−4 eV. We point out that a spatial or
temporal variation in the magnetic field can cancel the difference between the photon dispersion relation
and that of the axion, hence greatly enhancing the conversion probability. We demonstrate that the
enhancement can be achieved by both a helical magnetic field profile and a harmonic oscillation of the
magnitude. Our approach can extend the projected ALPS II reach in the axion-photon coupling (gaγ) by

two orders of magnitude at ma ¼ 10−3 eV with moderate assumptions (see https://github.com/ChenSun-
Phys/axion-magnetic-resonance.)
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I. INTRODUCTION

While there are a plethora of experimental agendas to
search for axions utilizing its coupling to photon inde-
pendent of their cosmological relic abundance [1–8] or
leveraging the relic abundance by assuming axions to be
dark matter [9–20] (see Refs. [21–23] for comprehensive
reviews), most bounds get considerably weakened at
ma ≳ 10−4–10−2 eV. In this mass range, experiments that
rely on an axion-to-photon conversion in a magnetic field
battle the so-called small-mixing-nonlinear regime, where
the conversion probability is suppressed by m−4

a much
before it is limited by the length scale of the experiments.
Therefore, in this regime, a longer conversion baseline
will not improve the bound. It is of great interest to study
ways of enhancing the axion-photon conversion in this
regime.

The usual axion-photon oscillation formula assumes a
coherent magnetic field that is constant in both the
amplitude and its orientation [24–26]. The effect of a
nontrivial magnetic profile is only briefly mentioned in the
seminal works [24,26]. In this article, we perform a critical
study on spatial or temporal variation of the magnetic
field. We show that the magnet variation can compensate
the fast axion-photon oscillation due to a large axion mass,
leading to a resonantly enhanced axion-photon conver-
sion. In particular, for the first time, we identify the
optimal spatial/temporal magnetic profile that leads to the
maximal enhancement. We then apply this resonance to
light-shining-through-walls (LSTW) experiments, model-
independent axion searches that do not rely on an axion
dark matter abundance.
The spatial variation of the magnetic field necessitates a

more comprehensive treatment of the dynamics of the
system. One way to understand this resonance is to use
the language of parametric resonance. It occurs when the
frequency of the spatial variation coincides with the axion-
photon oscillation frequency. This resonance phenomenon
holds the potential to significantly amplify the conversion
probability, providing an exciting avenue for experimental
exploration.
Alternatively, the enhancement can be understood if we

change to the basis where the magnetic field becomes
constant. An extra masslike term for the photon states is
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generated during this transformation. The enhancement is a
result of an avoided level crossing.1 This contribution
vanishes for a constant mixing matrix; hence, it has been
safely neglected in the well-established oscillation formula
(e.g., [28–33]).
Lastly, we provide a third approach by noting that there

is a mismatch between the dispersion relations of axions
and photons. The resonance happens when the magnetic
field variation frequency coincides with this gap, i.e., the
momentum transfer. For this reason, we dub the new
resonance axion magnetic resonance (AMR), by analogy
with the nuclear magnetic resonance.
As a demonstration of the experimental relevance of the

AMR, we take the LSTW experiment ALPS II [4,5] as an
example that a helical magnetic profile can enhance the
experimental reach by 1–2 orders of magnitude where the
search remains model independent and does not require a
local axion abundance.

II. HELICAL MAGNETIC BACKGROUND

One of the most intriguing axion interactions in terms of
phenomenological searches is its anomalous coupling with
the photon

Laγ ¼
gaγ
4

aFμνF̃μν ¼ −gaγaE ·B; ð1Þ

where F̃μν ¼ ϵμναβFαβ=2. We denote the propagation
direction as z, and the photon-axion system in the inter-
action basis to be Ψ̃ ¼ ½γ⊥ γk a�T . The ⊥ðkÞ is for the
direction of photon polarization perpendicular (parallel) to
the magnetic field at the initial point, z ¼ 0, at rest with
the lab.
Let us start with B of a constant magnitude and a

changing orientation along the z direction, i.e., a helical
profile. Since the ⊥ and k directions are defined in terms
of the B field direction at z ¼ 0, whenB changes direction
it will have both ⊥ and k components, i.e., B ¼
½B⊥; Bk; 0� ¼ ½B sin θ; B cos θ; 0�, with θðz ¼ 0Þ ¼ 0.
The equation of motion (EOM) reads

i∂zΨ̃¼ 1

2ω
H2ðθÞΨ̃;

¼ 1

2ω

2
664

0 0 gaγωBsθ
0 0 gaγωBcθ

gaγωBsθ gaγωBcθ Δm2
aγ

3
775
2
664
γ⊥
γk
a

3
775; ð2Þ

where cθ ≡ cos θ, sθ ≡ sin θ, and Δm2
aγ ≡m2

a −m2
γ . We

have subtracted the diagonal termm2
γ since it only generates

an overall phase for Ψ̃. The explicit z dependence in Eq. (2)
through θ makes the solution obscure. We, therefore, will
change to a basis where this is not an issue. We first make a
rotation in the γ⊥-γk direction:

H2ðθÞ ¼ UðθÞH2ð0ÞU†ðθÞ

¼

2
64

cθ sθ 0

−sθ cθ 0

0 0 1

3
75
2
64
0 0 0

0 0 gaγωB

0 gaγωB Δm2
aγ

3
75

×

2
64
cθ −sθ 0

sθ cθ 0

0 0 1

3
75: ð3Þ

We define an auxiliary basis, Ψ̂ ¼ U†Ψ̃. Since the rotation
matrix U is z dependent, it can only diagonalize the
Hamiltonian instantaneously. As a result, at different
locations, we need different UðθÞ matrices to transform
Ψ̃ to Ψ̂. This generates extra off-diagonal terms [27,34]
similar to a gauge transformation, while a θðzÞ profile
corresponds to a specific gauge fixing imposed by the
external magnetic field:

i∂zΨ̂ ¼
�
U†H

2

2ω
U − iU†

∂zU

�
Ψ̂;

¼

2
64
0 −iθ̇ 0

iθ̇ 0 gaγB=2

0 gaγB=2 Δm2
aγ=2ω

3
75Ψ̂; ð4Þ

where θ̇≡ dθ=dz. To diagonalize the 1-2 component, we
perform a 45° rotation in the 1-2 direction followed by a
90° phase shift for the first component:

V ¼

2
64
i 0 0

0 1 0

0 0 1

3
75
2
64
cosðπ=4Þ − sinðπ=4Þ 0

sinðπ=4Þ cosðπ=4Þ 0

0 0 1

3
75; ð5Þ

which gives us the equation of motion for Ψ ¼ V†U†Ψ̃

i∂zΨ ¼

2
6664

−θ̇ 0 gaγB=2
ffiffiffi
2

p

0 θ̇ gaγB=2
ffiffiffi
2

p

gaγB=2
ffiffiffi
2

p
gaγB=2

ffiffiffi
2

p
Δm2

aγ=2ω

3
7775Ψ: ð6Þ

In this basis, we observe that a resonance can happen when
jθ̇j ¼ jΔm2

aγj=2ω, which leads to an amplified conversion
probability. We denote this resonance as the AMR.

1Similar effect due to a varying matter potential in the
neutrino Mikheyev-Smirnov-Wolfenstein effect is well studied
in, e.g., [27].
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In the presence of a constant θ̇, and under the limit
of m2

a=2ω ≫ gaγB, the a-to-γ conversion probability is
given by2

Pa→γ ≃
X
i¼�

ðgaγB=
ffiffiffi
2

p Þ2
Δ2

i
sin2

�
Δil
2

�
; ð7Þ

with

Δ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2

aγ=2ω� θ̇Þ2 þ ðgaγB=
ffiffiffi
2

p
Þ2

q
: ð8Þ

This is the well-known formula for a two-level quantum
system going through the Rabi cycles, which is also used to
model both nuclear magnetic resonance and qubits.
Interestingly, �θ̇ can compensate the Δm2

aγ=2ω term.
Such a cancellation can enhance the oscillation amplitude
or bring the conversion back to the linear regime, i.e.,
Δil ≪ 1. In both cases, it lifts them−4

a mass suppression. In
Fig. 1, we show the numerical analysis of Eq. (2) with a
rotating magnetic field and compare it with the conventional
constant magnetic field setup (i.e., θ̇ ¼ 0). We find good
agreement between the numerical results and Eq. (7). In the
limit θ̇ → 0, Eq. (7) approximately reduces to the usual
oscillation formula; see Appendix A for a brief review.
While there is a small difference in the wave number, it is

relevant only in the maximal-mixing nonlinear regime,
which the LSTW experiments never enter.
The γ-to-a conversion is more subtle because it

depends on the initial polarization of the photon. Let
us look at the a → γ process instead and utilize the CPT
theorem. In the case of θ̇ ¼ Δm2

aγ=2ω, Ψ ¼ ½0 1 0�T will
be the dominant photon component produced in the
nonlinear regime. After rotating back with U and V, it
corresponds to ½−i= ffiffiffi

2
p

1=
ffiffiffi
2

p
0�T in the ½γ⊥ γk a�T lab

frame. This is expected since the axion field has no
preferred direction. Heuristically, the external magnetic
field determines the polarization of the daughter photons
converted from axions. Since only the photons that are
parallel to B couple to axions, with a rotating B, the
polarization vector of the signal photons corotates withB.
This feature could potentially open up new search
strategies. We leave a study of this to future work.
Without modifying the linearly polarized laser setup of

LSTW, the axion production rate Pγ→a ≃ Pa→γ=2 holds in
the nonlinear regime, regardless of the initial photon
polarization; see Appendix B for more details. We report
that Pγ→a < Pa→γ in the linear regime unless we start with
the initial polarization Ψ ¼ ½0 1 0�T, in which case
Pγ→a ¼ Pa→γ. The dependence on the initial photon polari-
zation does not affect our main result since the major
improvement for ALPS II is in the nonlinear regime.
As a cross check of the formalism, we provide a

derivation using the approach of parametric resonance in
Appendix C and another heuristic approach by changing of
reference frame in Appendix D. All of these methods lead
to consistent resonance conditions.

III. HARMONIC MAGNETIC BACKGROUND

We now turn to a scenario where the orientation is fixed
but its amplitude varies along the propagation direction as
examined by Refs. [24,26,35,36]. Since the γ⊥ state
perpendicular to the background magnetic field now
remains inert and unaffected by oscillations, we take the
following two-component EOM:

i
∂

∂z

�
γk
a

�
¼ 1

2ω
H2

AðθÞ
�
γk
a

�

¼ 1

2ω

�
0 gaγωBcθ

gaγωBcθ Δm2
aγ

��
γk
a

�
: ð9Þ

The diagonal Δm2
aγ=2ω term can be factored out by

a → e−iðΔm2
aγ=2ωÞza, then the equation above is rewritten as

i
∂

∂z

�
γk
a

�
¼
"

0
gaγB
2
cθe−iðΔm

2
aγ=2ωÞz

gaγB
2
cθeiðΔm

2
aγ=2ωÞz 0

#�
γk
a

�
:

ð10Þ

FIG. 1. The axion-to-photon conversion probability with the
following benchmark: ma ¼ 10−3 eV, ω ¼ 1.16 eVð1064 nmÞ,
gaγ ¼ 10−9 GeV−1, B ¼ 5.3 T. The magnetic field is chosen
to be constant (green), rotating as in Eq. (2) with angular
velocity θ̇ ¼ m2

a=2ω (blue), and harmonic as in Eq. (9) with
the same angular velocity θ̇ ¼ m2

a=2ω (orange). The solid curves
are solved numerically, while the dotted curves are from the
analytic expression Eq. (7) with the wave number modified
according to Eq. (8).

2This is an approximation in the small-mixing limit, so the
unitarity is preserved up to the order of gaγB=ðΔm2

aγ=2ωÞ level.
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In the case where the frequency of θ variation exactly
matches with Δm2

aγ=2ω, denoted as jθ̇j ¼ Δm2
aγ=2ω,

the off-diagonal term retains a constant value of gaγB=4.
This constant term accumulates the oscillation phase
with the additional factor of 1=2 stemming from cos θ ¼
ðeiθ þ e−iθÞ=2; the other fast-oscillating term with 2θ
would be cyclic-averaged to effectively vanish. This
specific condition corresponds to a parametric resonance
with respect to the strength of the background magnetic
field. As in a rotating magnetic field profile, the resonance
phenomenon arises when the frequency of θ variation
matches the characteristic frequency associated with the
a-γ system. Consequently, the oscillations experience
significant amplification, leading to an enhanced conver-
sion probability. The conversion probability based on
Eq. (10) is compared with the numerical result in Fig. 1.
We show in Appendix E an alternative approach where

the harmonic magnetic profile is decomposed into two
helical modes. We find the same result.

IV. EXPERIMENTAL APPLICATIONS

We take ALPS II as an example and show the amount of
improvement we expect at ma ≳ 10−4 eV. We show in
Fig. 2 the reach in gaγ by fixing θ̇ to two different realistic
values. We also show the ultimate limit the resonance
can reach at different axion masses (green curve).
According to Eq. (7), the resonance envelope has a width

of Δma ∼ma, while it contains finer oscillation patterns
at Δma ∼ l−1ðω=maÞ.
Interestingly, the Relativistic Heavy Ion Collider (RHIC)

at Brookhaven National Laboratory uses helical dipole
magnets to collide polarized protons beams [38–41]. The
technology of magnet assembly in 2003 reached 4 T dipole
field that rotates 2π in a length of 2.4 m [41]. The helical
frequency of θ̇ ∼ 2π=ð2.4 mÞ can cover a significant part of
new parameter space, corresponding to the axion mass
around 10−3 eV. We note that the fringe field has negligible
effects at the ends of the magnets; see Appendix I for
the numerical evidence of this statement. In addition, the
angular error of the rotation is ∼1.9° per 360°. In
Appendix F, we show that this amount of field irregularity
also has a minimal impact on the sensitivity.
Since ALPS II utilizes an optical cavity to enhance both

the laser power and the detectivity, one may be worried
about whether the enhancement we discuss applies to the
optical cavity photons. We show in Appendix G that this is
indeed the case: all the analysis can be carried over for the
cavity photons.
Aside from a helical magnet profile design, we note that

it is also possible to achieve equivalent enhancement
through the modulation of lasers. In Appendix H we show
extra methods of modulating the laser beam that can
achieve comparable enhancement.

V. SCANNING METHOD

As we have shown, the resonance condition is
m2

a=2ω ¼ jθ̇j. We conclude that a given helical setup can
only cover axion masses in a narrow range determined by
the resonance width. One, therefore, needs to adjust the
helical frequency, θ̇, to scan over different axion masses. In
Ref. [42] it is shown that ∼10% adjustment can be achieved
in helical undulators.
To utilize the resonance across a range of axion masses,

we now relax the requirement on the helical magnetic field
profile with a new approach. Instead of helical undulators,
we will adopt dipole modules. The “helicity” is created by
arranging each magnet to have an axial angle Δθ relative to
the one preceding it, as illustrated in Fig. 3. By adjusting
the relative orientation between magnets in each run, we
can cover a significant range of the axion parameter space.
Importantly, apart from the mechanical effort, ALPS II

can continue utilizing the HERA magnets currently in use,
instead of repurposing the RHIC helical magnets. This will
significantly reduce experimental costs and make adjust-
ments much easier.

FIG. 2. We show the ALPS II projection based on [4,5] in
black. Two benchmarks for a rotating magnetic field are achieved
by fixing θ̇ ¼ m2

a=2ω at ma ¼ 5 × 10−4 eV (blue) and ma ¼
10−3 eV (orange). By scanning over θ̇ we achieve the improved
contour (green). Note that we assume a linearly polarized photon
beam. In the combined contour, the linear regime ma ≲ 10−4 eV
depends on the photon linear polarization direction, while the
higher mass region is 23=4 higher than the original ALPS II
plateau regardless of the photon linear polarization direction. For
comparison, CAST [2] and globular cluster [37] are shown in
gray dashed lines.

FIG. 3. An illustration of the discrete helical array setup.
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We will use the HERA magnet specifications (B ¼
5.3 T, with a length of 8.83 m) in what follows to compute
its sensitivity reach. We note that the discrete helical array
is a generalization of the original Wiggler proposal [26],
which is a special case of setting Δθ ¼ π. The results are
shown in Fig. 4. A particularly interesting feature of the
discrete helical setup is that resonance can happen at certain
m2

a ≫ 2ωθ̇; these higher integer resonance modes are
discussed in Appendix J. We will comment more on the
comparison with the Wiggler method in Appendix K.

VI. CONCLUSION

In the small-mixing nonlinear regime of axion-photon
conversion, the conversion probability is independent of the
baseline length but suppressed by the axion mass. Put
differently, once the axion-photon oscillation enters the
nonlinear regime, not the full length of the conversion
baseline is fully used. We propose an experimental setup to
alleviate this limitation with a spatially varying magnetic
field. We showed that one way to think about the effect of a
varying magnetic field is that, with a carefully chosen
profile, its spatial variation can lower the axion oscillation
wave number, which increases the conversion amplitude
[i.e., the prefactor in Eq. (7)]. As a result, it delays the onset
of the nonlinear regime and makes better use of the full
baseline.
We have provided two methods of applying the reso-

nance to ALPS II. We first show that, with a helical magnet
like the ones at RHIC, we can perform a dedicated search at
a fixed axion mass at 10−3 eV and deepen the reach in gaγ
by about two orders of magnitude. We note that this type of
AMR is a great way to pinpoint the axion mass should any

anomalies arise (e.g., from BabyIAXO or astrophysical
sources).3

Importantly, we provide a scanning method with a
discrete helical array made of dipole magnets. We show in
Fig. 4 that good resonance quality can be achieved with
HERA magnets. One needs to worry about its compati-
bility with the existing experiments, yet we do not see
any no-gos to apply this type of design to near-future
experiments.4

As the signal photons will have a rotating polarization
vector in the rotating B setup, it can potentially open up
new experimental searching strategies. Although the scan-
ning of axion mass will require longer operation time, we
stress that this has great advantage over simply increasing
the running time with a constant B field, where the reach in
gaγ can only increase as ðtimeÞ1=8 at best.
We highlight the relation and difference with previous

work [24,26,34–36,43–45], where the magnetic field or the
photon (electric field) is manipulated to enhance the
experimental sensitivity in the heavy axion regime, in
more detail in Appendix K. The code that reproduces all
results is released at GITHUB.
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APPENDIX A: AXION-PHOTO DYNAMICS
IN A CONSTANT MAGNETIC FIELD

The equation of motion in the relativistic limit is given
by i∂zΨ̃ ¼ H2

2ω Ψ̃. In components, it reads [28,30,31]

i
∂

∂z

2
4 γ⊥
γk
a

3
5 ¼ 1

2ω

2
64
m2

γ 0 0

0 m2
γ gaγωB

0 gaγωB m2
a

3
75
2
4 γ⊥
γk
a

3
5: ðA1Þ

In the conventional setup of LSTW experiments, θ̇ ¼ 0,
the a-to-γ conversion probability is given by

Pa→γk ¼
ðgaγBÞ2
Δ2

osc
sin2

�
Δoscl
2

�
;

≈

(
ðgaγBlÞ2=4 Δoscl ≪ 1

ðgaγBÞ2=2Δ2
osc Δoscl ≫ 1

; ðA2Þ

where Δosc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2

aγ=2ωÞ2 þ ðgaγBÞ2
q

, and l denotes the

domain length of the background magnetic field. Ignoring
the photon refractive index mγ ¼ 0, the conversion prob-
ability becomes independent of the axion mass if the
domain length is sufficiently short to impose a small phase
retardation condition Δoscl ≪ 1; this is dubbed as the
“linear” regime. On the other hand, when the oscillation
length 2πΔ−1

osc is significantly shorter than the domain
length as the so-called nonlinear regime, a rapid oscillation
of conversion probability is averaged out over fluctuations
of the parameters, e.g., ω and l, and the conversion
probability is controlled by the mixing angle, which is
suppressed by the axion mass squared in the small-mixing
limit, m2

a=2ω ≫ gaγB.

APPENDIX B: INITIAL PHOTON
POLARIZATION

The production of axions from photon initial states has a
dependence on the photon polarization. We further make
some clarifications here and discuss the applicability
of Eq. (7).
Let us start with Eq. (6) and look at the case θ̇ ¼ m2

a=2ω.
We always assume a small axion-photon mixing,
gaγB ≪ m2

a=ω. In the linear regime, we have zm2
a=ω≲ 1.

Therefore, the conversion amplitude between Ψ1 and a is
approximated by

M1a ≈
�
0 0 1

�
0
BBB@1 − i

2
6664

−θ̇ 0 gaγB=2
ffiffiffi
2

p

0 θ̇ gaγB=2
ffiffiffi
2

p

gaγB=2
ffiffiffi
2

p
gaγB=2

ffiffiffi
2

p
θ̇

3
7775z

1
CCCA
2
64
1

0

0

3
75 ≈

−i
2

ffiffiffi
2

p gaγBz; ðB1Þ

M2a ≈
�
0 0 1

�
0
BBB@1 − i

2
6664

−θ̇ 0 gaγB=2
ffiffiffi
2

p

0 θ̇ gaγB=2
ffiffiffi
2

p

gaγB=2
ffiffiffi
2

p
gaγB=2

ffiffiffi
2

p
θ̇

3
7775z

1
CCCA
2
64
0

1

0

3
75 ≈

−i
2

ffiffiffi
2

p gaγBz: ðB2Þ

If we start with a linear initial state ½1 0 0�T in the
½γ⊥ γk a�T lab frame, after the V rotation as shown in

Eq. (5), we have Ψ ¼ ½−i= ffiffiffi
2

p
i=

ffiffiffi
2

p
0�T . The amplitudes

between Ψ1 component converting to axion and Ψ2 to
axion will interfere destructively as M1a=

ffiffiffi
2

p
−M2a=ffiffiffi

2
p

≈ 0. This is indeed what we observe numerically.
If, on the other hand, we start with ½0 1 0�T initial state lab

frame, we will overcome this destructive interference. In
the rotating basis we haveΨ ¼ ½1= ffiffiffi

2
p

1=
ffiffiffi
2

p
0�T . The axion

appearance probability is given by Pγa ¼ jM1a=ffiffiffi
2

p þM2a=
ffiffiffi
2

p j2 ≈ 1
4
ðgaγBzÞ2, which is the same as

Eq. (7) in the linear regime.
In the nonlinear regime, the two amplitudes have very

different magnitudes and phases. In our example,
M1a ∼ gaγBω=Δm2

aγ, while M2a ∼Oð1Þ ½i sin ðgaγBz=
2

ffiffiffi
2

p Þ�. Therefore, the aforementioned two choices in the
initial states will lead to the same axion production
rate Pγa ≈ jM2a=

ffiffiffi
2

p j2 ≈ Paγ=2.
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This is of relevance to the experimental setup as we show
that the dependence of the axion production only relies on
the initial photon polarization in the linear regime. Since
our main improvement is the nonlinear regime—for ALPS
II this corresponds to ma ≳ 10−4—the result is not affected
by the initial photon polarization relative to the magnetic
field direction.

APPENDIX C: ALTERNATIVE APPROACH—
PARAMETRIC RESONANCE

We show that the AMR with a helical magnetic field
can also be understood using the parametric resonance

language. Let us again start from the EOM:

i∂zΨ̃¼ 1

2ω
H2ðθÞΨ̃;

¼ 1

2ω

2
6664

0 0 gaγωBsθ
0 0 gaγωBcθ

gaγωBsθ gaγωBcθ Δm2
aγ

3
7775
2
64
γ⊥
γk
a

3
75: ðC1Þ

After factorizing out the fast oscillation of a, we get

i∂zΨ̃ ≈
1

2ω

2
6664

0 0 gaγωBsθe−iðΔm
2
aγ=2ωÞz

0 0 gaγωBcθe−iðΔm
2
aγ=2ωÞz

gaγωBsθeþiðΔm2
aγ=2ωÞz gaγωBcθeþiðΔm2

aγ=2ωÞz 0

3
7775
2
64
γ⊥
γk
a

3
75:

The off-diagonal term has an oscillation that is faster
than the γ − a mixing caused by gaγωB, where it can be
cycle averaged to zero, unless θ̇ ¼ �Δm2

aγ=2ω, in which
case we have a constant mixing term.

APPENDIX D: ALTERNATIVE
APPROACH—DISPERSION RELATION

AND REFERENCE FRAME

The key point of the axion magnetic resonance is to
modify the photon dispersion relation effectively such that
it matches the axion dispersion relation. Let us verify this
using a more heuristic approach. Since θ̇ ≪ ω, we take the
classical picture to illustrate the effect.
We start with the inertial frame of the lab. Inside a

vacuum, the photon dispersion relation tells us ω ¼ k.
Without loss of generality, let us look at circularly polarized
photons that have helicity −1. The polarization vector of the
gauge field at each point rotates with the frequency ω.
Suppose the magnetic field rotates in the same direction

as the photon helicity with a frequency of θ̇. Now, let us go
to the frame where the magnetic field constantly points to
the y direction. In this frame, an observer will find the
photons with a frequency ω0 ¼ ω − θ̇, while k stays
the same.
This can be understood as follows. At each point,

because the observer is rotating in the same direction as
does the photon polarization vector, to the observer the
rotation becomes slower, i.e., it takes longer time to
complete the rotation of 2π. As a result, ω0 < ω. On the
other hand, since there is no transformation in the z
direction, one can still find the same distance between
nearest points where the same phase is shared, regardless of

being in the rotating frame or the lab frame, i.e., k0 ¼ k. A
cartoon demonstrating this point is shown in Fig. 5.
One might get the impression that only a mere change of

reference frame would do the job while no rotating
magnetic field is needed. That is not the case. Let us go

FIG. 5. Cartoon demonstrating the observed rotation of the
photon polarization vector in the inertial lab frame (upper panel)
and a noninertial frame that rotates with frequency θ̇ with respect
to the lab (lower panel). The colored arrows represent the
polarization vector. The blue ones are from the snapshot taken
at t ¼ 0, red ones are the snapshot at t ¼ Δt. In the lower panel,
because the reference frame is rotating in the same direction as
the polarization vector, the observed phase after the same amount
of time Δt is smaller, as represented by the angle between the red
and blue arrows. However, since there the phase dependence in
the z direction is not affected, one can find the same phase at
z ¼ 0 and z ¼ L0ð¼ λÞ regardless of the reference frame.
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back to the static magnetic field along the y axis of the lab
frame. If we repeat the change of frame without an actual
rotating magnetic field, Eqs. (4)–(5) gives us

i∂zΨ ¼

2
6664

−θ̇ 0
gaγB

2
ffiffi
2

p eþiθ

0 θ̇
gaγB

2
ffiffi
2

p e−iθ

gaγB

2
ffiffi
2

p e−iθ gaγB

2
ffiffi
2

p eþiθ Δm2
aγ

2ω

3
7775Ψ: ðD1Þ

After factorizing out the phase eiθ̇z, e−iθ̇z, and e−iΔm
2
aγ=2ω,

the mixing term only has an oscillation of frequency
Δm2

aγ=2ω:

i∂zΨ¼

2
666664

0 0
gaγB

2
ffiffi
2

p e−i
Δm2

aγ
2ω z

0 0
gaγB

2
ffiffi
2

p e−i
Δm2

aγ
2ω z

gaγB

2
ffiffi
2

p eþi
Δm2

aγ
2ω z gaγB

2
ffiffi
2

p eþi
Δm2

aγ
2ω z 0

3
777775Ψ; ðD2Þ

which is independent of θ̇, the parameter we used for the
change of reference frame that otherwise does not corre-
spond to any physical quantities. In the small-mixing
nonlinear regime, i.e., gaγB ≪ Δm2

aγ=2ω, the mixing term
is averaged out, which leads to the usual suppression of the
conversion probability.
Put differently, the rotating magnetic field chooses a

preferred frame, in which the photon dispersion relation is
modified to be the same as that of the axion. This is
somewhat similar to the method we used in Eq. (4), where
choosing a given helical profile θðzÞ is equivalent to fixing
the gauge.

APPENDIX E: HARMONIC VS HELICAL

We can understand the resonant enhancement by a
harmonic magnetic profile in terms of two helical magnetic
fields. We decompose the harmonic magnetic field into two
helical magnetic fields with opposite rotating directions.
Let us denote the Hamiltonian with a helical profile in
Eq. (2) to be H2

Eðθ; gaγB;Δm2
aγÞ. We can decompose

H2
A into

H2
A ¼ H2

E

�
θ;
gaγB

2
;Δm2

aγ

�
þH2

E

�
−θ;

gaγB

2
; 0

�
; ðE1Þ

where we used the shorthand θ but bothH2
A andH2

E depend
on θðzÞ explicitly. Now we can treat the first term the same
way as we did with Eq. (2). The resulted EOM reads

i∂zΨ¼

2
6664

−θ̇ 0
gaγB=2

2
ffiffi
2

p

0 θ̇
gaγB=2

2
ffiffi
2

p

gaγB=2

2
ffiffi
2

p gaγB=2

2
ffiffi
2

p Δm2
aγ

2ω

3
7775Ψ

þ

2
6664

0 0
gaγB=2

2
ffiffi
2

p eþi2θ

0 0
gaγB=2

2
ffiffi
2

p e−i2θ

gaγB=2

2
ffiffi
2

p e−i2θ gaγB=2

2
ffiffi
2

p eþi2θ 0

3
7775Ψ: ðE2Þ

We can factorize out the phase eþiθ, e−iθ, e−iΔm
2
aγ=2ω, after

which the EOM reads

i∂zΨ ¼

2
6664

0 0
gaγB=2

2
ffiffi
2

p e−iΩþz

0 0
gaγB=2

2
ffiffi
2

p e−iΩ−z

gaγB=2

2
ffiffi
2

p eþiΩþz gaγB=2

2
ffiffi
2

p eþiΩ−z 0

3
7775Ψ

þ

2
6664

0 0
gaγB=2

2
ffiffi
2

p e−iΩ−z

0 0
gaγB=2

2
ffiffi
2

p e−iΩþz

gaγB=2

2
ffiffi
2

p eþiΩ−z gaγB=2

2
ffiffi
2

p eþiΩþz 0

3
7775Ψ;

ðE3Þ

where Ω� ¼ Δm2
aγ=2ω� θ̇. Without loss of generality, we

choose Ω− ¼ Δm2
aγ=2ω − θ̇ ¼ 0, Ωþ ¼ Δm2

aγ=ω.
Therefore, the EOM can be rearranged as

i∂zΨ ¼

2
6664

0 0
gaγB=2

2
ffiffi
2

p

0 0
gaγB=2

2
ffiffi
2

p

gaγB=2

2
ffiffi
2

p gaγB=2

2
ffiffi
2

p 0

3
7775Ψ

þ

2
6664

0 0
gaγB=2

2
ffiffi
2

p e−iΩþz

0 0
gaγB=2

2
ffiffi
2

p e−iΩþz

gaγB=2

2
ffiffi
2

p eþiΩþz gaγB=2

2
ffiffi
2

p eþiΩþz 0

3
7775Ψ;

ðE4Þ

In the small-mixing nonlinear regime, we have
Δm2

aγ=2ω ≫ gaγB. Therefore, the second term can be
safely averaged out. This is the same as Eq. (10) up to a
45° rotation.

APPENDIX F: NOISE IN THE MAGNETIC
HELICAL PROFILE

All the above assumes a constant rotating frequency of
the magnetic field. Next, let us demonstrate the robustness
of AMR against noises in the magnetic frequency. We take
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the fluctuation of the rotation frequency to be within a
certain value of the central value, e.g., 1%, or 10%. More
precisely, we assume

θ̇ ¼ ¯̇θ þ δθ̇; ðF1Þ

where δ≡ δθ̇= ¯̇θ is a Gaussian random variable centered
around zero, with a standard deviation of 0.01 or 0.1.
Let us further define the frequency of the noise as

ωδ ≡ 1

δθ̇

dδθ̇
dz

: ðF2Þ

When the noise frequency is very low, i.e., ωδ ≪
ð100 mÞ−1, θ̇ can be treated as constant throughout the
propagation of most of the whole baseline: the matched ma

is simply not the one we expect, m2
a ¼ 2ω ¯̇θ, but rather

m2
a ¼ 2ωð ¯̇θ þ δθ̇Þ. The reach in gaγ is otherwise not

impacted.
On the other hand, when the noise is at high frequency,

the effect is likely to average out as we demonstrate in
Fig. 6. Therefore, the most damaging noise comes
from 1 m≲ ω−1

δ ≲ 100 m.
We take two benchmarks of the noise frequency,

28 MHz (corresponding to δ change 10 times during
the propagation of the 106 meter baseline) and 5.7 GHz
(corresponding to 2000 changes of δ). We approximate
that δ stays constant after each time it changes to a
different value until the next change. The values of δ in

different time intervals are uncorrelated. We make 100
polls of the Gaussian distribution of δ for each ma point.
We show in Fig. 7 the averaged contour of the repeated
100 scans in ma as well as the 2σ uncertainty band of the
contour. We observe that great improvement in ALPS II
can still be achieved even with this very conservative
assumption on the regularity of the helical profile.
We show in Fig. 7 the reach of gaγ with 1% and 10%

irregularities in the helical profile with a noise frequency
given by ωδL ≈ 10 and ωδL ≈ 2000.

APPENDIX G: THE OPTICAL CAVITY

In the previous computation, we studied the laser beam
directly shining through the wall. In reality, ALPS II adopts
an optical cavity [4,5,46] to enhance the effective beam
power. In this section, we show that the AMR at θ̇ ¼
m2

a=2ω persists in the cavity setup.

FIG. 6. We take the benchmark point ma ¼ 0.001 eV,
ω ¼ 1.16 eVð1064 nmÞ, gaγ ¼ 10−11 GeV−1, B ¼ 5.3 T,
z ¼ 106 m. We include a 10% fluctuation in θ̇. We show the
noise benchmarks with a fixed noise frequency 23 MHz (blue)
and 5.7 GHz (red). We show 100 runs of each point. Every red
and black curve corresponds to a realization of the Gaussian
distributed θ̇ profile. We include the conversion probability with a
constant B field (gray).

FIG. 7. We add noises to the magnetic field rotation frequency.
We make 100 scans and show the 2σ uncertainty of the contour
due to low-frequency noise (upper) and high-frequency noise
(lower). For each case, we take the Gaussian noise amplitude δ to
be 1% (blue) and 10% (orange).
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The optical cavity is designed to impose a Dirichlet
boundary condition such that the photons with the follow-
ing wave number are enhanced

k ¼ 2π

λ
¼ nπ

L
; ðG1Þ

where L is the length of the cavity. It is straightforward to
understand the enhanced photon-to-axion conversion in the
axion production cavity. For a laser with a certain wave-
length, say λ ¼ 1064 nm, we can tune the cavity length by
moving the mirrors such that L ¼ nλ=2 for an integer n.
This will coherently enhance the wave from the laser power
P0 to P0=η, where R ¼ 1 − η is the reflectivity of the
mirrors [47]. Other than this enhancement of photon power,
all the discussions above still hold.
The photon regeneration, on the other hand, is trickier.

Let us start with an incident axion beam

aðx; tÞ ¼ a0 sinðkaz − ωtÞ: ðG2Þ

Based on the context, we use aðx; tÞ to denote the
propagating field at ðx; tÞ while a0 is the amplitude of
the wave. Note that due to the cavity boundary condition
only the following photons modes can stably exist:

A⃗nðz; tÞ ¼ A⃗nðtÞ sin
�
nπ
L

z

�
: ðG3Þ

We use A⃗ðz; tÞ and A⃗ðtÞ to denote the field and the
amplitude of the wave when there is no ambiguity. Let
us quickly review the field dynamics in a static magnetic
field, B ¼ ½0B0 0�T . Electromagnetic waves are sourced by
the axion field with the following equation of motion.

∇ × B⃗ − ∂tE⃗ ¼ −gB⃗0∂ta; ðG4Þ

where B0 is the external magnetic field. With the
assumption of no free charge and under Coulomb gauge,
this can be rewritten as [46]

ð∂2t þ γ∂t þω2
nÞAn;yðtÞ sin ðωnzÞ ¼ gB0ωa0 cosðkaz−ωtÞ;

ðG5Þ

where ωn ¼ nπ=L. Since there is a power leakage from the
mirror, which causes the photon amplitude to decrease.
This is effectively captured by the friction term γ. Using the
orthogonality of the basis, we get

�Z
L

0

dz sinðωnzÞ sin ðωnzÞ
�
ð∂2t þ γ∂t þ ω2

nÞAn;yðtÞ

¼ gB0ωa0

�Z
L

0

dz sinðωnzÞ cosðkaz − ωtÞ
�
; ðG6Þ

which leads to

ð∂2t þ γ∂t þ ω2
nÞAn;yðtÞ

¼ gB0ωa0
2

L

�Z
L

0

dz sinðωnzÞ cosðkaz − ωtÞ
�

¼ gB0ωa0
1

L

�Z
L

0

dz sinððka þ ωnÞz − ωtÞ

þ sinðð−ka þ ωnÞzþ ωtÞ
�
: ðG7Þ

Let us adjust the regeneration cavity that ωn ¼ ω. The last
line contains a fast-oscillating mode that averages out to
zero and a slow-oscillating mode. Finally, we find

ð∂2t þ γ∂t þ ω2ÞAn;yðtÞ

≈
gB0ωa0
ðka − ωÞL ½cosðωt − ðka − ωÞLÞ − cosðωtÞ�

¼ gB0ωa0

�
2=L

ka − ω
sin

�
ka − ω

2
L

��
sin

�
ωt −

ka − ω

2
L

�
:

ðG8Þ

This will result in the resonant enhancement imposed by γ
as described in Ref. [46].
When the magnetic field is rotating, Eq. (G5) is replaced

by two coupled equations

ð∂2t þ γ∂t þ ω2
nÞAn;xðtÞ sin ðωnzÞ

¼ gB0 sinðθ̇zÞωa0 cosðkaz − ωtÞ;
ð∂2t þ γ∂t þ ω2

nÞAn;yðtÞ sin ðωnzÞ
¼ gB0 cosðθ̇zÞωa0 cosðkaz − ωtÞ; ðG9Þ

Going through a similar procedure, we reach the equation
of motion for ½An;xðtÞAn;yðtÞ 0�T as follows:

ð∂2t þ γ∂tþω2ÞAn;xðtÞ

¼
X
α¼�

α

2
gB0ωa0

�
2=L
qα

sin

�
qα
2
L

��
cos

�
ωt−

qα
2
L

�
ðG10Þ

ð∂2t þ γ∂tþω2ÞAn;yðtÞ

¼
X
α¼�

1

2
gB0ωa0

�
2=L
qα

sin

�
qα
2
L

��
sin

�
ωt−

qα
2
L

�
; ðG11Þ

where

q� ¼ ka − ω� θ̇: ðG12Þ

In the limit of θ̇ reducing to zero, it reduces to Eq. (G8). In
the case θ̇ ≈ ω − ka ≈m2

a=2ω, only one of the two source
terms is significant. Since An;x and An;y differ by π=2 phase
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during propagation, we only need to consider one compo-
nent for the purpose of computing the signal power. Taking
An;y as an example, Eq. (G11) is the same as Eq. (G8),
modulo a factor of 2, after correcting the wave number with
θ̇. Therefore, we show that the resonance still applies to the
LSTW experiments that are enhanced by an optical cavity.
After this substitution, one can proceed to solve the

axion-to-photon conversion probability as in [46].

APPENDIX H: ADDITIONAL
EXPERIMENTAL SETUPS

As we discussed in the main text, the enhancement of an
LSTW experiment can come from a harmonic magnetic
field or a rotating magnetic field setup, both varying either
in space or in time. Aside from designing a specific
magnetic profile, we demonstrate similar enhancements
that can originate from a modulation of the laser.
Using the change of reference frame shown in

Appendix D let us switch to the rotating frame where
the magnetic field is constant. The laser that is linearly
polarized in the lab frame now has a polarization vector that
rotates with θ̇ frequency:

A⃗ðt;zÞ¼

2
64
cosðθ̇zÞ
sinðθ̇zÞ

0

3
75e−iðωt−kzÞ;

¼ 1

2

2
64

1

−i
0

3
75e−iðωt−ðkþθ̇ÞzÞ þ1

2

2
64
1

i

0

3
75e−iðωt−ðk−θ̇ÞzÞ: ðH1Þ

To mimic what the rotating magnetic field does, one can
directly modify the photon dispersion relation in the lab
frame using a material with a refractive index n ∼ 1þ θ̇=ω,
which we refer to as the frequency modulation method.
In addition, modulating the laser amplitude could have

interesting implications for the AMR. Imagine that we
modulate the laser as follows:

A⃗ðt;zÞ¼

2
664
cos½Ωðt−zÞ�

0

0

3
775e−i½ωðt−zÞ�;

¼ 1

2

2
64
1

0

0

3
75e−i½ðωþΩÞðt−zÞ� þ1

2

2
64
1

0

0

3
75e−i½ðω−ΩÞðt−zÞ�: ðH2Þ

When there is no laser modulation (Ω ¼ 0), axion with

mass ma ¼
ffiffiffiffiffiffiffiffiffi
2ωθ̇

p
enjoys a resonant conversion to and

from photons. Once laser modulation is included, this will

shift the resonance to ma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðω� ΩÞθ̇

q
.

Lastly, let us also comment on why simply rotating the
laser does not work. One might get the impression that the
relative rotation between the magnetic field and the laser
machine is the key. As a result, it is intriguing to think of
using an optical device to modulate the laser such that the
laser machine is effectively rotating while the magnetic field
is constant. However, if one rotates the laser machine, both
the frequency of the photons and the wavelength will be
modified. Without introducing the complication due to the
ellipticity, let us assume the laser machine has a quarter
wave plate so that the photons it emits are circularly
polarized. Suppose that, at some point in time, the laser
emitter outputs a photon whose polarization vector points to
the x direction. The wavelength can be determined by the
time interval after which another photon pointing to x
direction is emitted. Admittedly, rotating the laser machine
can lower the frequency of the photons seen by an observer
in the lab, ω → ω − θ̇, but it will also increase the time
interval one has to wait to find another photon that shares
the same phase, k → k − θ̇. As a result, the photons’
dispersion relation is not modified by a rotating laser
machine.

APPENDIX I: THE FRINGE FIELD

One might get worried about the irregularity of the
magnetic field at the edge of the helical magnets. In this
section, we verify that its impact on the resonance is
minimal.
The fringe field of the RHIC snake magnets extends

about 10 cm beyond the “regular” sinusoidal component at
both ends [38–41,48–50]. Heuristically, this configuration
has a constant helical frequency θ̇ in most of the optical
cavity while the resonance is lost in the small fraction of the
total propagation length due to the edge effect of the
magnets. Therefore, its impact on the total conversion rate
between axion and photons is completely negligible.
To back up with this argument, we perform two numeri-

cal tests. First of all, add a 10 cm gap between any two
magnets (2.4 m each). In the gap, we set the magnet field to
zero to maximize the “disruption” of the resonance. The
result in Fig. 9 shows that its impact on the reach of gaγ is
negligible.
Next, we take the actual magnetic field profile from [39].

The profile is shown in Fig. 8. Since the laser beam has a
beam radius at the order of 5 mm [4], the sextupole and
higher multipole terms are negligible. We again find that
the fringe field impact on the AMR is negligible. The result
is included in Fig. 9.
Lastly, we comment that the fringe field of the RHIC

helical snake has a sizable longitudinal components around
the axis [51]. However, this component does not contribute
to the axion-photon conversion in vacuum. Therefore, it has
a much smaller impact for LSTWexperiments compared to
that when used to control polarized beams.
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APPENDIX J: INTEGER RESONANCE MODES
IN THE DISCRETE HELICAL ARRAY

When adopting the discrete helical array, the effective
helical frequency is determined by θ̇ ¼ Δθ=ΔL, where ΔL
represents the size of the dipole module. Since Δθ is
defined on ½0; 2πÞ, it coincides with Δθ þ 2πn with n being
any integer. In other words, the discrete helical array not
only contains the helical frequency Δθ=ΔL but also
includes higher modes:

θ̇n ¼
Δθ
ΔL

� 2π

ΔL
n; ðJ1Þ

where n ¼ 0; 1;…. This interesting feature enables us to
reach even higher axion masses. Using this formula, we can
easily verify the origin of the higher resonance modes as
shown in Fig. 10.
The height of the higher resonance modes (n ≠ 1) can

also be estimated analytically. The magnetic field can be
transformed into the frequency domain. However, due to
the ambiguity of its frequency, we can expand it into
different Fourier bases. For example, n ¼ 0 contains the
following Fourier modes:

e−iθ̇0z; e−i2θ̇0z; e−i3θ̇0z; � � � : ðJ2Þ

For n ¼ 1, it contains the following modes

e−iθ̇1z; e−i2θ̇1z; e−i3θ̇1z; � � � : ðJ3Þ

In what follows, we will take the lowest mode in each basis
because all the modes with integer multiples are highly
integrated out:

FIG. 8. The measured RHIC helical magnet profile [39].

FIG. 9. We perform two numerical tests to verify that the fringe
field of the RHIC helical magnets has minimal impact on the
resonance. Above: we manually add a 10 cm gap where magnetic
field is zero. Below: we use the measured RHIC magnetic profile
and take into account the fringe field at both ends assuming a
10 cm gap between any two magnet modules.

FIG. 10. The integer resonance modes present in the discrete
helical array. The gray arrows are put to the locations according to
Eq. (J1). They match with the resonance troughs from the
numerical computation. The gray dashed curve is the predicted
depth as shown in Eq. (J5).
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BðzÞ ¼
X
n;m

bn;me−i m θ̇n z ≃
X
n

bne−iθ̇nz; ðJ4Þ

where bn ≡ bn;1, and the real and imaginary parts of BðzÞ
correspond to the x and y components of the magnetic
fields. We stress that the summation is not over a single
Fourier basis but summing over the lowest mode of each
Fourier basis.
Meanwhile, notice that the frequency θ̇n is only an

average. In each dipole magnet the magnetic field is
approximately constant. Let us check the overlap between
a constant magnetic field and each lowest Fourier mode.

bn ¼
1

L

Z
L

0

dz BðzÞeiθ̇nz;

¼ 1

L

XN−1

k¼0

Z ðkþ1ÞΔL

kΔL
dzjBje−ikΔθeiθ̇nz;

¼ 1

L

XN−1

k¼0

Z
ΔL

0

dz0jBje−ikΔθeiθ̇nðz0þkΔLÞ;

¼ 1

ΔL

Z
ΔL

0

dz0jBjeiθ̇nz0 ;

¼ B

θ̇n

�
eiΔθ − 1

iΔL

�
∝

B

θ̇n
; ðJ5Þ

where B is the magnetic field amplitude of the discrete
helical array, and the integration is performed over one
period of that array. This tells us that the overlap between
the constant magnetic field of each dipole and a θ̇n mode
gets smaller as n gets larger. Put differently, the integral
contains n sinusoidal periods, which gives no contribution
to bn, and a small remaining length gives contributions the
same way as the θ̇0 mode but with a reduced length. This
leads to bn=b0 ¼ θ̇0=θ̇n. Therefore, the magnetic power
decreases for higher modes. This heuristic argument is
verified by the numerical solution in Fig. 10 as shown by
the gray dashed curve.

APPENDIX K: COMPARISON
WITH PREVIOUS WORKS

We highlight a few key differences between our work
and previous works where the variation of a magnetic field
is suggested.
In [24], a sinusoidal modulation of the magnetic profile

was first mentioned as a way to enhance the solar axion
search. We note that while this can lead to great enhance-
ment in the axion-to-photon conversion, LSTW experiment
enjoys far better resonant improvement due to the flux being
monoenergetic. In [26], a segmented magnetic field con-
figuration of alternating polarity, the so-called the Wiggler,
was suggested to scan the heavier axion masses in the
original paper. The paper cast the separated magnetic

dipoles in terms of a form factor and sketched out this
configuration’s potential in extending the reach of axion
searches. In [35,36] more systematic studies were per-
formed for the alternating dipole design. In addition, a
magnet array with gaps in between was studied. We note
that the AMR studied in this article is more generic. It not
only explains the Wiggler/magnet-with-gap setup using
approaches different from the original work but also points
to the optimal setup that can create the resonance, namely a
magnetic field with a constant rotation in its orientation
perpendicular to the photon propagation direction. Besides,
the AMR applies to a rotating/oscillating magnetic field
temporally/spatially, as well as more generic setups such as
the laser modulations as we show. We also discuss how the
magnetic field induced enhancement is related to the usual
method, where the cavity is filled with gas/plasma, in the
context of the AMR formalism. We stress that the narrow
helical resonance is particularly useful to pinpoint the axion
mass should any hints of axion in the mass range 10−4 eV≲
ma ≲ 10−3 eV arise from other observations.
We note in the main text that the AMR can be applied to a

discrete setup dubbed “discrete helical array.” In this relaxed
helical setup, the Wiggler proposal is a special case by
setting the relative axial angle Δθ ¼ π. It leads to a
considerable improvement over the Wiggler setup as shown
in Fig. 11. This example serves as an example of the great
potential of AMR and its experimental relevance. Here, we
use HERA dipole magnets to induce the helical profile and
the AMR. As a result, it is no longer a competing design to
the Wiggler proposal. We hope that it will motivate the
experimental community to reconsider theWiggler proposal
with a potential future upgrade to allow different magnets’
axial orientation to be adjustable. We comment in passing
that the discrete helical array can bypass the need of
inverting the electric current in each superconducting

FIG. 11. Comparison of the experimental reach of gaγ using the
Wiggler method and the discrete helical array.
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magnet, which is the main challenge to implementing it at
ALPS II due to the use of diodes.
In [43], an idea using phase-shift plates to extend the

experimental reach in the LSTW setup is also suggested
instead of varying magnetic fields. This modifies the
photon fields directly. We note that the phase modulation
at the wave plate serves as an “external kick” that
introduces extra phase between the photon field and the
external magnetic field. This, in turn, can be understood
using the resonance within the AMR framework.
In the experiment PVLAS [52] a rotating magnetic field

is used. However, the rotation of the magnetic field in [52]
is not to create a resonance with the axion-photon momen-
tum transfer but to reduce measurement noise.
The work in [44,45] discusses how a varying magnetic

profile affects the vacuum birefringence searches, i.e.,
PVLAS. First of all, our approach focuses on the lumi-
nosity of the photon-axion conversion; hence it is relevant
to LSTW and solar experiments, while [44,45] studies the
axion-induced phase shift in the context of PVLAS.
In addition, [44,45] studies the pulsed magnetic field

setup while we discussed both the pulsed (harmonic) setup

and the helical profile, which turns out to be even more
effective than the harmonic profile.
While the authors of [44,45] use second quantized fields to

compute the effect, we establish that a simple way to under-
stand that such a resonance can be achieved through the pure
classical approach. In addition, we verify it using different
pictures including the avoided level crossing [Eq. (5)], the
parametric resonance [Eq. (D1)], and the preferred noninertial
reference frame (Fig. 5). We provide a simple way to under-
stand the resonance in the harmonic magnetic profile by
decomposing it into two helical profiles in Eq. (E4).
We also demonstrate the technological feasibility of a

helical magnetic profile with the specification of the RHIC
helical magnets.
Lastly, we note that, in Ref. [34], similar formalism was

adopted in the context of axion-photon oscillation in the
intergalactic medium. Since the domain size of magnetic
field in intergalactic medium is estimated to be at the order
of ∼Mpc, this can correspond to θ̇ ∼ 10−30 eV.
Similar formalism was also adopted in the analysis of

neutrino oscillations. See, for example, Refs. [53–57] and
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