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In the Standard Model effective field theory (SMEFT), the SUð2ÞL × Uð1ÞY symmetry of the Standard
Model is linearly realized. However, it is possible that more general effective field theories, such as the
Higgs effective field theory (HEFT) where this symmetry is realized nonlinearly, are needed to describe the
data. Identifying physics beyond SMEFT could shed light on the nature of Higgs and the realization of
the electroweak symmetry. We explore the possibility of such an identification by studying the effects of
scalar and vector new physics operators on the angular distribution of Λb → Λcð→ ΛπÞτν̄τ. This decay is
sensitive to the six-dimensional effective operator OLR

V ≡ ðτ̄γμPLντÞðc̄γμPRbÞ, which is present in HEFT
but suppressed in SMEFT. We identify the angular observables that can have significant contributions from
OLR

V and hence would be useful for probing not only beyond the Standard Model physics but also physics
beyond SMEFT. We further find that constraining the branching ratio of Bc → τν̄τ would be crucial for
performing this task.
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I. INTRODUCTION

The Standard Model (SM) of particle physics describes
the properties of known matter and forces to a great
accuracy. However, there are reasons to believe that the
SM is not complete. Certain phenomena such as the baryon
asymmetry in the Universe, neutrino oscillations, and the
existence of dark matter are not explained in the SM. This
indicates that there exists new physics (NP) beyond SM.
One way this NP can be probed in direct searches is by
producing new particles in high-energy particle colliders. In
a complementary approach, the effects of NP can be
identified indirectly with the help of precision measure-
ments in relatively low-energy processes.
While the effect of NP can be searched for in specific

models, the effective field theory (EFT) techniques provide
a model-independent and common framework to perform
more general analyses, whose results can be translated into
broad classes of scenarios beyond the Standard Model
(BSM). In the field of flavor physics, EFT methods are
employed to analyze the effect of NP with the help of
precision measurements.

In the modern view, the SM is considered as the leading
part of an EFT that respects the SM symmetry group
SUð3ÞC × SUð2ÞL ×Uð1ÞY . In this view, the SM is
expected to be valid up to an NP scale Λ, above which
additional dynamical degrees of freedom appear. The
effects of NP can be encoded in higher-dimensional
operators that are suppressed by powers of the NP scale Λ,

L ¼ LSM þ 1

Λ
Cð5ÞOð5Þ þ 1

Λ2

X
i

Cð6Þ
i Oð6Þ

i þO
�

1

Λ3

�
: ð1Þ

The above equation describes the Standard Model effective

field theory (SMEFT) [1–4] when all the operatorsOðdÞ
i are

composed of only SM fields and respect the SM symmetry
group. Here d denotes the dimensionality of the operator

OðdÞ
i . The NP contributions are parametrized in terms of the

Wilson coefficients CðdÞ
i .

In SM, the Higgs boson (h) and the three Goldstone
bosons ðϕ1;ϕ2;ϕ3Þ are parts of a single SUð2ÞL doublet
fieldH. This embedding is referred to as a linear realization
of the electroweak (EW) symmetry [5]. This feature is
maintained in SMEFT. At present, the measurements of
production and decay channels of the Higgs boson at the
LHC are consistent with the SM Higgs mechanism of EW
symmetry breaking and hence with SMEFT [6]. However,
in BSM scenarios, the four fields ðh;ϕ1;ϕ2;ϕ3Þ need not
be embedded into a single doublet H. Such scenarios
cannot be described in SMEFT, and searching for these
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scenarios is equivalent to probing the mechanism of EW
symmetry breaking.
Possible deviations of couplings of the Higgs boson from

the SM prediction would indicate the need for a more
general extension of SM, even beyond SMEFT. Note that
the measured values of the Higgs boson couplings to gauge
bosons and top quark are compatible with the SM to about
Oð10%Þ [7–9]. However, for the Higgs boson couplings to
other quarks and leptons, or for the triple-Higgs boson
coupling, larger deviations are possible [7–9]. For example,
in the Higgs effective field theory (HEFT) [10–12], one
can have modified interactions of the Higgs boson while
keeping its gauge interactions unchanged. Here the Higgs
sector consists of a singlet ĥ boson that is invariant under
the EW symmetry and three Goldstone fields ðϕ̂1; ϕ̂2; ϕ̂3Þ
that transform nonlinearly under this symmetry [5]. Thus,
the SUð2ÞL × Uð1ÞY symmetry is realized nonlinearly in
HEFT, and the manifest gauge symmetry in HEFT is only
SUð3ÞC ×Uð1ÞQ. Therefore, HEFT is a more general
effective theory than SMEFT, i.e., HEFT ⊃ SMEFT ⊃
SM [13]. In particular, many HEFT operators at a given
dimension may not appear in SMEFT at the same dimen-
sion, though they may appear at higher dimensions and
therefore would typically be suppressed.
Searches for beyond-SMEFT physics in ATLAS and

CMS focus on the precise measurements of Higgs cou-
plings with fermions and gauge bosons [7]. A comple-
mentary approach to extract evidence for nonlinearly
realized EW symmetry is via flavor physics, which offers
indirect probes of heavy newphysics that are complementary
to direct collider searches. Many of the recently observed
anomalies in B meson decays, e.g., RðDð�ÞÞ [14–17] and
RðJ=ψÞ [18] that correspond to the charged-current tran-
sition b → cτντ, and BðBþ → Kþμþμ−Þ [19], BðBþ →
Kþeþe−Þ [20], and P0

5 [21–23] that correspond to the
neutral-current transitions b → sll, indicate the possibility
of BSM physics. While there are viable solutions to these
anomalies within SMEFT, the question of whether these
anomalies arise from physics beyond SMEFT is still open.
For flavor physics processes, the relevant energy scale is

around the mass of the b quark. At this energy scale, the
heavier SM particles ðW�; Z0; h; tÞ are no longer the
degrees of freedom and are integrated out. The resultant
EFT is called the low-energy effective field theory (LEFT),1

[28] in which the effective Lagrangian is

LLEFT ¼ LSM þ
X
d≥5

X
i

ðGFÞd2−2CðdÞ
i OðdÞ

i : ð2Þ

Here, the expansion is in terms of the Fermi constant
GF ¼ ð ffiffiffi

2
p

g2WÞ=ð8M2
WÞ. The operators are written in terms

of the dynamical fields below the EW symmetry-breaking
scale. Thus, LEFT is an SUð3ÞC × Uð1ÞQ invariant effec-
tive theory valid below the EW scale.
The information about how the SUð2ÞL ×Uð1ÞY sym-

metry is realized above the EW scale can be extracted by
matching the LEFT operators to EFTs valid beyond the
electroweak scale, such as SMEFT or HEFT. Most of the
dimension-six operators do not require any source of
electroweak symmetry breaking beyond the SM and these
operators can be directly mapped onto six-dimensional
SMEFT and HEFT operators [24,29,30]. However, there
are some dimension-six LEFT operators that cannot be
generated from dimension-six SMEFToperators but can be
generated from HEFT at this order [31–33]. There exist
NP models where certain dimension-six operators are
generated but cannot be mapped to SMEFT at the leading
order—for example, the nonstandard Higgs model with a
strongly coupled scalar [32] and the model with a W0 that
couples to right-handed quarks and left-handed leptons
[34]. Further discussions on models requiring a framework
beyond SMEFT can be found in [35], where a new class of
BSM states called “Loryons” is proposed. Loryons are NP
particles whose physical mass is dominated by a contri-
bution from the vacuum expectation value of the Higgs
boson. However, the effect of integrating out such fields
cannot be incorporated into SMEFT and would require an
EFT framework where the EW symmetry is nonlinearly
realized. The study of such operators will allow us to
identify new physics beyond SMEFT.
One such LEFT operator is OLR

V ≡ ðτ̄γμPLνÞðc̄γμPRbÞ
[32,33,36], which corresponds to the quark-level transition
b → cτντ. This operator can begenerated at the leading order
from the HEFT operator OFY11 ¼ ðl̄UP−rÞðr̄PþU†lÞ [36].
There is no SMEFT operator that can directly yield such a
flavor nonuniversal OLR

V at the low scale. The SMEFT

dimension-six operator OHud ¼ ðH†iD
↔

μHÞðūγμdÞ induces
an anomalous b − c −W coupling and contributes to OLR

V
[29,37], but here the W coupling to the leptons is flavor
universal and would not contribute to the b → cτντ anoma-
lies. To generate the operator OLR

V only in the τ sector, we
need the dimension-eight SMEFT operator Ol2udH2 ¼
ðl̄dHÞðH̃†ūlÞ, whose coefficient would be suppressed by
an extra factor of v2=Λ2. For this reason,OLR

V is neglected in
many EFT analyzes based on SMEFT (e.g., [38–42]).
However, in the context of mesons, fits to data on RðDð�ÞÞ,
RðJ=ψÞ, and BðBc → τþνÞ have indicated that significant
contributions from this operator are possible [33,43,44].
A potential baryonic process involving b → cτντ, which

could also offer avenues of probing OLR
V , is the decay

Λb → Λcτν̄τ. The baryons Λb and Λc are spin-half par-
ticles. As a result, all the vector and the scalar effective
operators affect Λb → Λcτν̄τ decay. In contrast, for the
mesonic mode B → D, the axial vector, and the pseudo-
scalar operators do not contribute at the leading order, and

1LEFT is sometimes referred to as weak effective field theory
(WET or WEFT) in literature [24–27].
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for B → D�, the scalar operator does not contribute at the
leading order [45]. Furthermore, the form factors in the
baryonic mode are different from those in the mesonic
modes. Thus, the baryonic mode offers observables com-
plementary to those in the mesonic modes to study the new
physics effects. The large production cross section of Λb at
LHC and the well-known form factors for Λb → Λc make
this baryonic decay mode a good candidate to complement
its mesonic counterpart. Recently, the first observation of
this process was reported at LHCb with a significance
of 6.1σ [46]. The angular distribution of final state particles
in Λb → Λcτν̄τ process [41,47–53] and further in Λb →
Λcð→ ΛπÞτν̄τ process [40,42,45,54–56] offers multiple
observables and ratios of observables where some of the
systematic and hadronic uncertainties would cancel. We
identify the coefficients of terms in this angular distribution
and their ratios, which would be sensitive to OLR

V . We also
point out those observables that can show distinct signa-
tures of the OLR

V contribution.
In Sec. II, we present the angular distribution of Λb →

Λcð→ ΛπÞτν̄τ decay in terms of the three physical angles
involved therein. We calculate angular observables in terms
of helicity amplitudes. The efficiencies of these angular
observables for identifying the effects of OLR

V are analyzed
in Sec. III. We present our concluding remarks in Sec. IV.
Appendix B provides the weighting functions that can be
used to extract the angular observables using the method
of angular moments. Appendix C maps our expressions for
angular distribution with earlier literature in order to clarify
the notation. In Appendix D, we show a comparison
between the effectiveness of the angular observables in
different q2 bins for identifying the effects ofOLR

V with two
possible upper bounds on BðBc → τν̄τÞ.

II. ANGULAR DISTRIBUTION
OF Λb → ΛcðΛπÞτν̄τ DECAY

In the language of LEFT, the effective Hamiltonian for the
quark-level transition b → cτν̄τ may be written as [40,57]

Heff ¼
4GFVcbffiffiffi

2
p ½ð1þ gLÞOLL

V þ gROLR
V þ gSOS þ gPOP

þ gTOT �: ð3Þ

Here, GF is the Fermi constant and Vcb is the Cabibbo-
Kobayashi-Maskawa matrix element. The effective
operators are

OLL
V ¼ ðτ̄γμPLντÞðc̄γμPLbÞ; OS ¼

1

2
ðτ̄PLντÞðc̄bÞ; ð4Þ

OLR
V ¼ ðτ̄γμPLντÞðc̄γμPRbÞ; OP ¼ 1

2
ðτ̄PLντÞðc̄γ5bÞ;

OT ¼ ðτ̄σμνPLντÞðc̄σμνbÞ: ð5Þ

The corresponding NPWilson coefficients are gL, gR, gS, gP,
and gT . In our analysis, we ignore the tensor operator for
simplicity and only consider the vector and the scalar new
physics operators. Among the operators in Eqs. (4) and (5),
only OLR

V cannot be mapped to a dimension-six SMEFT
operator. Our goal is to find observables that can distinguish
the effect of this operator from SM and from other NP
operators. A large nonzero value of Oð0.1–1Þ for the
coefficient gR would imply new physics beyond SMEFT.
The kinematics of the decay is shown in Fig. 1. The spin

components of the particles involved in the decay Λb →
Λcð→ ΛπÞW�ð→ τν̄τÞ may be represented as

Here, s1 denotes the spin of Λb, and m1 denotes its
component along an arbitrarily chosen quantization axis.
The spins and helicities of Λc and W� in the Λb rest frame
are denoted by ðs2; λ2Þ and ðs3; λ3Þ, respectively. The
helicities of ðΛ; πÞ in the Λc rest frame are ðλ4; λ5Þ, while
the helicities of ðτ; ντÞ, in their center of mass frame, i.e.,
W� rest frame, are ðλ6; λ7Þ. Clearly, λ5 ¼ 0 and λ7 ¼ þ1=2.

A. Definitions of the angles

The angles in our analysis are defined as follows. In the
rest frame of Λb, the Λc hadron makes an angle θ1 with the
spin quantization axis z1 ofΛb. In this frame, the direction of
Λc momentum is taken to be the z2 axis, and the opposite
direction, i.e., the direction ofW� momentum, is denoted as
the z3 axis. The x axes ðx1;x2;x3Þ are chosen arbitrarily in
the planes orthogonal to ðz1; z2; z3Þ, keepingx2 ¼ −x3. This
fixes the directions of the y axes ðy1; y2; y3Þ automatically. In
the rest frame of Λc, the momentum of Λ is denoted by the
spherical polar coordinates ðθ2;ϕ2Þ, while in the rest frameof
W�, the direction of τ is denoted by ðθ3;ϕ3Þ.
The angular distribution of the decay Λb →

ΛcðΛπÞW�ð→ τντÞ may be written in terms of helicity
amplitudes [58–60] as

FIG. 1. Kinematics of Λb → Λcð→ ΛπÞW�ð→ τν̄τÞ decay. The
angles are defined following [58].
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ĨðΩ1;Ω2;Ω3Þ ¼
X

m1;m0
1
;λi;λ0j;s3;s

0
3

�
ρm1m0

1
Ds1

m1;λ2−λ3ðΩ1ÞDs1�
m0

1
;λ0

2
−λ0

3
ðΩ1ÞH�

λ2λ3
Hλ0

2
λ0
3
Ds2

λ2;λ4−λ5ðΩ2ÞDs2�
λ0
2
;λ4−λ5

ðΩ2Þ

× B�
λ4λ5

Bλ4λ5ð−1Þs3þs0
3Ds3

λ3;λ6−λ7ðΩ3ÞDs0
3
�

λ0
3
;λ6−λ7

ðΩ3ÞL�
λ6λ7

Lλ6λ7

�
: ð6Þ

Here ρm1m0
1
is the density matrix for Λb spin quantized

along z1. We have

Dj
m;m0 ðΩiÞ≡ e−imϕidjm;m0 ðθiÞeim0ϕi ; ð7Þ

whereDj
m;m0 ðΩiÞ isWigner’sDmatrix, andwehave taken the

Euler angles corresponding to Ωi to be ðϕi; θi;−ϕiÞ, using
the Jacob-Wick convention [34]. Note that s3 can take the

values 0 and 1. Further, Hλiλj and Bλ4λ5 are the hadronic
matrix elements in the helicity basis forΛb → ΛcðλiÞW�ðλjÞ
and Λc → Λðλ4Þπðλ5Þ decays, respectively, and Lλ6λ7 is the
leptonic matrix element for W� → τðλ6Þντðλ7Þ.
We assume that the initial Λb is unpolarized and sum

over all possible spin components of Λb as well as integrate
over the angles θ1 and ϕ1. This reduces the angular
distribution to the form

IðΩ2;Ω3Þ ¼
X

λi;λ0j;s3;s
0
3

�
2πδðλ2−λ3Þ;ðλ02−λ03Þð−1Þs3þs0

3H�
λ2λ3

Hλ0
2
λ0
3
Ds2

λ2;λ4−λ5ðΩ2ÞDs2�
λ0
2
;λ4−λ5

ðΩ2Þ

× B�
λ4λ5

Bλ4λ5D
s3
λ3;λ6−λ7ðΩ3ÞDs0

3
�

λ0
3
;λ6−λ7

ðΩ3ÞL�
λ6λ7

Lλ6λ7

�
: ð8Þ

Note that, since the direction of axes z2 and z3 are
opposite and the direction x2 ¼ −x3 is arbitrary, the
individual values of ϕ2 and ϕ3 are arbitrary, but the
combination χ ≡ ϕ2 þ ϕ3 is physical. This is, indeed,
the physical angle between the decay planes of Λc →
Λþ π and W� → τ þ ντ. As a result, we get the angular
distribution of the decay in terms of three physical angles:
θ2, θ3, and χ. From now on, we refer to θ2 as θc and θ3 as θl.
We assume that the decay Λb → Λcð→ ΛπÞτντ is com-
pletely identified, so that the values of θc, θl, and χ are
available for every event. Note that the three-momentum of
τ can be reconstructed in the three-prong topology using the
direction of τ track [46,61].

B. Hadronic and leptonic matrix elements

The hadronic matrix elements for the Λb → ΛcW�
transition, in the rest frame of Λb, are given by [57]

HV
λ2;λ3

¼ ð1þ gL þ gRÞϵ�μðλ3ÞhΛcðλ2Þjc̄γμbjΛbi;
HA

λ2;λ3
¼ ð1þ gL − gRÞϵ�μðλ3ÞhΛcðλ2Þjc̄γμγ5bjΛbi;

HS
λ2;λ3

¼ gShΛcðλ2Þjc̄bjΛbi;
HP

λ2;λ3
¼ gPhΛcðλ2Þjc̄γ5bjΛbi: ð9Þ

Here ϵμ represents the polarization vector of W�. Only
certain combinations of these hadronic matrix elements
have nonzero contributions to the decay amplitude. For the
vector and axial-vector currents, nonzero contributions are

seen to arise only from the specific combination
HVA

λ2;λ3
¼ HV

λ2;λ3
−HA

λ2;λ3
. Similarly, for the scalar and pseu-

doscalar currents, nonzero contributions come only from
HSP

λ2;λ3
¼ HS

λ2;λ3
þHP

λ2;λ3
. The explicit expressions of the

hadronic amplitudes for different values of helicities [57]
are provided in Appendix A.
The amplitudes for the Λc → Λπ transition in the Λc rest

frame are defined as

Bλ4λ5 ¼ hΛðλ4Þπðλ5ÞjΛcðλ2Þi: ð10Þ

There are two independent amplitudes B1
2
;0 and B−1

2
;0. We

do not use the analytic expressions for these amplitudes but
calculate them in terms of the average decay rate ΓΛπ and
the polarization asymmetry αP, defined as [42]

ΓΛπ ¼
ffiffiffiffi
Q

p
32πm3

Λc

�
jB1

2
;0j2 þ jB−1

2
;0j2

�
; ð11Þ

αP ¼
jB1

2
;0j2 − jB−1

2
;0j2

jB1
2
;0j2 þ jB−1

2
;0j2

; ð12Þ

whereQ ¼ ðm2
Λc

− ðmΛ þmπÞ2Þðm2
Λc

− ðmΛ −mπÞ2Þ. The
values of ΓΛπ and αP are taken from measurements [62].
The leptonic amplitudes for W� → τν̄τ are given as

LVA
λ6;λ7

¼ ϵμðλ3Þhτν̄τjτ̄γμPLντj0i; ð13Þ
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LSP
λ6;λ7

¼ hτν̄τjτ̄PLντj0i: ð14Þ

In the rest frame of W�, these leptonic amplitudes are [63]

LVA
−1
2
;1
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðq2 −m2

τÞ
q

; ð15Þ

LVA
1
2
;1
2

¼ mτffiffiffiffiffiffiffi
2q2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðq2 −m2

τÞ
q

; ð16Þ

LSP
−1
2
;1
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðq2 −m2

τÞ
q

: ð17Þ

Here q2 is the invariant mass of the ðτ; ν̄τÞ pair.

C. The angular distribution

After summing over the helicities of all particles and
integrating over the nonmeasurable angles, we obtain the

normalized angular distribution in the form

1

ðdΓ=dq2Þ
dΓ

dq2d cos θcd cos θldχ

¼ A0 þ A1 cos θc þ A2 cos θl þ A3 cos θc cos θl

þ A4 cos2 θl þ A5 cos θc cos2 θl þ A6 sin θc sin θl cos χ

þ A7 sin θc sin θl sin χ þ A8 sin θc sin θl cos θl cos χ

þ A9 sin θc sin θl cos θl sin χ: ð18Þ

The coefficients A0–A9 in Eq. (18) can be extracted
from a fit to the observed angular distribution or by the
method of angular moments [64]. We have provided the
weighting functions required to extract these coefficients in
Appendix B. The coefficients A0–A9, which we refer to
as the angular observables, are given in Eqs. (20)–(29), in
terms of the total decay width

Γ0 ≡ 2

3

�
ðm2

τ þ 2q2Þ
�
jHVA

−1
2
;−1j2 þ jHVA

−1
2
;0
j2 þ jHVA

1
2
;0
j2 þ jHVA

1
2
;1
j2
�

þ 3

�
jmτHVA

−1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

−1
2
;t
j2 þ jmτHVA

1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

1
2
;t
j2
��

: ð19Þ

A0 ¼
1

Γ0

�
1

2
ðm2

τ þ q2ÞjHVA
1
2
;1
j2 þ 1

2
ðm2

τ þ q2ÞjHVA
−1
2
;−1j2 þ jmτHVA

1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

1
2
;t
j2

þ jmτHVA
−1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

−1
2
;t
j2 þ q2jHVA

1
2
;0
j2 þ q2jHVA

−1
2
;0
j2
�
; ð20Þ

A1 ¼
αP
2Γ0

�
ðm2

τ þ q2ÞjHVA
1
2
;1
j2 þ ðm2

τ þ q2ÞjHVA
−1
2
;−1j2 − 2jmτHVA

1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

1
2
;t
j2

þ 2jmτHVA
−1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

−1
2
;t
j2 − 2q2jHVA

1
2
;0
j2 þ 2q2jHVA

−1
2
;0
j2
�
; ð21Þ

A2 ¼ −
1

Γ0

�
q2jHVA

1
2
;1
j2 þ q2jHVA

−1
2
;−1j2 − 2Re

��
mτHVA

1
2
;0

�
mτHVA

1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

1
2
;t

�� þmτHVA
−1
2
;0

�
mτHVA

−1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

−1
2
;t

��
���

;

ð22Þ

A3 ¼ −
αP
Γ0

ðq2jHVA
1
2
;1
j2 þ q2jHVA

−1
2
;−1j2 þ 2mτRe

��
HVA

1
2
;0

�
mτHVA

1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

1
2
;t

��
−HVA

−1
2
;0

�
mτHVA

−1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

−1
2
;t

��
���

; ð23Þ

A4 ¼ −
1

2Γ0

ðm2
τ − q2Þ

�
jHVA

1
2
;1
j2 þ jHVA

−1
2
;−1j2 − 2

�
jHVA

1
2
;0
j2 þ jHVA

−1
2
;0
j2
��

; ð24Þ

A5 ¼
αP
Γ0

ðm2
τ − q2Þ

�
2jHVA

1
2
;0
j2 − jHVA

1
2
;1
j2 þ jHVA

−1
2
;−1j2 − 2jHVA

−1
2
;0
j2
�
; ð25Þ

A6 ¼ −
αPffiffiffi
2

p
Γ0

2Re

��
HVA

−1
2
;−1

�
�
�
mτ

�
mτHVA

1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

1
2
;t

�
þ q2HVA

1
2
;0

�

þ
�
HVA

1
2
;1

�
�
�
q2HVA

−1
2
;0
−mτ

�
mτHVA

−1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

−1
2
;t

���
; ð26Þ
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A7 ¼ −
αPffiffiffi
2

p
Γ0

2Im

��
HVA

1
2
;1

�
�
�
q2HVA

−1
2
;0
−mτ

�
mτHVA

−1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

−1
2
;t

��

−
�
HVA

−1
2
;−1

�
�
�
mτ

�
mτHVA

1
2
;t
þ

ffiffiffiffiffi
q2

q
HSP

1
2
;t

�
þ q2HVA

1
2
;0

��
; ð27Þ

A8 ¼
αPffiffiffi
2

p
Γ0

ðm2
τ − q2Þ2Re

��
HVA

−1
2
;−1

�
HVA

1
2
;0

�
� −HVA

−1
2
;0

�
HVA

1
2
;1

�
�
��

; ð28Þ

A9 ¼
αPffiffiffi
2

p
Γ0

ðm2
τ − q2Þ2Im

�
HVA

−1
2
;−1

�
HVA

1
2
;0

�
� þHVA

1
2
;1

�
HVA

−1
2
;0

�
�
�
: ð29Þ

Note that, while A7 and A9 change sign under gR ↔ g�R
(see the explicit expressions for HVA

λ2;λ3
in Appendix A), all

the other angular observables are invariant under this
interchange.
The mapping of the angular observables above to the

ones calculated in earlier literature [40] has been provided
in Appendix C. In the next section, we will discuss the
utility of these angular observables for identifying physics
beyond SM and physics beyond SMEFT.

III. OBSERVABLES AND NUMERICAL
RESULTS

Each of the coefficients A0–A9 in Eq. (18) can be
measured if the information about the angles θc, θl, χ
and the leptonic invariant mass square q2 are known. In this
section, we consider four NP scenarios gL, gR, sL, and sR,
where only the corresponding complex NP parameter gL,
gR, sL, and sR, respectively, is nonzero. Here we have
defined

sL ¼ ðgS − gPÞ=2 and sR ¼ ðgS þ gPÞ=2: ð30Þ

First, we identify the parameter values in all scenarios that
give a reasonable fit to the above five observables, i.e., a χ2

less than a predecided value or a p value greater than a
predecided minimum. Later, we check if the predictions of
the angular observables in the gR scenario can be mimicked
by any of the allowed set of parameters in the other
scenarios.

A. Constraining NP parameters based
on meson decay observations

In order to obtain the allowed parameter values in each
scenario, we perform a χ2 fit for the corresponding NP
parameter. The χ2 is defined as

χ2 ≡X
i;j

ðOth
i −Oexp

i ÞCov−1ij ðOth
j −Oexp

j Þ: ð31Þ

The experimentally measured central values of Oexp
i and

their uncertainties ΔOexp
i are shown in Table I. The

theoretical values of these observables are calculated based
on [65]. The covariance matrix Covij is defined as

Covij ≡ ΔOexp
i ρijΔO

exp
j þ ΔOth

i δijΔOth
j ; ð32Þ

where ρij is the correlation between ith and jth observables.
For a pair of independent measurements i and j, we have
ρij ¼ δij. For the measurements of i≡ RD and j≡ RD� , we
have taken ρij ¼ −0.37 [66]. We further ignore the theo-
retical uncertainties as they are much smaller compared to
the experimental uncertainties [65].
For any fixed value of the complex parameters gL, gR, sL,

and sR, we calculate the χ2 using five observables as
listed in Table I. The goodness of fit for each of the
parameter values may be expressed in terms of χ2, p values,
confidence levels, or number of σ’s. Since we are
determining the goodness of fit for each NP parameter
value independently, the number of degrees of freedom
(d.o.f.) is the same as the number of observables, i.e., five.
For 5 d.o.f., the correspondence among these four measures

TABLE I. Current experimental values and SM predictions of the observables RD, R�
D, Rj=ψ , PD�

τ , and FD�
L .

Observable Experimental value SM value

RD 0.357� 0.029 [14–16,66–68] 0.298� 0.004 [66,68–72]
R�
D 0.284� 0.012 [14–17,61,66,68,73–76] 0.254� 0.005 [66,68,77–79]

Rj=ψ 0.71� 0.17� 0.18 [18] 0.258� 0.004 [80,81]
PD�
τ −0.38� 0.51� 0.21 [75,76] −0.497� 0.013 [82]

FD�
L 0.60� 0.08� 0.035 [83] 0.46� 0.04 [84]
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of goodness of fit is given in Table II. Thus, stating that an
NP parameter value is allowed at 2σ or 95.45% CL is
equivalent to stating that its p value p > 0.0455 or
χ2 < 11.31.
In Fig. 2, we show the NP parameter values allowed at

1σ, 1.64σ, and 2σ in the four scenarios under consideration.
The best-fit points in each scenario, calculated using the
Python package IMINUIT [85], have been indicated in this
figure as well as in Table III. It is observed that, in the
scenarios gL, gR, and sL, there are parameter values allowed
at 1σ. However, no parameter values in the sR scenario are
allowed even at 1.64σ, though there are some values
allowed at 2σ. The SM itself has a p value of 0.00045
and is disfavored at more than 3.5σ.
So far, we have not considered the observable

BðBc → τν̄τÞ, which is very sensitive to the scalar NP
operators [39]. The SM value for BðBc → τν̄τÞ is ≃2.2%
[62]. Experimentally, the Bc → τν̄τ branching fraction is
not yet measured. In [86], an upper bound BðBc → τν̄τÞ <
30% is evaluated from the missing decay width of the Bc
meson. On the other hand, an upper bound BðBc → τν̄τÞ <
10% is obtained in [87] using data from the large electron
positron (LEP) experiment. However, it has been pointed
out [38,39,88] that the pT dependence of the fragmentation
function b → Bc has been overlooked in [87] and thus the
bound may be overestimated. In [38], the authors suggest a
more conservative bound BðBc → τν̄τÞ < 60%. We show
the contours corresponding to the upper bounds
BðBc → τν̄τÞ < 60%; 30%, and 10% in Fig. 2 to indicate
the values of sL and sR, which would remain valid even
with these constraints. These fit results match reasonably
with earlier literature [65,89] and with the recent fit [90],

where gL, sL, and sR scenarios were analyzed. In the future,
the FCC-ee and CEPC experiments expect to directly
measure BðBc → τν̄τÞ at the Oð1%Þ level [91,92]. In our
analysis, we first present our results with the condition
BðBc → τν̄τÞ < 30%, and later we see the impact of a
stronger bound BðBc → τν̄τÞ < 10%.
It is not possible in SMEFT to have as large a value of gR

as mentioned in Table III. If such a large value of gR is
measured experimentally, it would imply physics beyond
SMEFT and hence a nonlinear realization of the EW

FIG. 2. Regions allowed in the parameter space of gL, gR, sL,
and sR in the absence of any restriction on BðBc → τν̄τÞ. The red,
cyan, and blue regions are allowed at 1σ, 1.64σ, and 2σ,
respectively (5 d.o.f.). The black dots represent the best-fit values
of the NP parameters. Note that the χ2 values in the gL scenario
are degenerate along the red circular region, and there is no single
best-fit value. The dashed (gray, black, green) contours indicate
the allowed values of sL and sR corresponding to the upper bound
BðBc → τν̄τÞ < ð60%; 30%; 10%Þ. For gL and gR, even the
contours for BðBc → τν̄τÞ < 10% are outside the range shown
in the figure.

TABLE III. Best-fit values of the NP parameters for the scenarios gL, gR, sL, and sR, along with the corresponding χ2 and p values
(5 d.o.f.) for these best-fit points, for unrestricted BðBc → τν̄τÞ (left), for BðBc → τν̄τÞ < 30% (center), and for BðBc → τν̄τÞ < 10%
(right). Note that restricting BðBc → τν̄τÞ does not affect the best-fit points of gL, gR, and sR. The asterisk for the best-fit value in the gL
scenario indicates that there is no single best-fit point (see Fig. 2).

BðBc → τν̄τÞ unrestricted BðBc → τν̄τÞ < 30% BðBc → τν̄τÞ < 10%

Scenario Best-fit χ2bf p valueðbfÞ Best-fit χ2bf p valueðbfÞ Best-fit χ2bf p valueðbfÞ

SM � � � 22.35 0.00045 � � � 22.35 0.00045 � � � 22.35 0.00045
gL � 5.86 0.32 � 5.86 0.32 � 5.86 0.32
gR 0.018� 0.39i 5.56 0.35 0.018� 0.39i 5.56 0.35 0.018� 0.39i 5.56 0.35
sL −0.73� 0.85i 3.76 0.58 −0.22 − 0.72i 7.24 0.20 0.04 − 0.45i 11.78 0.04
sR 0.18þ 0.00i 9.76 0.08 0.18þ 0.00i 9.76 0.08 0.18þ 0.00i 9.76 0.08

TABLE II. Correspondence among the four measures of the
goodness of fit, with 5 degrees of freedom.

Sigma CL (%) p value χ2

1σ 68.3 0.317 5.89
1.64σ 90 0.10 9.24
2σ 95.45 0.0455 11.31
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symmetry. In the following, we see how such a value of gR
can be identified from the angular observables and how its
effect can be distinguished from the other NP parameters.

B. Angular observables in Λb → Λcð→ ΛπÞτν̄τ
for BSM and beyond-SMEFT signatures

Our aim is to look for confirmed signals of any kind
of NP and to further identify whether this NP needs
terms beyond SMEFT for its description. We proceed in
two steps.
In the first step, we check for each of the observables

whether the effects of gR at its best-fit value can be
distinguished from the SM predictions. The 2σ uncertain-
ties on the observables due to the hadronic form factors are
incorporated using the z-expansion coefficients and their
correlated uncertainties as given in [49]. We also include
the effect of the uncertainty in the measurement of the
polarization asymmetry αP [62].
In the second step, in order to distinguish the effects of

gR from the effects of gL, sL, and sR, we vary these NP
parameters within their 2σ-allowed ranges, while contin-
uing to include the uncertainties due to the hadronic form
factors and αP. When the band of gR is nonoverlapping with
the bands of other scenarios in some q2 range, there is
potential for identification of the gR scenario.
In this subsection, we take the upper bound on BðBc →

τν̄τÞ to be a sharp cut off at 30%, i.e., we calculate the χ2

values for only those points in the parameter space for
which BðBc → τν̄τÞ < 30%. It is observed that there is no
change in the allowed regions for gL, gR, and sR compared
to Fig. 2. However, for sL, the allowed region gets severely
restricted and no value of sL is allowed at 1σ. The allowed
regions in the sL and sR parameter spaces are shown in
Fig. 3. Note that with this upper bound, the gR scenario
gives a better χ2 fit than the other scenarios. In particular,
χ2bfðgRÞ < χ2bfðsLÞ, which was not the case for unre-
stricted BðBc → τν̄τÞ.
We now proceed to calculate the decay width and the

angular observables in Λb → Λcð→ ΛπÞτν̄τ as functions of
q2, and compare the predictions of the NP scenarios gL, gR,
sL, and sR.

1. Decay width dΓ=dq2

In the top panel of Fig. 4, we show the effects of gL, gR,
sL, and sR on dΓ=dq2. The best-fit value of gR and the
2σ-allowed values of gL, sL, and sR are taken. The 2σ
uncertainties due to the hadronic form factors αP and Vcb
are included. We use the exclusive measurement of Vcb
[62]. Note that it will be almost impossible to distinguish gR
from the SM or other NP scenarios, using only dΓ=dq2.

2. Angular observables

We divide the ten angular observables A0, ... ,A9 in five
subsets: (i) A0 and A4, (ii) A2, (iii) A1, A3, and A5, (iv) A6

and A8, (v) A7 and A9. We then explore the effects of
the NP parameters gL, gR, sL, and sR on these obser-
vables, as functions of q2. Note that when the NP appears
only through gL, Eq. (A4) indicates that all the hadronic
matrix elements HVA

λ;λ0 get multiplied by a common factor
ð1þ gLÞ. As a result, in the angular observables given in

FIG. 4. Top: the differential decay rate dΓ=dq2 as a function of
q2, with SM and the NP scenarios gL, gR, sL, and sR. Bottom: the
angular observable A2 (the forward-backward asymmetry) as a
function of q2, with SM and the NP scenarios gR, sL, and sR. For
both the observables, the values of gL, sL, and sR are varied
within their 2σ-allowed ranges, while gR is kept fixed at its best-
fit value. For each scenario, 2σ uncertainties due to the hadronic
form factors and the polarization asymmetry αP have been
included. The calculation of dΓ=dq2 also includes the uncertainty
in Vcb. The bound BðBc → τν̄τÞ < 30% is imposed for both
these plots.

FIG. 3. Allowed regions in the parameter spaces of sL and sR,
with the upper bound BðBc → τν̄τÞ < 30%. The cyan and blue
regions are allowed at 1.64σ and 2σ, respectively (5 d.o.f.).
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Eqs. (20)–(29), the dependence on gL cancels out com-
pletely. Consequently, the angular observables will not
be affected by gL. Therefore, in the following sections we
only focus on the effects of gR, sL, and sR. Note that the
uncertainty in Vcb gets canceled out in all the angular
observables.

(i) A0 and A4: These two angular observables are the
coefficients of the constant term and cos2 θl in
Eq. (18), respectively. They are trivially related as
A0 þ A4=3 ¼ 1=2. Even though they are easier to
measure experimentally, we find that they cannot
distinguish the effects of nonzero gR from SM when
we include the uncertainties due to hadronic form
factors.

(ii) A2: This is the coefficient of the term cos θl in
Eq. (18). This observable corresponds to the for-
ward-backward asymmetry AFB with respect to θl.
The bottom panel of Fig. 4 shows the effects of gR,
sL, and sR on A2. As can be observed from the
figure, the effects of gR can be distinguished
from the SM and sL scenario if gR takes its best-
fit value. However, the gR scenario overlaps with
the sR scenario, which means that the effect of the
best-fit gR value cannot be distinguished from that of
sR. Note that the zero crossing of A2 shifts to higher
values of q2 compared to the SM in the gR scenario,
as has been observed earlier for AFB [52,56].

(iii) A1, A3, and A5: These are the coefficients of the
angular functions that are linear in cos θc. These
angular observables are linear in the polarization
asymmetry αP as can be seen from Eqs. (21), (23),
and (25). Because of the large uncertainty in the
measured value αP ¼ −0.84� 0.09 [62], A1, A3,
and A5 individually cannot distinguish the effects of
gR from those of the other scenarios. Taking the
ratios R3;1 ≡ A3=A1 and R3;5 ≡ A3=A5 cancels the
uncertainty due to αP. These ratios would help in
distinguishing the gR scenario from SM at higher q2

values. This may be seen in Fig. 5. However, these
ratios would not be able to distinguish gR from the
other NP scenarios.

(iv) A6 and A8: The angular observables A6 and A8 are
the coefficients of the angular terms linear in cos χ.
These observables are also linear in αP, and hence
individually they are not very suitable for identifying
the effects of gR. We construct the ratio R6;8 ≡
A6=A8 and show its dependence on NP parameters in
the top panel of Fig. 6. This ratio would only
marginally help in separating the effects of gR from
SM at higher q2 values and would not be able to
distinguish from the other NP scenarios.

(v) A7 and A9: These observables are associated with
angular functions that are linear in sin χ and inter-
change sign under gR ↔ g�R. We find that A9 is
identically zero in the SM as well as in all NP

scenarios considered here. However, A7, which
vanishes in the SM, can be significantly nonzero
in NP scenarios. In particular, the gR scenario, at its
best-fit point as given in Table III, can give a nonzero
value of A7 that can be distinguished from the SM as
well as from the sL and sR scenarios, as shown in
Fig. 6. Note that A7 is the only angular observable
sensitive to the sign of ImðgRÞ.

We summarize the discussion in this section in Table IV,
where we show the effectiveness of the angular observables
and their ratios in distinguishing the effects of the best-fit
gR from the SM and from the NP scenarios gL, sL, and sR. If
the band of predicted values of an observable for the best-fit
value of gR does not overlap with the band corresponding to
any of the other scenarios in some q2 range, we put a tick
mark in the corresponding cell. If the nonoverlapping q2

range is very small, then we add a cross in parentheses. If
the gR prediction band always overlaps with the other
scenario, we put only a cross in the corresponding cell.
For BðBc → τν̄τÞ < 30%, Table IV indicates:
(i) The observable A2 can distinguish the effects of the

best-fit value of gR from the SM as well as from the
NP scenarios gL and sL, but not from sR.

FIG. 5. The ratios R3;1 (top panel) and R3;5 (bottom panel) as
functions of q2, with SM and the NP scenarios gR, sL, and sR. The
values of sL and sR are varied within their 2σ-allowed ranges,
while gR is kept fixed at its best-fit value. For each scenario, 2σ
uncertainties due to the hadronic form factors and the polarization
asymmetry αP have been included. The bound BðBc → τν̄τÞ <
30% is imposed for both these plots.
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(ii) The ratios R3;1, R3;5, and R6;8 can distinguish the gR
scenario from SM and gL, while failing to distin-
guish it from the sL or sR scenario.

(iii) Only the angular observable A7 can cleanly distin-
guish the gR scenario from the SM as well as from all
the other NP scenarios.

C. Impact of a tighter bound on BðBc → τν̄τÞ
In Sec. III B, we have analyzed the efficacy of the

angular observables in distinguishing the gR scenario from
other NP scenarios, considering the NP parameter spaces
restricted by BðBc → τν̄τÞ < 30%. In this section, we take a
tighter bound BðBc → τν̄τÞ < 10% and discuss the effec-
tiveness of the angular observables in distinguishing the
effect of gR. The allowed parameter spaces for gL and gR
remain the same as in Fig. 2. The sL parameter space is
totally excluded at 2σ, while a small sR region around the
best-fit value sR;bf ¼ 0.18 stays as shown in Fig. 7.
The decay width dΓ=dq2, the angular observables A2,

A7, and the ratios R3;1, R3;5, and R6;8 are shown in Fig. 8.
With the tighter boundary condition BðBc → τν̄τÞ < 10%,
large regions of sL and sR parameter space are disallowed.

As a result, a clear separation between the gR scenario and
the sL, sR scenarios is possible for multiple angular
observables.

(i) The angular observable A7 and the ratios R3;1 and
R3;5 can cleanly distinguish the effect of best-fit gR
from the SM as well as from all the other NP
scenarios considered here.

(ii) The ratio R6;8 can distinguish gR from the other
scenarios at higher q2 values.

In the right half of Table IV, we summarize the results for
all the angular observables and ratios with the condition
BðBc → τν̄τÞ < 10%. Note that we put a tick mark for all
observables in the sL scenario because, with the condition
BðBc → τν̄τÞ < 10%, there is no sL value allowed at 2σ. In
Appendix D, we show a comparison between the results
obtained with the two upper bounds BðBc → τν̄τÞ < 30%

TABLE IV. The effectiveness of angular observables and their
ratios in distinguishing the gR scenario from the SM and other NP
scenarios. Results for BðBc → τν̄τÞ < 30% and BðBc → τν̄τÞ <
10% are shown.

Scenario

BðBc → τν̄τÞ < 30% BðBc → τν̄τÞ < 10%

Observable SM, gL sL sR SM, gL sL sR

dΓ=dq2 ✗ ✗ ✗ ✗ ✓ ✗

A0 ✗ ✗ ✗ ✗ ✓ ✗
A1 ✗ ✗ ✗ ✗ ✓ ✗
A2 ✓ ✓ð⨯Þ ✗ ✓ ✓ ✗

A3 ✓ð⨯Þ ✗ ✗ ✓ð⨯Þ ✓ ✓ð⨯Þ
A4 ✗ ✗ ✗ ✗ ✓ ✗
A5 ✗ ✗ ✗ ✗ ✓ ✗
A6 ✗ ✗ ✗ ✗ ✓ ✗
A7 ✓ ✓ ✓ ✓ ✓ ✓
A8 ✗ ✗ ✗ ✗ ✓ ✗
A3=A1 ✓ ✗ ✗ ✓ ✓ ✓
A3=A5 ✓ ✓ð⨯Þ ✗ ✓ ✓ ✓

A6=A8 ✓ ✓ð⨯Þ ✗ ✓ ✓ ✓ð⨯Þ

FIG. 7. Allowed regions for sL and sR including the upper
bound BðBc → τν̄τÞ < 10%. There are no sL values allowed at
2σ. The blue region for sR corresponds to the parameter space
allowed at 2σ (but not at 1.64σ).

FIG. 6. The ratios R6;8 (top) and the angular observable A7

(bottom) as functions of q2, with SM and the NP scenarios gR, sL,
and sR. The values of sL and sR are varied within their 2σ-allowed
ranges, while gR kept fixed at its best-fit value as given in
Table III. For each scenario, 2σ uncertainties due to the hadronic
form factors and the polarization asymmetry αP have been
included. The bound BðBc → τν̄τÞ < 30% is imposed for both
these plots.
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and BðBc → τν̄τÞ < 10% for all points in the 2σ-allowed
region of gR.
Note that this analysis has been performed in the

idealized limit of a perfect detector and a large number
of events. The systematic and statistical uncertainties in the
experiment are not taken into account. However, the results
above are expected to provide a good indication of which
observables and which q2 bins would be useful in dis-
tinguishing the gR scenario from the rest. Such a distinction
will enable us to identify the presence of non-SMEFT
contributions.

IV. CONCLUDING REMARKS

The present measurements of production and decay
channels of the Higgs boson at the LHC are consistent
with the SM Higgs mechanism of EW symmetry breaking.
As a result, SMEFT is often taken to be the default EFT
description above the electroweak scale. However, more
general EFT descriptions such as HEFT, where the EW
symmetry SUð2ÞL × Uð1ÞY is realized nonlinearly, are
still possible. In this paper, we explore whether it is
possible to identify HEFT signals that cannot be mimicked
by operators allowed in SMEFT. We restrict ourselves to

FIG. 8. The decay width dΓ=dq2, the angular observables A2, A7, and the ratios R3;1, R3;5, and R6;8 for BðBc → τν̄τÞ < 10% in the SM
and in the NP scenarios gL, gR, and sR. The values of gL and sR are varied within their 2σ-allowed range, while gR is kept fixed at its best-
fit value as given in Table III. Note that there is no sL value allowed at 2σ with this upper bound on BðBc → τν̄τÞ. For all observables
except dΓ=dq2, the results for gL are the same as those for the SM. For each scenario, 2σ uncertainties due to the hadronic form factors
and the polarization asymmetry αP have been included.
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scalar and vector NP operators, neglecting any tensor
contributions.
We focus on the flavor physics sector, in particular, on

the six-dimensional flavor nonuniversal LEFT operator
OLR

V ≡ðτ̄γμPLντÞðc̄γμPRbÞ which is relevant for b→ cτντ
processes. This operator can arise from a six-dimensional
HEFT operator. However, it appears in SMEFT only at
dimension-eight and hence its contribution would be sup-
pressed by an extra factor of v2=Λ2. Therefore, a large
contribution from this operator would prefer HEFT over
SMEFT as the correct BSM description.
The principle of EFTs is that any operator that is not

explicitly forbidden by a symmetry must be taken into
account, which is the case for OLR

V in a beyond-SMEFT
scenario. Therefore, the consideration of this operator
becomes mandatory even in the absence of a UV-complete
model. There are also specific models, like the nonstand-
ard-Higgs model with a strongly coupled scalar [32] and
the one with a W0 that couples to right-handed quarks and
left-handed leptons [56] that give rise to the OLR

V operator.
The decay Λb → ΛcðΛπÞτν̄τ, when fully reconstructed,

can be written in terms of an angular distribution in three
angles. The coefficients of these angular terms, A0;…; A9,
can act as angular observables where information about NP
is encoded. We calculate this angular distribution in terms
of helicity amplitudes and compare the values of the above
angular observables in scenarios with (i) only SM, (ii) NP
with nonzero coefficient gR of OLR

V , (iii) NP with nonzero
coefficient gL of OLL

V ≡ ðτ̄γμPLντÞðc̄γμPLbÞ, and (iv) NP
with new scalar and pseudoscalar operators parametrized
by nonzero values of sL and sR. The identification of the gR
scenario would indicate the need for a HEFT description,
i.e., for going beyond SMEFT.
We find that the angular observables A2, A7 and the ratios

R3;1 ≡ A3=A1, R3;5 ≡ A3=A5, and R6;8 ≡ A6=A8 are, in
principle, capable of distinguishing the effects of gR from
those of the SM and gL scenarios. These can thus indicate the
presence of BSM physics. It is observed that their effective-
ness strongly depends on the constraints on the branching
ratioBðBc → τν̄τÞ. For aweaker boundBðBc→ τν̄τÞ<30%,
only the angular observable A7 can cleanly distinguish the
effects of gR from those of the sL and sR scenarios as well.
However, if a tighter bound BðBc → τν̄τÞ < 10% can be
imposed,we find that, alongwithA7, the ratiosR3;1,R3;5, and
R6;8 could also indicate distinct effects for gR in comparison
to the SM and other NP scenarios. For all the cases, this
distinction would be facilitated in higher q2 bins and for
larger values of jImðgRÞj. Clearly, constraining the branching
ratio of Bc → τν̄τ would be extremely crucial in identifying
physics beyond SMEFT. Along with more data for this
process, a better understanding of the pT dependence of the
fragmentation function in Bc decay will be needed to put a
tighter bound on this branching ratio.
The decay of Λb → ΛcðΛπÞτν̄τ has been recently

observed at LHCb. Future runs of High-Luminosity
LHC are expected to provide more data in this channel.

With enough data, the angular distribution in this channel
could allow us to identify the presence of the NP operator
OLR

V , which will indicate that SMEFT is not a sufficient
EFT description of BSM physics beyond the EW scale.
This, in turn, would help us probe the nature of Higgs and
the mode of realization of SUð2ÞL ×Uð1ÞY symmetry
above the EW scale.
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APPENDIX A: HADRONIC AMPLITUDES

As mentioned in Sec. II, Eq. (9), the hadronic amplitudes
are nonzero only for the combinations

HVA
λ2;λ3

¼ HV
λ2;λ3

−HA
λ2;λ3

; ðA1Þ
HSP

λ2;λ3
¼ HS

λ2;λ3
þHP

λ2;λ3
: ðA2Þ

In this section, we provide explicit expressions for these
combinations for all λ2–λ3 pairs, in terms of the hadronic
form factors Fþ; F⊥; F0; Gþ; G⊥, and G0 [57].
The hadronic amplitudes involving vector currents are

shown in the following:

HVA
1
2
;0
¼ FþðgL þ gR þ 1ÞðmΛb

þmΛc
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q−=q2

q

−GþðgL − gR þ 1ÞðmΛb
−mΛc

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ=q2

q
;

HVA
1
2
;1
¼ G⊥ðgL − gR þ 1Þ ffiffiffiffiffiffiffiffiffi

2Qþ
p

−F⊥ðgL þ gR þ 1Þ
ffiffiffiffiffiffiffiffiffi
2Q−

p
;

HVA
1
2
;t
¼ F0ðgL þ gR þ 1ÞðmΛb

−mΛc
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ=q2

q

−G0ðgL − gR þ 1ÞðmΛb
þmΛc

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q−=q2

q
;

HVA
−1
2
;0
¼ FþðgL þ gR þ 1ÞðmΛb

þmΛc
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q−=q2

q

þGþðgL − gR þ 1ÞðmΛb
−mΛc

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ=q2

q
;

HVA
−1
2
;−1 ¼ −F⊥ðgL þ gR þ 1Þ

ffiffiffiffiffiffiffiffiffi
2Q−

p
−G⊥ðgL − gR þ 1Þ ffiffiffiffiffiffiffiffiffi

2Qþ
p

;

HVA
−1
2
;t
¼ F0ðgL þ gR þ 1ÞðmΛb

−mΛc
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ=q2

q

þG0ðgL − gR þ 1ÞðmΛb
þmΛc

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q−=q2

q
: ðA3Þ
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HereQþ¼ðmΛb
þmΛc

Þ2−q2 andQ−¼ðmΛb
−mΛc

Þ2−q2,
with q2 being the total invariant mass squared of the
leptons τ and ν̄τ. The suffix t indicates the contribution
from s3 ¼ 0. The values of hadronic form factors
Fþ; F⊥; F0; Gþ; G⊥, and G0 are as obtained in [49] using
the “nominal fit.”
The hadronic amplitudes involving scalar currents are

HSP
1
2
;t
¼F0gSðmΛb

−mΛc
Þ ffiffiffiffiffiffiffi

Qþ
p

mb −mc
−
G0gPðmΛb

þmΛc
Þ ffiffiffiffiffiffiffi

Q−
p

mbþmc
;

HSP
−1
2
;t
¼F0gSðmΛb

−mΛc
Þ ffiffiffiffiffiffiffi

Qþ
p

mb −mc
þG0gPðmΛb

þmΛc
Þ ffiffiffiffiffiffiffi

Q−
p

mbþmc
:

ðA4Þ

APPENDIX B: EXTRACTING ANGULAR
OBSERVABLES

The coefficients of the angular distribution in Eq. (18)
can be extracted by a fit to the ten coefficients.
Alternatively, they can be extracted by using the orthogon-
ality between different angular functions, using the method
of angular moments [64]. We can write the angular
distribution in the following form:

1

dΓ=dq2
dΓ

dq2d cos θcd cos θldχ
¼

X
i

Aigiðcos θc; cos θl; χÞ:

ðB1Þ
Here Ai are the coefficients of the angular distribution
in Eq. (18) and giðcos θc; cos θl; χÞ are the associated
angular functions. We find a “weighting function”
wiðcos θc; cos θl; χÞ for each of the gi such that

Z
1

−1
d cos θl

Z
1

−1
d cos θc

Z
2π

0

dχ

× giðcos θc; cos θl; χÞwjðcos θc; cos θl; χÞ ¼ δij; ðB2Þ

where δij is the Kronecker δ function. The value of Ai in a
particular q2 bin can then be determined as

AiðbinÞ ¼
1

Nbin

X
events∈ bin

wiðcos θc; cos θl; χÞ: ðB3Þ

The weighting functions wiðcos θc; cos θl; χÞ are given in
Table V. Note that these weighting functions are not unique
and may not be experimentally optimal.

APPENDIX C: MAPPING THE ANGULAR
DISTRIBUTION ONTO EARLIER LITERATURE

We compare our expressions of the angular distribution
with [40], where a discussion about the angular distribu-
tions in earlier literature is provided. In [40], the angular
distribution of Λb → ΛcðΛπÞτντ decay is given as

Kðq2; cos θ0l; cos θ0c; χ0Þ

≡ 8π

3

1

dΓ=dq2
d4Γ

dq2d cos θ0ld cos θ
0
cdχ0

¼ K1ss sin2 θ0l þ K1cc cos2 θ0l þ K1c cos θ0l
þ ðK2ss sin2 θ0l þþK2cc cos2 θ0l þ K2c cos θ0lÞ cos θ0c
þ ðK3sc sin θ0l cos θ

0
l þ K3s sin θ0lÞ sin θ0c sin χ0

þ ðK4sc sin θ0l cos θ
0
l þ K4s sin θ0lÞ sin θ0c cos χ0: ðC1Þ

The angles in the above equation are related to the angles
defined in Sec. II as

θ0c ⟶ θc; θ0l ⟶ π − θl; and χ0 ⟶ χ: ðC2Þ

The angular coefficients in Eq. (18) can be mapped onto the
coefficients in Eq. (C1) as follows:

K1ss → ð8π=3ÞA0; K1cc → ð8π=3ÞðA0 þ A4Þ; ðC3Þ

K1c → −ð8π=3ÞA2; K2ss → ð8π=3ÞA1; ðC4Þ

K2c → −ð8π=3ÞA3; K2cc → ð8π=3ÞðA1 þ A5Þ; ðC5Þ

K3sc → ð8π=3ÞA9; K3s → ð8π=3ÞA7; ðC6Þ

K4sc → −ð8π=3ÞA8; K4s → ð8π=3ÞA6: ðC7Þ

We have chosen the convention for the angles following
[58], as it provides a general procedure to calculate angular
distribution using helicity amplitudes for many such
decays. This convention also matches with [54,56]. The
form of our angular terms is similar to that in [42], where
the angular distribution is given in term of helicities of Λ
and τ.

TABLE V. Weighting functions to extract the coefficients of
angular terms from the angular distribution.

Coefficient Weighting function (wi)

A0
1
8π þ 5

32π ð1 − 3 cos2 θlÞ
A1 ð 3

8π þ 15
32π ð1 − 3 cos2 θlÞÞ cos θc

A2
3
8π cos θl

A3
9
8π cos θc cos θl

A4 − 15
32π ð1 − 3 cos2 θlÞ

A5 − 45
32π ð1 − 3 cos2 θlÞ cos θc

A6
4
π3
cos χ

A7
4
π3
sin χ

A8
16
π3
cos χ cos θl

A9
16
π3
sin χ cos θl
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APPENDIX D: BEYOND-SMEFT EFFECTS IN
DIFFERENT q2 BINS OVER THE gR

PARAMETER SPACE

In Sec. III, we presented our results with the best-fit
value of gR and discussed the possibility of distinguishing it
from SM and from the NP scenarios gL, sL, and sR. In this
section, we vary gR over its 2σ-allowed range and indicate
those regions for which the distinction from the other
scenarios would be theoretically clean in a given q2 bin. By
this criteria, we mean that the theoretical prediction for the
given observable in the given q2 bin has no overlap between
the gR scenario and the other scenarios, even taking into
account the theoretical uncertainties. Note that this
approach as presented in Fig. 9 is a crude way of recording
the separation of bands in Figs. 4–6 and 8 in a binary
manner (nonzero overlap or no overlap). It does not
necessarily correspond to experimental feasibility of iden-
tifying gR.
The analysis ofΛb → Λcð→ ΛπÞτν̄τ in the LHCb experi-

ment [46] is carried out by dividing the data in six q2 bins,
in the range 0–ðmΛb

−mΛc
Þ2. The bins (A, B, C, D, E, F)

correspond to the q2 ranges (0–1.83, 1.83–3.67, 3.67–5.5,
5.50–7.33, 7.33–9.17, 9.17–11.13) GeV2. The first bin
cannot have any signal events since m2

τ ¼ 3.16 GeV2,
while bin B also does not give any significant number
of events [46]. Therefore, we focus only on the four bins C,
D, E, and F. Note that the angular analysis performed in the
actual experimental analysis may not follow the same q2

binning scheme as presented in [46]. Our choice of bins is
only for the purpose of illustration. Presenting the results in
different q2 bins highlights the fact that the separation of
the gR scenario from the other scenarios may not be
possible in all the bins but only in some subsets of them.
Note that when clear separation happens in any of the bins,
it indicates a signal of physics beyond SMEFT.
For every point in the 2σ-allowed region of gR in our

analysis, we check if the effects of gR can be distinguish-
able (i) from SM and gL and/or (ii) from other NP
scenarios, sL and sR, in each of these four bins. In
Fig. 9, we represent the gR values that can be distinguish-
able from both (i) and (ii) by orange color. Those gR that
can be distinguishable from (i) but not from (ii) are denoted

by cyan color, while those values that can be distinguish-
able neither from (i) nor from (ii) are denoted by black.
Here, by being distinguishable we mean that the predicted
values of the observable in that bin for that particular gR
value do not overlap with the predicted values for the
scenarios (i) or (ii). We take into account the 2σ uncer-
tainties due to the hadronic form factors and the polariza-
tion asymmetry αP, as earlier.
Note that the constraints on gR used in our fit in Sec. III

are independent of the sign of ImðgRÞ. Therefore, the
allowed region of gR is symmetric with respect to the real
axis. We use this fact to show the comparison between the
two scenarios BðBc → τν̄τÞ < 30% and BðBc → τν̄τÞ <
10% in a compact manner. We use the upper half of the
region (unshaded) to show the constraints when BðBc →
τν̄τÞ < 30% and the lower half (shaded) to show the
constraints when BðBc → τν̄τÞ < 10%. The presence of
the corresponding regions reflected about the ReðgRÞ axis is
implicit.
Based on the discussion in Sec. III, we focus on the

angular observables A2, A7 and the ratios R3;1, R3;5,
and R6;8, as they are expected to be more suitable in
distinguishing gR from the other scenarios. We note the
following:

(i) Using A7, it may be possible to distinguish gR from
the SM as well as from all the other NP scenarios in
most of the allowed 2σ range of gR.

(ii) With the loose constraint BðBc → τν̄τÞ < 30%, we
find that the ratios R3;1, R3;5, and R6;8 and the
angular observable A2 may be able to distinguish a
large region of gR from SM and gL, but would be
unable to distinguish it from sL or sR. Only a small
gR parameter space can be distinguishable from the
effects of sL and sR in higher q2 bins.

(iii) On the other hand, the tighter constraint BðBc →
τν̄τÞ < 10% allows the ratios R3;1 and R3;5 to
distinguish large regions in the gR parameter space
from all the other scenarios.

(iv) The power of distinction is typically higher for larger
values of jImðgRÞj.

(v) For all the five observables, the power of distin-
guishing gR from the other scenarios appears to be
higher at larger q2.
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FIG. 9. The 2σ-allowed parameter space of gR, where the gR scenario can be distinguished from all the other scenarios
{SM, gL, sL, sR} (orange), from only SM and gL (cyan), and from neither (black). The best-fit value of gR is denoted by a star.
The upper half of each panel (unshaded) corresponds to results for BðBc → τντÞ < 30%, while the lower half (shaded) corresponds
to BðBc → τν̄τÞ < 10%.

IDENTIFYING PHYSICS BEYOND SMEFT IN THE ANGULAR … PHYS. REV. D 110, 015010 (2024)

015010-15



[1] W. Buchmuller and D. Wyler, Effective Lagrangian analysis
of new interactions and flavor conservation, Nucl. Phys.
B268, 621 (1986).

[2] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek,
Dimension-six terms in the standard model Lagrangian,
J. High Energy Phys. 10 (2010) 085.

[3] E. E. Jenkins, A. V. Manohar, and M. Trott, Renormaliza-
tion group evolution of the standard model dimension six
operators I: Formalism and lambda dependence, J. High
Energy Phys. 10 (2013) 087.

[4] G. Isidori, F. Wilsch, and D. Wyler, The standard model
effective field theory at work, Rev. Mod. Phys. 96, 015006
(2024).

[5] F. Feruglio, The chiral approach to the electroweak inter-
actions, Int. J. Mod. Phys. A 08, 4937 (1993).

[6] LHC Higgs Cross Section Working Group, Handbook of
LHC Higgs cross sections: 4. Deciphering the nature of the
Higgs sector, arXiv:1610.07922.

[7] J. Alison et al., Higgs boson potential at colliders: Status
and perspectives, Rev. Phys. 5, 100045 (2020).

[8] R. Grober et al., Effective field theory descriptions of Higgs
boson pair production, Technical Report, CERN, Geneva,
2022.

[9] CMS Collaboration, A portrait of the Higgs boson by the
CMS experiment ten years after the discovery, Nature
(London) 607, 60 (2022).

[10] R. Alonso, M. B. Gavela, L. Merlo, S. Rigolin, and J. Yepes,
The effective chiral Lagrangian for a light dynamical Higgs
Particle, Phys. Lett. B 722, 330 (2013).
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