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In flavor models the vacuum alignment of flavons is typically achieved via the F-terms of certain fields
in the supersymmetric limit. We propose a method for preserving such alignments, up to a rescaling of the
vacuum expectation values, even after softly breaking supersymmetry (and the flavor symmetry). This
facilitates the vacuum alignment in models which are nonsupersymmetric at low energies. Examples of
models with different flavor groups, namely, A4, T7, S4, and Δð27Þ, are discussed.
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I. INTRODUCTION

The origin of the curious triplication of the fermionic
representations of the Standard Model (SM) and of their
patterns of masses and mixing remains an open question.
As symmetries have proven crucial in understanding and
organizing the gauge sector, a well-studied approach to this
problem has been to employ symmetries acting on flavor
space in the quark and lepton sectors [1–3]; for reviews see,
e.g., Refs. [4–9].
In many models with flavor symmetries, these are broken

spontaneously, and a peculiar form of the vacuum is
required in order to correctly describe the fermion masses
and/or mixing.1 For this reason, supersymmetric (SUSY)
extensions of the SM are often considered in which gauge
singlets, flavons, are responsible for this breaking. If the
latter occurs while SUSY is still intact, the vacuum can be
aligned via F-terms (of further fields, often called driving
fields); see, e.g., Refs. [11,12].2

An important point is the sufficient segregation of
different symmetry breaking sectors such that the vacuum
of flavons contributing to, e.g., the neutrino and the charged
lepton sectors, respectively, can be independently (and
in different directions) aligned. In general, further sym-
metries, also called shaping symmetries, have to be invoked
in order to achieve this aim. However, such a procedure
usually cannot be applied in non-SUSY models in which,
e.g., quartic interactions involving two different fields and
their complex conjugates are invariant.3 Thus, it is often
assumed that certain couplings are absent (or highly sup-
pressed), although their expected size is of order one.4 A
further possibility that has been explored in the literature is
to considerably enlarge the flavor symmetry of the flavon
potential, restricting the allowed scalar couplings, without
affecting the structure of the Yukawa couplings [22–24].
In this paper, we study how vacuum alignments that are

achieved via F-terms in the SUSY limit can be realized, up
to a rescaling of the vacuum expectation values (VEVs), in
non-SUSY models. For this, we include certain soft SUSY
(and potentially also flavor symmetry) breaking terms in
the potential.5 We compute the expected size of the
rescaling factor. Furthermore, we identify conditions which
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1See, e.g., Ref. [10] for models in which the flavor symmetry is
broken at the boundaries of an extra dimension.

2If the employed fields transform under a new gauge sym-
metry, D-terms can also be relevant for the vacuum alignment;
see, e.g., Refs. [13–15].

3The study of the orbit space of N-Higgs doublet potentials
(see, e.g., Refs. [16–20]) allows us to analyze especially highly
symmetric potentials and their minima.

4In extra-dimensional models, the flavons belonging to differ-
ent symmetry breaking sectors can be separated via their
localization in the extra dimension, and consequently, couplings
between these are suppressed (see, e.g., Ref. [21]).

5In [25], soft SUSY breaking terms have been used in order to
align the vacuum of flavons. In this work, however, we do not use
these terms for the alignment but instead study how they can
impact the vacuum alignment achieved in the SUSY limit.
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flavor symmetry breaking soft SUSY breaking terms must
fulfill in order to maintain the direction of the aligned
vacuum. These conditions are similar to those obtained
in [26], where the authors have explored the vacuum
alignment in multi-Higgs doublet potentials with a softly
broken discrete symmetry. In particular, they have shown
that the vacuum alignment, obtained in the symmetric
potential, remains preserved, up to a rescaling of the VEVs,
as long as the soft breaking terms have the aligned vacuum
as an eigenvector. In this study, we focus on flavons which
are triplets of a (discrete) flavor symmetry and analyze
certain potentials in general. Furthermore, we present
concrete examples with the flavor symmetries A4, T7,
S4, and Δð27Þ. These have been widely used in the
literature; see, e.g., Refs. [11,21,27–41].
The paper is organized as follows. In Sec. II we

determine the conditions under which a vacuum alignment
found for a SUSY potential remains preserved even after
introducing certain soft SUSY (and flavor symmetry)
breaking terms for both flavons in real and complex
representations. In Sec. III we exemplify these results in
an A4 model with one or two flavons. Section IV contains
further examples in which flavons transform as (complex)
triplets of T7 and Δð27Þ as well as a case with general soft
masses for the group S4. We summarize in Sec. V. A
summary of the relevant properties of the different flavor
groups considered, details of the minimization, and the
effects of higher-order terms in the A4 model are relegated
to the appendices.

II. VACUUM ALIGNMENT FROM SUSY
TO NON-SUSY POTENTIALS

In this section, we present the general idea and show that
it is indeed possible to maintain the vacuum alignment
achieved in the SUSY limit upon including soft SUSY
breaking terms. We consider only cases with isolated
minima and assume that the effects of the soft SUSY
breaking terms are small, given that the flavor symmetry is
usually spontaneously broken at a high energy scale where
SUSY is still intact, while the scale of the soft SUSY
breaking terms is taken to be of the order of a (few) TeV.
The aim is to obtain the same vacuum alignment from the

non-SUSY potential (with certain soft SUSY breaking
effects) as in the SUSY limit, up to a real rescaling factor
ζ that should be close to one; see Eq. (14).6 In the first part
of this section, we focus on the size of ζ and the necessary
conditions on the soft SUSY breaking terms in order to
maintain the direction of the aligned vacuum, while in the
latter part we comment on more general changes in the
vacuum alignment.

A. Employed superpotentials

We begin by specifying the framework that we consider
in the following. First of all, we assume that the fields
responsible for the breaking of the flavor symmetry are
gauge singlets, commonly denoted as flavons. We call these
ϕ throughout, potentially with subscripts that refer to a
certain flavon multiplet and its components. As is well-
known [11,12], the achievement of a certain vacuum
alignment can be facilitated by the introduction of a
continuous R-symmetry Uð1ÞR and a further set of gauge
singlet fields, called driving fields. These are denoted by Φ
and also potentially have subscripts.
Assuming that the driving fields carry R-charge 2, while

the flavons have noR-charge, the superpotentialW is at most
linear in the driving fields. In fact, the terms relevant for the
derivation of the scalar potential are all linear in the driving
fields, while terms representingYukawa-type interactions do
not contain these fields since supermultiplets containing SM
fermions are assigned R-charge 1. In the current study, only
the former part ofW is of interest. Furthermore, wemake the
simplifying assumption that it is enough to consider only
renormalizable terms of W.7

In order to present the idea, it is sufficient to focus on the
situationofonedriving field andone flavon.Sincewe imagine
that the flavon is responsible for the generation of a certain
flavor pattern (e.g., fermion mixing), this field is supposed to
transform in a nontrivial representation of the (discrete) flavor
symmetry Gf, usually as a two- or three-dimensional irre-
ducible representation. For concreteness, we take ϕ ∼ 3,
where this representation can be either real or complex.8

For the driving field, we have, in general, two options: it
can be either a (trivial) singlet of Gf or, like the flavon, in a
nontrivial representation. Inorder todetermine its assignment,
we consider separately the case in which ϕ is in a real
representation and ϕ is complex with respect to Gf. In either
case, we want to ensure the appearance of an explicit mass
scale in the superpotential, either in the form of a mass term
M2Φ or in the form of a dimensionful couplingMΦϕ,9 such
that the scale of theVEVof the flavonϕ is determined byM.10

6The following considerations can be generalized for
complex ζ.

7The impact of nonrenormalizable operators is expected to be
small. If the vacuum alignment necessitates such terms, one can
always imagine introducing further fields, both flavons and
driving fields, such that all nonrenormalizable terms can originate
from renormalizable ones in a certain ultraviolet completion.

8In the case of even-dimensional irreducible representations,
these can also be pseudoreal, and such instances can be discussed
analogously.

9As we see in the example given in Sec. III, M might also
originate from the spontaneous breaking of a further symmetry
and thus be set by another VEV.

10In particular, we would like to avoid the VEV of any of the
flavons being related to a flat direction of the potential and,
consequently, its value being fixed only once additional terms,
e.g., soft SUSY breaking terms, are taken into account as well. At
the same time, the inclusion of a dimensionful parameter should
ensure that none of the components of the flavons and driving
fields remains massless.
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For ϕ being a real triplet, ϕ ∼ 3, the relevant terms in the
superpotential are

Ws ¼ M2Φþ λΦϕ2 ð1Þ

with the driving field Φ ∼ 1; i.e., Φ transforms as a trivial
singlet of the flavor symmetry Gf. These two couplings
necessarily exist since ϕ is a real triplet. Further types of
terms cannot exist, unless more fields are included in the
considerations. A typical example of such a potential can be
found in Sec. III for the flavor symmetry A4.
The corresponding F-term (of the driving fieldΦ) reads11

Fs ≡ −F⋆
Φ ¼ M2 þ λcijϕiϕj; ð2Þ

with the coefficients cij taking into account the possible
nontrivial contraction of the indices of two triplets in order to
obtain the trivial singlet. We can simplify this expression by
choosing a basis in which the latter has the form of an
ordinary scalar product, ϕ2

i . Thus, we use

Fs ¼ M2 þ λϕ2
i : ð3Þ

Since we assume that the vacuum alignment of the flavons
occurs in the SUSY limit, the vanishing of this F-term
partially aligns the flavon VEVs,

FsjVS
¼ M2 þ λϕ2

i jVS
¼ 0; i:e:; ϕ2

i jVS
¼ −

M2

λ
: ð4Þ

Given thatΦ is a singlet, only one constraint can be obtained
on the flavon VEVs, and consequently, further driving fields
(and flavons) are necessary in order to fix the VEVs of all
components of the flavon ϕ.12 We note that both parameters
M and λ can bemade real by a suitable choice of the phases of
the fieldsΦ andϕ. Thus, the form of the potentialVS itself is
given by

VS ¼ FsF⋆
s ¼ M4 þM2λðϕ2

i þ ðϕ⋆
i Þ2Þ þ V4; ð5Þ

with V4 containing the quartic terms. In the SUSY limit,
consequently, we find for the first derivative of VS with
respect to ϕ⋆

j ,

∂VS

∂ϕ⋆
j

����
VS

¼ 0 ¼ 2M2λϕ⋆
j jVS

þ ∂V4

∂ϕ⋆
j

����
VS

: ð6Þ

For ϕ being a real triplet, another possible form of the
superpotential is

Wt ¼ MΦϕþ λΦϕ2; ð7Þ

with the driving field Φ transforming in the same way as ϕ,
namely, Φ ∼ 3. While the first coupling is guaranteed to
exist, the second one requires that the product of two
triplets contains the triplet itself in its symmetric part. Note
that we assume here, for simplicity, that the multiplicity of
the triplet in the product of two triplets is one (which is true
for many discrete groups). One such example is the group
S4 (see [7], Sec. IV C, as well as Appendix A 4).
Likewise, we can study the case of ϕ being a complex

triplet. Then, the driving field necessarily also has to be a
triplet. For ϕ ∼ 3, Φ has to transform as 3̄ such that we can
write down the first term inWt in Eq. (7). As is common, we
use a basis in which the representation matrices of the
complex conjugate representation are the complex conjugate
of those of the representation. The second term in Eq. (7)
requires that the product of two triplets contains a triplet in its
symmetric part. Again, we assume that its multiplicity is one,
such that a unique term of the formΦϕ2 exists. The group T7

is an example of a flavor symmetry that leads to a super-
potential which is of the form of Wt, and we discuss it
explicitly in Sec. IVA. The case of having two independent
cubic terms,Φϕ2, is obtained withΔð27Þ, for which we also
present an example in Sec. IV B. We note that a driving field
that is a singlet usually cannot be employed, unless further
flavons are present in the setup, since the product of a complex
triplet with itself does not contain the trivial singlet 1.13

In this case, the F-terms, one for each component of the
driving field Φ, read

Ft;k ≡ −F⋆
Φk

¼ Mϕk þ λck;ijϕiϕj; ð8Þ

with the coefficients ck;ij representing the relevant combi-
nation of components of the fields Φ and ϕ leading to
a trivial singlet.14 Note that the coefficients ck;ij are
symmetric in the second and third indices i and j, i.e.,
ck;ij ¼ ck;ji. Again, the vacuum of the flavons is aligned in
the SUSY limit; i.e., the F-terms have to vanish,

Ft;kjVS
¼ MϕkjVS

þ λck;ijϕijVS
ϕjjVS

¼ 0: ð9Þ

We note that it is, in general, possible to make the
parameters M and λ real. The corresponding part of the
potential reads

11If not stated otherwise, the repeated appearance of an index
indicates that we sum over this index.

12In the more general case in which flavons and driving fields
can also be charged under a new gauge symmetry, the vanishing
of D-terms aligns the vacuum as well.

13The reader may wonder whether one could use a driving field
transforming as a nontrivial singlet, but then the first term in Eq. (1)
becomes forbidden, as long as it is assumed that the flavor symmetry
is unbroken at the level of the superpotential. A further option is to
introduce flavons in reducible representations of Gf that are
composed of a triplet and its complex conjugate so that the product
of two of these reducible representations contains a trivial singlet.

14We separate the index k from i and j since the former refers
to the index of the driving field, while the latter denote the index
of the flavons.
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VS ¼ Ft;kF⋆
t;k: ð10Þ

We remark that while we present the idea assuming one
pair of driving field Φ and flavon ϕ at a time, some of the
considered examples (see Secs. III and IV) contain more
driving fields in order to ensure that the VEVs of all
components of the flavon can be aligned, as well as more
flavons, because in realistic models, at least two of these are
usually present. Additionally, the consideration of more
than one flavon permits us to study further constraints
arising from the requirement that the VEVs in the non-
SUSY minimum should be rescaled by the same factor ζ.
The situation of several flavons may also be reduced to the
instance with one flavon only when it is possible to
integrate out all except one.
Finally, we comment on the driving fields. Their

vacuum is aligned with the help of the F-terms of the
flavons, and due to the linearity of the superpotentials Ws
andWt in the driving fields, the F-terms of the flavons can
always be set to zero by assuming a vanishing VEV for the
driving fields. We choose such a vacuum in the following.
Furthermore, we consider all components of the driving
fields to be very heavy and, thus, irrelevant at low
energies, allowing us to restrict our focus to the potential
with flavons.

B. Adding soft SUSY breaking terms

In order to break SUSY, we add certain soft SUSY
breaking terms. We remain agnostic about the origin of
these terms and assume that these can have the structure we
invoke in the following in order to preserve the vacuum
alignment obtained in the SUSY limit. In the case of several
flavons, they should also lead to the same rescaling for all
flavon VEVs. For this reason, we do not add all possible
types of soft SUSY breaking terms (e.g., A-terms and
B-terms) that are compatible with the flavor symmetry but
only those that are necessary in order to ensure that the
masses of the corresponding SUSY partners can be lifted.
Consequently, we add only a universal soft mass term for
the flavon,15

Vsoft;Gf
¼ m2ϕ⋆

k ϕk: ð11Þ

We note that this term is also always invariant under Gf.
Furthermore, the soft mass parameter m2 is expected to be
of the order of a (few) TeV and thus, in general, much
smaller than M, m2 ≪ M2.
In certain instances, it might be advantageous if the soft

SUSY breaking terms, in our case the soft masses,

explicitly, but softly, break the flavor symmetry. Then,
the most general form is

Vsoft;gen ¼ m2
klϕ

⋆
k ϕl; ð12Þ

withm2
kl being a Hermitian matrix,m2

kl ¼ ðm2
lkÞ⋆, such that

Vsoft;gen itself is real. In general, such arbitrary soft masses
do not preserve the vacuum alignment achieved in the
SUSY limit but have to fulfill certain conditions, similar to
those found in the context of soft breaking mass terms in
multi-Higgs doublet potentials [26], as we detail below.
While we also present the idea for general soft masses,

we mainly concentrate on the case of flavor-symmetry
preserving soft masses in the examples found in Secs. III
and IV.

C. Non-SUSY potentials and their vacuum

With the information given in the preceding subsections,
we can write down the potential V at low energies,

V ¼ VS þ Vsoft; ð13Þ

where the potential VS can be found in Eqs. (5) and (10),
respectively, and Vsoft is either of the form as in Eq. (11) or
(12); we then study its vacuum. In particular, we can show
that the vacuum alignment obtained in the SUSY limit,
called ϕjVS

, is not altered, when taking into account the soft
SUSYmasses, up to a possible rescaling with a real factor ζ
close to one; i.e., the VEV of the non-SUSY potential,
denoted by ϕjV, is given by

ϕjV ¼ ζϕjVS
with ζ ≈ 1: ð14Þ

Furthermore, for general soft masses, we derive constraints
on their form, which are needed to preserve Eq. (14).
In the case of the driving field Φ being a singlet, we note

that for the vacuum aligned in the SUSY limit, the
following holds,

λϕ2
i jVS

¼ −M2; ð15Þ

because of Eq. (4). Similarly, if Φ is a triplet, we find that
the vacuum aligned in the SUSY limit has to fulfill

λck;ijϕijVS
ϕjjVS

¼ −MϕkjVS
ð16Þ

arising from Eq. (9).

1. Case 1: Singlet driving field, universal
soft mass m2

In this case, the form of the potential V is given by

V ¼ VS þ Vsoft;Gf
; ð17Þ

15We can also introduce soft SUSY breaking terms for the
driving fields. If the soft mass parameters are positive, the
corresponding vacuum remains zero. In this case, driving fields
do not play a role in the current study.
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with VS as in Eq. (5). We begin by supposing that the
vacuum of V is related to the vacuum in the SUSY limit by
a simple rescaling ζ; see Eq. (14). The F-term Fs then takes
the form

FsjV ¼M2þλϕ2
i jV ¼M2þλζ2ϕ2

i jVS
¼M2ð1−ζ2Þ ð18Þ

using Eqs. (4) and (14). Treating the soft mass term in an
analogous way, we can write the potential V in its presumed
minimum as a function of ζ,

VðζÞ ¼ VðϕjVÞ ¼ M4ð1 − ζ2Þ2 þm2ζ2ϕ⋆
k jVS

ϕkjVS
: ð19Þ

Computing the first derivative, we see that ζ can take three
(approximate) values (for m2 ≪ M2),

ζ ¼ 0; ζ ≈ −1þ m2

4M4
ϕ⋆
k jVS

ϕkjVS
;

ζ ≈ 1 −
m2

4M4
ϕ⋆
k jVS

ϕkjVS
: ð20Þ

Plugging these possible values for the minimum into the
potential, we see that, while Vðζ ¼ 0Þ ¼ M4, the other two
potential extrema lead to

VðζÞ ≈m2ϕ⋆
k jVS

ϕkjVS
: ð21Þ

As we consider only situations in which the minima are
isolated and m2 ≪ M2, the only plausible solution is,
indeed, ζ ≈ 1. The other solution, ζ ≈ −1, is a consequence
of the symmetry of the potential in the flavon ϕ. We can
also analyze the first derivative of the potential with respect
to the flavon ϕ⋆

a , which can be written as

∂V
∂ϕ⋆

a
¼ 2M2λϕ⋆

a þ ∂V4

∂ϕ⋆
a
þm2ϕa ð22Þ

using the form in Eq. (5). From

2M2λϕ⋆
a jV þ ∂V4

∂ϕ⋆
a

����
V
þm2ϕajV ¼ 0 ð23Þ

and supposing that the rescaling of the vacuum holds [see
Eq. (14)], the vacuum is real, and using Eq. (6), we have

ζð2ð1 − ζ2ÞM2λþm2ÞϕajVS
¼ 0: ð24Þ

This leads to the same result for ζ as in Eq. (20), if we take
into account the fact that the vacuum in the SUSY limit is
constrained by Eq. (15).

2. Case 2: Singlet driving field,
general soft masses m2

kl

With general soft masses, the potential V reads

V ¼ VS þ Vsoft;gen; ð25Þ

where VS is given in Eq. (5). We proceed in a similar way
as for case 1. First, we assume again that the vacuum is
only rescaled with a real parameter ζ; see Eq. (14). We
consider the first derivative of the potential in Eq. (25) with
respect to ϕ⋆

a ,

∂V
∂ϕ⋆

a
¼ 2M2λϕ⋆

a þ ∂V4

∂ϕ⋆
a
þm2

aiϕi: ð26Þ

Using Eqs. (6) and (14) and ζ real, we obtain the following
equation:

ζð2ð1 − ζ2ÞM2λϕ⋆
a jVS

þm2
aiϕijVS

Þ ¼ 0: ð27Þ

With this we can not only compute the size of the rescaling
ζ, but also determine the form of the general soft masses
that is compatible with this minimum in the non-SUSY
case. The latter becomes more obvious by noticing that for
a real vacuum, ϕijVS

¼ ϕ⋆
i jVS

, the equation can be written
as (discarding the solution ζ ¼ 0)

m2
aiϕijVS

¼ −2ð1 − ζ2ÞM2λϕajVS
; ð28Þ

meaning that the vacuum in the SUSY limit should be an
eigenvector of the soft mass matrix m2

kl with the eigenvalue
−2ð1 − ζ2ÞM2λ in order to be compatible with the rescaling
of the vacuum. This is similar to the findings of [26]
obtained for multi-Higgs doublet potentials.

3. Case 3: Triplet driving field,
universal soft mass m2

Here, we have as potential V

V ¼ VS þ Vsoft;Gf
; ð29Þ

with VS found in Eq. (10). We also consider in this case the
value of the potential as a function of the parameter ζ,
assuming that Eq. (14) holds. We find

VðζÞ ¼ VðϕjVÞ ¼ VSjV þ Vsoft;Gf
jV

¼ ζ2ðð1 − ζÞ2M2 þm2Þϕ⋆
k jVS

ϕkjVS
ð30Þ

since

Ft;kjV ¼ MϕkjV þ λck;ijϕijVϕjjV
¼ ζMϕkjVS

þ λζ2ck;ijϕijVS
ϕjjVS

¼ ζð1 − ζÞMϕkjVS
; ð31Þ
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see Eqs. (8) and (16). Extremizing V in Eq. (30), we obtain
as (approximate) solutions (for m2 ≪ M2)

ζ ¼ 0; ζ ≈
1

2
þ m2

M2
; ζ ≈ 1 −

m2

M2
: ð32Þ

The values of the potential at these points are Vðζ ¼ 0Þ ¼ 0
and

V

�
ζ ≈

1

2
þ m2

M2

�
≈

1

16
M2ϕ⋆

k jVS
ϕkjVS

;

V

�
ζ ≈ 1 −

m2

M2

�
≈m2ϕ⋆

k jVS
ϕkjVS

: ð33Þ

Inspecting these, only the last one can correspond to a
minimum that arises from a small perturbation of the one
obtained in the SUSY limit.
The first derivative of V with respect to the field ϕ⋆

a at the
minimum of this potential is given by

∂V
∂ϕ⋆

a

����
V
¼ 0 ¼ Ft;kjV

∂F⋆
t;k

∂ϕ⋆
a

����
V
þm2ϕajV: ð34Þ

Expanding the F-terms around the minimum obtained in
the SUSY limit, i.e.,

Ft;kjV ≈
∂Ft;k

∂ϕb

����
VS

ðϕbjV −ϕbjVS
Þ; ∂F⋆

t;k

∂ϕ⋆
a

����
V
≈
∂F⋆

t;k

∂ϕ⋆
a

����
VS

; ð35Þ

and assuming the rescaling [see Eq. (14)], we obtain

ðζ − 1Þ∂F
⋆
t;k

∂ϕ⋆
a

����
VS

∂Ft;k

∂ϕb

����
VS

ϕbjVS
þ ζm2ϕajVS

≈ 0: ð36Þ

We identify the first expression as the mass matrix of the
flavons in the SUSY limit

M2
ab ≡

∂F⋆
t;k

∂ϕ⋆
a

����
VS

∂Ft;k

∂ϕb

����
VS

: ð37Þ

Using the expectation that ζ is close to one, up to
corrections of order m2=M2, we arrive at

ð1 − ζÞM2
abϕbjVS

≈m2ϕajVS
: ð38Þ

The solution to this equation is, indeed, (1 − ζ) of order
m2=M2 since the eigenvalues of the mass matrix M2

ab are
of order M2.

4. Case 4: Triplet driving field,
general soft masses m2

kl

For the last case, we begin with the potential V, being of
the form

V ¼ VS þ Vsoft;gen; ð39Þ

with VS taken from Eq. (10). The first derivative of V with
respect to the field ϕ⋆

a at the minimum of this potential is of
the form

∂V
∂ϕ⋆

a

����
V
¼ 0 ¼ Ft;kjV

∂F⋆
t;k

∂ϕ⋆
a

����
V
þm2

alϕljV: ð40Þ

Expanding the F-terms around the minimum obtained in
the SUSY limit as in Eq. (35) and employing the rescaling
[see Eq. (14)], we have

ðζ − 1ÞM2
abϕbjVS

þ ζm2
alϕljVS

≈ 0 ð41Þ

with the mass matrix M2
ab given in Eq. (37). Neglecting

higher orders in m2=M2, we find

ð1 − ζÞM2
abϕbjVS

≈m2
alϕljVS

: ð42Þ

Now, if the vacuum ϕbjVS
is an eigenvector of the mass

matrix M2
ab, we see that this condition simplifies, and the

form of the general soft masses is constrained to also have
this vacuum as an eigenvector with a certain eigenvalue.
This result is equivalent to the one obtained in Eq. (28).
If the vacuum ϕbjVS

and the coefficients ck;ij are real and
the latter fulfill ck;ij ¼ ci;kj ¼ cj;ik, it is, indeed, straight-
forward to show that the vacuum ϕbjVS

is an eigenvector

of the mass matrix M2
ab. Consider ∂Ft;k

∂ϕb
, which can be

computed from Eq. (8) as

∂Ft;k

∂ϕb
¼ Mδkb þ 2λck;ibϕi ð43Þ

using the symmetry of the coefficients ck;ij. Thus, we have
in the vacuum in the SUSY limit

∂Ft;k

∂ϕb

����
VS

ϕbjVS
¼MϕkjVS

þ2ð−MϕkjVS
Þ¼−MϕkjVS

; ð44Þ

taking into account Eq. (16). For real ϕbjVS
and ck;ij and

remembering thatM and λ can be made real without loss of
generality, we have

M2
abϕbjVS

¼ ∂F⋆
t;k

∂ϕ⋆
a

����
VS

ð−MϕkjVS
Þ

¼ −M2ϕajVS
− 2Mλck;iaϕijVS

ϕkjVS
: ð45Þ

This can be further simplified, if ck;ij ¼ ci;kj ¼ cj;ik holds,
and we again use Eq. (16),

M2
abϕbjVS

¼−M2ϕajVS
−2Mð−MϕajVS

Þ¼M2ϕajVS
: ð46Þ
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In this case, the condition in Eq. (42) reduces to

ð1 − ζÞM2ϕajVS
≈m2

alϕljVS
; ð47Þ

meaning the general soft mass matrix should have ϕjVS
as

an eigenvector with the eigenvalue ð1 − ζÞM2.

D. Comment on other corrections
to vacuum alignment

In the preceding part, we have focused on corrections to
the vacuum alignment in the form of a real rescaling ζ. One
may wonder whether corrections orthogonal to the direc-
tion of the vacuum alignment, obtained in the SUSY limit,
could lead to a deeper minimum of the non-SUSY potential
than the one due to the rescaled vacuum. We can write the
vacuum in the form

ϕjV ¼ ζϕjVS
þ αϕ⊥;1 þ βϕ⊥;2 ð48Þ

with α and β being (real) coefficients and ϕ⊥;1 and ϕ⊥;2

being vectors orthogonal to the vacuumϕjVS
and orthogonal

to each other. Plugging this form of ϕjV into the F-terms
of the driving fields leads to a positive contribution to
the potential V for α and/or β nonzero. Furthermore, for
universal soft masses, this form of ϕjV leads for nonzero α
and/or β to a larger value than for α ¼ β ¼ 0 (corresponding
to the rescaled vacuum). Thus, if any of the parameters α and
β are nonzero, this does not lead to smaller values of the
potential than the rescaled vacuum. For general soft masses,
one can require these to be of the form

m2
kl ¼ c0ϕjVS

ϕj†VS
þ c1ϕ⊥;1ϕ

†
⊥;1 þ c2ϕ⊥;2ϕ

†
⊥;2 ð49Þ

such that ϕjVS
, ϕ⊥;1, and ϕ⊥;2 are eigenvectors of the

general soft masses with (real) eigenvalues proportional to
c0, c1, and c2, respectively. These can be chosen appro-
priately such that the rescaled vacuum leads to the smallest
value of the potential V.

III. VACUUM ALIGNMENT IN THE A4 MODEL

In this section, we discuss in detail the case of flavons
that transform as (real) triplets under the flavor symmetry
A4. We first present the example of a single flavon and then
generalize to the case of more flavons. Since the main
purpose of these examples is to illustrate the procedure of
Sec. II, they should be understood as toy models.

A. One flavon triplet

Suppose ϕT
a ≡ ða1; a2; a3Þ transforms as a triplet of A4

(see Table I) and that, in the SUSY limit, only one of the
components of ϕa attains a nonzero VEV. This alignment is
achieved with the help of the driving fields Φa and Φd,
Φa ∼ 1 and Φd ∼ 3 under A4. The relevant superpotential is
of the form

Wa ¼ λaΦaðϕ2
a − x2Þ þ λdΦdϕ

2
a: ð50Þ

We note that in addition to the flavor symmetry A4 and the
R-symmetry Uð1ÞR, we use a ZN shaping symmetry in
order to restrict the number of allowed terms. The first term
of the superpotential is SOð3Þ-invariant. The term λaΦax2,
which is not invariant under the ZN shaping symmetry, is
assumed to be generated by the interaction with other fields
that obtain a VEVat a higher scale. We also assume that the
couplings λa and λd as well as the parameter x are real.

1. Vacuum alignment in the SUSY limit

In the SUSY limit, the vacuum alignment of the flavon
ϕa is determined by the vanishing of the F-terms of the
driving fields. These are given by

∂Wa

∂Φa
¼ −F⋆

a0
¼ λaða21 þ a22 þ a23 − x2Þ; ð51Þ

∂Wa

∂Φdi

¼ −F⋆
d0i
¼ λdaiþ1aiþ2: ð52Þ

In these equations, the subscripts related to the components
of the triplets are understood to be cyclic, with values
from 1 to 3.
Setting Eqs. (51) and (52) to zero fixes both the direction

and size of the VEVof ϕa. In particular, Eq. (52) establishes
that hϕai must have only one component different from
zero, and Eq. (51) sets its size. Without loss of generality,
we choose

hϕaiT ¼ ðx; 0; 0Þ: ð53Þ

The freedom to choose the position of the nonzero
component reflects the fact that the minimum of the
potential is symmetric under A4; i.e., the solution shown
in Eq. (53) can be transformed by any element of the group
(which changes the position of the nonzero component)
and still be a solution. This is also true for the sign of the
flavon VEV.
The corresponding potential VS can be written as

VS ¼ λ2aja21 þ a22 þ a23 − x2j2
þ λ2dðja1j2ja2j2 þ ja2j2ja3j2 þ ja3j2ja1j2Þ: ð54Þ

TABLE I. Charge assignment for the flavon and driving fields
of the A4 model with a single flavon.

Fields ϕa Φa Φd

A4 3 1 3
Uð1ÞR 0 2 2
ZN 1 N − 2 N − 2
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In general, the extrema of the potential are derived from the
vanishing of the first derivatives with respect to the
components ai of the flavon ϕa,

∂VS

∂ai

����
ext

¼ 2λ2aaiðða⋆1 Þ2 þ ða⋆2 Þ2 þ ða⋆3 Þ2 − x2Þ

þ λ2da
⋆
i ðjaiþ1j2 þ jaiþ2j2Þ ¼ 0: ð55Þ

It is easy to check that these conditions are consistent with
the vacuum alignment in Eq. (53) for the minimum derived
from the vanishing of the F-terms. The value of the
potential VS is zero at this minimum, as expected.
The next step is to break SUSY but maintain this vacuum

alignment.

2. Vacuum alignment including soft SUSY breaking

As discussed in Sec. II, the vacuum alignment derived in
the SUSY limit can be preserved, if the soft mass matrix
fulfills certain conditions. In the A4 model, we introduce a
universal soft mass for the flavon ϕa so that the potential V
becomes

V ¼ VS þ μ2aa⋆i ai; ð56Þ

with VS given in Eq. (54). Since the added soft mass is
universal, we expect that the alignment achieved in the
SUSY limit remains preserved.
Applying the results of Sec. II, we assume that the

aligned vacuum is only rescaled by a real parameter ζ and
can compute the value of the potential V as a function of ζ,

VðζÞ ¼ VðϕajVÞ ¼ λ2ax4ð1 − ζ2Þ2 þ ζ2μ2ax2: ð57Þ

Minimizing the potential with respect to ζ, we obtain

0 ¼ 2ζð2ðζ2 − 1Þλ2ax4 þ μ2ax2Þ: ð58Þ

Therefore, we have (discarding ζ ¼ 0)

ζ2 ¼ 1 −
μ2a

2λ2ax2
; ð59Þ

which is consistent with the expectation that ζ is of order
one up to corrections suppressed by m2=M2.
This result can be compared to an explicit calculation

which shows that the addition of the universal soft mass
to the potential indeed preserves the vacuum alignment of
the flavon. The minimization conditions are similar to the
previous ones in Eq. (55) except for the new contribution
proportional to the soft mass parameter μ2a,

∂V
∂ai

����
ext

¼ ∂VS

∂ai

����
ext

þ μ2aa⋆i ¼ 0: ð60Þ

As we have the freedom to choose the direction of the VEV,
setting a2 ¼ a3 ¼ 0, the solution of Eq. (60) yields as
global minimum of the potential,

a21 ¼ x2
�
1 −

μ2a
2λ2ax2

�
; a2 ¼ a3 ¼ 0; ð61Þ

see the detailed discussion in Appendix B. The alignment
of the flavon remains the same, but its magnitude is
rescaled by an amount proportional to the soft mass
parameter μ2a. This is consistent with Eq. (59).

B. Two flavon triplets

We now present the case of an A4 model with two flavon
triplets whose vacua are aligned orthogonally in the SUSY
limit.16 In addition to the flavon and driving fields dis-
cussed in this section so far, we introduce a second flavon
ϕT
b ≡ ðb1; b2; b3Þ and driving fields Φb, Φc, and Φe that

allow us to fix the vacuum alignment of the flavons. We use
the following superpotential:

Wab ¼ λaΦaðϕ2
a − x2Þ þ λbΦbðϕ2

b − y2Þ þ λcΦcϕaϕb

þ λdΦdϕ
2
a þ λeΦeϕ

2
b: ð62Þ

The charge assignment of the flavons and driving fields is
listed in Table II. Note that we have to use a further shaping
symmetry, ZM. The term λbΦby2 is not ZM-invariant and is
assumed to arise in a similar way as the term λaΦax2. Like
the couplings λa and λd as well as the parameter x, we take
λb, λc, λe, and y to be real.
The vacuum alignment in the SUSY limit is obtained

from the vanishing of the F-terms. In addition to Eqs. (51)
and (52), we have, for the F-terms,

∂Wab

∂Φb
¼ −F⋆

b0
¼ λbðb21 þ b22 þ b23 − y2Þ; ð63Þ

∂Wab

∂Φc
¼ −F⋆

c0
¼ λcða1b1 þ a2b2 þ a3b3Þ; ð64Þ

TABLE II. Charge assignment for the flavons and driving fields
of the A4 model with two flavons.

Fields ϕa ϕb Φa Φb Φc Φd Φe

A4 3 3 1 1 1 3 3
Uð1ÞR 0 0 2 2 2 2 2
ZN 1 0 N − 2 0 N − 1 N − 2 0
ZM 0 1 0 M − 2 M − 1 0 M − 2

16For examples of A4 models in which flavon triplets with
orthogonal VEVs are employed, see, e.g., Refs. [15,42].
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∂Wab

∂Φei

¼ −F⋆
e0i
¼ λebiþ1biþ2; ð65Þ

with cyclic indices assumed. As before, Eqs. (63)–(65)
determine the size of the VEVof ϕb and imply that only one
of the components of this flavon can obtain a nonzero VEV.
In particular, Eq. (64) is used to ensure the orthogonality of
the vacua of ϕa and ϕb. Keeping the alignment of the VEV
of ϕa as given in Eq. (53), we choose

hϕbiT ¼ ð0; y; 0Þ: ð66Þ
The corresponding potential reads

VS ¼ λ2aja21 þ a22 þ a23 − x2j2 þ λ2bjb21 þ b22 þ b23 − y2j2
þ λ2cja1b1 þ a2b2 þ a3b3j2
þ λ2dðja1j2ja2j2 þ ja2j2ja3j2 þ ja3j2ja1j2Þ
þ λ2eðjb1j2jb2j2 þ jb2j2jb3j2 þ jb3j2jb1j2Þ: ð67Þ

Extremizing the potential with respect to the components of
the flavons, we find

∂VS

∂ai

����
ext

¼ 2λ2aaiðða⋆1 Þ2 þ ða⋆2 Þ2 þ ða⋆3 Þ2 − x2Þ

þ λ2cbiða⋆1 b⋆1 þ a⋆2 b
⋆
2 þ a⋆3 b

⋆
3 Þ

þ λ2da
⋆
i ðjaiþ1j2 þ jaiþ2j2Þ ¼ 0; ð68Þ

∂VS

∂bi

����
ext

¼ 2λ2bbiððb⋆1 Þ2 þ ðb⋆2 Þ2 þ ðb⋆3 Þ2 − y2Þ

þ λ2caiða⋆1 b⋆1 þ a⋆2 b
⋆
2 þ a⋆3 b

⋆
3 Þ

þ λ2eb⋆i ðjbiþ1j2 þ jbiþ2j2Þ ¼ 0: ð69Þ

These constraints are satisfied by the vacuum alignment in
Eqs. (53) and (66).
As before,weuse universal softmass terms for the flavons.

These are of the form μ2aa⋆i ai and μ
2
bb

⋆
i bi. As a consequence,

the vacuum alignment obtained in the SUSY limit remains
preserved. In the following, we assume a single real rescaling
ζ for bothvacua and calculate the condition that results for the
soft mass parameters μ2a and μ2b.
The relevant potential V as a function of ζ is given by

VðζÞ ¼ Vðϕa;ϕbjVÞ
¼ λ2ax4ð1 − ζ2Þ2 þ λ2by

4ð1 − ζ2Þ2
þ ζ2μ2ax2 þ ζ2μ2by

2: ð70Þ

Minimizing the potential and discarding ζ ¼ 0, we obtain

ζ2 ¼ 1 −
μ2ax2 þ μ2by

2

2ðλ2ax4 þ λ2by
4Þ : ð71Þ

Nevertheless, we can proceed as in the case of one flavon
only and extremize the potential V with respect to the
flavons

∂V
∂ϕi

����
ext

¼ ∂VS

∂ϕi

����
ext

þ μ2iϕ
⋆
i ¼ 0; ð72Þ

for i ¼ a, b. As before, we keep a2 ¼ a3 ¼ 0. Then, the
solution of Eq. (72) yields, as a global minimum of the
potential,

a21 ¼ x2
�
1 −

μ2a
2λ2ax2

�
; a2 ¼ a3 ¼ 0; ð73Þ

b1 ¼ 0; b22 ¼ y2
�
1 −

μ2b
2λ2by

2

�
; b3 ¼ 0; ð74Þ

as shown in Appendix B. Thus, we choose the free soft
mass parameters to fulfill μ2a=ðλ2ax2Þ ¼ μ2b=ðλ2by2Þ such that

ζ2 ¼ 1 −
μ2a

2λ2ax2
¼ 1 −

μ2b
2λ2by

2
: ð75Þ

This result is consistent with the one in Eq. (71) for the
assumed relation among the soft mass parameters.

C. Effect of higher-order terms on SUSY potential

The purpose of the Zn shaping symmetries is not only to
constrain the number of terms in the superpotential at the
renormalizable level but also to control the effect of higher-
order terms on the vacuum alignment achieved with the
help of the F-terms of the driving fields. These higher-order
terms contain, in general, more than two flavons (and
always one driving field in order to keep the R-symmetry
intact) and are thus nonrenormalizable. They are taken to be
suppressed by the cutoff scale Λ, which is assumed to be
larger than all scales present in the superpotential, espe-
cially larger than the scales x and y.
In order to show that the effect of higher-order terms can

be kept well under control, we study the flavon combina-
tions ϕn

a, ϕm
b , and ϕn

aϕ
m
b for n and m integers and nþm

larger than two, their VEVs following from the VEVs of the
flavons ϕa and ϕb [see Eqs. (53) and (66)] and how they
couple to the different driving fields Φa; ...;Φe. Indeed, we
can see that only small shifts in the size of the VEVs of ϕa
and ϕb, x and y, are induced, as long as we assume that the
indices of the Zn shaping symmetries, N and M, are both
even. The smallest possible viable choice is N ¼ 4 and
M ¼ 4 since, in the case of N and/or M being two, the
driving fields Φa and Φd and/or Φb and Φe would turn out
to be uncharged under the shaping symmetries (see
Table II), and thus, further terms would become allowed.
Choosing values for N and/or M larger than four is also
possible and leads to a larger suppression of the shift in the
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size of the VEVs of the flavons. We note that N andM may
also take on distinct values.
A detailed discussion of the flavon combinations, their

VEVs, and their impact on the F-terms of the different
driving fields can be found in Appendix C.

D. Comment on generalization
to three flavon triplets

The example of two flavons whose VEVs are aligned
orthogonally can be generalized to three flavon triplets with
orthogonal alignment by adding another flavon, suitably
chosen driving fields, and a further shaping symmetryZP. All
statements made regarding the vacuum alignment in the
SUSY limit and including soft SUSYbreaking terms, aswell
as those regarding the impact of higher-order terms, can be
adapted straightforwardly to the case of three flavon triplets.

IV. VACUUM ALIGNMENT
FOR OTHER GROUPS

In the previous example for the group A4, it has been
shown that the explicit minimization of the scalar potential
renders the same results as those derived in section II.
In the following, further examples are presented based on

thegroupsT7,Δð27Þ, andS4. These cover different situations
including the case of real and complex triplet representations
as well as universal and general soft masses.

A. T7 model

We first consider the simple case with two fields, a flavon
and a driving field. Since the groupT7 only contains complex
triplet representations, the flavon, ϕT ≡ ða1; a2; a3Þ, and the
driving field,ΦT ≡ ða01; a02; a03Þ, transform as a triplet and an
antitriplet, respectively.More information about thegroupT7

can be found in Appendix A 2 and references therein.
For our discussion, the relevant terms of the super-

potential are

W ¼ MΦϕþ λΦϕ2

¼ Mða01a1 þ a02a2 þ a03a3Þ
þ λða01a23 þ a02a

2
1 þ a03a

2
2Þ: ð76Þ

Differentiating with respect to the components of the
driving field, the vanishing of their F-terms gives

∂W
∂a0i

¼ −F⋆
i ¼ Mai þ λa2iþ2 ¼ 0; ð77Þ

where, again, cyclic indices are understood. Apart from the
trivial solution, the alignment arising from Eq. (77) is

ϕjVS
¼−

M
λ

0
B@

ωn
7

ω2n
7

ω4n
7

1
CA with ω7¼ e

2πi
7 ; n¼ 0;…;6: ð78Þ

Including universal soft masses [see Eq. (11)] and taking
the vacuum of the non-SUSY potential V to be rescaled
by ζ compared to the vacuum in Eq. (78), V as a function of
ζ reads

VðζÞ ¼ VðϕjVÞ ¼ ζ2ðð1 − ζÞ2M2 þm2Þ 3M
2

λ2
; ð79Þ

compare Eq. (30). Assuming m2 ≪ M2, the possible
extrema correspond to

ζ0 ¼ 0; ζ1 ≈
1

2
þ m2

M2
; ζ2 ≈ 1 −

m2

M2
; ð80Þ

where ζ0 is the trivial minimum, ζ1 corresponds to a local
maximum, and ζ2 is the shifted minimum, consistent
with Eq. (32).

B. Δð27Þ model

This example aims to show that the results of Sec. II can
also be applied to the case of more than one flavon. This
model has two pairs of flavons and driving fields. The
flavons, ϕT

a ≡ ða1; a2; a3Þ and ϕT
b ≡ ðb1; b2; b3Þ, transform

as a triplet and an antitriplet of Δð27Þ, respectively.
The corresponding driving fields, ΦT

a ≡ ða01; a02; a03Þ and
ΦT

b ≡ ðb01; b02; b03Þ, are instead Φa ∼ 3̄ and Φb ∼ 3.
The superpotential at the renormalizable level is given by

W ¼ MaΦaϕa þMbΦbϕb þΦaðλ1ϕ2
bj31 þ λ2ϕ

2
bj32Þ

þΦbðλ3ϕ2
aj3̄1 þ λ4ϕ

2
aj3̄2Þ: ð81Þ

We note that there are two independent cubic terms of the
formΦaϕ

2
b andΦbϕ

2
a, respectively. The explicit form of the

resulting triplets (antitriplets) from the contractions ϕ2
b (ϕ

2
a)

can be found in Appendix A 3. It can be checked that the
conditions arising from the vanishing of the F-terms of the
driving fields are

∂W
∂a0i

¼ −F⋆
a0i
¼ Maai þ λ1b2i þ λ2biþ1biþ2 ¼ 0; ð82Þ

∂W
∂b0i

¼ −F⋆
b0i
¼ Mbbi þ λ3a2i þ λ4aiþ1aiþ2 ¼ 0; ð83Þ

where again cyclic indices are understood. Two types of
alignment are

ϕa;ϕbjVS1
∝

0
B@

1

0

0

1
CA with ha1i ¼ −ωn M

1=3
a M2=3

b

λ1=31 λ2=33

;

hb1i ¼
MaMb

λ1λ3
ha1i−1 ð84Þ
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and

ϕa;ϕbjVS2
∝

0
B@

1

1

1

1
CA with

ha1i ¼ −ωn M1=3
a M2=3

b

ðλ1 þ λ2Þ1=3ðλ3 þ λ4Þ2=3
; ð85Þ

hb1i ¼
MaMb

ðλ1 þ λ2Þðλ3 þ λ4Þ
ha1i−1; ð86Þ

where n ¼ 0, 1, 2 and ω ¼ e
2πi
3 . Including universal soft

masses [see Eq. (11)], we can analyze the minima of the
non-SUSY potential V. As in the case of the A4 model with
two flavon triplets (compare Sec. III B), the soft mass
parameters are chosen such that the vacuum of the flavons
ϕa and ϕb is rescaled by the same factor ζ. If we take the
first type of alignment as an example, this requires, at first
order in m2=M2,

m2
b

m2
a
¼
�
Mbλ1
Maλ3

�
2=3 2M4=3

a λ2=31 −M4=3
b λ2=33

2M4=3
b λ2=33 −M4=3

a λ2=31

þO
�

m2
a

M2
a;b

�
ð87Þ

for M4=3
a λ2=31 < 2M4=3

b λ2=33 . The rescaling ζ then reads

ζ ¼ 1 −
λ2=31 m2

a

2M2=3
a M4=3

b λ2=33 −M2
aλ

2=3
1

þO
�

m4
a

M4
a;b

�
: ð88Þ

Furthermore, the value of the potential is given by

Vðϕa;ϕbjV1
Þ ¼ M2=3

a M4=3
b m2

a

λ4=33 λ2=31

M4=3
a λ2=31 þM4=3

b λ2=33

2M4=3
b λ2=33 −M4=3

a λ2=31

þOðm4
aÞ: ð89Þ

An analogous analysis can be performed for the second
type of alignment in order to obtain the relation among the
soft mass parameters, the shifted minimum, and the value
of the potential V.

C. S4 model

In this example, we study the constraints on general soft
masses arising from requiring that these do not alter the
vacuum alignment. The group S4 contains two real triplets,
3 and 30. Further details and the relevant multiplication rule
can be found in Appendix A 4. We consider one flavon,
ϕT ≡ ða1; a2; a3Þ, and one driving field, ΦT ≡ ða01; a02; a03Þ,
both transforming as 3.

The renormalizable terms in the superpotential are

W ¼ MΦϕþ λ

2
Φϕ2

¼ Mða01a1 þ a02a2 þ a03a3Þ
þ λða01a2a3 þ a02a1a3 þ a03a1a2Þ: ð90Þ

Setting the F-terms of the components of the driving field
to zero leads to

∂W
∂a0i

¼ −F⋆
i ¼ Mai þ λaiþ1aiþ2 ¼ 0; ð91Þ

with cyclic indices being understood. Equation (91) is
compatible with the following alignments (discarding the
trivial vacuum):

ϕjVS
¼ −

M
λ

0
B@

1

1

1

1
CA;

0
B@

1

−1
−1

1
CA;

0
B@

−1
1

−1

1
CA;

0
B@

−1
−1
1

1
CA: ð92Þ

For universal soft masses [see Eq. (11)] and rescaling the
SUSY vacuum by ζ, we obtain the potential V as a func-
tion of ζ,

VðζÞ ¼ VðϕjVÞ ¼ ζ2ðð1 − ζÞ2M2 þm2Þ 3M
2

λ2
; ð93Þ

compare Eq. (30). As expected, the solutions for ζ are those
in Eq. (32).
For general soft masses [see Eq. (12)], we instead have to

check Eq. (42) in order to determine the form compatible
with a rescaling only of the vacuum as well as the value
of ζ. We exemplify this for the first alignment mentioned
in Eq. (92) and compute the form of the mass matrix M2

ab
[see Eq. (37)],

M2 ¼ M2

0
B@

3 −1 −1
−1 3 −1
−1 −1 3

1
CA: ð94Þ

As we can see, the first alignment in Eq. (92) is, indeed, an
eigenvector of this matrix with the eigenvalue M2.
Following from Eq. (42), this alignment also has to
correspond to an eigenvector of the general soft mass
matrix m2

kl. Its form (assuming, for simplicity, that m2
kl is

real) is then given by

m2 ¼

0
B@

m2
11 m2

12 m2
12 þm2

22 −m2
33

m2
12 m2

22 m2
11 þm2

12 −m2
33

m2
12 þm2

22 −m2
33 m2

11 þm2
12 −m2

33 m2
33

1
CA: ð95Þ
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For ζ, we obtain, at first order in m2=M2,

ζ ≈ 1 −
m2

11

M2
− 2

m2
12

M2
−
m2

22

M2
þm2

33

M2
: ð96Þ

Similar results are obtained for the other three alignments
which are mentioned in Eq. (92).

V. SUMMARY

In this work, we have advised a way to implement
vacuum alignments, obtained in SUSY theories, in non-
SUSY models with (discrete) flavor symmetries. As is
well-studied, the vacua of gauge singlets, flavons, can be
aligned in specific directions in SUSY theories with the
help of the F-terms of driving fields. It is desirable to apply
such an alignment mechanism also in non-SUSY models
in which it is notoriously difficult to obtain the correct
vacuum alignment without suppressing some couplings by
hand. This can be achieved by adding certain soft SUSY
(and potentially flavor symmetry) breaking masses to the
SUSY potential. The only effect of these terms is to rescale
the aligned vacuum by a factor close to one, up to
corrections of the order of the soft mass parameters which
are small compared to the mass scales in the superpotential.
In the case of general soft masses, we have identified
conditions that must be fulfilled in order to maintain the
alignment, up to rescaling. These are similar to those found
for mass terms softly breaking the flavor symmetry in
multi-Higgs doublet potentials [26]. Beyond the general
case, we have discussed examples with the well-known
flavor symmetries A4, T7, Δð27Þ, and S4. For concreteness,
we have assumed the flavons to be triplets of the flavor
symmetry. In Sec. III, we have investigated the vacuum
alignment in A4 models with one or two flavons and shown
that the alignment realized in the SUSY limit is only
rescaled after the inclusion of universal soft masses.
Furthermore, we have presented examples with T7,
Δð27Þ, and S4 in order to study concrete cases with flavons
in complex three-dimensional representations, as well as
with a potential with general soft masses, in Sec. IV.
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APPENDIX A: GROUP THEORY DETAILS

In this appendix, we summarize information about the
employed flavor symmetries A4, T7, Δð27Þ, and S4.

1. Group theory of A4

The group A4 has twelve distinct elements and four
irreducible representations. Apart from the trivial singlet 1,
it has two complex conjugated singlets, 10 and 100, and one
real triplet 3. This group can be generated by two generators,
s and t, that satisfy s2 ¼ ðstÞ3 ¼ t3 ¼ e, where e is the
neutral element. For the three-dimensional representation 3,
these elements can be chosen as the 3 × 3 matrices

S ¼

0
B@

1 0 0

0 −1 0

0 0 −1

1
CA and T ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA: ðA1Þ

The multiplication rule of two triplets is

ð3a ⊗ 3bÞ ¼ ða1b1 þ a2b2 þ a3b3Þ1
þ ða1b1 þ ω2a2b2 þ ωa3b3Þ10
þ ða1b1 þ ωa2b2 þ ω2a3b3Þ100
þ ða2b3; a3b1; a1b2Þ3
þ ða3b2; a1b3; a2b1Þ3 ðA2Þ

with ω¼e
2πi
3 . Further details can be found in, e.g., Ref. [27].

2. Group theory of T7

The group T7 has 21 distinct elements. It contains five
irreducible representations: three singlets, 1 and the com-
plex conjugated pair 10 and 100, and two complex con-
jugated triplets 3 and 3̄. This group can be generated by two
generators, s and t, which fulfill s7 ¼ t3 ¼ e and st ¼ ts4.
For the three-dimensional representation 3, the generators
can be chosen as

S ¼

0
B@

ω7 0 0

0 ω2
7 0

0 0 ω4
7

1
CA and T ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA ðA3Þ

where ω7 ¼ e
2πi
7 . The relevant product rules for T7 are
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ð3a ⊗ 3̄bÞ ¼ ða1b1 þ a2b2 þ a3b3Þ1
ð3a ⊗ 3bÞ ¼ ða3b3; a1b1; a2b2Þ3 þða1b1 þ ω2a2b2 þ ωa3b3Þ10

þ ða2b3; a3b1; a1b2Þ3̄ þða1b1 þ ωa2b2 þ ω2a3b3Þ100
þða3b2; a1b3; a2b1Þ3̄; þða2b1; a3b2; a1b3Þ3

þða1b2; a2b3; a3b1Þ3̄;

ðA4Þ

with ω ¼ e
2πi
3 . Further information can be found in

Ref. [30], for example.

3. Group theory of Δð27Þ
The group Δð27Þ contains 27 different elements. It has

nine irreducible singlets, 11;…; 19, that correspond to the
trivial singlet 11 and four pairs of complex conjugated
singlets, as well as two complex conjugated triplets, 3
and 3̄. This group can be described in terms of two gene-
rators, s and t, that satisfy s3 ¼ t3 ¼ ðstÞ3 ¼ ðs2tÞ3 ¼ e. In
the representation 3, these generators are represented by the
matrices

S ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA and T ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; ðA5Þ

with ω ¼ e
2πi
3 . The relevant product rule for Δð27Þ reads

ð3a ⊗ 3bÞ ¼ ða1b1; a2b2; a3b3Þ3̄1 þ ða2b3; a3b1; a1b2Þ3̄2
þ ða3b2; a1b3; a2b1Þ3̄3 : ðA6Þ

For more information, see, e.g., Ref. [43].

4. Group theory of S4
The group S4 has 24 different elements and five real

irreducible representations: two singlets, 1 and 10; one
doublet, 2; and two triplets, 3 and 30. The group can be
defined by two generators, a and b, fulfilling a4 ¼ e ¼ b3,
ab2a ¼ b, and aba ¼ ba2b. In particular, for the repre-
sentation 3, the following pair of real matrices can be
chosen:

A ¼

0
B@

−1 0 0

0 0 −1
0 1 0

1
CA and B ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA: ðA7Þ

The relevant product rule for the triplet 3 is

ð3a ⊗ 3bÞ ¼ ða1b1 þ a2b2 þ a3b3Þ1
þ
�
a2b2 − a3b3ffiffiffi

2
p ;

−2a1b1 þ a2b2 þ a3b3ffiffiffi
6

p
�

2

þ ða2b3 þ a3b2; a1b3 þ a3b1; a1b2 þ a2b1Þ3
þ ða3b2 − a2b3; a1b3 − a3b1; a2b1 − a1b2Þ30 :

ðA8Þ

For more information on S4, see, e.g., Ref. [34].

APPENDIX B: MINIMUM OF A4 POTENTIAL
INCLUDING SOFT SUSY BREAKING

1. One flavon triplet

First, we analyze the extremization conditions in Eq. (60)
for the A4 potential including soft SUSY breaking masses
and derive the form of the shifted minimum. Writing
Eq. (60) in terms of the components of ϕa, we obtain

2λ2aa1ðða�1Þ2 − x2Þ þ μ2aa�1 ¼ 0; ðB1Þ

which yields a�1 ¼ a1ð2λ2ax2Þ=ð2λ2aja1j2 þ μ2aÞ, implying
that a1 and a�1 have the same phase and must be real. In
that case,

a21 ¼ x2 −
μ2a
2λ2a

; a2 ¼ a3 ¼ 0: ðB2Þ

We can check that this shifted vacuum leads to a minimum
of the potential by examining its Hessian, expressed as a
3 × 3 symmetric matrix H ¼ ∂

2V=∂ai∂aj. The principal
minorsHi of this Hessian are defined as the determinants of
the i × i upper-left submatrices. According to Sylvester’s
criterion, all principal minors of H must be positive at the
point where the potential has a local minimum [44].
Explicitly calculating them, we obtain

H1 ¼ 8λ2a

�
x2 −

μ2a
2λ2a

�
; H2 ¼ 2λ2dH1

�
x2 −

μ2a
2λ2a

�
;

H3 ¼ 2λ2dH2

�
x2 −

μ2a
2λ2a

�
: ðB3Þ
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These are positive, implying that the vacuum in Eq. (B2)
yields a local minimum of the potential.
It remains to verify that this minimum is also a global

minimum of the potential including soft SUSY breaking
masses. The value of the potential at the local minimum is
given by

Vmin ¼ μ2a

�
x2 −

μ2a
4λ2a

�
: ðB4Þ

We would like to check whether or not a different choice of
shifted vacuum could yield a value of the potential smaller
than this. Suppose the addition of soft SUSY breaking
masses causes a (real) shift x2 → x2 þ δa. The value of the
potential then reads

VminðδaÞ ¼ μ2a

�
x2 þ δa þ

λ2aδ
2
a

μ2a

�
ðB5Þ

with δa unknown. Extremizing the potential with respect
to this quantity, ∂Vmin=∂δa ¼ 0, yields δa ¼ −μ2a=ð2λ2aÞ.
Hence, the minimum in Eq. (B2) is the global one of the
potential.

2. Two flavon triplets

We move on to the case of two flavon triplets. Writing
the extremization conditions in Eq. (72) in terms of the
components of ϕa and ϕb, we find, for a2 ¼ a3 ¼ 0,

2λ2aa1ðða�1Þ2 − x2Þ þ λ2ca�1jb1j2 þ μ2aa�1 ¼ 0; ðB6Þ

λ2ca�1b
�
1b2 ¼ 0; ðB7Þ

λ2ca�1b
�
1b3 ¼ 0; ðB8Þ

2λ2bb1ððb�1Þ2 þ ðb�2Þ2 þ ðb�3Þ2 − y2Þ þ λ2cja1j2b�1
þ λ2eb�1ðjb2j2 þ jb3j2Þ þ μ2bb

�
1 ¼ 0; ðB9Þ

2λ2bb2ððb�1Þ2 þ ðb�2Þ2 þ ðb�3Þ2 − y2Þ
þ λ2eb�2ðjb1j2 þ jb3j2Þ þ μ2bb

�
2 ¼ 0; ðB10Þ

2λ2bb3ððb�1Þ2 þ ðb�2Þ2 þ ðb�3Þ2 − y2Þ
þ λ2eb�3ðjb1j2 þ jb2j2Þ þ μ2bb

�
3 ¼ 0: ðB11Þ

From Eqs. (B7) and (B8), we obtain two cases, (I) b1 ¼ 0
and (II) b2 ¼ b3 ¼ 0.
a. Case (I) Equation (B6) leads to a�1 ¼ a1ð2λ2ax2Þ=

ð2λ2aja1j2 þ μ2aÞ, which implies that a1 must be real and is
given by

a21 ¼ x2 −
μ2a
2λ2a

: ðB12Þ

Furthermore, setting b1 ¼ 0, Eqs. (B10) and (B11) are
solved for b2 ¼ 0 and b3 ¼ 0, respectively. However, we
are not interested in the trivial solution, b1 ¼ b2 ¼ b3 ¼ 0.
We, therefore, consider the following two cases.
Case (I.a) If we assume b3 ¼ 0, Eq. (B10) implies that

b2 must be real, and we arrive at

b1 ¼ 0; b22 ¼ y2 −
μ2b
2λ2b

; b3 ¼ 0: ðB13Þ

We note that an analogous result can be obtained for b2 ¼ 0
instead.
Case (I.b) If b2 ≠ 0 and b3 ≠ 0, Eqs. (B10) and (B11)

yield

ðb�2Þ2 þ ðb�3Þ2 − y2 ¼ −
b�2
b2

�
λ2ejb3j2 þ μ2b

2λ2b

�

¼ −
b�3
b3

�
λ2ejb2j2 þ μ2b

2λ2b

�
; ðB14Þ

implying that b2 and b3 must have the same phase. Then,
each term on the left-hand side of Eq. (B10) or (B11) has to
have the phase of b�2, telling us that b2 and b3 are real.
Consequently, Eq. (B14) leads to b1 ¼ 0; b22 ¼ b23 ¼
ð2λ2by2 − μ2bÞ=ð4λ2b þ λ2eÞ.
The potential for cases (I.a) and (I.b) can be evaluated as

VI:a ¼ μ2a

�
x2 −

μ2a
4λ2a

�
þ μ2b

�
y2 −

μ2b
4λ2b

�
;

VI:b ¼ VI:a þ
λ2eð2λ2by2 − μ2bÞ2
4λ2bð4λ2b þ λ2eÞ

: ðB15Þ

Clearly, case (I.b) cannot yield the global minimum.
b. Case (II) For b2 ¼ b3 ¼ 0, Eqs. (B6) and (B9) imply

that both a1 and b1 are real, and we find

a21 ¼
2λ2bμ

2
a − 4λ2aλ

2
bx

2 þ 2λ2bλ
2
cy2 − λ2cμ

2
b

λ4c − 4λ2aλ
2
b

;

b21 ¼
2λ2aμ

2
b − 4λ2aλ

2
by

2 þ 2λ2aλ
2
cx2 − λ2cμ

2
a

λ4c − 4λ2aλ
2
b

: ðB16Þ

The value of the potential at this point is

VII¼VI:aþλ2a

�
a21−

�
x2−

μ2a
2λ2a

��
2

þλ2b

�
b21−

�
y2−

μ2b
2λ2b

��
2

þλ2ca21b
2
1; ðB17Þ

which, again, cannot be the global minimum.
We conclude that the potential is minimized for case

(I.a), implying that the universal soft masses do not change
the vacuum alignment but simply induce a shift in the
vacuum proportional to the soft mass parameters. One may
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verify that this leads to a local minimum of the potential
from the Hessian, which is now a 6 × 6 symmetric matrix
H ¼ ∂

2V=∂φi∂φj, where φT ≡ ða1; a2; a3; b1; b2; b3Þ. The
principal minors of the Hessian are given by

H1 ¼ 8λ2a

�
x2 −

μ2a
2λ2a

�
;

H2 ¼ 2H1

�
λ2d

�
x2 −

μ2a
2λ2a

�
þ λ2c

�
y2 −

μ2b
2λ2b

��
;

H3 ¼ 2λ2dH2

�
x2 −

μ2a
2λ2a

�
;

H4 ¼
λ2d
λ2a

H2
1

�
λ2cλ

2
d

�
x2 −

μ2a
2λ2a

�
2

þ λ2dλ
2
e

�
x2 −

μ2a
2λ2a

��
y2 −

μ2b
2λ2b

�
þ λ2cλ

2
e

�
y2 −

μ2b
2λ2b

�
2
�
;

H5 ¼ 8λ2bH4

�
y2 −

μ2b
2λ2b

�
;

H6 ¼ 2λ2eH5

�
y2 −

μ2b
2λ2b

�
; ðB18Þ

which are all positive, confirming that the shifted vacua in
Eqs. (B12) and (B13) lead to a local minimum, with the
value of the potential given by VI:a in Eq. (B15). As before,
we can further check whether or not it is the global
minimum, assuming that x2 → x2 þ δa and y2 → y2 þ δb
could give rise to a value of the potential smaller than VI:a.
We find

VI:aðδa; δbÞ ¼ μ2a

�
x2 þ δa þ

λ2aδ
2
a

μ2a

�

þ μ2b

�
y2 þ δb þ

λ2bδ
2
b

μ2b

�
: ðB19Þ

Extremizing VI:aðδa; δbÞ, we obtain δa ¼ −μ2a=ð2λ2aÞ and
δb ¼ −μ2b=ð2λ2bÞ, leading to the shifted vacua found in
Eqs. (B12) and (B13).

APPENDIX C: HIGHER-ORDER TERMS
IN SUSY A4 POTENTIAL

AND SHAPING SYMMETRIES

In this appendix, we present the form and possible
impact of the higher-order terms on the SUSY A4 potential
and how the choice of the indices of the Zn shaping
symmetries can reduce their effect to only a (small) shift in
the size of the VEVs of the flavons. In the following, we
refer to the case of two flavon triplets. Clearly, these results
can be directly applied to the case of one flavon triplet only
and also generalized to three flavon triplets.
We study the combinations ϕn

a, ϕm
b , and ϕ

n
aϕ

m
b with n and

m integers and nþm larger than two.

Assuming the vacuum alignment given in Eq. (53), for
the combination ϕn

a with n even, only the covariants that
transform as singlets have a nonzero VEV, while for n odd,
only the covariant that transforms as a triplet has a non-
vanishing VEV, whose form is proportional to hϕaiT .
Similarly, we find, for ϕm

b , with the vacuum alignment
shown in Eq. (66), that the covariants with a nonzero VEV
are either singlets for m even or the triplet for m odd, with
its VEV being proportional to hϕbiT .
For the flavon combinations ϕn

aϕ
m
b with n and m both

integers and larger than zero, we can classify the covariants
acquiring a nonvanishing VEV for the vacuum alignment in
Eqs. (53) and (66) according to whether nþm, n, and m
are even or odd. In particular, we have, for nþm odd, with
n even (odd) and m odd (even), that only the covariant
which transforms as a triplet has a nonzero VEV that is
proportional to hϕbiT (hϕaiT). For nþm even (and equal
or larger than four), with both n and m also even, only the
covariants that are singlets acquire a VEV, while for nþm
even, with both n and m odd, only the triplet has a nonzero
VEV, whose form is proportional to hϕaϕbiT , i.e., propor-
tional to (0,0,1).
In the next step, we check, for each flavon combination,

whether or not it can be coupled in a Zn- and A4-invariant
way to one (or more) of the driving fieldsΦa; ...;Φe as well
as if such a coupling can give rise to a nonzero contribution
to the F-terms of the driving fields and, thus, has an impact
on the vacuum alignment of the flavons.
Before doing so, we emphasize that the driving fieldsΦa

and Φb are responsible for the size of the VEVs of the
flavons and not for their alignment. Thus, any contribution
from higher-order terms to the F-terms of Φa and Φb can
only lead to a shift in the flavon VEVs and, thus, is
acceptable, as long as this shift is small compared to the
scales x and y. The size of such shifts is determined by
the choice of the indices of the Zn shaping symmetries.
On the contrary, the driving fields Φc, Φd, and Φe are
responsible for the alignment of the flavon VEVs, and
consequently, the impact of higher-order terms on their
F-terms should be suppressed or absent due to the choice of
the shaping symmetries.
Furthermore, we note that in order to form an invariant

under ZN × ZM, flavon combinations coupling to Φa and
Φd have to have the charges (2,0), while flavon combina-
tions coupling to Φb and Φe should carry the charges (0,2).
Eventually, those coupling in an invariant manner to the
driving field Φc must have the Zn charges (1,1). The
invariance under A4 requires the flavon combinations
coupling to Φa, Φb, and Φc to be a trivial singlet, whereas
the ones coupling to Φd and Φe have to transform as a
triplet; see Table II.
Clearly, the flavon combinations ϕn

a with n an integer
cannot couple in an invariant way to the driving fields Φb,
Φc, andΦe. An invariant coupling is instead possible to the
driving fieldsΦa andΦd, in case n equals 2þ αN with α an
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integer larger than zero.17 As mentioned, for 2þ αN being
even, the covariants transforming as singlets acquire a
nonzero VEV, and thus, a contribution to the F-term of Φa,
in general, arises. Similarly, for 2þ αN odd, the covariant
being the triplet obtains a nonvanishing VEV which affects
the F-terms of Φd and, as a consequence, the vacuum
alignment of the flavon ϕa. This can be easily avoided, if N
is even. Furthermore, N should be larger than two since
otherwise the driving fields Φa and Φd would be neutral
and additional couplings become allowed.
Similarly, combinations of the form ϕm

b withm an integer
cannot form an invariant with the driving fieldsΦa,Φc, and
Φd. For m being 2þ βM with β an integer and larger than
zero, ϕm

b can be coupled in an invariant way to Φb and Φe.
With the same arguments as above, it follows thatM should
also be even and larger than two.
The impact of the flavon combinations ϕn

aϕ
m
b with n

and m integers and nþm larger than two remains to be
analyzed. Depending on the values of n and m, they can

couple to all driving fields. Indeed, ϕ2þαN
a ϕβM

b for α and β
integers (and at least one of them being larger than zero)
can couple to Φa and Φd. Since N and M are already
chosen to be even, both exponents are even and, hence, so
is their sum such that the covariants that are singlets get a
nonzero VEV, meaning that only a shift in the size of the
VEV of the flavon ϕa can be induced by these combina-
tions. Likewise, the flavon combinations ϕαN

a ϕ2þβM
b with α

and β integers can couple to Φb and Φe. Given N and M
even, however, these can only impact the size of the VEVof
the flavon ϕb. Eventually, we see that ϕ1þαN

a ϕ1þβM
b with α

and β integers18 can couple to Φc. Nevertheless, these
combinations cannot lead to a contribution to the F-term
of Φc since both exponents are odd, while their sum,
2þ αN þ βM, is even for N and M both even; conse-
quently, only the triplet gets a nonvanishing VEV, whileΦc
is a singlet of A4.
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