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We investigate the collision dynamics of Uð1Þ gauged Q-balls by performing high-resolution numerical
simulations in axisymmetry. Focusing on the case of relativistic head-on collisions, we consider the effects
of the initial velocity, relative phase, relative charge, and electromagnetic coupling strength on the outcome
of the collision. We find that the collision dynamics can depend strongly on these parameters; most notably,
electromagnetic effects can significantly alter the outcome of the collision when the gauge coupling is
large. When the gauge coupling is small, we find that the dynamics generally resemble those of ordinary
(nongauged) Q-balls.
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I. INTRODUCTION

The study of nonlinear wave equations has a long and
rich history in modern physics. One of the most remarkable
insights to emerge from this tradition has been the discov-
ery of solitons: localized solutions to the field equations
that can propagate without dispersing. In many respects,
solitons behave like a rudimentary model of a particle
which can be constructed from smooth classical fields.
They can generally be classified as either topological
or nontopological depending on whether the underlying
model has a nontrivial topology. Examples of topological
solitons include the kink/antikink solutions of quantum
field theory, skyrmions and vortices in condensed matter
physics, and cosmological domain walls [1,2]. In contrast,
nontopological solitons can arise due a balancing between
the effects of nonlinearity and dispersion and are often
characterized by the existence of a conserved Noether
charge [2]. The prototypical examples of nontopological
solitons are Q-balls which arise in complex scalar field
theories admitting a Uð1Þ symmetry.
The study of Q-balls began in earnest with the work of

Coleman [3] who described them as localized solutions
of a complex scalar field theory with a nonlinear attractive
potential and a global Uð1Þ symmetry. This work has since
been extended to show that Q-ball solutions can arise in a
variety of physically motivated models (see [4] for a

review). In the context of cosmology and particle
physics, Q-balls may be relevant for various early
Universe scenarios such as baryogenesis and the dark
matter problem [5–8]. They may also arise in the context
of nonlinear optics [9] and condensed matter systems
[10,11]. Mathematically, Q-balls are characterized by the
presence of a conserved Noether charge Q which is
associated with the Uð1Þ symmetry of the theory. The
global Uð1Þ symmetry can also be made into a local Uð1Þ
symmetry via the introduction of a Uð1Þ gauge field; the
resulting solutions are called gauged Q-balls and represent
a coupling of the system to electromagnetism [12].
While the basic properties of Q-balls are well known, it

remains a challenging problem to model their full time-
dependent dynamical behavior. This is due mainly to the
nonlinear structure of the underlying equations which
typically requires a numerical treatment. Early work on this
topic revealed that Q-ball dynamics can be remarkably
complex, particularly when considering interactions and
relativistic collisions of Q-balls. Perhaps the most compre-
hensive studies of this type were performed by Axenides
et al. in two spatial dimensions [13] and Battye and Sutcliffe
in three spatial dimensions [14]. There it was shown that
Q-balls can interact elastically or inelastically depending on
the collision parameters. They may also transfer charge,
annihilate, or form oscillatory charge-swapping structures
[15–17] under the right conditions. Additional studies have
also considered different scalar field models, higher collision
velocities, or greater numerical resolutions [18–22]. A
general conclusion to be drawn from these studies is that
Q-ball behavior can be quite complex and unexpected.
In the present paper, we continue this exploration ofQ-ball

dynamics by considering relativistic head-on collisions of
Uð1Þ gauged Q-balls in axisymmetry. Intuitively, one might
expect that the addition of the Uð1Þ gauge field may lead to
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novel dynamical behavior due to the interaction of electro-
magnetic charges and currents. However, this possibility has
remained largely unexplored in the literature. Our aim is to
shed light on this topic by performing fully nonlinear
numerical evolutions of the field equations in axisymmetry.
We explore the effects of various collision parameters such as
the initial velocity, relative phase, relative charge, and
electromagnetic coupling strength in order to gain insight
on the general phenomenology of gauged Q-ball collisions.
In a previous paper [23], we numerically investigated the

dynamical behavior of Uð1Þ gauged Q-balls when subject
to axisymmetric perturbations. There it was found that
stable gauged Q-ball configurations can exist in both
logarithmic and polynomial models. Using these solutions
as a starting point, we construct binary gaugedQ-ball initial
data consisting of two stable solutions which are boosted
toward each other at relativistic velocities. We then evolve
the system according to the equations of motion and
observe the subsequent dynamics.
When the gauge coupling is small, our results parallel

those found for ordinary (nongauged) Q-ball collisions.
Specifically, we find that the collision dynamics can be
divided into three regimes—which we will call the elastic,
fragmentation, and merger regimes—depending on the
incident velocity of the colliding Q-balls. In the elastic
regime (corresponding to high velocities), the collisions are
primarily elastic with the Q-balls passing through each
other virtually unscathed and forming a destructive inter-
ference pattern at the moment of impact. In the merger and
fragmentation regimes (corresponding to low and inter-
mediate velocities, respectively), the collisions are pri-
marily inelastic with several possible outcomes. At the
lowest velocities, theQ-balls can merge into a singleQ-ball
of a larger size, while at intermediate velocities they tend to
fragment into many pieces. We also investigate collisions
of oppositely charged and phase-shifted Q-balls, finding
evidence for annihilation and charge transfer, respectively.
When the gauge coupling is large, we find that electro-

magnetic effects can significantly alter the outcome of the
collision. For gaugedQ-balls with charge of equal sign, we
find that the Coulomb repulsion tends to decelerate the
Q-balls prior to the moment of impact. At low incident
velocities, this can prevent the interaction of the Q-ball
fields entirely; at higher velocities, it simply reduces the
effective collision velocity. We also find that collisions at
large gauge coupling are rarely an elastic process. Unlike
the free-passage behavior observed for small gauge cou-
pling, the collision of gauged Q-balls at high-velocities
tends to result in the formation of ringlike objects (which
we have previously called “gauged Q-rings” [23]) or
elongated structures even for collision velocities very close
to the speed of light. For collisions involving Q-balls of
unequal phase, we again observe charge transfer similar to
the case of small gauge coupling. However, we find that the
gauged Q-balls created in this process often break apart,

presumably due to the reduced range of stable solutions
which exist at large gauge coupling. For collisions of
oppositely charged Q-balls, the Coulomb force accelerates
the Q-balls prior to the moment of impact. These collisions
can result in the annihilation of significant charge and the
production of an electromagnetic radiation pulse. In sum,
we find that the collision of gaugedQ-balls can be a violent
process with some striking differences when compared to
the nongauged case.
The outline of this paper is as follows: in Sec. II,

we briefly review the theory of Uð1Þ gauged Q-balls. In
Sec. III, we summarize our numerical approach to the head-
on collision problem. In Sec. IV, we present our main
results and summarize the general dynamics observed for
Uð1Þ gauged Q-ball collisions. In Sec. V, we provide some
concluding remarks.
In this work, we use units where c ¼ ℏ ¼ 1 and employ

the metric signature ð−;þ;þ;þÞ. For brevity, we will
interchangeably use the terms “Q-ball” and “gauged
Q-ball” when referring to Q-balls coupled to the electro-
magnetic field. When referring to Q-balls which do not
admit any such coupling, we will explicitly use the term
“nongauged Q-ball.”

II. REVIEW OF Uð1Þ GAUGED Q-BALLS

For a system composed of a complex scalar field ϕ
coupled to a Uð1Þ gauge field, Aμ, the Lagrangian density
takes the form

L ¼ −ðDμϕÞ�Dμϕ − VðjϕjÞ − 1

4
FμνFμν: ð1Þ

Here, Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field ten-
sor, Dμ ¼ ∇μ − ieAμ describes the gauge covariant deriva-
tive with coupling constant e, and VðjϕjÞ represents a
Uð1Þ-invariant scalar field potential. The equations of
motion for the theory (1) take the form

DμDμϕ −
∂

∂ϕ� VðjϕjÞ ¼ 0; ð2Þ

∇μFμν þ ejν ¼ 0; ð3Þ
where jν is the Noether current density,

jν ¼ −iðϕ�Dνϕ − ϕðDνϕÞ�Þ: ð4Þ
This quantity can be integrated to obtain the conserved
Noether charge Q ¼ R

j0d3x associated with the Uð1Þ
symmetry of the theory. Likewise, there exists a conserved
energy E ¼ R

T00d3x which can be computed from the
energy-momentum tensor of the theory,

Tμν ¼ FμαFνβgβα −
1

4
gμνFαβFαβ þDμϕðDνϕÞ�

þDνϕðDμϕÞ� − gμνðDαϕðDαϕÞ� þ VðjϕjÞÞ: ð5Þ
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Solutions to the equations of motion (2)–(3) which
represent gauged Q-balls can be found by making a
spherically symmetric ansatz for the fields,

ϕðt; x⃗Þ ¼ fðrÞeiωt; ð6Þ

A0ðt; x⃗Þ ¼ A0ðrÞ; ð7Þ

Aiðt; x⃗Þ ¼ 0; ð8Þ

and imposing the boundary conditions

lim
r→∞

fðrÞ ¼ 0;
df
dr

ð0Þ ¼ 0; ð9Þ

lim
r→∞

A0ðrÞ ¼ 0;
dA0

dr
ð0Þ ¼ 0: ð10Þ

This ansatz yields the reduced equations of motion

f00ðrÞ þ 2

r
f0ðrÞ þ fðrÞgðrÞ2 − 1

2

d
df

VðfÞ ¼ 0; ð11Þ

A00
0ðrÞ þ

2

r
A0
0ðrÞ þ 2efðrÞ2gðrÞ ¼ 0; ð12Þ

where we have defined gðrÞ ¼ ω − eA0ðrÞ. There are
several approaches to finding solutions which satisfy the
coupled equations (11)–(12) such as shooting [12], relax-
ation [24], or via mapping from the profiles of nongauged
Q-balls [25]. Here we utilize an iterative shooting pro-
cedure to numerically determine fðrÞ and A0ðrÞ which
satisfy (11)–(12) to a good approximation. Further details
about this technique are provided in [23].

III. NUMERICAL APPROACH

As a starting point for our evolution, we consider the
line element

ds2 ¼ −dt2 þ dρ2 þ ρ2dφ2 þ dz2; ð13Þ

where ðt; ρ;φ; zÞ are the standard cylindrical coordinates.
Further, we impose axisymmetry on the system by requir-
ing all dynamical variables to be φ-independent. This is
done purely to reduce the computational cost of modeling
the system in fully three spatial dimensions. With this
choice, the equations of motion (2)–(3) can be expressed as
a set of six coupled nonlinear partial differential equations;
these equations are identical to those listed in the appendix
of our previous paper [23]. Working in the Lorenz gauge,
the equations of motion are supplemented with the gauge
condition

∇μAμ ¼ 0; ð14Þ

and the equations

∇iEi ¼ ej0; ð15Þ

∇iBi ¼ 0; ð16Þ

where Ei and Bi are the (three-dimensional) electric and
magnetic field vectors, respectively, whose components
are determined via the electromagnetic field tensor, Fμν.
Together, the Eqs. (14)–(16) act as additional constraints on
the evolution: it is expected that a numerical solution to the
equations of motion will approximately satisfy these
constraint equations at any given time.
In order to construct initial data which is suitable for

studying head-on collisions, we interpolate a pair of
spherically symmetric gauged Q-ball solutions in the
ρ − z plane using Neville’s algorithm to fourth-order in
the mesh spacing [26]. The center of each Q-ball is chosen
to coincide with the line ρ ¼ 0 in order to preserve the
spherical symmetry of each Q-ball in the binary. Each
Q-ball is also given an initial displacement along the z-axis
so that the binary is well-separated at the initial time.
Finally, we apply a Lorentz boost to each Q-ball along the
z-direction at a relativistic speed v (where v ¼ 1 corre-
sponds to the speed of light in our units) so that they travel
toward each other. After these operations, the field varia-
bles f∈ fϕ; ∂tϕ; Aμ; ∂tAμg are initialized according to the
linear superposition

fðρ; zÞ ¼ fAðρ; zÞ þ fBðρ; zÞ; ð17Þ

subject to the condition

fAðρ; zÞ · fBðρ; zÞ ≈ 0; ð18Þ

where the subscripts fA; Bg identify each individualQ-ball
in the binary.
Practically speaking, the condition (18) is not trivial to

satisfy in general. While the scalar field falls off exponen-
tially away from the Q-ball center (thereby satisfying the
condition even at modest separation distances), the same
cannot be said for the gauge field, which falls off like 1=r.
This long-range behavior inherently introduces violations
of the constraint equations (14)–(16) when the gauge fields
of each Q-ball significantly overlap. The magnitude of this
violation depends on several factors such as the initial
separation distance, the boost velocity, and the total charge
of the constituent Q-balls. To deal with this problem,
we implement an FAS multigrid algorithm [26] to re-solve
the equations (15)–(16) at the initial time and minimize
the constraint violation for arbitrary superpositions of the
form (17). We also monitor the residuals of the constraint
equations (14)–(16) during the evolution to ensure that
they do not grow significantly over the timescales under
consideration.
For the purposes of this work, we choose several

representative examples of gauged Q-ball solutions to
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act as initial data for the colliding binaries. The properties
of these solutions are listed in Table I. In our simulations,
we consider two different possibilities for the scalar field
potential VðjϕjÞ in the model (1). These are

V logðjϕjÞ ¼ −μ2jϕj2 lnðβ2jϕj2Þ; ð19Þ

V6ðjϕjÞ ¼ m2jϕj2 − k
2
jϕj4 þ h

3
jϕj6; ð20Þ

where μ, β, m, k, and h are real, positive parameters.
In Table I, the solutions pertaining to the logarithmic
potential (19) are named LogA, LogB, and LogC while
the solutions due to the polynomial potential (20) are
named PolyA and PolyB. These solutions, which are known
to be stable against axisymmetric perturbations [23], are
specifically chosen to illustrate the range of dynamical
features associated with head-on collisions of gauged
Q-balls. We emphasize that aside from the examples listed
in Table I, we have also studied collisions involving several
other configurations and find the dynamics to be consistent
with the results reported below.
In addition to varying the scalar potential, we also adjust

the values of the electromagnetic coupling constant e, the
initial velocity v, the relative phase difference α, and
the relative sign of the Noether charge Q for the colliding
Q-balls. The value of α is set through a simple modification
of the spherical Q-ball ansatz (6):

ϕðt; x⃗Þ ¼ fðrÞeϵðiωtÞþiα; ð21Þ

where α∈ ½0; π� and ϵ ¼ �1. Since we only consider
collisions between Q-balls with identical ω, the value of
α determines the relative difference in phase between the
colliding Q-balls prior to the moment of impact. The sign
of ϵ, meanwhile, provides a mechanism through which
we can study both Q-ball/Q-ball and Q-ball/anti-Q-ball

collisions. This can be understood from the fact that the
sign of the Noether charge Q (and the sign of the electric
charge Qe ¼ eQ) of a gauged Q-ball is connected to the
sign of the oscillation frequency ω [24]. Therefore, adjust-
ing the sign of ϵ for one Q-ball in the binary [as well as
taking A0ðrÞ → −A0ðrÞ in (7)] effectively flips the sign of
its charge, allowing us to superpose initial data of equal or
opposite charge as desired.
After specifying the initial data at t ¼ 0, we proceed by

evolving the system forward in time. To facilitate this,
we invoke a coordinate transformation xμ ¼ ðt; ρ; zÞ →
xμ

0 ¼ ðt; P; ZÞ according to

ρ ¼ d expðcPÞ − d expð−cPÞ; ð22Þ

z ¼ d expðcZÞ − d expð−cZÞ; ð23Þ

where c and d are positive, real parameters. With appro-
priate choice of c and d, the transformation (22)–(23)
remains approximately linear near the origin while becom-
ing increasingly compactified at large coordinate values.
This is an attractive feature for our numerical domain
because it allows us to resolve the dynamics at large length
scales without incurring an excessive computational cost.
To perform the evolution in this coordinate system, we use
a second-order Crank-Nicolson finite-difference scheme
implemented with fourth-order Kreiss-Oliger dissipation as
a smoothing operator. A modified Berger-Oliger adaptive
mesh refinement (AMR) algorithm [27] is used to dynami-
cally increase the numerical resolution of our simulations in
the regions of greatest interest. For all results presented
below, the base grid is taken to be 129 by 257 grid points in
fP; Zg with up to 8 levels of additional mesh refinement at
a refinement ratio of 2∶1. We choose a Courant factor of
λ ¼ dt=minfdP; dZg ¼ 0.25. At the outer boundaries,
we impose outgoing (Sommerfeld) boundary conditions
in order to accommodate the long-range behavior of the
electromagnetic field and reduce the effects of spurious
boundary noise. In addition, we apply reflective or antire-
flective boundary conditions as necessary along the axis of
symmetry in order to enforce regularity.
For numerical convenience, we choose μ ¼ β ¼ m ¼

k ¼ 1 and h ¼ 0.2 in (19)–(20) following our previous
work [23]. We select c ¼ 0.05, d ¼ 10 in (22)–(23) and set
the domain boundaries to span at least fP∶0 ≤ P ≤ 50g
and fZ∶ − 50 ≤ Z ≤ 50g which corresponds to fρ∶0 ≤
ρ≲ 121g and fz∶ − 121≲ z≲ 121g in the original coor-
dinate system. With this choice, we find the numerical
domain to be large enough to capture the relevant post-
collision dynamics of theQ-balls. We emphasize that while
all evolutions have been performed using the compactified
coordinates P and Z, we will hereafter present all results
using the linear coordinates ρ and z. This is done primarily
to facilitate the interpretation of the results. Finally, since
the numerical code is identical to the one used in [23]

TABLE I. Table of several gauged Q-ball solutions used in our
collision simulations. The solutions LogA, LogB and LogC
correspond to the logarithmic potential (19) while PolyA and
PolyB correspond to the polynomial potential (20). From left to
right, the remaining columns indicate the value of the electro-
magnetic coupling constant e, the initial central value of the
scalar field jϕð0; 0Þj, the initial central value of the gauge field
A0ð0; 0Þ, the Q-ball oscillation frequency ω, the total energy E of
the solution (when stationary), and the total Noether charge jQj of
the solution.

Solution e jϕð0; 0Þj A0ð0; 0Þ ω E jQj
LogA 0.1 0.3669 2.697 × 10−2 2.003 6.769 3.006
LogB 0.1 1.627 0.2682 1.027 45.45 30.03
LogC 1.1 0.6461 1.383 2.522 52.08 22.37
PolyA 0.02 2.062 0.4353 0.6587 476.4 582.9
PolyB 0.17 1.973 2.515 0.9976 405.1 387.5
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(aside from applying the coordinate transformation
(22)–(23) and the generation of binary initial data), we
refer the reader to [23] for issues of code validation such as
convergence and independent residual tests.

IV. NUMERICAL RESULTS

We now describe the results of our numerical experi-
ments. In our collision simulations, we consider the effects
of the following parameters on the resulting dynamics:
gauge coupling strength e, collision velocity v, relative
phase difference α, and relative sign of the Noether
charge Q. In most cases, we restrict the collision velocity
to the range 0.1 ≤ v ≤ 0.9 and the phase difference to
α∈ f0; π=4; π=2; 3π=4; πg, though in some cases we
explore beyond these values to get a complete picture of
the dynamics. Further, we test the effects of the choice of
scalar potential [logarithmic (19) versus polynomial (20)]
as well as the difference between collidingQ-balls of equal
charge and opposite charge. We note that for all simulations
presented below, the constituent Q-balls are always com-
posed of identical charge magnitudes (i.e., we do not present
any results for collisions between Q-balls of differing jQj).
For comparison purposes, we first explore the results at small
gauge coupling. We then move on to the case where the
gauge field is strongly coupled to highlight the salient
dynamics. For presentation purposes, we have relegated
some plots of the dynamics in this section to the Appendix.
We provide in Table II a broad, high-level overview of

the main results of our numerical experiments. We will
devote the remainder of this work to discussing the various
phenomena which are reflected in the table.

A. Small gauge coupling

Here we consider collisions involving solutions LogA,
LogB, and PolyA from Table I. Since the strength of the

gauge coupling is small in these cases (see [28] where this
notion is made precise), it is expected that the dynamics of
gauged Q-balls in this regime will be similar to the
dynamics of ordinary (nongauged) Q-balls.
Let us begin by discussing the effect of Q-ball velocity

on the outcome of the collision. In previous studies
[13,14,21] it has been shown that the dynamics of
equal-charge, nongauged Q-ball collisions can generally
be divided into three regimes: (i) at low velocities, a
“merger” regime wherein the Q-balls tend to coalesce,
(ii) at intermediate velocities, a “fragmentation” regime
wherein the Q-balls tend to break up into smaller compo-
nents, and (iii) at high velocities, an “elastic” regime
wherein the Q-balls tend to pass through each other
virtually unscathed. We find that gauged Q-ball collisions
with small gauge coupling are generally consistent with
these previous findings.
First, consider the low-velocity regime. In Fig. 1, we plot

the collision of twoQ-balls of type LogA (see Table I) with
equal charge, velocity v ¼ 0.1, and phase difference α ¼ 0.
As the Q-balls collide, they merge temporarily before
separating again and propagating a short distance along
the axis of symmetry. However, they have insufficient
kinetic energy to completely escape their mutual influence
and instead repeatedly merge and partially separate. Small
amounts of scalar matter are also released during this
process. As the evolution proceeds, the field configuration
settles down into a single coherent merged state. The final
Q-ball is of a larger total size than LogA and remains at the
origin lightly perturbed.
When boosted to velocities above a certain threshold, the

colliding Q-balls have sufficient kinetic energy to avoid a
merged final state (for LogA, the velocity threshold is
v≳ 0.125). At these “intermediate” velocities, a significant
quantity of the initial charge of each Q-ball continues
propagating along the axis of symmetry after the collision.

TABLE II. Summary of the main dynamical results from our collision simulations. Shown are the observed collision outcomes
(classified by either “small” or “large” values of the gauge coupling constant e) as a function of various collision parameters: the relative
Noether charge Q of the colliding binary (either equal or opposite), the relative phase difference α, and the collision velocity v
(heuristically divided into “low-velocity“, “intermediate-velocity”, and “high-velocity” regimes). We comment that the results listed in
this table together capture the dynamics in both the logarithmic (19) and polynomial (20) scalar field models. These results are explained
in further detail throughout Sec. IV.

Collision parameters Result

Relative charge Q Phase difference α Collision velocity v Small e Large e

Equal Q α ¼ 0 Low v Merger Coulomb repulsion (no collision)
Intermediate v Merger, fragmentation Merger, fragmentation

High v Free-passage Fragmentation
α∈ ð0; πÞ Low v Charge transfer Coulomb repulsion (no collision)

Intermediate & High v Charge transfer, fragmentation
α ¼ π Low v Phase repulsion Coulomb repulsion (no collision)

Intermediate & High v Phase repulsion

Opposite Q All α All v Partial annihilation Partial annihilation, radiation emission
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These resulting Q-balls are highly perturbed and oscilla-
tory. In most cases, this process also results in some relic
amount of charge left behind: the Q-balls have partially
fragmented into smaller structures. These smaller Q-balls
may either remain stationary at the origin or continue to
propagate along the axis of symmetry, lagging the main
Q-balls at a lower velocity. An example of such a collision
for solution LogA at velocity v ¼ 0.5 is given in the
Appendix (Fig. 12).
At the highest velocities, collisions between the Q-balls

are primarily elastic and they emerge from the collision
relatively unscathed. An illustration of this phenomenon is
given in the Appendix (Fig. 13) for solution LogA at
velocity v ¼ 0.9. It is also in this regime that the wavelike
nature of Q-balls becomes readily apparent through the
appearance of interference fringes at the moment of impact.

Plotted in Fig. 2 are the interference fringes observed for
collisions of solution LogA at v ¼ 0.9. For equal-charge
collisions, a clear fringe pattern emerges with fringe spacing
inversely proportional to the collision velocity. Also shown
are the effects of opposite-charge and phase-difference
collisions on the fringe pattern (to be discussed below).
We now comment on the effects of phase difference on

the collision dynamics. Recall that a phase difference is
introduced into the system by choosing α ≠ 0 in (21). Since
the colliding Q-balls in our study always have identical
values of ω, this phase difference is preserved until the
moment of impact regardless of the initial separation
distance or initial velocity. As reported previously [14],
the main effect of this phase difference is to induce charge
transfer between the collidingQ-balls. This behavior can be
understood in terms of relative phase accelerations [14] or
the induced rate of change of momentum for the colliding
Q-balls [29]. Testing the effects of phase difference at
α∈ f0; π=4; π=2; 3π=4; πg, we find that charge transfer is
generally maximized at the lowest collision velocities and
for small phase differences, in agreement with previous
studies.
Plotted in Fig. 3 is the collision of solution LogA at a

velocity of v ¼ 0.1 and a phase difference α ¼ π=4.
Initially, the Q-balls are of equal charge. At the moment

FIG. 1. Evolution of the scalar field modulus jϕj for a collision
of solutions of type LogA with equal charge, velocity v ¼ 0.1,
and phase difference α ¼ 0. The Q-balls collide at t ≈ 250 and
repeatedly merge and separate. By t ≈ 600 (beyond what is
shown here), the field configuration settles down into a single
larger Q-ball which remains perturbed at the origin.

FIG. 2. Profiles of the scalar field modulus jϕj evaluated along
the axis of symmetry during collisions involving solution LogA
with v ¼ 0.9. Three cases are shown: an equal-charge collision
with no phase difference (α ¼ 0), an equal-charge collision with
phase difference α ¼ π=4, and an opposite-charge collision with
no phase difference (α ¼ 0). In each case, the profile is shown at
the moment jϕj reaches its maximal value. For collisions with
equal charge, a destructive interference pattern forms at the
moment of impact. For collisions with opposite charge, the
interference pattern is purely constructive.
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of impact, the Q-ball with lagging phase (rightmost Q-ball
in the figure) suddenly gains charge from the Q-ball with
leading phase (leftmostQ-ball). SinceQ-balls are extended
structures, it can be difficult to precisely determine the total
charge Q contained in the resulting objects. However, by
integrating Q in the half-volumes z > 0 and z < 0 after the
collision takes place, we can estimate by the deviation from
symmetry that approximately 18% of the charge is trans-
ferred during this process. We note that the total charge Q
over the simulation domain remains conserved to within
0.1% during the evolution. In addition to charge transfer,
we observe that the velocities of the resultant Q-balls after
the collision are no longer identical: the smaller Q-ball
moves faster than the larger one. This can be understood
as a straightforward consequence of linear momentum
conservation.
At intermediate velocities, we observe the same quali-

tative behavior, though with the amount of charge transfer
reduced (for instance, only ∼7% is transferred at v ¼ 0.5,
α ¼ π=4 for solution LogA). In some cases, the charge
transfer at these velocities is accompanied by the formation
of one or more smallerQ-balls which remain along the axis
of symmetry after the collision and lag the main Q-balls,
being slightly perturbed. At the highest velocities, the
charge transfer is minimal (for instance, ∼1% or less of

the charge is transferred with v ≳ 0.9, α ¼ π=4 for
solution LogA) and no significant smaller Q-balls are
formed during the collision. However, the phase differ-
ence still manifests through a distortion of the interference
fringes as illustrated in Fig. 2.
A notable exception to the charge transfer phenomenon

occurs for completely out-of-phase collisions (α ¼ π). In
this case, the Q-balls exhibit a purely repulsive interaction
as they “bounce” off each other. At the moment of impact,
the Q-balls are compressed in the boost direction and the
value of jϕj temporarily grows by an amount which is
proportional to the collision velocity. There is no charge
transfer observed: the half-volumes z > 0 and z < 0 con-
tain an identical amount of charge for all time. Note that
this repulsive behavior for out-of-phase collisions has also
been observed in other soliton models [30,31].
We now discuss collisions of oppositely chargedQ-balls.

These are the ones for which ϵ ¼ −1 in Eq. (21) for one of
theQ-balls in the binary, resulting in a system composed of
a gauged Q-ball and gauged anti-Q-ball. These collisions
are predominantly characterized by the possibility of
charge annihilation at the moment of impact, with the
amount of annihilation depending on the collision velocity.
For example, an opposite-charge collision corresponding to
solution LogA at v ¼ 0.1 results in ∼48% of the charge
annihilated. This situation is depicted in Fig. 4. The
remaining charge emerges from the collision in the form
of smaller Q-balls with a larger velocity. In addition, the
relatively violent dynamics that occur during the annihi-
lation leave them highly perturbed and oscillatory after
the collision.
Charge annihilation during opposite-charge Q-ball col-

lisions is also observed at larger velocities, though the
amount of annihilation is reduced. For example, the amount
of charge annihilated is ∼15% at v ¼ 0.3 and ∼7% at
v ¼ 0.5 for solution LogA. In addition, the collision at
these larger velocities is sometimes accompanied by the
creation of smaller Q-balls remnants which remain along
the axis of symmetry. At the highest velocities, the Q-ball/
anti-Q-ball interaction results in very little annihilation (for
example, only ∼1% of charge is annihilated at v ¼ 0.9).
There are also fewer Q-ball remnants produced along the
axis of symmetry and the fields interfere constructively at
the moment of impact (see Fig. 2).
We have also tested the effects of phase difference on

Q-ball/anti-Q-ball collisions, finding that it has a minimal
influence on the dynamics. Charge transfer is not observed
and the amount of annihilation is not significantly altered
compared to the α ¼ 0 case.
Thus far, we have only discussed the dynamics asso-

ciated with solution LogA. Now we turn to solution LogB
in Table I. In this case, we find that a generic outcome of the
collision is that the field values tend to grow without bound
until the evolution becomes singular. This occurs even
when the calculation is repeated using additional levels of

FIG. 3. Evolution of the scalar field modulus jϕj for a collision
of solutions of type LogA with equal charge, velocity v ¼ 0.1,
and phase difference α ¼ π=4. After colliding at t ≈ 250, the
Q-ball with leading phase (left) transfers charge to the Q-ball
with lagging phase (right). After the collision, the Q-balls have
disparate velocities.
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mesh refinement. As discussed in [23], we can understand
this behavior as a consequence of the logarithmic potential
(19) being unbounded from below. In particular, for large
scalar field values (such as those achieved at the moment
of impact), the potential term VðjϕjÞ in (5) can become
negative and may dominate over the other energies in the
system. This can lead to the energy density becoming
locally negative in the region of large jϕj. At the same time,
the energy density in other areas of the domain must grow
so that the total integrated energy remains conserved to a
positive quantity. This reciprocal process can result in
runaway field growth which quickly causes the evolution to
become singular. Due to such pathological effects, we do
not consider collisions of Q-balls with sizes much larger
than that of LogA for e ¼ 0.1 in the logarithmic model.
To conclude this section, let us consider the collision

dynamics under the polynomial potential (20). For this
purpose, we will use solution PolyA in Table I as an
illustrative example. Much like what is observed for
solution LogA, we find that equal-charge collisions at
low velocities are characterized by a merger regime.
Notably, the range of velocities for which the Q-balls
merge is quite large—in our experiments, merging occurs
for v≲ 0.7. At higher collision velocities, the Q-balls have
sufficient kinetic energy to escape the merged state and

continue propagating along the axis of symmetry after
passing through each other. This is accompanied by a small
portion of field content radiating away from the Q-balls
after the moment of impact. We have also tested the effects
of phase-difference and opposite-charge collisions involv-
ing solution PolyA, finding evidence for charge transfer
and annihilation similar to what has been previously
discussed.

B. Large gauge coupling

We now turn to collisions involving solutions LogC and
PolyB from Table I. Unlike the collisions discussed in the
previous section, these solutions involve a gauge coupling
which is comparable in magnitude to the scalar potential
parameters. We therefore expect that electromagnetic
effects may have a nontrivial impact on the dynamics.
Once again, we begin by discussing the effect of the

initial velocity on the outcome of the collision. Since the
Q-balls can now carry a significant amount of electric
charge, the long-range Coulomb force can influence the
dynamics prior to the moment of impact. If the colliding
Q-balls have equal charge, this results in deceleration and a
corresponding decrease in their effective velocity before
impact. If the colliding Q-balls have opposite charge, the
result is acceleration which increases the effective velocity.
In order to fully capture this behavior, it would be
preferable to initialize the boosted Q-balls at z ¼ �∞
and let them travel toward each other. However, limitations
in computational resources make it unfeasible to initialize
the fields at arbitrarily large separation distances, so instead
we initialize the Q-balls at z ¼ �25 for a given boost. As
mentioned previously, we use a multigrid solver to remedy
the unphysical constraint violations which may result from
a simple superposition of the scalar and electromagnetic
fields. In what follows, we will refer to the collision
velocity as the velocity at which the Q-balls are initialized
at z ¼ �25 rather than their effective velocity at the
moment of impact.
To proceed with the analysis, we consider the solution

LogC in Table I. Unlike what has been discussed in the case
of LogA (corresponding to small gauge coupling), the
dynamics of solution LogC during equal-charge collisions
cannot be cleanly divided into a merger, fragmentation, and
elastic regime. At low velocities, we find instead that the
Coulomb repulsion is strong enough to completely prevent
the scalar fields of each Q-ball from significantly interact-
ing. This causes the Q-balls to decelerate as they approach
each other, reach a turning point of vanishing velocity,
and then accelerate away in the opposite direction. This
behavior is found to occur for 0 < v ≲ 0.3. At velocities
v≳ 0.3, the Q-balls have sufficient kinetic energy to
overcome the Coulomb repulsion and will eventually
collide. In these situations, the general outcome is frag-
mentation of the gauged Q-ball into smaller components.
Plotted in Fig. 5 is the collision of solution LogC at

FIG. 4. Evolution of the Noether charge Q for a collision of
solutions of type LogA with opposite charge, velocity v ¼ 0.1,
and phase difference α ¼ 0. The Q-balls collide at t ≈ 248
and partially annihilate charge. After the collision, the resultant
Q-balls pass through each other and continue propagating along
the axis of symmetry with a larger velocity. Note that a hybrid
color map is used: charge values below jQj ¼ 0.1 are mapped
linearly to zero while values above this threshold are mapped
logarithmically to the charge maximum.
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v ¼ 0.55. In contrast to the case of small gauge coupling
(where no off-axis remnants were observed in the loga-
rithmic model), here we see the formation of a distinct
off-axis component which propagates outward before
collapsing back onto the axis of symmetry at late times.
As noted in [23], these off-axis components represent ring-
like structures in three-dimensions which we call “gauged
Q-rings”. In addition to the ring, a significant portion of the
field content also passes through the origin and continues
propagating along the axis of symmetry while being highly
perturbed.
At the highest velocities, the colliding Q-balls form a

clear destructive interference pattern analogous to that seen
for the case of small gauge coupling (Fig. 2). However,
after the collision, the fields emerge primarily in the form of
Q-rings which propagate away from the axis of symmetry.
In addition, a scalar radiation pattern can be observed in the
vicinity of the origin. This situation is depicted in Fig. 6 for
solution LogC at v ¼ 0.9, and we have found this phe-
nomenon to be present up to a collision velocity of at least
v ¼ 0.95. This contrasts what is observed for nongauged
Q-balls where high-velocity collisions primarily exhibit

free-passage behavior. Although computational constraints
prevent us from exploring boosts much beyond this range
(in part due to the extreme field gradients of the boosted
Q-balls at these velocities), one can conclude that high-
velocity collisions of gauged Q-balls can be considerably
less elastic than collisions of their nongauged counterparts.
Another challenge is to determine the ultimate fate of the

observedQ-rings. While we have made some effort to track
the long-term evolution of these structures, the nature of the
collision tends to see these remnants propagating away at
large velocities and reaching large coordinate distances.
While the change of coordinates (22)–(23) can prevent
these components from exiting the domain entirely,

FIG. 5. Evolution of the scalar field modulus jϕj for a collision
of solutions of type LogC with equal charge, velocity v ¼ 0.55,
and phase difference α ¼ 0. The Q-balls collide at t ≈ 45. After
the collision, the field content contains a mixture of on-axis and
off-axis components. Note that a hybrid color map is used: field
values below jϕj ¼ 0.3 are mapped linearly to zero while values
above this threshold are mapped logarithmically to the field
maximum.

FIG. 6. Evolution of the scalar field modulus jϕj for a collision
of solutions of type LogC with equal charge, velocity v ¼ 0.9,
and phase difference α ¼ 0. The Q-balls collide at t ≈ 27. After
the collision, a scalar radiation pattern appears (fourth panel) and
the field content predominantly takes the form of two Q-rings.
Note that a hybrid color map is used: field values below jϕj ¼ 0.1
are mapped linearly to zero while values above this threshold are
mapped logarithmically to the field maximum.

RELATIVISTIC HEAD-ON COLLISIONS OF Uð1Þ GAUGED … PHYS. REV. D 110, 015012 (2024)

015012-9



they become increasingly compactified as the evolution
proceeds. When combined with our use of Kreiss-Oliger
dissipation for numerical stability, this effectively decreases
the numerical resolution of our simulations and increases
the global error (as measured, for instance, by an increase
in the total constraint violation). As such, it is difficult to
conclusively determine the long-term behavior of these
structures far from the origin, but we make the general
observation that they tend to reach a maximum radius
before collapsing back inward toward the axis of symmetry.
We therefore conjecture that the gauged Q-rings formed in
this way are transient objects (even if the growth of error
prevents us from making this statement definitively).
Next, we discuss the effects of phase difference for

collisions involving solution LogC. Similar to the case of
nongauged Q-balls, the main effect of altering the phase is
to induce charge transfer during the collision. However, the
large electric charge associated with LogC produces several
novel effects. The first is the absence of charge transfer at
small collision velocities v≲ 0.3. Similar to the case when
α ¼ 0, the Coulomb repulsion prevents the scalar field of
eachQ-ball from significantly interacting and so the charge
transfer process is never observed. At larger velocities, the
Q-balls have sufficient kinetic energy to fully interact and
the result is a net transfer of charge in a manner similar to
the case of small gauge coupling.
One significant difference between charge transfer in

the small- and large-coupling case is the final fate of the
Q-balls after the collision. In the case of small gauge
coupling, the Q-balls typically propagate away after the
collision and retain a coherent shape (though occasionally
leaving behind a small remnant Q-ball along the axis of
symmetry). However, for the case of solution LogC (for
example), the most common outcome is that the Q-balls
created during the charge transfer process will quickly
break apart into smaller components. This phenomenon is
depicted in Fig. 7 for a collision involving solution LogC
with a phase difference of α ¼ π=4 and velocity v ¼ 0.5.
Initially, the Q-balls are Lorentz-boosted toward each other
and collide at t ≈ 50. In this process, approximately 35%
of the charge is transferred. As the larger Q-ball is formed,
it is also highly perturbed, inducing its decay into smaller
Q-balls and Q-rings. Depending on the collision parame-
ters, this instability can manifest in a number of different
ways such as by breaking apart into smaller Q-balls, into
Q-rings, or into a combination ofQ-balls andQ-rings. This
phenomenon is presumably due to the reduced parameter
space of stable solutions which are allowed when the gauge
coupling is large [23].
In general, we find that the charge transfer is maximal

at intermediate velocities 0.4≲ v ≲ 0.6 for solution LogC.
At higher velocities, the effect is still observed but the
amount of charge transfer is reduced (for example, the
collision of solution LogC at v ¼ 0.7, α ¼ π=4 results in
∼10% of the charge transferred while the same collision at

v ¼ 0.9 results in only ∼1% transferred). At these higher
velocities, the charge transfer manifests through slight
asymmetries in the size and trajectory of theQ-ring pattern.
An example of this behavior for solution LogC at v ¼ 0.7,
α ¼ π=4 is given in the Appendix (Fig. 14).
We have tested the amount of charge transfer at different

phase differences in the range α∈ ð0; πÞ, finding that the
transfer is maximal for α≲ π=4. The general phenomena
associated with charge transfer is similar for all α tested,
though the individual dynamics may differ slightly depend-
ing on the collision parameters. However, one exception to
the previously described behavior is for the case of α ¼ π.
Similar to what has been observed for small gauge
coupling, these out-of-phase Q-balls tend to experience a
total repulsion at the moment of impact: the fields are
momentarily compressed before theQ-balls “bounce back”
and form Q-balls or Q-rings in manner symmetric about
z ¼ 0 (i.e., there is no charge transfer).
Finally, let us discuss Q-ball/anti-Q-ball interactions at

large gauge coupling. As was the case for small gauge
coupling, the general outcome of such collisions is the
annihilation of charge. However, unlike the case for equal-
charge collisions, the oppositely charged Q-balls now

FIG. 7. Evolution of the scalar field modulus jϕj for a collision
of solutions of type LogC with equal charge, velocity v ¼ 0.5,
and phase difference α ¼ π=4. The Q-balls collide at t ≈ 50 and
transfer charge (as can be seen in the second panel). After the
collision, the larger Q-ball created in this process quickly breaks
apart into smaller components which propagate on and away
from the axis of symmetry. The smaller Q-ball travels toward
z ¼ −∞ while highly perturbed.
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experience an attractive Coulomb force which leads to
acceleration prior to the moment of impact; this effect is
most noticeable at low velocities. This can lead to an increase
in the effective collision velocity as discussed previously.

Plotted in Fig. 8 is the Noether charge Q for a collision
involving solution LogC with opposite charge, velocity
v ¼ 0.6, and phase difference α ¼ 0. TheQ-balls collide at
t ≈ 40 and partially annihilate. After the collision, a portion
of each original Q-ball continues propagating along the
axis of symmetry. Additionally, there is a small remnant of

FIG. 8. Evolution of the Noether charge Q for a collision of
solutions of type LogC with opposite charge, velocity v ¼ 0.6,
and phase difference α ¼ 0. The Q-balls collide at t ≈ 40 and
partially annihilate charge. After the collision, a significant
portion of the charge content continues propagating along the
axis of symmetry while a remnant of mixed positive and negative
charge is left behind at the origin. Note that a hybrid color map is
used: charge values below jQj ¼ 10−2 are mapped linearly to zero
while values above this threshold are mapped logarithmically to
the charge maximum.

FIG. 9. Evolution of the electromagnetic field energy EEM for a
collision of solutions of type LogC with opposite charge, velocity
v ¼ 0.6, and phase difference α ¼ 0. The Q-balls collide at t ≈ 40
and partially annihilate charge. After the collision, a quasispherical
pulse of electromagnetic energy emanates from the origin. Note
that a hybrid color map is used: energy values below EEM ¼
5 × 10−3 are mapped linearly to zero while values above this
threshold are mapped logarithmically to the energy maximum.
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mixed charge left behind at the origin which resembles in
some ways a charge-swappingQ-ball [15–17]. In this case,
approximately ∼53% of the initial charge is annihilated
during the collision.
The partial charge annihilation which occurs during a

Q-ball/anti-Q-ball collision can also result in the produc-
tion of electromagnetic radiation. To observe this, we
compute from (5) the energy contained in the electromag-
netic field, which can be written as

EEM ¼ 1

2
ðjE⃗j2 þ jB⃗j2Þ; ð24Þ

where E⃗ and B⃗ are constructed from the components of
the gauge field Aμ. The electromagnetic field energy for a
collision involving solution LogC with opposite charge,
velocity v ¼ 0.6, and phase difference α ¼ 0 (i.e., the same
collision as is plotted in Fig. 8) is plotted in Fig. 9. Initially,
the motion of the charged Q-balls dominates the electro-
magnetic field energy. At the moment of impact, the
Q-balls partially annihilate, converting a fraction of their
total energy into a pulse of electromagnetic energy which
propagates away from the origin. By comparing Figs. 8
and 9, one can see that the outgoing pulse does not
correspond to any significant amount of charge. This fact
supports our interpretation of the pulse as representing
electromagnetic radiation. We note that we have not
made an attempt to precisely quantify the amount of
electromagnetic radiation produced in this manner. This is
due primarily to the technical challenges associated with
integrating the energy over arbitrary subregions of the
computational domain during adaptive, highly parallelized
simulations. However, we comment that the size of the
electromagnetic pulse is generally proportional to the
amount of annihilation that occurs. For illustrative purposes,
we also plot in the Appendix (Fig. 15) a representation
of the electric and magnetic fields for the collision depicted
in Figs. 8 and 9.
In the general case, we find that the dynamics of Q-ball/

anti-Q-ball interactions depend primarily on the collision
velocity. At the lowest velocities, the Q-balls tend to pass
through each other after partially annihilating, then con-
tinue to travel along the axis of symmetry while oscillating
weakly. This process is often accompanied by the partial
fragmentation of theQ-balls into a small number ofQ-balls
or Q-rings. At intermediate velocities (e.g., 0.5≲ v≲ 0.7
for solution LogC), the collision becomes more violent: the
resultingQ-balls andQ-rings may be greater in number and
more strongly oscillatory after the collision. It is also within
this intermediate regime that the charge annihilation is
found to be maximal. At the highest velocities (e.g., v ≳ 0.7
for solution LogC), the outcome of the collision is once
again dominated by two main Q-balls which continue
propagating along the axis of symmetry. These Q-balls are
accompanied by long “tails” of the scalar field which

show a clear interference fringe pattern. This behavior is
shown in Fig. 10 for solution LogC at v ¼ 0.9 with
opposite charges and α ¼ 0. The amount of charge anni-
hilation is also reduced at high velocities (for example, only
∼14% of the charge is annihilated for the collision depicted
in Fig. 10).
We have also studied Q-ball/anti-Q-ball collisions of

solution LogC at various phase differences up to α ¼ π.
We find that the phase difference has a minimal effect and
the phenomena associated with these collisions resembles
closely the α ¼ 0 case. This suggests that the collision
dynamics of gauged Q-balls with gauged anti-Q-balls are
determined primarily by the collision velocity, in agreement
with the case of small gauge coupling. It is interesting to
note that we have not observed any cases of total annihi-
lation where the initial Q-balls are converted completely
into radiation. Such a phenomena has been observed in
previous studies of nongauged Q-ball collisions for a small
range of collision parameters [14]. While total annihilation
may still be possible for the gauged case, our analysis
suggests that it might likewise occur for only a narrow
range of parameters.

FIG. 10. Evolution of the scalar field modulus jϕj for a collision
of solutions of type LogC with opposite charge, velocity v ¼ 0.9,
and phase difference α ¼ 0. The Q-balls collide at t ≈ 27 and
interfere constructively. After the collision, the Q-balls continue
propagating along the axis of symmetry and carry a long “tail” of
scalar matter which exhibits an interference fringe pattern. Note
that a hybrid color map is used: field values below jϕj ¼ 0.1 are
mapped linearly to zero while values above this threshold are
mapped logarithmically to the field maximum.
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We conclude this section by returning to collisions under
the polynomial model (20). For this purpose, we focus on
solution PolyB in Table I. This solution is notable in that it
corresponds to a value of the gauge coupling e which is
near the maximum allowed for the polynomial potential,
emax ≈ 0.182 [32]. Considering first the equal-charge col-
lisions of solution PolyB, we find once again that the
Q-balls tend to repel at low velocities. This is in agreement
with what has been discussed previously for the logarithmic
model. However, for intermediate velocities (e.g., 0.35≲
v≲ 0.6), we observe that the colliding Q-balls can merge
into a single Q-ball which remains at the origin. This is
accompanied by the emission of charge as the merged
Q-ball settles down into a near-stationary configuration. At
slightly higher velocities (e.g., 0.65≲ v≲ 0.85), the
Q-balls do not form a single stable Q-ball; instead, the
fields dissipate shortly after the moment of impact in
the form of outgoing waves. This situation is depicted in
Fig. 11. For collision velocities v≳ 0.85, we find that the
majority of the field content emerges along the axis of
symmetry after the collision. However, the initial Q-balls
are still difficult to distinguish in the aftermath as the field
magnitudes are greatly reduced and are also elongated in

the radial direction. This is accompanied by a spherical
radiation pattern emanating from the origin. An example of
this scenario is depicted in the Appendix (Fig. 16). This lies
in contrast to what is observed for the logarithmic model
where the dominant field components after the collision
take the form of gauged Q-rings (cf. Fig. 6). However,
regardless of the final structure, we conclude that the equal-
charge collisions of solution PolyB can be considerably
inelastic even at collision velocities which are near-luminal.
Turning next to collisions of solution PolyBwith a relative

phase difference, we find that charge transfer is once again the
dominant outcome (as long as the kinetic energy is sufficient
to overcome the Coulomb repulsion). Similar to what is
observed for solution LogC, the Q-balls created in this
manner are often unstable and may quickly fragment after
the collision. In some cases, we even find that the instability
can manifest via near-complete dispersal of the fields so that
the end result of the collision is just one remaining gauged
Q-ball. An example of this behavior for solution PolyB is
given in the Appendix (Fig. 17). At the highest velocities and
for large phase differences, we find that the amount of charge
transfer is once again reduced. For collisions of opposite
charges, the dynamics are generally independent of the
relative phase with the main result being the net annihilation
of charge which is maximal at low collision velocities. In
contrast towhat is observed for solution LogC (cf. Fig. 8), we
do not observe the formation of any smaller Q-balls during
opposite-charge collisions involving solution PolyB. Instead,
theQ-balls tend to continue propagating uniformly along the
axis of symmetry, though often being strongly perturbed by
the annihilation process.

V. CONCLUSION

In this work, we have performed high-resolution numeri-
cal simulations to study head-on collisions of Uð1Þ gauged
Q-balls. Focusing on the relativistic regime, we have
studied the effects of various parameters (such as collision
velocity, relative phase, relative charge, and electromag-
netic coupling strength) on the outcome of the collision.
Our simulations suggest that the outcome can depend
heavily on these parameters, resulting in dynamics which
can be quite distinct from those observed during collisions
of ordinary (nongauged) Q-balls.
We first examined the dynamics of gauged Q-balls with

small gauge coupling. Here it was found that the dynamics
for equal-charge collisions can generally be divided into
three regimes (the “merger”, “fragmentation,” and “elastic”
regimes) depending on the collision velocity. We also
studied the effect of phase-difference and opposite-charge
collisions, finding evidence for charge transfer and anni-
hilation, respectively. These findings are consistent
with what has been previously reported for ordinary
(nongauged) Q-balls. Overall, these results suggest that
gauged Q-balls with small gauge coupling can behave like
nongauged Q-balls during head-on collisions.

FIG. 11. Evolution of the scalar field modulus jϕj for a collision
of solutions of type PolyB with equal charge, velocity v ¼ 0.75,
and phase difference α ¼ 0. The Q-balls collide at t ≈ 33 and
form a destructive interference pattern. After the collision, it
becomes difficult to distinguish any component of the field which
clearly resembles a Q-ball. Instead, the field content appears to
dissipate in the form of near-spherical waves which emanate from
the origin.
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Turning to the case of large gauge coupling, we find that
collisions of gauged Q-balls can lead to distinct dynamical
behavior due to the influence of the electromagnetic field.
For equal-charge collisions, the Coulomb force can cause a
repulsion which prevents the scalar field of each Q-ball
from reaching a state of significant interaction. This occurs
at low collision velocities. At higher velocities, we find that
collisions are rarely an elastic process; instead, the main
outcome is often a fragmentation of the colliding Q-balls
into several smaller gauged Q-balls or Q-rings. This effect
persists even at collision velocities very close to the speed
of light. Studying the effect of phase difference on the
collision outcome, we observe evidence for charge transfer.
However, the gauged Q-balls created during this process
are often unstable and tend to quickly break apart into
smaller components. For the case of opposite-charge
collisions, we find partial annihilation of the gauged
Q-balls to be a generic outcome which can lead to the
production of an electromagnetic radiation pulse. Having
studied these behaviors using both polynomial and loga-
rithmic scalar field potentials, we find that the collision
dynamics can differ slightly depending on the choice of
potential. However, we conclude that the main phenomena
associated with gauged Q-ball collisions (such as charge
transfer, annihilation, and the inelasticity of the collisions)
are generally independent of the specifics of the model.
Since the present study has been limited to axisymme-

try, it is interesting to ask how the dynamics may change
in fully three-dimensional simulations. This question will
be addressed in a future publication. It would also be
interesting to consider how quantum effects may influence
the dynamics of gauged Q-balls similar to what has
recently been done for nongauged Q-balls [33]. Finally,
we comment that the results of this work could be
extended by considering more general scenarios in axi-
symmetry (such as collisions between gauged Q-balls
with unequal jQj) or by studying in further detail the
electromagnetic signal created during the collisions.
These scenarios may be relevant for cosmological appli-
cations of gauged Q-balls [34–37].
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APPENDIX: SUPPLEMENTAL FIGURES

To supplement the figures presented in the main text,
here we provide additional plots which illustrate several
interesting cases of gauged Q-ball dynamics.

FIG. 12. Evolution of the scalar field modulus jϕj for a collision
of solutions of type LogA with equal charge, velocity v ¼ 0.5,
and phase difference α ¼ 0. The Q-balls collide at t ≈ 50 and
pass through each other, leaving behind a smaller Q-ball remnant
which remains perturbed at the origin.

FIG. 13. Evolution of the scalar field modulus jϕj for a collision
of solutions of type LogA with equal charge, velocity v ¼ 0.9,
and phase difference α ¼ 0. The Q-balls collide at t ≈ 27 and
exhibit a destructive interference pattern. After the collision, the
Q-balls emerge with profiles nearly identical to their initial state.
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FIG. 14. Evolution of the scalar field modulus jϕj for a collision
of solutions of type LogC with equal charge, velocity v ¼ 0.7,
and phase difference α ¼ π=4. The Q-balls collide at t ≈ 36.
After the collision, the field content predominantly takes the form
of two Q-rings. In this case, the phase difference manifests as an
asymmetry in the dynamics about the plane z ¼ 0. Note that a
hybrid color map is used: field values below jϕj ¼ 0.1 are
mapped linearly to zero while values above this threshold are
mapped logarithmically to the field maximum.

FIG. 15. Evolution of the electric field E⃗ and the magnetic field
B⃗ for a collision of solutions of type LogC with opposite charge,
velocity v ¼ 0.6, and phase difference α ¼ 0. The magnitude of
the only nonzero component of the magnetic field, Bϕ, is
represented using the color map. The orientation of the electric
field is represented using streamlines; the corresponding field
magnitude is not reflected in the figure. The Q-balls collide at
t ≈ 40 and partially annihilate charge. After the collision, the
fields resemble an outgoing wavefront. We note that the small-
scale “pulse” which is visible for ρ≳ 10 in the first and second
panel exists as a technical artefact of the gauged Q-ball
initialization procedure at z ¼ �25.
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FIG. 16. Evolution of the scalar field modulus jϕj for a collision
of solutions of type PolyB with equal charge, velocity v ¼ 0.95,
and phase difference α ¼ 0. The Q-balls collide at t ≈ 26 and
form a destructive interference pattern. After the collision, the
majority of the field content continues traveling along the axis of
symmetry and becomes elongated in the radial direction. Note
that a hybrid color map is used: field values below jϕj ¼ 0.1 are
mapped linearly to zero while values above this threshold are
mapped logarithmically to the field maximum.

FIG. 17. Evolution of the scalar field modulus jϕj for a collision
of solutions of type PolyB with equal charge, velocity v ¼ 0.45,
and phase difference α ¼ π=4. The Q-balls collide at t ≈ 53 and
transfer charge (as can be seen in the second panel). After the
collision, the smaller Q-ball created in this process quickly
dissipates while the larger Q-ball travels slowly along the axis
of symmetry.
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