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We reexamine production of primordial black holes in a supercooled phase transition. While a mere
overdensity associated with a surviving false-vacuum patch does not imply formation of a black hole, it is
possible for such a patch to evolve and create a black hole, thanks to the gradient energy stored in the
bubble wall.
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I. INTRODUCTION

Primordial black holes (PBHs) are an attractive candi-
date for dark matter [1–52] and also could be responsible
for various astrophysical phenomena, including seeding
supermassive black holes [14,53–56], synthesis of heavy
elements [57–59], explaining nonrepeating fast radio
bursts [57,60,61], and G objects discovered in the
Galactic Center [62].
A relatively slow, supercooled first-order phase transi-

tion, in which the false-vacuum “islands” can linger,
possibly creating inhomogeneities, could provide the con-
ditions for the formation of PBHs [63–70]. We will
examine the viability of this scenario, while avoiding
unreliable and incorrect assumptions that have appeared
in the literature. We will ultimately show that there is a way
to form PBHs from shrinking domains of the false vacuum,
thanks to the gradient energy stored in the bubble wall.

II. INAPPLICABILITY OF A SIMPLE
OVERDENSITY CONDITION

The physics of supercooled phase transitions is well
understood. False-vacuum decay, being a stochastic

process, allows for the possibility that large patches of
space-time remain in false vacuum, even after the perco-
lation of bubbles in the majority of the Universe. Regions
that transitioned to true vacuum subsequently reheated and
have become radiation dominated. Eventually, the delayed
patch may also transition into radiation. Given the differ-
ence in transition times, the radiation density in the
majority of the Universe has redshifted more relative to
the delayed patch. The relative difference in radiation
densities generates a local overdensity.
In determining whether an overdensity of this kind might

lead to formation of a PBH, it may be tempting to apply a
simple overdensity criterion for black hole formation
adopted from the inflationary PBH formation discussion.
However, in most cases this approach cannot succeed.
Indeed, let us define a density contrast

δðxÞ ≔ ρðxÞ − ρ̄

ρ̄
: ð1Þ

Let us suppose that some region of size L with a density
contrast δ remained in the false-vacuum phase at a
relatively late time in the transition, and it converted to
the true vacuum at a time when ρ̄ has decreased to a lower
value than ρðxÞ averaged over the region L.
Is there a critical value δc such that a patch with δ > δc

collapses to a black hole? In a flat universe, the answer is no.
Indeed, if a patch of radiation dominated Universe has a
higher density, it expands in accordance with the Friedmann
equations, at the rate that is higher for larger values of ρ.
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The difference with the widely discussed scenarios for
PBH formation due to collapse of curvature perturbations is
rooted in the fact that a curvature perturbation on some
superhorizon scales makes the Universe locally nonflat. Let
us briefly review the perturbation scenario and juxtapose it
with the phase transition.
In inflation-based formation mechanisms of PBHs, cos-

mological inflation produces a locally perturbed region with
comoving size larger than the horizon size. The density
contrast on this comoving slice can be related to the curvature
K associated with the comoving slice [28]. In particular,K is
a function of the conserved comoving curvature perturbation,
typically denoted Rc [71].
Approximating KðrÞ ¼ K ¼ const, one obtains the

Friedmann equation

H2 þ K
a2

¼ 8πG
3

ρ; ð2Þ

where H ¼ ȧ=a, and a is the scale factor. One can now
relate the density contrast to the curvature K,

Δ ≔
ρ − ρ̄

ρ̄
¼ 3K

8πGρ̄a2
¼ K

H2a2
: ð3Þ

During radiation domination, ρ̄ ∝ a−4, which signals that
it is the curvature perturbation that induces the density
perturbation. Now the perturbed patch of the Universe
evolves as a nonflat universe with a curvature.
Once the perturbation grows to Δ ¼ 1, the expansion

stops, and the patch can collapse to a black hole.
Specifically, if the size of the perturbation is larger than
the Jeans length, then collapse will occur. Using [28]

c2sk2

a2
¼ H2; ð4Þ

one obtains

1 ¼ ΔðtcÞ ¼
K

c2sk2
; ð5Þ

i.e., K ¼ c2sk2, where tc is the time when the density
perturbation Δ is one. The criterion for PBH formation is
that the comoving slice density contrast reenters the Hubble
horizon with a value greater than δc ¼ c2s . This physical
understanding of the critical density criterion will be
sufficient for our purposes, but much work as been done
to refine the value of δc needed for collapse [72–76].
As discussed in the context of the inflationary scenario,

all PBH formation scenarios require a clear criterion that
demarcates the formation of a black hole. The simplest
requirement, which we will call the Schwarzschild cri-
terion, requires that the mass enclosed in a given volume fit
within that same mass’s Schwarzschild radius. This can be
generalized to the so-called hoop conditions [77], but
spiritually resembles the Schwarzschild criterion, so we

will not differentiate between the two. On the other hand, as
we have seen in the inflationary context, there are other
conditions that signal the formation of a black hole.
While the critical density criterion established in infla-

tionary scenarios appears to be applicable generically, there
are numerous subtleties that forbid its application to over-
dense regions that did not originate from inflationary
perturbations. The generation of large subhorizon over-
densities, including those larger than the critical density
criterion, do not signal the formation of a black hole. The
existence of structure in our present-day Universe makes
this point obvious. Naturally, subhorizon scale black holes
can form but the criterion for formation should instead be
replaced by the Schwarzschild criterion.
It may also seem reasonable to apply the critical density

criterion to horizon-sized density perturbations. This too
proves problematic. In the inflationary picture, the gen-
eration of an overdensity is linked to the existence of a
curvature perturbation. It is this curvature perturbation that
provides a contracting solution for the Friedmann equations
and the subsequent formation of a black hole. Without this
curvature component, the equations of motion describing
any Hubble-sized patch containing radiation provide only
expansionary solutions. Via this argument, the generation
of a horizon-sized radiation overdensity is not sufficient to
signal the formation of a black hole.
In this paper, we will demonstrate that PBHs can form

from supercooled phase transitions. Instead of relying on
the critical collapse criteria, we will instead use the
Schwarzschild criterion. A false-vacuum region surrounded
by true vacuum and radiation naturally implies the exist-
ence of a domain wall separating the two regions. The
pressure differential between these two regions pushes the
domain wall boundary inward. During this contraction, the
energy density of the volume remains constant. However,
the domain wall energy per unit volume scales as 1=R.
Eventually, the domain walls will fit within the
Schwarzschild radius associated with the false-vacuum
region leading to the formation of a PBH.
In Sec. III, we review false-vacuum decay and specify

the scalar potential used in our study. In Sec. IV, we will
discuss the background evolution of the Universe and the
dynamics of bubble formation and evolution. In Sec. V, the
domain wall equation of motion will be discussed as well as
the formation of PBHs in this scenario. Section VI will
discuss the probability of generating large supercooled
regions and present a formula for the PBH abundance.
Finally, in Sec. VII we will provide benchmark points of
parameter space that allow for the generation of PBHs
relevant for explaining all of dark matter (DM) or which
may be consistent with microlensing observations.

III. FALSE-VACUUM DECAY RATE

False-vacuum decay is a well-studied phenomena with a
plethora of applications to early Universe physics [78–81].
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The tunneling rate from the false-vacuum state to the true
vacuum will be the primary focus of this section. The
tunneling rate determines the nucleation rate of true-
vacuum bubbles. Tunneling can occur either thermally or
via quantum tunneling. In the case of our interest, the
thermal tunneling rate is appropriate,

Γ ¼ T4

�
S3
2πT

�
3=2

e−S3=T; ð6Þ

where Γ denotes the tunneling rate per unit volume, and S3
is the three-dimensional Euclidean action.
In this work, we will assume the nucleated bubbles are

spherically symmetric and produced by a single scalar field.
Under these assumptions, the three-dimensional, O(3)-
symmetric Euclidian action is given by

S3 ¼ 4π

Z
dr r2

�
1

2

�
dϕ
dr

�
2

þ VðϕÞ
�
: ð7Þ

Extremizing the action given by Eq. (7) requires solving the
equations of motion,

d2ϕ
dr2

þ
�
2

r

�
dϕ
dr

¼ ∂V
∂ϕ

ð8Þ

subject to the boundary condition that

ϕðr → ∞Þ ¼ ϕ−;
dϕ
dr

����
r¼0

¼ 0; ð9Þ

where ϕ− corresponds to the value of ϕ at the true
minimum of the potential. We have also assumed that
the metastable minimum lies at the origin. The solution of
Eq. (8), called a thermal instanton, may be substituted into
the action to find the tunneling rate.
For our purposes, we will examine a simple scalar theory

whose properties allow for strong phase transitions. In
particular, we will consider a finite-temperature effective
potential of the form

Vðϕ; TÞ ¼ 1

2
m2ðTÞϕ2 −

δðTÞ
3

ϕ3 þ λðTÞ
4

ϕ4: ð10Þ

It is useful to define the dimensionless parameter,

κðTÞ≡ λðTÞm2ðTÞ
δ2ðTÞ ; ð11Þ

and introduce the dimensionless field and the coordinates
such that ϕ → m2φ=δ and r → ρ=m. The potential is then
reexpressed as

Vðφ; TÞ ¼ m6ðTÞ
δ2ðTÞ V̂ðφ; TÞ;

V̂ðφ; TÞ ¼ 1

2
φ2 −

1

3
φ3 þ κðTÞ

4
φ4: ð12Þ

Here the parameter κðTÞ lies between −∞ < κðTÞ <
κðTcÞ ¼ κc ¼ 2=9, where Tc corresponds to the value of
T where the two minima of the potential are degenerate.
The action S3 is written as

S3ðTÞ ¼
m3ðTÞ
δ2ðTÞ Ŝ3ðTÞ;

Ŝ3ðTÞ ¼ 4π

Z
dρ ρ2

�
1

2

�
dφ
dρ

�
þ V̂ðφ; TÞ

�
: ð13Þ

Determining the action for any T, or equivalently any κ,
amounts to first numerically evaluating Eq. (8), subject to
its boundary conditions, Eq. (9), then evaluating the action
for this solution. This is well-trodden ground, and numer-
ous software packages have been developed that are
capable of tackling precisely this problem [82–85]. For
simplicity, we will use fits constructed in Ref. [86] for the
one-parameter potential given in Eq. (12). The resulting
action may then be approximated by

S3ðTÞ ≃
m3ðTÞ
δ2ðTÞ

8<
:

2π
3ðκ−κcÞ2 B̄3ðκÞ κ > 0;

27π
2

�
1þexp ð−jκj−1=2Þ

1þjκj=κc

�
κ < 0;

ð14Þ

where B̄3ðκÞ is a fitting function defined in Appendix A and
which is normalized so that B̄3ðκcÞ ¼ 1. This fitting
function reproduces the analytic solutions obtained in
the κ → 0 limit and also accommodates the correct κ → κc
behavior.
To move forward, we must specify the functional form of

mðTÞ, δðTÞ, and λðTÞ. Following Ref. [87], we define

m2ðTÞ ¼ 2DðT2 − T2
0Þ;

δðTÞ ¼ 3ðET þ AÞ;
λðTÞ ¼ λ: ð15Þ

It is convenient to define the zero-temperature minimum
ϕ−ðT ¼ 0Þ≡ v. This enables us to express the temperature
T0 as

T2
0 ¼ v2

�
λ − 3A=v

2D

�
: ð16Þ

We can also express zero-temperature mass mϕ as

m2
ϕ ≡ ∂

2V
∂ϕ2

ðv; 0Þ ¼ 2λv2 − 3Av: ð17Þ
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False-vacuum decay can only occur once the minimum
ϕ−ðTÞ < 0. This occurs at the critical temperature Tc,

Tc ¼
1

λD − E2

�
AEþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λDðA2 þ ðλD − E2ÞT2

0Þ
q �

: ð18Þ

Additionally, the value of the field ϕ−ðTcÞ≡ ϕc is given by

ϕc ¼ Tc

�
2ðEþ A=TcÞ

λ

�
: ð19Þ

For the specific set of functions fmðTÞ; δðTÞ; λðTÞg in
(15), the parameter κ is given by

κðTÞ ¼ 2λDðT2 − T2
0Þ

9ðET þ AÞ2 : ð20Þ

Given that κ alone determines the nondimensional action
Ŝ3, it is a simple exercise to demonstrate that the action
depends only on the parameters D, E, and λ and the ratios
A=v and T=v. The ratio A=v plays a significant role in the
strength of the phase transition allowed by the potential
Eq. (12). Therefore, for the remainder of the paper, we will
fix [87]

E ¼ 1=16; D ¼ 2.725; λ ¼ 1

8
þ 3

2

A
v
; ð21Þ

where λ is chosen so that the zero-temperature mass mϕ is
given by mϕ ¼ v=2. The requirement that the vacuum
energy vanishes at T ¼ 0 gives

ρV ¼ v4

4

�
λ −

2A
v

�
¼ v4

4

�
1

8
−

A
2v

�
: ð22Þ

Note that our choice of the parameter D differs from
Ref. [87] in order to ensure that a period of supercooling
occurs.
Another important aspect of our scenario is the physical

properties of the domain walls that will separate regions of
true and false vacua. For a temperature-dependent potential,
this calculation is nontrivial, especially considering the fact
that temperature changes across the domain wall.
Wewill approximate the size of the domain wall l and its

surface energy density σ using the values at T ¼ Tc,
namely, when the minima of the potential are degenerate.
This is also known as the “thin-wall regime.” The solution
for the potential equation (10) in the degenerate vacuum
limit is

x ¼
Z

ϕ

0

dφ

½2Vðφ; TcÞ�1=2
; ð23Þ

which gives

ϕðxÞ ¼ −
1

2
ϕc tanh

�
λϕcffiffiffi
8

p x

�
: ð24Þ

Therefore, the characteristic scale associated with the
domain wall is

l ∼
81=2

λϕc
: ð25Þ

The surface energy density is given by

σ ¼
Z

dx

�
1

2

�
dϕ
dx

�
2

þ Vðϕ; TcÞ
�

¼
Z

ϕc

0

½2Vðϕ; TcÞ�1=2dϕ ¼ ϕ3
c

6

�λ
2

�1=2
: ð26Þ

These quantities will play an important role in our
discussion of the domain wall equation of motion and
the conditions for the PBH formation.

IV. BACKGROUND EVOLUTION AND BUBBLE
DYNAMICS

The formation of PBHs is determined by the evolution of
energy densities within different causal regions of the
Universe. In the supercooled framework, there are two
relevant energy components, namely, radiation and the
false-vacuum energy

ρtot ¼ ρR þ ρV; ð27Þ

where generally the radiation component will include the
energy density stored in relativistic bubble-wall propagation,
scalar waves, and plasma excitation [69]. For simplicity, we
will group these effects into a singular energy component ρR
and will leave a holistic study for future work.
The evolution of the scale factor, radiation energy

density, and false-vacuum energy density are controlled
by the differential equations

H2 ¼
�
1

a
da
dt

�
2

¼ 1

3M2
Pl

½ρRðtÞ þ ρVðtÞ�; ð28Þ

ρ̇R þ 4H
dρR
dt

¼ −
dρV
dt

: ð29Þ

For the sake of evaluation, it is useful to define the
dimensionless time and energy densities

τ≡Heqffiffiffi
2

p t; ρ̂iðτÞ ¼
2ρiðτÞ

3M2
PlH

2
eq
; ð30Þ

where Heq is the Hubble parameter at equality, i.e., when
ρRðτeqÞ ¼ ρVðτeqÞ. We will leave a detailed derivation of the
nondimensionalized differential equations in Appendix B.
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It is also useful to define a temperature Teq, associated with
the equality time, namely,

H2
eq ¼

2π2

90
g⋆ðTeqÞ

T4
eq

M2
Pl

¼ 2ρV
3M2

Pl

: ð31Þ

Fromhere,we see that the equality temperature is determined
by v and A=v, assuming λ is fixed by Eq. (21).
While the energy density ρV is initially constant, as soon

as the temperature falls below Tc thermal tunneling and
bubble nucleation begin to occur. Once a bubble forms at t0,
its radius at time t is given by [88]

Rðt; t0Þ ¼
Z

t

t0
dt̃

vwðt̃Þ
aðt̃Þ : ð32Þ

The expected volume of true-vacuum bubbles per unit
volume of space at time t, IðtÞ, dictates the probability that
a given point of space remains in the false-vacuum state at
time t. Given a bubble of true vacuum with coordinate
radius Rðt; t0Þ, then [88]

IðtÞ ¼ 4π

3

Z
t

tc

Γðt0Þa3ðt0ÞR3ðt; t0Þdt0; ð33Þ

where tc corresponds to the time in which T ¼ Tc or, in
other words, when phase transitions become energetically
feasible. The time dependence of vacuum energy density
ρVðtÞ is then given by the product

ρVðtÞ ¼ ρV;eq exp½−IðtÞ�; ð34Þ

where ρV;eq is given by the constant value presented in
Eq. (22).
Equations (28)–(34) describe a two-dimensional

coupled, integrodifferential equation. In Appendix B we
outline how to transform this system into a set of first-order
differential equations that may be evaluated with any off-
the-shelf numerical method software.

V. FORMATION OF PBHS

The formation of PBHs will follow the collapse of a
false-vacuum patch due to the pressure differential between
the true- and false-vacuum regions. This scenario was first
explored in Refs. [63,64] and later refined by Ref. [65]. The
formalism established by Refs. [63–65] has also been
utilized to describe the possible formation of PBHs from
bubble nucleation during inflation [89,90].
References [63–65] consider a circular patch of false

vacuum surrounded by a region of true vacuum. This
physical scenario presents two apparent paradoxes.
First, for a sufficiently large false-vacuum patch, an

observer deep within the false-vacuum region would unam-
biguously observe an inflating space-time. However, an
observer outside the patch would observe an unstable,

collapsing region as the pressure differential between the
two regions induces an inward force.
Second, if the two observers sat arbitrarily close to each

other, but separated by a domain wall between the two
regions, each would again observe different phenomena.
The inner, false-vacuum observer would see the domain
wall radius of curvature increasing. However, the outer
true-vacuum observer would not see an increase in the
radius of curvature for the same reasons as discussed in the
previous paragraph. Given that general relativity will
ensure continuity between the two regions, the observers
must agree on the observed domain-wave radius of
curvature.
The resolution to these apparent paradoxes was first

identified in Ref. [63] and further explored in Ref. [65].
General relativity and the non-Euclidean geometry of
space-time allow for a consistent solution across the de
Sitter-Schwarzschild barrier. References [63–65] high-
lighted the possibility that bubble universes might detach
from the original space-time. Observers inside this
detached region would observe an inflating universe, while
those outside would simply see a black hole.
On the other hand, small regions of false vacuum will

never reach a state of eternal inflation. Alternatively, these
smaller false-vacuum regions may simply collapse into
“conventional” black holes after their domain walls, and
their associated energy, enters into their respective
Schwarzschild radii. It is this scenario that is applicable to
the formation of PBHs from supercooled phase transitions.
The equation of motion for the domain wall dividing the

true- and false-vacuum regions can be derived using
the Israel junction conditions [65,91,92]. In particular,
the junction conditions lead to an equation of motion
for the wall radius [65]

M ¼ 4π

3
ρVr3 − 8π2Gσ2r3

þ 4πσr2
�
1 −

�
8πG
3

ρV

�
r2 þ ṙ2

�
1=2

; ð35Þ

where ·≡ d=dτ and τ is the proper time derivative as
measured along the domain wall trajectory. It is convenient
to define the Hubble scales HV and Hσ as

H2
V ¼ ρV

3M2
Pl

¼ H2
eq

2
; ð36Þ

Hσ ¼
σ

2M2
Pl

; ð37Þ

as well as the ratio of the two,

η≡ Hσ

HV
: ð38Þ
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For the specific potential considered in Sec. III,

η ∼
v3=2M2

Plffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4=3M2

Pl

p ∼
v

MPl
≪ 1: ð39Þ

We will also introduce

χ2 ≡H2
V þH2

σ ¼ H2
Vð1þ η2Þ: ð40Þ

This allows us to define the nondimensional quantities

z3 ≡ χ2

2GM
r3 ð41Þ

and

τ0 ≡ χ2τ

2Hσ
: ð42Þ

Following Ref. [65] this allows us to write Eq. (35) as

�
dz
dτ0

�
2

þ UðzÞ ¼ E; ð43Þ

where

E≡ −
4H2

σ

ð2GMÞ2=3χ8=3

¼ −
4η2

ð2GMHVÞ2=3ð1þ η2Þ4=3 ð44Þ

and

UðzÞ ¼ −
�
1 − z3

z2

�
2

−
γ2

z
; γ ≡ 2η

ð1þ η2Þ1=2 : ð45Þ

Note that 0 ≤ jγj ≤ 2 and that only E depends on the mass
M. Therefore, the wall equation of motion, Eq. (35), has
been reduced to the motion of a particle moving in one
dimension under the influence of the potential given above.
The implicit solution to Eq. (43) is

τ0 ¼
Z
z

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E −Uðz0Þp : ð46Þ

The domain of integration is determined by the initial
conditions of the bubble wall and can lead to dramatically
different physical outcomes.
Fortunately, we are only interested in the collapse

timescale and so the solution Eq. (46) is sufficient.
However, to establish an intuition for the process of
collapse we will first examine properties of the potential,
Eq. (45). The potential UðzÞ is both negative and concave
down for all z. Furthermore, the potential has one

maximum Um, located at

z3m ¼ 1

2


�
8þ

�
1 −

1

2
γ2
�

2
�
1=2

−
�
1 −

1

2
γ2
��

; ð47Þ

which gives

Um ≡UðzmÞ ¼ −
3ðz6m − 1Þ

z4m
: ð48Þ

The maximum of the potential also allows us to define the
critical mass Mcr as EðMcrÞ ¼ Um given by

Mcr ¼ M̄
γ3z6mð1 − γ2=4Þ1=2
3

ffiffiffi
3

p ðz6m − 1Þ3=2 ; ð49Þ

where

M̄≡ 4πM2
Pl

HV
: ð50Þ

Observe that, in the limit that γ → 0, Mcr → M̄. In con-
nection with our original parameters, the γ → 0 limit is
equivalent to v → 0. Further, M̄ acts as the minimum mass
needed for a region to be able to collapse into a black hole.
Finally, it is convenient to express the Schwarzschild

radius r ¼ rs ¼ 2GM and the de Sitter horizon r ¼ H−1
V in

terms of z. It is a simple exercise to show that

zs ¼
γ2

jEj ; ð51Þ

zH ¼
ffiffiffiffiffiffijEjp

γð1 − γ2=4Þ1=2 : ð52Þ

The key properties of the potential, Eq. (45), can be
observed in Fig. 1. With Eq. (39) in mind, we note that

zsðγ → 0Þ ¼ ðM=M̄Þ2=3; ð53Þ

zHðγ → 0Þ ¼ ðM=M̄Þ−1=3: ð54Þ

This fact and the maximum mass defined in Eq. (49) limit
the values of zs and zH in the γ → 0 or, equivalently, the
η → 0 limit.
For the purposes of forming PBHs from supercooled

first-order phase transitions, regions of false vacuum will
originally be generated with z > 0 (r > 0) and with an
inward velocity, i.e., moving toward z ¼ 0. For a region to
collapse, its radius must lie on the left side of the potential.
If the initial radius lies instead on the right side of the
potential, solutions to Eq. (43) indicate that the radius of the
region would simply expand to infinity after reflecting off
of the rightmost side of the potential. The region below the
curve defined by Eq. (45) cannot be physically realized.
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Therefore, when searching for a viable set of parameters,
only initial radii left of the potential UðzÞ will be included.
We will define the radius zTP, and correspondingly rTP,

as the turning point radius in which a system with fixed
mass M, and therefore fixed “energy” E, intersects the
leftmost wall of the potential. Based on our previous
discussion, the regions that can collapse into PBHs must
have initial radii between zs and zTP. As an example, the
purple line in Fig. 1 illustrates the path taken by a wall with
E ¼ −6, beginning zTP, and falling inward toward zs.
Finally, in order for a PBH to form in this scenario, a

number conditions must hold. The first condition is related
to the collapse time τ0 or, alternatively, its dimensionful
counterpart τ. We require that τ be much smaller than the
Hubble time, i.e.,

τ

H−1
V

¼ 2η

ð1þ η2Þ τ
0 ≪ 1: ð55Þ

To further avoid complications during collapse we will also
require that bubble nucleation rate is slow compared to the
rate of collapse. Given that Γ is the rate per volume, the
corresponding nucleation timescale within a patch of radius
size z at time t is

τnucðz; tÞ ¼
�
4π

3
r3s

�
z
zs

�
3

ΓðtÞ
�
−1
: ð56Þ

Therefore, we will also require that

τ

τnucðz; tÞ
≪ 1; ð57Þ

where the values z and t will be specified in Sec. VI.

The final PBH formation condition we will specify
involves the physical size of the surrounding domain wall.
In particular, we require that the size of the domain wall l
fits within the Schwarzschild radius of a black hole with
mass specified by Eq. (35). This leads to the condition

1 ≥
l

2GM
≃ 6.7 × 10−7

�
10−13M⊙

M

��
1 GeV

v

�
; ð58Þ

which is quite easy to satisfy. To reiterate, l is the thin-wall
approximated value of the domain wall size. However, it is
difficult to believe that any correction to the size of the
domain wall will exceed the 6 orders of magnitude needed
to overcome the above inequality.
So long as the above conditions are met, a PBH will form

following the collapse of the false-vacuum region as
described by Eq. (43).

VI. THE POSSIBILITY OF AN ISLAND

Crucial to the supercooled phase transition paradigm is
the existence of large islands of the false vacuum in which
the phase transition is delayed. As is expected, the majority
of bubble nucleation will occur when

ΓðtnÞ ≃H4ðtnÞ ð59Þ

where tn, and the corresponding temperature Tn, satisfies the
above equality. In our realization of PBH formation from
supercooled phase transitions, the probability of collapse
corresponds to the probability that a patch with comoving
radius R can exist until some late time. Specifically,

Pcoll ≡ Psurvðtni ;RÞ; ð60Þ

wherePsurvðtni ;RÞ specifies the probability that a patchwith
comoving radius R has survived up to time tni . As one
expects, tn < tni .
The collapse probability can be written explicitly as

[63,64]

lnPsurvðtni ;RÞ ¼ −
Z

tni

tc

dt0Γðt0Þa3ðt0ÞVðt0; tniÞ; ð61Þ

where

Vðt0; tniÞ ¼
4π

3
½RðtniÞ þ Rðtni ; t0Þ�3 ð62Þ

is the volume corresponding to the spacelike slice at t0 of a
patch with comoving radiusR at time tni . It is convenient to
define the ratio

ξ ¼ RðtniÞ
½aðtniÞHðtniÞ�−1

; ð63Þ

FIG. 1. The nondimensional potential from Eq. (45). The
critical mass Mcr is labeled, along with the lines that specify
the Schwarzschild or Hubble radiusH−1

V for a fixed energy E. The
purple line and arrow illustrate the motion of a wall with initial
size rTP which falls into its Schwarzschild radius to form a black
hole. For illustrative purposes, we set γ ¼ 1.3 in this figure,
though γ ≪ 1 in realistic models.
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which allows us to directly compare the size of the
comoving radius R and the comoving Hubble radius at
time tni . In particular, for ξ < 1 we are dealing with
subhorizon patches, while for ξ > 1 the delayed patch is
larger than the horizon size. For the parameters relevant for
our discussion, we will always be well within the sub-
horizon case.
As discussed in Sec. V, the initial radius of the false-

vacuum region must lie within zs and zTP for a conventional
black hole to form. This limits the acceptable values of ξ in
this circumstance. For simplicity, we will perform our
calculations for regions size zTP at tni . It is these values of z
and t that will be used in the nucleation rate condition
specified by Eq. (57).
Calculating the PBH abundance from supercooled phase

transitions is nontrivial. In general, one has to consider the
collapse of false-vacuum patches with varying sizes. This
will lead to a nonmonochromatic distribution of PBHs. As
is standard, we express the present-day PBH abundance as

fPBH ≡ ρPBH;0
ρDM;0

: ð64Þ

In this particular context,

fPBH ¼ 1

ρDM;0

�
4π

3
H−3

0

�
−1

×
Z

MN patchesðMÞPsurvðMÞgðMÞ dM: ð65Þ

Here, N patches denotes the number of patches within the
present-day horizon that have the associated mass M.
Equation (35) provides the relation between the mass M
and the initial size of the patch. The function gðMÞ
describes the distribution of patches. In the absence of
an analytic expression for gðMÞ, we will utilize the
monochromatic limit

gðMÞ ¼ δðM −MPBHÞ; ð66Þ

which will approximate the peak of the true distribution.
This leads to

fPBH ¼ Psurv
MPBHN patches

ρDM;0
4π
3
H−3

0

: ð67Þ

Here,

N patches ≃
1

ξ3
·

�
aeqHeq

a0H0

�
3

; ð68Þ

where we used the fact that

aðtniÞHðtniÞ ≃ aðTeqÞHðTeqÞ ð69Þ

within the delayed, inflating patch. The expression for
N patches can be further simplified by utilizing conservation
of entropy, namely,

g�SðTeqÞa3eqT3
eq ¼ g�SðT0Þa30T3

0: ð70Þ

This allows us to express N patches as

N patches ≃
1

ξ3
·
g�SðT0Þ
g�SðTeqÞ

�
T0Heq

TeqH0

�
3

; ð71Þ

where we used g�SðT0Þ ¼ 3.94, T0 ¼ 2.7 K ¼ 2.4×
10−13 GeV, and H0 ¼ 1.4 × 10−42 GeV.
This leads to a parametrization of fPBH of the form

fPBH ≃
�
7.3 × 10−5

ξ

�
3
�

Psurv

3 × 10−8

�

×

�
MPBH

10−13M⊙

��
g�ðTeqÞ
100

�
1=2

�
Teq

150 MeV

�
3

: ð72Þ

VII. RESULTS AND DISCUSSION

The above formalism enables us to identify numerous
points in parameter space that could have important
phenomenological implications. For the scope of this work,
we will highlight a few points of interest and leave an
exhaustive parameter search for later work. Table I presents
three sets of parameters that offer PBH populations relevant
for dark matter, microlensing observations, and gravita-
tional wave detectors. A summary of our results can also be
seen in Fig. 2 alongside the present-day landscape of
observational constraints for PBHs.
Given that our scenario relies on the existence of a false-

vacuum region surrounded primarily by true vacuum we
require that the ratio ρbkgV =ρbkgrad ∼Oð0.1Þ at t ¼ tni .
Figure 3 shows the nucleation rate associated with

MPBH ¼ 10−13M⊙. A notable feature of the decay rate is
that ðΓ=H4Þmax ≲ 104. In our parameter search, this feature
has generally been required for the successful formation of
PBHs. Adjusting the ratio A=v can lead to extremely large
values of ðΓ=H4Þmax. After equaling 1, the ratio Γ=H4

increases extremely rapidly. Since the nucleation rate is so
large, the probability to survive any appreciable time after
tn immediately becomes small [see Eq. (61)]. Given that the

TABLE I. Parameters that generate PBHs with masses relevant
for dark matter or microlensing experiments.

Model v (GeV) A=v MPBH [M⊙] tni=teq fPBH

I 1 0.1052 10−13 1.4106 1
II 10 0.1040 10−8 1.3305 10−3

III 50 0.1037 10−6 1.7332 2 × 10−2
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delay times needed for PBH formation occur significantly
after tn, we also note that the approximation

ΓðtÞ ∼ Γne−βðt−tnÞ; ð73Þ

where

β≡HT
dS3
dT

����
T¼Tn

ð74Þ

does not hold in this scenario. This is demonstrated by
Fig. 3, which shows that the time tni needed for PBH
formation is relatively far from tn. Therefore, a linear
approximation, as expressed through Eq. (74), will fail to
accurately approximate the rate ΓðtÞ when t ¼ tni .
In summary, we have presented the possibility that

supercooled phase transitions can lead to the formation
of PBHs. Large islands of false vacuum have the possibility
to persist after a short intermediate de Sitter phase. The
domain waves separating the false- and true-vacuum
regions are driven inward due to the pressure differential
between the two phases. These domain waves fall within
the Schwarzschild radius of the false-vacuum region,
leading to the formation of a black hole. This framework
is significantly different from existing literature, which
instead relied on the critical density condition to signal the
formation of PBHs [66–70,102,103]. We will also point to
existing literature, such as Refs. [104–106], which also
previously examined the formation of PBHs from super-
cooled phase transitions, but which have instead opted to
use the Schwarzschild formation condition.
While not emphasized here, it is well known that first-

order phase transitions can lead to sizable gravitational
wave signals due to collision of bubble walls. The ampli-
tude for such a signal is determined by the ratio [107–110]

ΩGW ∼ 10−6
�
H
β

�
2

; ð75Þ

while the peak frequency is given by

fpeak ∼ 1 mHz

�
β

H

��
TRH

100 TeV

�
; ð76Þ

where TRH is the temperature when the majority of the
Universe is restored to a radiation dominated era.
For the parameters we have explored, β=H ∼ 100

and TRH ≲ 0.1 GeV leading to ΩGW ∼ 10−10 with
fpeak ∼ 10−7 Hz. Frequency is relevant for future pulsar
timing array measurements. That being said, it would be
difficult to associate any gravitational waves in this
frequency range directly with the formation of PBHs.
However, such a gravitational wave signal might help in
distinguishing this PBH formation mechanism from the
expected signals of others.
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APPENDIX A: BOUNCE DETAILS

Calculating the single parameter bounce action, as
defined by Eqs. (7)–(14), is a well-understood procedure.
As discussed in the main text, a potential of the form of
Eq. (10) can be redefined through field and coordinate
definitions to obtain an equation of motion that depends
only on one temperature-dependent parameter κ. In order to
obtain the bounce solution, one must then solve Eq. (8)
subject to the boundary conditions given in Eq. (9).
Generally, this must be done numerically and many
software packages have been written that can solve this
simple bounce problem and its generalizations [82–85].
For simplicity, we will utilize a fitting function for the κ-

dependent bounce action S3 obtained in Ref. [86]. In
particular, for κ > 0,

S3ðTÞ ≃
m3ðTÞ
δ2ðTÞ

2π

3ðκ − κcÞ2
B̄3ðκÞ; ðA1Þ

where B̄3ðκÞ is obtained from numerical fits and given
by [86]

B̄3ðκÞ¼
16

243

�
1−38.23

�
κ−

2

9

�
þ115.26

�
κ−

2

9

�
2

þ58.07
ffiffiffi
κ

p �
κ−

2

9

�
2

þ229.07κ

�
κ−

2

9

�
2
�
: ðA2Þ

We verified that this fitting function is in agreement with
the results obtained in Ref. [87], as well as with our own
numerical implementation of the one-parameter bounce
solution.

APPENDIX B: NUMERICAL APPROACH

In this section, we hope to illustrate one possible
methodology for solving (28)–(34). Our first step is
rewriting the background evolution equations (28) and
(29) in terms of the dimensionless time variable τ [see
Eq. (30)]. This simple exercise yields

a0ðτÞ ¼ aðτÞ½ρ̂RðτÞ þ ρ̂VðτÞ�1=2; ðB1Þ

ρ̂0RðτÞ þ 4
a0ðτÞ
aðτÞ ρ̂R ¼ −ρ̂0VðτÞ; ðB2Þ

where 0≡ d=dτ. We will normalize the scale factor such
that aðτeqÞ ¼ 1. In addition, we must also nondimension-
alize Eqs. (32) and (33). It is a simple exercise to show that
this leads to

R̂ðτ; τ0Þ ¼
Z

τ

τ0
dτ̃

vwðτ̃Þ
aðτ̃Þ ; ðB3Þ

IðτÞ ¼ 4π

3

Z
τ

τc

Γ̂ðτ0Þa3ðτ0ÞR̂3ðτ; τ0Þdτ0: ðB4Þ

The nondimensional radius R̂ and rate Γ̂ are related to their
dimensionful quantities by

Rðτ; τ0Þ ¼
ffiffiffi
2

p

Heq
R̂ðτ; τ0Þ; ðB5Þ

ΓðτÞ ¼ H4
eq

4
Γ̂ðτÞ: ðB6Þ

The next step in our method will be to define

rðτÞ≡
Z

τ

τc

dτ̃
vwðτ̃Þ
aðτ̃Þ ðB7Þ

such that

R̂ðτ; τ0Þ ¼ rðτÞ − rðτ0Þ ðB8Þ
and

r0ðτÞ ¼ vwðτÞ
aðτÞ ; rðτ ≤ τcÞ ¼ 0: ðB9Þ

Furthermore, we can define

viðτÞ ¼
Z

τ

τc

Γ̂ðτ0Þa3ðτ0Þriðτ0Þdτ0 ðB10Þ

such that

v0iðτÞ ¼ Γ̂ðτÞa3ðτÞriðτÞ; viðτ ≤ τcÞ ¼ 0: ðB11Þ
This enables us to write IðτÞ as

IðτÞ ¼ 4π

3
½r3ðτÞv0ðτÞ − 3r2ðτÞv1ðτÞ

þ3rðτÞv2ðτÞ − v3ðτÞ�: ðB12Þ

Thus, we have extended our two-dimensional system of
integrodifferential equation to a seven-dimensional system
of first-order ordinary differential equations (ODEs),

faðτÞ; ρRðτÞg ⟶ faðτÞ; ρRðτÞ; rðτÞ; viðτÞg: ðB13Þ
The initial conditions are

faðτÞ; ρRðτÞ; rðτÞ; viðτÞgjτ¼τc
¼ f1; 1; 0; 0g: ðB14Þ

The cost of solving seven-dimensional first-order ODEs is
minimal, and so this method provides quick, easy to
implement strategy to examine background evolution of
a supercooled phase transition.
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