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The neutrino mixing parameters are expected to have renormalization group (RG) running effect in the
presence of newphysics. If themomentum transfers at production and detectionmismatchwith each other, the
oscillation probabilities are generallymodified and become dependent on not just the neutrino energy but also
the momentum transfer. Even in the limit of vanishing baseline, the transition probability for the appearance
channel is interestingly not zero. This would significantly affect the sensitivity of the genuine leptonic Dirac
CP phase. We further explore the possibility of combining the long- and short-baseline neutrino experiments
to constrain such RG running effect for the purpose of guaranteeing the CP measurement. To simulate the
double dependence on the neutrino energy andmomentum transfer, we extend the usual GLoBES simulation of
fixed baseline experiments and use a two-dimensional χ2 analysis to obtain sensitivities.
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I. INTRODUCTION

The matter-antimatter asymmetry in the Universe is one
of the most fundamental questions [1]. To explain this
asymmetry, the charge-parity (CP) violation is necessary
[2]. In the Standard Model (SM) of particle physics, the
quark mixing matrix introduces a CP phase but the induced
baryon asymmetry is too small to account for the observed
value [3–5]. In the extended SM with heavy right-handed
neutrinos, it has been shown that the leptonic CP violation
could generate sufficient matter–antimatter disparity
through the leptogenesis mechanism [6–8]. It is interesting
to observe that the leptonic CP phases in the neutrino
mixing matrix [9] provide potential sources of CP violation
that can be directly used to explain the matter-antimatter
asymmetry [10–16].
The leptonic Dirac CP phase δD of the Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) matrix can manifest itself in
neutrino oscillation and hence can be measured therein. Its

first measurement results were published in 2019 [17,18] by
the two long-baseline (LBL) neutrino oscillation experiments
NOνA [19] and T2K [20]. With the normal ordering (NO) of
neutrinomasses that is preferred by the latest results, the 2021
NOνA result gives δD ¼ 148°þ49°

−157° [21] while the 2023 T2K
result has δD ¼ 247°þ56°

−36° [22]. The next-generation LBL
experiments T2HK [23] and DUNE [24] under construction
are expected to greatly improve the precision on δD. With
about 10years of data taking, each experiment can reach∼10°
precision level [25,26]. In addition, ESSνSB [27] is sensitive
to δD by detecting neutrinos at the second oscillation peak,
while T2HKK [28] and MOMENT [29] are sensitive to both
the first and secondoscillationmaxima.With around twice the
energy and baseline of DUNE, the P2O experiment [30] is
sensitive to both δD and the matter effect. Additional low-
energy neutrinos from muon decay at rest (μDAR) provide
complementary measurements to accelerator LBL experi-
ments, such as DAEδALUS [31], TNT2HK [32], μDARTS
[33,34], DAEδALUSþ JUNO [35], and DUNEþ μTHEIA
[36]. Besides accelerator neutrinos, CP measurement with
sub-GeV atmospheric neutrino oscillation is also proposed
for Super-PINGU [37,38], Super-ORCA [39], and even at
JUNO [40] or DUNE [41].
Although the neutrino oscillation measurement has

entered the precision era [42,43], the interpretation of
the experimental data to extract the leptonic Dirac CP
phase δD still faces various theoretical challenges. On the
SM side, the matter density uncertainty can greatly reduce
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the sensitivity to δD, especially when the value of δD is
around the maximal values 90° or 270° [36,44–47]. Beyond
the SM, there are various new physics scenarios that are
capable of mimicking the CP violation effect and hence
disturbing the CP measurement. For example, the neutrino
nonstandard interaction (NSI) contributes extra matter
potential [48,49] that receives different sign between
neutrino and antineutrino modes to fake CP and signifi-
cantly reduce the CP phase sensitivity [50–55]. In addition,
the Lorentz invariance violation (LIV) [56,57] induces an
effective Hamiltonian with both CPT-odd and CPT-even
terms that have similar form as the effective Hamiltonian
induced by NSI. Consequently, the effective Hamiltonian
will modify the neutrino oscillation probability and hence
impact on the CP phase sensitivity just like NSI [58–61].
Moreover, the nonunitary mixing due to heavy neutrinos
[62,63] allows extra CP phases to fake the genuine CP
effect [51,64–68].
Besides the new physics scenarios listed above, both the

SM and the BSM interactions can generate less explored
effects in neutrino oscillation such as the renormalization
group (RG) running of the neutrino mixing parameters
[69–74]. Various neutrino mass models, such as the canoni-
cal seesaw models, the inverse seesaw model, the scotogenic
model, and the radiative Dirac model can lead to RG running
effects [73,74]. Consequently, the neutrino mass and mixing
parameters evolve as functions of the relevant energy scale.
With mismatched energy scales between the neutrino
production and detection processes, the neutrino RG running
can affect its oscillation probabilities [75].
In our paper, we carefully study how RG running can

affect the leptonic CP phase measurement. In Sec. II, we
review the neutrino RG running features and introduce a
model-independent parametrization for the running behav-
iors. We then establish in Sec. III the general formalism of
neutrino oscillations in the presence of RG running. In
particular, we adopt the quantum field theory (QFT)
language and compare with the usually adopted quantum
mechanics (QM) approach. With higher energy, DUNE can
provide larger variation at the relevant energy scale than
other experiments to allow more significant RG effects. In
Sec. IV, we elaborate how a two-dimensional neutrino
oscillation simulation, including neutrino energy and
momentum transfer reconstructions, should be established
for GLoBES with DUNE as a specific realization. The
interplay between RG running and the genuine Dirac
CP phase is evaluated with the extended two-dimensional
χ2 analysis to give the projected sensitivities at DUNE. Our
conclusion and discussion about this new effect can be
found in Sec. VI.

II. RG RUNNING OF NEUTRINO MIXING
PARAMETERS

Although neutrino oscillation is the first new physics
supported by various experimental measurements, we are

still not so sure what is really happening behind the scene.
The new physics that we have been looking for may not be
as apparent as the nonstandard interactions (NSI) that
appears at tree level already and affects the neutrino
oscillation behavior, but make itself manifest via loop
correction and the RG running effect. Studying the RG
running effect in neutrino oscillation is actually an inevi-
table way of exploring new physics.
The neutrino mixing matrix U is defined according

to the neutrino mass matrix diagonalization, U†M†
νMνU ¼

Diagðm2
1; m

2
2; m

2
3Þ. In other words, the RG running effect of

the neutrino mixing is inherited from the running of the
neutrino mass matrix. On the model building side, the
neutrino mass is typically generated at a high scale while
the mass value and the corresponding neutrino mixing
parameters are measured experimentally at a low scale.
Across different energy scales, the RG evolution effects
need to be included.
The RG running of neutrino mixing can be generally

parametrized using the β function,

dOν

d ln jQ2j≡ βν; ð2:1Þ

where jQ2j is the absolute value of momentum transfer
[75]. Choosing the Lorentz-invariant momentum transfer
jQ2j as the RG running variable is widely used in the
literature and known as the Gell Mann-Low scheme
[76,77]. Such a choice is consistent with the previous
studies about the RG running effect in neutrino oscilla-
tions [75,78,79]. For generality, we use Oν to denote the
neutrino observables such as the mixing angles and the
Dirac CP phase. In neutrino oscillation, the neutrino
propagates mainly as the on-shell mass eigenstates and
the RG scale of the propagator is fixed as neutrino masses,
Q2 ¼ m2

ν. Consequently, the RG running contribution
from the neutrino propagator part can be ignored [75].
In other words, the RG running of the neutrino mixing
matrix should come from the charged-current vertex part
[75,78,79]. Both the neutrino production and the detection
processes are affected by RG running via modification of
the mixing angles and coupling constants with different
scales. Below the new physics scale, the RG evolution
determined by the SM [80,81] is negligibly small [74] and
hence the mixing parameters are treated as constants. Any
sizable RG running effect should appear above the new
physics scale. The neutrino masses can also run in a
similar way as Eq. (2.1). However, the impact of running
neutrino masses is negligible [70–75] for the oscillation
process of interest and hence omitted in this paper for
simplicity.
For generality, we simply treat βν as a perturbative

constant. In this sense, the solution of Eq. (2.1) for the three
mixing angles (θs ≡ θ12, θa ≡ θ23, and θr ≡ θ13) and the
Dirac CP phase δD can be generally expressed as,
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θijðQ2Þ≡ θijðQ2
0Þ þ βij ln

�����Q
2

Q2
0

����
�
; and

δDðQ2Þ≡ δDðQ2
0Þ þ βδ ln

�����Q
2

Q2
0

����
�
: ð2:2Þ

The reference value jQ2
0j corresponds to the new physics

scale and the evolution formulas apply for jQ2j > jQ2
0j

while reducing to constant values for jQ2j < jQ2
0j. If the

new physics scale is much higher than the experimental
scales, the running effect will not be measured at the current
low energy neutrino experiments. To test the running effect
at the OðGeVÞ LBL experiments such as DUNE, we take
Q2

0 ¼ 1 MeV as a benchmark value throughout this paper.
Furthermore, we need four parameters to describe the
evolution, three βij for the mixing angles and one βδ for
the Dirac CP phase. The RG running effect can lead to
nonstandard oscillation behaviors as we elaborate below.

III. GENERAL FORMALISM OF NEUTRINO
OSCILLATION

A. QFT description of neutrino oscillation

We start with the vacuum neutrino oscillation without
considering RG running which is conceptually clearer to
set the stage in the QFT framework. A typical neutrino
oscillation experiment involves the neutrino production,
propagation, and detection processes. For the case of
neutrino (rather than antineutrino) oscillation, a charged
antilepton lα appears at the position x≡ ðx0; xÞ when
producing an α-flavor neutrino να while a charged lepton lβ

is observed at the position y≡ ðy0; yÞ for the detection of a
β-flavor neutrino νβ as shown in Fig. 1. In between,
neutrinos propagate as mass eigenfields (νi ≡P

α U
�
αiνα)

over a macroscopic spatial distance L≡ y − x. The full
transition matrix element T for the above processes can be
read off directly from Fig. 1 [82],

T ≡X
i

Z
d4xd4yMμ

detðyÞ
igffiffiffi
2

p UβiūβγμPL

Z
d4p
ð2πÞ4

ið=pþmiÞeip·ðx−yÞ
p2 −m2

i þ iϵ
igffiffiffi
2

p U�
αiγνPLvαMν

prodðxÞ; ð3:1Þ

where the production and detection matrix elements
Mμ

prodðxÞ and Mν
detðyÞ contain those relevant interactions

except the charged-current vertex between neutrino and
charged lepton. To also take the associated charged leptons
into consideration, the charged current (CC) interaction
mediated by the SMW� boson with weak gauge coupling g
should be involved. With ψ̄ to produce a neutrino, the

associated matrix element U�
αi receives a complex con-

jugation. Similarly, the detection part annihilates the
intermediate neutrino with ψ to have Uβi. The projector
PL selects the left-handed fermions.
The oscillation behavior as a periodic function of the

baseline L is encoded in the propagation phase factor
eip·ðx−yÞ from x to y. For the mass eigenstate νi propagator,

Z
d4p
ð2πÞ4

ið=pþmiÞeip·ðx−yÞ
p2 −m2

i þ iϵ
¼

Z
d4p
ð2πÞ4

i
P

suiðp; sÞūiðp; sÞeip·ðx−yÞ
p2 −m2

i þ iϵ
; ð3:2Þ

FIG. 1. The schematic plot for the QFT description of neutrino oscillation including three cases: (1) vacuum oscillation without
considering RG running (blue); (2) vacuum oscillation with RG running (red); as well as (3) oscillation with both RG running and matter
effect (black).
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its numerator can be replaced by two neutrino
spinors according to the spin sum relation, =pþmi ¼P

s uiðp; sÞūiðp; sÞ. In the ultrarelativistic limit, only the
left-handed chiral component can contribute since the right-
handed counterpart is projected out by PLuðp;þÞ ¼ 0.
Then the neutrino spinors uiðp;−Þūiðp;−Þ in the numer-
ator complete the matrix elements for production and
detection,

MprodðxÞ≡ igffiffiffi
2

p ūiðp;−ÞγνPLvαMν
prodðxÞ; ð3:3aÞ

MdetðyÞ≡ igffiffiffi
2

p Mμ
detðyÞūβγμPLuiðp;−Þ: ð3:3bÞ

Since the neutrino mass is typically much smaller than
the momentum transfer in production and detection, their
matrix elements Mprod and Mdet are essentially indepen-
dent of the neutrino masses. Consequently, the sum over the
mass eigenstantes involves only the neutrino propagator,

T ¼
Z

d4p
ð2πÞ4 d

4xd4yMdetðyÞ

×

�X
i

Uβi
ieip·ðx−yÞ

p2 −m2
i þ iϵ

U�
αi

�
MprodðxÞ: ð3:4Þ

The integral over the four-momentum p is divided into
two parts, the integration over the three momentum p
and energy p0, respectively. The three-momentum integra-
tion can be calculated using the Grimus-Stockinger
theorem [82],

Z
d3p
ð2πÞ3 fðpÞ

eip·L

p2
0 − p2 −m2

i þ iϵ

⟶
jLj→∞

−
1

4πL
fðjpjL̂ÞeijpjL

���
jpj¼

ffiffiffiffiffiffiffiffiffiffi
p2
0
−m2

i

p ; ð3:5Þ

with the exponential term being e−ip·ðx−yÞ ¼ eip·L. The
above equation means that the leading contribution is
given by neutrinos on mass shell, jpj ≈ p0 −m2

i =2p0,
and propagating from source to detector in the direction
of L̂ ¼ L=jLj. Most importantly, the full transition matrix
element,

T ∝
1

L

Z
dp0d4xd4yMdetðyÞ

�X
i

Uβie
−i

m2
i

2p0
LU�

αi

�
MprodðxÞ;

ð3:6Þ

is inversely proportional to the baseline Lwhich becomes a
flux dilution factor 1=L2 in jT j2 due to neutrino number
conservation in the three-dimensional space. The two
spatial and one energy p0 integrations result in a δ—
function for energy conservation of the whole process [82]

with explicit calculation and more details to be found in
[82–85]. For macroscopic distance, the total process
decomposes into the neutrino flux from production, the
neutrino scattering cross section of detection, and the
neutrino oscillation probability.
The neutrino oscillation probability, Pνα→νβ , is then

defined as the absolute value squared of the amplitude
in Eq. (3.6),

Pαβ ≡ jAosc
βα j2; with Aosc

βα ≡X
i

Uβie
−i

m2
i

2Eν
LU�

αi; ð3:7Þ

by extracting those irrelevant terms for the oscillation
probability to reduce to a δ function, PαβðL ¼ 0Þ ¼ δαβ.
We can see that the amplitude Aosc

βα is exactly the paren-
thesis of Eq. (3.6).
Note that the above QFT formalism for neutrino oscil-

lation has two major differences with its quantum mechan-
ics (QM) counterpart. In QM, the α flavor neutrino να is
described by a quantum state jναi≡ a†αj0i and similarly
for the mass eigenstate jνii≡ a†i j0i. Since να ≡

P
i Uαiνi,

the neutrino operators aα and ai (not bα or bi) have the
same similarity transformation aα ¼

P
i Uαiai according

to ν ∼ aþ b†. Then, the similarity transformation on the
quantum states, jναi ¼

P
i U

�
αijνii, receives an extra com-

plex conjugation. The second difference appears in the
oscillation phase factor, e−iEit, which has a minus sign
according to the Schrodinger equation while its counterpart
from the neutrino propagator in QFT is eijpjL without minus
sign. With simultaneous presence of both differences, the
oscillation probability derived in both QFT and QM
formalism is the same.

B. Vacuum oscillation with RG running
and zero-distance effect

Note that physical variables such as the neutrino mixing
parameters and masses depend on momentum transfer in
the presence of RG running as mentioned in Sec. II.
Especially for a typical neutrino oscillation experiment, the
momentum transfers in neutrino production, propagation,
and detection processes are different from each other.
However, since the neutrino mass receives negligible
RG running effect [70–75], the neutrino mass eigenfields
can be treated universally during the whole process. In
this sense, the neutrino flavor eigenfields become momen-
tum transfer dependent via the mixing matrix UðQ2Þ,
ναðQ2Þ≡P

i UαiðQ2Þνi. Besides the neutrino mixing
matrices and neutrino flavor eigenfields, quantum correc-
tions can also generate a RG running effect on the gauge
coupling g of CC weak interactions, g → gðQ2Þ [75]. As
shown in Fig. 1, the full transition matrix element for the
vacuum oscillation with RG running effect can be obtained
by replacing the relevant parameters in Eq. (3.6) with their
Q2-dependent counterparts,

GE, KONG, and PASQUINI PHYS. REV. D 110, 015003 (2024)

015003-4



T ¼ −
i

8π2L

Z
dp0d4xd4yMdetðy;Q2

dÞ

×

�X
i

UβiðQ2
dÞe−i

m2
i

2Eν
LU�

αiðQ2
pÞ
�
Mprodðx;Q2

pÞ; ð3:8Þ

where the momentum transfers in the neutrino production
and detection processes are defined as Q2

p and Q2
d. Finally,

the vacuum oscillation amplitude with the RG running
effect receives a modification on the mixing matrix from
Eq. (3.7),

Aosc
βα ¼ UβiðQ2

dÞe−iL
m2
i

2EνU�
αiðQ2

pÞ: ð3:9Þ

The oscillation amplitude and consequently the corre-
sponding probability PαβðEν; Q2

p;Q2
dÞ have dependence

on the production and detection momentum transfers in
addition to the neutrino energy.
The matrix elements Mprodðx;Q2

pÞ and Mdetðy;Q2
dÞ

absorb the Q2-dependent gauge couplings gðQ2
pÞ and

gðQ2
dÞ, respectively. For simplicity, we focus on the running

effect that enters the oscillation probability to emphasize its
effect on the oscillation behaviors. However, the gauge
coupling can also enter the oscillation probability through
the matter effect as we elaborate later in Sec. III C.
From Eq. (3.9), an interesting effect emerges. The

transition probability does not vanish in the zero-distance
limit,

Pαβ ¼ j½UðQ2
dÞU†ðQ2

pÞ�βαj2; ð3:10Þ

if the mixing matrices UðQ2
pÞ and UðQ2

dÞ in the production
and detection processes mismatch with each other. On the
other hand, the oscillation probability Pαβ reduces to δαβ if
Q2

d ¼ Q2
p. Notice that zero-distance represents the distance

of a short-baseline experiment with L ≪ 2Eν=Δm2
ij. At the

same time, the condition jLj → ∞ in Eq. (3.5) is still true as
long as LEν ≫ 1 [82]. In other words, the so-called zero-
distance is macroscopic and the neutrinos are on-shell,
which means the production and detection processes are
still separated. One should keep in mind that this is just a
limit and not really zero distance. Therefore, the Grimus-
Stockinger theorem can still be used in the zero-distance
limit since the condition 1=Eν ≪ L ≪ 2Eν=Δm2

ij is valid
for all the short-baseline neutrino experiments we con-
sider later.
The zero-distance transition probability can be

explicitly calculated by using the standard PMNS para-
metrization [9],

UPMNS ≡O23P�
δD
O13PδDO12; ð3:11Þ

where Oij are the Euler rotation matrices and PδD≡
diagf1; 1; e−iδDg. Since we mainly focus on the RG running
of the DiracCP phase δD, we simply fix the other oscillation
parameters except theCP phase and define the change of δD
due to RG running as ΔδDðQ2

d;pÞ≡ δDðQ2
dÞ − δDðQ2

pÞ,
where δp;d ≡ δDðQ2

p;dÞ represent the running CP phases
in production and detection, respectively. Then the transition
amplitude UðQ2

dÞU†ðQ2
pÞ becomes,

1þ e−iΔδD − 1

2

0
B@

2 sin2 θr e−iδpsa sin 2θr e−iδpca sin 2θr
eiδdsa sin 2θr −2eiΔδDs2a sin2 θr −2eiΔδDsaca sin2 θr
eiδdca sin 2θr −2eiΔδDsaca sin2 θr −2eiΔδDc2a sin2 θr

1
CA: ð3:12Þ

It is interesting to see that it contains only the reactor (θr)
and atmospheric (θa) mixing angles while the solar angle
(θs) does not appear at all. Then the explicit form of the
zero-distance transition probability is obtained by putting
the above expression into Eq. (3.10). For νe → νe and
νμ → νe, the transition probabilities are,

PeeðQ2
d;pÞ ¼ 1 − sin2

�
ΔδD
2

�
sin2 2θ13;

PμeðQ2
d;pÞ ¼ sin2

�
ΔδD
2

�
s223 sin

2 2θ13: ð3:13Þ

Although these probabilities are independent of the Dirac
CP phase itself, but are functions of the CP phase differ-
ence induced by the running effect. Most interestingly, the
Pee oscillation probability that is typically independent of

the Dirac CP phase has dependence on the CP phase
difference induced by the RG running parameter ΔδD. The
zero-distance effect is unique for identifying the running
effect. On the experimental side, such an effect can be
constrained using the data from the short-baseline (SBL)
experiments as elaborated later in Sec. V.

C. Neutrino oscillation in matter with RG running

The neutrinos propagating in matter can experience
that matter effect that arises from the forward scatter-
ing mediated by weak gauge bosons. It adds an
additional matter potential matrix V to the vacuum
Hamiltonian H0,

H ≡H0 þ V: ð3:14Þ
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Note that the vacuum Hamiltonian H0 ≡M†M=2Eν is
usually defined in the vacuum flavor basis ναðQ2

vacÞ where
the momentum transfer is denoted as Q2

vac. Although there
is no unique definition of Q2

vac and its value is unknown,
the introduction of this momentum transfer scale will not
bring any problems since it will not appear in the final
expression of oscillation probability as we show below. To
ensure that the summation between H0 and the matter
potential matrix V makes sense, the latter needs to be
written in the same flavor basis as H0.
Recall that the neutrino flavor eigenfields depend on the

momentum transfer. Similarly the matter flavor basis is
defined at the momentum transfer Q2

m of neutrino-matter
interactions. As specifically shown in Fig. 2, the neutrino
and antineutrino matter interactions are contributed by
different Feynman diagrams. Although both arise from
the W boson mediation, their momentum transfers are
different,

ν∶ Q2
m ≡ jðpν − peÞ2j ¼ jm2

e − 2meEνj;
ν̄∶Q2

m ≡ jðpν þ peÞ2j ¼ jm2
e þ 2meEνj; ð3:15Þ

which should not be a vanishing value as adopted in [75].
Between the neutrino and antineutrino modes, the momen-
tum transfer Q2

m ¼ jm2
e ∓ 2meEνj differs. Consequently,

the matter flavor eigenfields with Q2
m dependence are no

longer the same as their vacuum counterparts and the usual
definition of the matter potential without considering RG
running no longer holds.
The matter potential matrix should be diagonal in the

matter flavor basis ναðQ2
mÞ,

V ≡
0
B@

ffiffiffi
2

p
GFne 0 0

0 0 0

0 0 0

1
CA: ð3:16Þ

To match with the vacuum Hamiltonian H0, the matter
potential matrix needs to be rotated to the vacuum flavor
basis ναðQ2

vacÞ. The connection between the vacuum
[ναðQ2

vacÞ] and matter [ναðQ2
mÞ] flavor eigenfields is estab-

lished through the commonly shared mass eigenfields νi,
ναðQ2Þ ¼ P

i UαiðQ2Þνi,

ναðQ2
mÞ ¼

X
i

UαiðQ2
mÞνi

¼
X
iβ

UαiðQ2
mÞU�

βiðQ2
vacÞνβðQ2

vacÞ: ð3:17Þ

For convenience, we define UðQ2
m;Q2

vacÞ≡
UðQ2

mÞU†ðQ2
vacÞ. Although the production, detection,

and even the matter interaction processes involve different
momentum transfers and hence should have different flavor
eigenfields, the vacuum mass eigenfields is always defined
for on-shell neutrinos. This property is based on the
observation that the neutrino mass receives a very tiny
RG running effect [70–75]. Now the total Hamiltonian can
be written in the common vacuum flavor eigenfields
[ναðQ2

vacÞ] using the transformation between vacuum and
matter flavor eigenfields in Eq. (3.17), H ¼ M†M=2Eνþ
U†ðQ2

m;Q2
vacÞVUðQ2

m;Q2
vacÞ. After a similarity transforma-

tionH → U†ðQ2
vacÞHUðQ2

vacÞ, the total Hamiltonian can be
written in the vacuum mass eigenfields,

H ¼ M2
d

2Eν
þU†ðQ2

mÞVUðQ2
mÞ; ð3:18Þ

where M2
d ≡U†ðQ2

vacÞM†MUðQ2
vacÞ≡ diagfm2

1; m
2
2; m

2
3g

is the diagonal mass matrix in vacuum. The undetermined
Q2

vac does not appear in this Hamiltonian anymore and will
not affect the oscillation probability.
The diagonalization of the total Hamiltonian will give

the effective mass eigenfields ν̃i with the effective masses
m̃i during the propagation by one unitary matrixUðQ2

m; VÞ,

Hd ≡U†ðQ2
m; VÞHUðQ2

m; VÞ≡ diag

�
m̃2

1

2Eν
;
m̃2

2

2Eν
;
m̃2

3

2Eν

	
:

ð3:19Þ

The vacuum mass eigenfields νi and the effective mass
eigenfields ν̃i in matter are connected via the same unitary
matrix UðQ2

m; VÞ, νi ¼
P

j UijðQ2
m; VÞν̃jðQ2

m; VÞ. It can
reduce to νi ¼ ν̃i in the absence of matter potential V as
expected. Note that the matrix UðQ2

m; VÞ is only used to
diagonalize the total Hamiltonian.
To connect propagation with the production and detec-

tion processes, the relation between the effective mass

FIG. 2. The Feynman diagrams for the neutrino (left) and antineutrino (right) matter effects.
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eigenfields ν̃i in matter and the production as well as
detection flavor eigenfields ναðQ2

p;dÞ is needed. Since
the production and detection flavor eigenfields connect
with the vacuum mass eigenfields νj via ναðQ2

p;dÞ ¼P
i UαiðQ2

p;dÞνi, the effective mass eigenfields correlate
with the production and detection flavor eigenfields,

ναðQ2
p;dÞ ¼

X
ij

UαiðQ2
p;dÞUijðQ2

m; VÞν̃jðQ2
m; VÞ

≡X
α

UαjðQ2
p;d; Q

2
m; VÞν̃jðQ2

m; VÞ; ð3:20Þ

where we define a unitary matrix UðQ2
p;d; Q

2
m; VÞ≡

UðQ2
p;dÞUðQ2

m; VÞ for convenience.
Now the oscillation formula for the vacuum case in

Sec. III B can easily extend to the matter case. Reviewing
the whole oscillation process shown in Fig. 1, the neutrino
is first produced with flavor α, which decomposes into
effective neutrino mass eigenfields with an associated
matrix U�

αiðQ2
p;Q2

m; VÞ. After propagating a macroscopic
spatial distance L, each effective mass eigenfield with

the effective mass m̃i receives a phase factor, e−iL
m̃2
i

2Eν .
Finally, the effectivemass eigenfields combine linearly with
coefficients UβiðQ2

d;Q
2
m; VÞ to flavor eigenfields νβðQ2

dÞ
to be detected. Then the net effect gives the oscillation
amplitude,

Aosc
βα ≡X

i

UβiðQ2
d; Q

2
m; VÞe−iL

m̃2
i

2EνU†
iαðQ2

p;Q2
m; VÞ: ð3:21Þ

The above amplitude reduces to the vacuum one when
the matter potential is vanishing with UðQ2

p;d; Q
2
m; VÞ →

UðQ2
p;dÞ and m̃i → mi as expected. Different from the

vacuum case, the oscillation amplitude with matter effect
involves one more momentum transfer Q2

m which is not
negligiblewhen considering theRG running effect. Besides,
the gauge coupling enters the oscillation amplitude/proba-
bility through the matter potential term of the total
Hamiltonian as shown in Eq. (3.18). For simplicity, we
do not consider the RG running effect on the coupling
constant but only the mixing parameters in this paper.

D. Numerical illustration of the RG running effect

To illustrate the RG running effect on the neutrino
oscillation probabilities (dashed, dotted, and dash-dotted
curves), we compare with the standard result (solid curves)
in Fig. 3. For all panels, we take the DUNE configuration
with L ¼ 1284.9 km, Eν ∈ ½0.5 GeV; 5 GeV�, and produc-
tion momentum transfer Q2

p ¼ ðpνμ þ pμÞ2 ¼ m2
π for neu-

trinos produced from pion decay. However, the detection
momentum transfer Q2

d depends on the interaction with the
target and its value can vary a lot as we show below in

Sec. IVA. The upper left/right panel shows the RG running
effect on the νμ → νe=ν̄μ → ν̄e oscillation probabilities
with three βδ [defined in Eq. (2.2)] values: βδ ¼ 0 (without
RG running), −3 × 10−2, and 3 × 10−2. For both panels,
there are three oscillation peaks which locate at Eν ∼ 0.5,
0.8, 2.5 GeV, respectively. Among these three oscilla-
tion peaks, the 2.5 GeV one contributes most to the
event rate at DUNE since the DUNE neutrino spectrum
peaks in this region. For neutrino energies within
½2 GeV; 3 GeV�, the relative oscillation probability differ-
ence [≡jPðβδ ≠ 0Þ − Pðβδ ¼ 0Þj=Pðβδ ¼ 0Þ] can reach
percentage level and has a similar size as the CP effect.
Hence the RG running effect on neutrino oscillation
probabilities is not negligible.
In the lower panels of Fig. 3, we study the impact on

oscillation probabilities with three different Q2
d values:

Q2
d ¼ 0.1 GeV2, 1 GeV2, and 8 GeV2. For the neutrino

mode, the numerical result shows that the three blue curves
with different Q2

d values are close to each other for Eν

below 2.5 GeV and can be distinguished for Eν above
2.5 GeV. However, for the antineutrino mode, these curves
are distinguishable for Eν from 2 GeV up to 5 GeV. Hence
for a real neutrino experiment like DUNE, the momentum
transfer should be carefully reconstructed in order to study
the RG running effect as we elaborate below.

IV. CP PHASE SENSITIVITY REDUCTION
AT DUNE

A major concern is that the neutrino CP measurement
will suffer from the RG running effect. As mentioned
above, the oscillation probability with RG running can vary
a lot with the neutrino energy Eν and the detection
momentum transfer Q2

d. Such effect appears when the
two momentum transfers in neutrino production (Q2

p)
and detection (Q2

d) mismatch. The larger mismatch the
larger RG running effect. With large neutrino energy,
DUNE can provide a large detection momentum transfer
and hence a large RG running effect. So we take DUNE as
an example to quantitatively study the impact.

A. Neutrino energy and momentum transfer
reconstructions

The production momentum transfer has a fixed value as
the pion mass Q2

p ¼ m2
π since most DUNE neutrinos are

generated through pion decay [86]. To evaluate the
oscillation probability PαβðEν; Q2

p;Q2
dÞ with the RG run-

ning effect, one still needs to reconstruct the neutrino
energy Eν and the detection momentum transfer Q2

d. The
neutrino energy, Erec

ν ≡ Erec
l þ Erec

had, is reconstructed from
the deposited lepton (Erec

l ) and hadronic (Erec
had) energies

[24]. On the other hand, the reconstructed detection
momentum transfer Q2

rec correlates to not just the recon-
structed neutrino energy Erec

ν , but also the measured
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charged lepton energy Erec
l and the measured lepton

scattering angle θrecl ,

Q2
rec≡ jðprec

ν −prec
l Þ2j ¼ 2Erec

ν ðErec
l − jprecl jcosθrecl Þ−m2

l;

ð4:1Þ
where ml is the lepton mass. Note that the lepton
momentum cannot be directly reconstructed but needs
to be obtained from the reconstructed lepton energy,

jpljrec ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðErec

l Þ2 −m2
l

q
. In total, three observables (the

reconstructed lepton energy Erec
l , the hadronic energy

Erec
had, and the measured lepton scattering angle θrecl ) are

needed.

1. Energy reconstruction

We use GENIE [87,88] to generate the neutrino-argon
scattering events and simulate the neutrino energy

reconstruction at DUNE. Note that the neutrino energy
does not fully deposit as visible energy and some is
missing. In a liquid argon time projection chamber (TPC)
such as the DUNE far detectors, the energy is recon-
structed via the tracks left by the final-state particles.
Those tracks with deposited energy below the detector
threshold cannot be measured. Moreover, some final-state
particles such as neutrino cannot leave a track and hence is
not measurable either. These contribute as missing energy
[89]. To precisely reconstruct the neutrino energy, we add
a constant value, hEmisi, as correction to calibrate the
energy reconstruction by taking into account the average
missing energy, hEmisi ¼ 30 MeV, 20 MeV, and 20 MeV
for the QES, RES, and DIS scattering processes,
respectively.
In addition, the charged lepton (Erec

l ) and hadronic (Erec
had)

energies are smeared around their respective true values.
The Gaussain smearing resolution of each detectable

FIG. 3. The oscillation probabilities as a function of the neutrino energy Eν for the DUNE configuration with L ¼ 1284.9 km and
ρ ¼ 2.848 g=cm3. Upper left: the νμ → νe oscillation probabilities for the neutrino mode with βδ ¼ 0 (solid), 3 × 10−2 (dashed), and
−3 × 10−2 (dotted). Note that βδ ¼ 0 corresponds to the standard oscillation probabilities without RG running effect. Four different CP
values δD ¼ 0° (red), 90° (blue), 180° (green), and 270° (purple) are chosen for illustration. Upper right: same as the left but for the
antineutrino mode ν̄μ → ν̄e. Lower left: the νμ → νe oscillation probabilities with fixed CP value δD ¼ 270° forQ2

d ¼ 0.1 GeV2 (dashed
blue), 1 GeV2 (dot-dashed blue), and 8 GeV2 (blue dotted). Lower right: same as the left but for the antineutrino mode ν̄μ → ν̄e.
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particle is determined by the best reconstruction case
in [89] as summarized in Table I.
Figure 4 shows the reconstructed spectrum of CC events

for 2.5 GeV νe and ν̄e, respectively. Note that the energy
reconstruction for the CC-QES process has a better
performance than the other two CC-RES and CC-DIS
processes, since the deposited energy for CC-QES mostly
comes from the charged leptons which have a better
resolution than the other particles produced in the RES
and DIS processes.

2. Momentum transfer reconstruction
in terms of scattering angle

As mentioned above, the production momentum transfer
Q2

p has fixed value as the pion mass, Q2
p ¼ m2

π. For the
detection momentum transfer Q2

d, the previous work [75]
also uses a fixed value, Q2

d ¼ 2mNE2
ν=ð2Eν þmNÞ, where

mN is the target nucleon mass. Then a 2.5 GeV neutrino

corresponds to
ffiffiffiffiffiffi
Q2

d

q
≈ 1.4 GeV. However, the momentum

transfer of CC events is not fixed but follows a distribution

shown as the shaded regions in Fig. 5. The estimated
momentum transfer value actually locates at the tail of the
distribution and is at least two times of the mean momen-
tum transfer that is around 0.5–0.7 GeV. To see the running
effect on the Dirac CP phase, we show the CP phase
change ΔδD ð≡βδ lnðjQ2=Q2

0jÞ induced by RG running
with the blue curve in Fig. 5. The value of ΔδD varies a lot

throughout the
ffiffiffiffiffiffi
Q2

d

q
distribution region. Especially forffiffiffiffiffiffi

Q2
d

q
< 0.5 GeV, the corresponding ΔδD has a large

TABLE I. The energy resolutions for detectable particles
obtained by fitting to the best reconstruction case in [89].

Particle Energy resolution (σ=E) at DUNE

π� 15%
e�=γ 1.5%
p p < 400 MeV=c∶4%

p > 400 MeV=c∶
10% ⊕ 3.1%=

ffiffiffiffi
E

p ½GeV�
n 40%=

ffiffiffiffi
E

p ½GeV�
Other 5% ⊕ 30%=

ffiffiffiffi
E

p ½GeV�

FIG. 4. Left: the reconstructed energy (Erec
ν ¼ Erec

l þ Erec
had) distribution of a 2.5 GeV νe neutrino at the DUNE detector for different CC

scattering processes: QES (green), RES (red), and DIS (blue). The combined total spectrum is plotted in black color. Note that the total
spectrum is normalized and the others are weighted by their corresponding cross sections. Right: same as the left panel but for the
antineutrino mode.

FIG. 5. The CP phase change ΔδD ≡ βδ lnðjQ2=Q2
0jÞ induced

by the RG running effect with Q2
0 ¼ 1 MeV2 and βδ ¼ 3 × 10−2

as function of the detection momentum transfer
ffiffiffiffiffiffi
Q2

d

p
. The

ffiffiffiffiffiffi
Q2

d

p
distributions for νe—Argon scattering events are shown with the
orange and green shaded regions for the neutrino and antineutrino
modes, respectively. For comparison, the fixed

ffiffiffiffiffiffi
Q2

d

p
≈ 1.4 GeV

from Q2
d ¼ 2mNE2

ν=ð2Eν þmNÞ is presented by the vertical gray
dashed line.
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variation and is quite different from its counterpart adopted
in the previous work. Therefore, an event-by-event
reconstruction of the detection momentum transfer accord-
ing to Eq. (4.1) is necessary at DUNE.
In order to reconstruct the detection momentum

transfer Q2
d, the scattering angle reconstruction plays an

important role. Note that the Gaussian smearing of the true
scattering angle cannot be directly used to simulate the
measured angle due to the geometry effect that is
illustrated in the left panel of Fig. 6. The incoming
neutrino with momentum pν interacts with the detector
target which is marked as the black dot and a final-state

charged lepton with true momentum ptrue
l is produced.

Since the detector has a limited angular resolution, it
measures the lepton momentum pl with an opening angle
δθl from the true one. The value of δθl follows a Gaussian
distribution that depends on the detector angular reso-
lution σθ. In addition, the azimuthal angle ϕ for the
measured lepton momentum surrounding the true lepton
momentum distributes randomly in [0, 2π) and affects the
measured lepton scattering angle θrecl . We follow the
analytical method in [90] where the probability density
Pðθrecl jθtruel Þ for obtaining the measured scattering angle
θrecl from the given true one θtruel is,

Pðθrecl jθtruel Þ ¼ 1

2π

Z
π

0

PðδθlÞ sin θreclffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 θtruel sin2 δθl − ðcos θtruel cos δθl − cos θrecl Þ2

q dδθl: ð4:2Þ

In the above expression, PðδθlÞ≡ sin δθl=NðσθÞ×
exp ½−1=2ðδθl=σθÞ2� is the distribution function of the
opening angle δθl with σθ being the detector angular
resolution and NðσθÞ the normalization factor. In our
analysis, we take σθ ¼ 1° from the DUNE Conceptual
Design Report (CDR) result [24]. In the right panel of
Fig. 6, we show the probability density for the measured
scattering angle θrecl with four true scattering angle values
θtruel ¼ 0°, 15°, 30°, and 45° for illustration. For θtruel ≫ σθ,
the smeared scattering angle closely follows a Gaussian
distribution while the shape is significantly distorted when
the θtruel value is comparable with its angular resolution σθ.
Finally, the combination of Erec

ν ; Erec
l , and θrecl through

Eq. (4.1) reconstructs the detection momentum transfer

Q2
d. Figure 7 shows the

ffiffiffiffiffiffi
Q2

d

q
distribution of a 2.5 GeV

neutrino scattering with Argon target for different CC
scattering processes. The reconstructed momentum transfer
distributions (dashed) are in good agreement with the true
ones (solid), although the neutrino energy reconstruction is
far from being perfect as shown in Fig. 4.

3. 4-D transfer table for energy and momentum transfer

As mentioned above, the detector energy and
angular resolutions will smear the true values
ðEtrue;i

ν ; Q2
true;jÞ into their reconstructed counterparts

ðErec;i0
ν ; Q2

rec;j0 Þ with i, j, i0, and j0 being the indices of

FIG. 6. Left: the schematic plot for the charged lepton scattering angle θrecl reconstruction. With θtruel being the true scattering angle
between the final-state lepton ptrue

l and incoming neutrino pν momenta, δθl is the opening angle between the measured lepton pl and the
true one ptrue

l . Moreover, the azimuthal angle ϕ for the measured lepton momentum surrounding the true lepton momentum is randomly
distributed in the range of [0, 2π). Right: the probability distribution of the lepton scattering angle θrecl with four true scattering angles:
θtruel ¼ 0° (solid red), 15° (dashed green), 30° (dot-dashed blue), and 45° (dotted purple). We use the angular resolution σθ ¼ 1° from the
DUNE CDR result.
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their respective bins. Given a true neutrino energy and a
true momentum transfer, the transfer between the true
and reconstructed values is summarized in a 4-D transfer
table T 0

iji0j0 ,

T 0
iji0j0 ≡

ΔNðEtrue;i
ν ; Q2

true;j;E
rec;i0
ν ; Q2

rec;j0 Þ
NtotalðEtrue;i

ν ; Q2
true;jÞ

: ð4:3Þ

Here ΔNðEtrue;i
ν ; Q2

true;j;E
rec;i0
ν ; Q2

rec;j0 Þ is the simulated
event number within the i0th reconstructed energy bin
and the j0th reconstructed momentum transfer bin for the
given ith true neutrino energy bin and the jth true
momentum transfer bin, while NtotalðEtrue;i

ν ; Q2
true;jÞ is

the total simulated event number of the given ith true
neutrino energy bin and jth true momentum transfer bin.
The transfer table element is the probability for finding the
reconstructed values (Erec;i0

ν ; Q2
rec;j0 ) after smearing their

respective true values (Etrue;i
ν ; Q2

true;j). Such effective trans-
fer table satisfies the probability conservation condition,P

i0j0 T
0
iji0j0 ¼ 1, as expected. Moreover, the transfer table

enters the reconstructed event rates calculation as elabo-
rated below.

B. Extended GLoBES simulation with both energy and
momentum transfer

As pointed out around Eq. (3.9), the oscillation proba-
bility has momentum transfer dependence. In the presence
of the RG running effect, the neutrino oscillation event rate
is a function of not just the neutrino energy (Eν) but also the
momentum transfers (Q2

p and Q2
d). With the production

momentum transfer (Q2
p) typically fixed by the parent

meson masses, the event rate is still a two-dimensional
distribution of the neutrino energy (Eν) and the detection
momentum transfer (Q2

d).

The GLoBES [91,92] simulation for fixed baseline experi-
ments with one-dimensional event rate needs to be
extended in order to incorporate the RG running effect.
The two-dimensional binning approach with neutrino
energy and zenith angle (baseline length) dependence
has been used in the atmospheric neutrino oscillation
analysis [93,94]. We adopt similar approach by breaking
the 2-D event rate d2N=dEνdQ2

d into multiple glb exper-
imental profiles each with a fixed Q2

d and merging them in
the end.

(i) GLoBES simulation: With a fixed Q2
d for each glb

profile, the oscillation probability PαβðEtrue;i
ν ; Q2

true;jÞ
with the RG running effect in Sec. III C taken into
account and the corresponding event spectrum can
be calculated in the usual way by GLoBES,

dNtrue

dEtrue;i
ν

����
Q2

true;j

≡ NtargetϕαðEtrue;i
ν ÞPαβðEtrue;i

ν ; Q2
true;jÞσβðEtrue;i

ν Þ;
ð4:4Þ

where Ntarget is the normalization factor including
the information of running time, detector size, and
the baseline length. Both the α-flavor neutrino flux
ϕαðEtrue;i

ν Þ and β-flavor detection cross section
σβðEtrue;i

ν Þ are functions of the true neutrino energy
Etrue;i
ν for the ith bin.
Since the neutrino energy Eν and detection

momentum transfer Q2
d are reconstructed altogether,

their smearing interleaves with each other and
cannot be separated. So we first extract from GLoBES

the event numbers at the true neutrino energy level,

GLBj∶ N
GLBj

i ¼ dNtrue

dEtrue;i
ν

����
Q2

true;j

ΔEtrue;i
i ; ð4:5Þ

FIG. 7. Left: the reconstructed momentum transfer
ffiffiffiffiffiffi
Q2

d

p
distribution of a 2.5 GeV νe neutrino at the DUNE detector for different CC

scattering processes: QES (green), RES (red), and DIS (blue). The total spectrum (black) is normalized to 1 while the others are
weighted by their corresponding cross sections. Right: same as the left panel but for the antineutrino mode.
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for the jth glb experimental profile without
smearing.

(ii) Implementing the momentum transfer distribution
by hand: Although GLoBES automatically incorpo-
rates the total cross section σðEtrue;i

ν Þ in the event rate
calculation according to Eq. (4.4), the differential
spectrum with respect to the momentum transfer Q2

d
is still missing. One needs to multiply the extracted

event rate N
GLBj

i with a normalized differential cross
section dσβ=ðσβdQ2

true;jÞ by hand. The event num-
bers among different glb profiles are then re-
shuffled into,

Nij ≡ N
GLBj

i ×

�
dσβ

σβdQ2
true;j

�����
Etrue;i
ν

ΔQ2
true;j; ð4:6Þ

weighted by the momentum transfer bin size
ΔQ2

true;j. The product of the normalized differential
cross section and the true momentum transfer
bin size can be simulated by GENIE as,
dσβ=ðσβdQ2

true;jÞjEtrue;i
ν

ΔQ2
true;j¼ΔNðEtrue;i

ν ;Q2
true;jÞ=

NðEtrue;i
ν Þ, as a ratio between the event number

within the jth true momentum transfer bin and
the total one for a given true energy.

Note that the two variables N
GLBj

i and Nij have

different physical meanings. While N
GLBj

i is the
event number within the ith energy bin for the jth
glb profile that carries the momentum transfer
dependence in the oscillation probability but no
information about the momentum transfer distribu-
tion, the event numberNij within the ith energy and
jth momentum transfer bin also includes the differ-
ential momentum transfer distribution. The essen-
tial difference between these two variables is having
the momentum transfer distribution or not. Never-

theless, the j index of N
GLBj

i cannot be simply
omitted since the oscillation probability has mo-
mentum transfer dependence. To make this tricky

point explicit, we add j as an upper index for N
GLBj

i
and a lower one for Nij.

(iii) Detector resolution and smearing: The normalized
differential cross section in the 2-D true event rate
calculation Eq. (4.6) cannot be automatically carried
out in GLoBES and needs to be implemented by hand.
In addition, the 4-D transfer table T 0

iji0j0 defined in
Eq. (4.3) also needs to be implemented by hand with
multiple glb profiles. For convenience, we combine
these two terms into a single effective 4-D transfer
table,

Ni0j0 ≡
X
ij

Nij × T 0
iji0j0 ≡

X
ij

N
GLBj

i × Tiji0j0 ; ð4:7Þ

where Ni0j0 is the event number in the i0th recon-
structed energy and j0th reconstructed momentum
transfer bin. Instead of using the T 0

iji0j0 Eq. (4.3), the

event rate N
GLBj

i extracted from GLoBES is directly
related to the reconstructed event rate Ni0j0 with,

Tiji0j0 ≡
�

dσβ
σβdQ2

true;j

�����
Etrue;i
ν

× ΔQ2
true;j × T 0

iji0j0

¼ ΔNðEtrue;i
ν ; Q2

true;j;E
rec;i0
ν ; Q2

rec;j0 Þ
NtotalðEtrue;i

ν Þ ; ð4:8Þ

where NtotalðEtrue;i
ν Þ is the total event number for

the given ith true neutrino energy bin. The effective
transfer table includes three terms: the normalized
differential cross section dσβ=ðσβdQ2

true;jÞjEtrue;i
ν

,
the bin size ΔQ2

true;j, and the smearing transfer
table T 0

iji0j0 , which can be combined into a single
simulation.

In our simulation, we first use GENIE to generate
106 neutrino-Ar scattering events for the true
energy Etrue;i

ν at the center of each bin. We then
reconstruct event by event the neutrino energy and
momentum transfer after smearing according to the
detector energy and angular resolutions as dis-
cussed in Sec. IVA. For the true/reconstructed
energy, we take a 0.25 GeV bin size from 0.5 to
5 GeV. On the other hand, the true/reconstructed

momentum transfer uses
ffiffiffiffiffiffi
Q2

d

q
instead of Q2

d with

25 bins from 0 to 2
ffiffiffi
2

p
GeV since Q2

d distributes
mainly at small values as shown in Fig. 7. Finally,
we bin the events into a histogram with variables
ðEtrue

ν ; Q2
true;Erec

ν ; Q2
recÞ and divide the event number

in each bin by the total event number to obtain the
Tiji0j0 defined in Eq. (4.8). After these, we calculate
the 2-D event rates according to Eq. (4.7) and feed
them back into GLoBES for χ2 analysis to take full
advantage.

C. Event rate and CP phase sensitivity at DUNE

Figure 8 shows the event rates at DUNE as function of
the reconstructed neutrino energy Erec

ν (upper panels) or
momentum transfer

ffiffiffiffiffiffiffiffi
Q2

rec

p
(lower panels) for both neutrino

(left panels) and antineutrino (right panels) modes. The
event rate difference between the thin and thick lines
induced by the RG running effect can reach percentage
level. This happens for not just the signal (red lines) but the
various background event rates since all channels are
subject to the oscillation probabilities. The most prominent
channel is the beam νe þ ν̄e background that is modulated
by Pee. As pointed out earlier at the end of Sec. III B, Pee is
no longer independent of the Dirac CP phase δD as usually
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expected but becomes a function of the CP phase differ-
ence ΔδD induced by the RG running effect. The largest
variation occurs in the ranges ½1.5; 4.5�=½1.25; 3.5� GeV of
Erec
ν and ½0.2; 1.5�=½0.2; 1.2� GeV of

ffiffiffiffiffiffiffiffi
Q2

rec

p
for the neu-

trino/antineutrino mode, respectively, around the peaks.
To further explore the features induced by the RG

running effect, we show the relative difference of the
two-dimensional signal event rate, ΔN=N≡ðNsigðβδ¼
3×10−2Þ−Nsigðβδ¼0ÞÞ=Nsigðβδ¼0Þ, on the ðErec

ν ;
ffiffiffiffiffiffiffiffi
Q2

rec

p
Þ

plane in Fig. 9. Note that the distribution of ΔN=N is
quite different between the neutrino (left) and antineutrino
(right) modes. For the neutrino mode, the positive
ΔN=N values distribute at Erec

ν ∈ ½3.5; 5� GeV while the
negative one within E∈ ½1.5; 2.5� GeV. As for the
antineutrino mode, the negative ΔN=N values mainly
distribute at Erec

ν ∈ ½1;1.75� GeV for most
ffiffiffiffiffiffiffiffi
Q2

rec

p
and

Erec
ν ∈ ½3.5;4.75� GeV for

ffiffiffiffiffiffiffiffi
Q2

rec

p
∈ ½0; 1.2� GeV, with the

positive values in the remaining part. The RG running
effect can be tested at the future LBL experiments such as
DUNE. Unfortunately, since the genuine CP phase is
undetermined, a degeneracy between the genuine CP phase
δD and the RG running parameter βδ arises which reduces
the CP phase sensitivity. The structure in the two-dimen-
sional ðErec

ν ;
ffiffiffiffiffiffiffiffi
Q2

rec

p
Þ distributions may help to disentangle

the degeneracy.
To quantify the impact on the CP phase sensitivity from

the RG running effect at DUNE, we extend the χ2 function,

χ2 ¼ χ2stat þ χ2sys þ χ2prior; ð4:9Þ

by incorporating multiple glb profiles. More concretely,
the first term χ2stat for statistical fluctuations,

FIG. 8. Upper panels: the reconstructed appearance event rates as a function of the reconstructed neutrino energy Erec
ν with detection

momentum transfer Q2
d ¼ 0.26 GeV2 (solid), 0.39 GeV2 (dashed), and 0.54 GeV2 (dotted) for the neutrino νe (upper left) and

antineutrino ν̄e (upper right) modes. Lower panels: the reconstructed appearance event rates as a function of
ffiffiffiffiffiffiffiffi
Q2

rec

p
with Eν ¼

2.125 GeV (solid), 2.625 GeV (dashed), and 3.125 GeV (dotted) for the neutrino νe (lower left) and antineutrino ν̄e (lower right) modes.
For all panels, the event rates are divided into four components: the signal (red), the intrinsic νe þ ν̄e beam background (blue), the
νμ þ ν̄μ beam background (green), and the neutral current background (orange). We take δD ¼ 0° and a 6.5 years of running time for
each neutrino and antineutrino mode to make illustration.
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χ2stat ¼
X
i0j0r

0
B@Nr

i0j0 ðtrueÞ − ð1þ arÞNr;sig
i0j0 ðtestÞ − ð1þ brÞNr;bkg

i0j0 ðtestÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nr

i0j0 ðtrueÞ
q

1
CA

2

; ð4:10Þ

needs to sum over not just the two indices i0 and j0 for the
neutrino energy and the momentum transfer but also the
third index r for the various rules from each experimental
profile. The quantity Nr;sig

i0j0 (Nr;bkg
i0j0 ) is the signal (back-

ground) event number within the i0th reconstructed
energy as well as the j0th reconstructed momentum transfer
bin for the rule r and can be calculated with true or
test oscillation parameters. We define Nr

i0j0 ðtrueÞ≡
Nr;sig

i0j0 ðtrueÞ þ Nr;bkg
i0j0 ðtrueÞ to represent the total event num-

bers of signal and background with the true oscillation
parameters. Moreover, ar and br are the signal and back-
ground normalization nuisance parameters, respectively,
for the rule r.
The χ2sys term contains the Gaussian priors of signal and

background normalizations. For the signal normalization,
we take σνe;ν̄e ¼ 2% and σνμ;ν̄μ ¼ 5% for the electron (anti)
neutrino and muon (anti)neutrino detection, respectively. A
common 5% uncertainty is used for the background
normalization. These parameters are taken from the experi-
ment simulation configurations of the DUNE Technical
Design Report [95].
The final term χ2prior summarizes the prior knowledge on

the oscillation parameters. We take their best-fit values
from the global fit result [42],

sin2θs ¼ 0.318; sin2θa ¼ 0.574; sin2θr ¼ 0.022;

ð4:11aÞ

Δm2
s ¼ 7.50×10−5 eV2; Δm2

a¼ 2.55×10−3 eV2:

ð4:11bÞ

Among these oscillation parameters, the solar mass
squared difference Δm2

s and the solar mixing angle θs
are fixed in our fit since the oscillation probability variation
induced by these two parameters is negligibly small [36].
This feature still applies even in the presence of the RG
running effect as we have checked numerically. The reactor
mixing angle θr, the atmospheric mixing angle θa, and the
atmospheric mass-squared difference Δm2

a are treated as
free parameters with priors taken from the marginalized
one-dimensional χ2 curves [42]. Due to large uncertainties
and the existing tension between the T2K and NOνA
results as mentioned in Sec. I, we do not include any prior
on the Dirac CP phase δD and simply treat it as a free
parameter. Moreover, we take the normal ordering of
neutrino masses throughout our study. We first consider
a free βδ while the prior knowledge can be extracted from
the SBL experiments as we study in Sec. V.
We perform the χ2 analysis according to Eq. (4.9) to

calculate the DUNE sensitivities to δD and βδ as shown in
the left panel of Fig. 10. Based on the true oscillation
parameter setup (δD ¼ 270° and βδ ¼ 0) that is marked by a
black star, the black contours show the sensitivities at
confidence levels of 68% (solid), 90% (dashed), 95% (dot-
dashed), and 99% (dotted). Those points on the same
contour have exactly the same Δχ2 value and hence

FIG. 9. The relative difference, ΔN=N ≡ ðNsigðβδ ¼ 3 × 10−2Þ − Nsigðβδ ¼ 0ÞÞ=Nsigðβδ ¼ 0Þ, between the two cases with and
without the RG running effect in the two-dimensional Erec

ν and
ffiffiffiffiffiffiffiffi
Q2

rec

p
bins for the neutrino (left) and antineutrino (right) modes. We take

δD ¼ 0° and a 6.5 years of running time for each mode.
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degenerate with each other. Since a positive (negative) βδ
can increase (decrease) δD according to Eq. (2.2), the
combination of a positive βδ and a smaller δD degenerates
with a combination of opposite values. This degeneracy
correlates the two parameters and makes the sensitivity
contours tilt from top left (larger βδ and smaller δD) to
bottom right (smaller βδ and larger δD). The tilting behavior
implies that the CP phase sensitivity would be reduced
from the case without RG running. Moreover, there is an
asymmetry in the sensitivity contour around the black star.
The asymmetry is not caused by the RG running effect
since it already exists between the intersection points of the
contours and the horizontal line for βtestδ ¼ 0. In fact, it
arises from the matter effect while the RG running case
inherits and enlarges this asymmetry which can also been
seen from the right panel.
To clearly see the impact of RG running on the CP phase

sensitivity, the marginalizedΔχ2 is shown in the right panel
of Fig. 10. The red curve with a fixed βtestδ ¼ 0 corresponds
to the standard oscillation case without RG running while
the green one sets βtestδ free. From the red to the green
curves, the CP phase sensitivity significantly reduces.
The original 1σ interval of ∼½255°; 283°� changes to
∼½240°; 295°� with almost a factor of 2 reduction.
Moreover, we investigate the effect of the reference

momentum transfer Q2
0 by considering three different

values: Q2
0 ¼ 1 MeV2 (solid), 100 MeV2 (dotted), and

10000 MeV2 (dashed). Although the CP phase sensitivity
increases with Q2

0 since the distance from the actual
momentum transferQ2

d decreases to reduce the RG running
effect, the impact on the CP measurement at DUNE still
cannot be neglected even for Q2

0 ¼ 10000 MeV2.
Therefore, there exists a large parameter space for the

energy scale of new physics that can significantly affect the
leptonic CP phase sensitivity.

V. SYNERGYWITH EXISTING SHORT-BASELINE
EXPERIMENTS

In the zero-distance limit, the probability of flavor
transition induced by the RG running effect depends on
the CP phase difference ΔδD instead of the genuine CP
phase δD as shown in Eq. (3.13). Hence SBL experiments
can provide a clean measurement for RG running.
Therefore, a synergy between the long- and short-baseline
experiments can disentangle the genuine CP phase (δD)
from the RG running effect (βδ).
The searches for neutrino transition in the zero-distance

limit are done by Oð100 mÞ SBL experiments such as
ICARUS [96], CHARM-II [97], NOMAD [98], and
NuTeV [99]. All these four experiments use both νμ and
νe neutrinos as well as the antineutrino counterparts. Since
ICARUS has only 4 detected νe events from the result [96],
we will not take it into account due to lack of statistical
significance. As for the other three (CHARM-II, NOMAD,
and NuTeV), Oð1000Þνe events are detected at each
experiment [97–99]. Note that antineutrinos are also
detected at CHARM-II and NuTeV. Since the antineutrino
case is similar to the neutrino one, we just discuss the
neutrino case at SBL experiments for illustration in the
following text. These νe neutrinos are from two sources:
the νe disappearance from the νe flux and those from the
νμ → νe transition due to the zero-distance effect. The
experimental constraint on the νμ → νe transition proba-
bility can be obtained by comparing the predicted νe
neutrino spectra with the experimental data. Besides the
νμ → νe transition, these SBL experiments can also search

FIG. 10. Left: the two-dimensional sensitivities on δD and βδ at the confidence levels of 68% (solid), 90% (dashed), 95% (dot-dashed),
and 99% (dotted) with Q2

0 ¼ 1 MeV2 and a 6.5 years running time each for the neutrino and antineutrino modes. The true parameter
setup δtrueD ¼ 270° and βtrueδ ¼ 0 is marked by a black star. Moreover, the SBL βδ constraint at 68% (95%) confidence level is shown by
the dark-green (light-green) bands. Right: the marginalized sensitivity to the genuine CP phase δD with three different prior cases: the
fixed βtestδ ¼ 0 (red), a totally free βtestδ (green), and a free βtestδ but with the SBL constraint (blue). For comparison, results with
Q2

0 ¼ 1=100=10000 MeV2 are shown as solid/dotted/dashed curves.
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for νe → ντ as well as νμ → ντ [100–102]. However, since
the charged τ lepton produced from ντ CC scattering decays
immediately into final-state particles such as e, μ, π, and K
that can also be produced in other CC or NC events, the
detection of ντ suffers from these potential backgrounds.
Moreover, the τ selection criteria include much more
kinematic requirements than its counterparts of e, which
needs more complicated analysis. The SBL experiments
find no evidence of ντ with large background uncertainties.
Hence we do not consider such νe;μ → ντ transition
channels in our current study.
To obtain the experimental constraint on βδ, we first

calculate the predicted νe event rate with the RG running
effect. For a neutrino experiment, the predicted νe event rate
can be described as Nνe ¼ A

P
α ϕðναÞPαeσðνeÞ with A

being the coefficient that is related to the experimental
efficiencies and reconstruction errors of the detector, ϕðναÞ
the α flavor neutrino flux, Pαe the να → νe oscillation
probability, and σðνeÞ the cross section for scattering

between νe and target. The predicted νe event rate RðνeÞ
from the collaboration [97–99] was obtained by assuming
no oscillation, Pαe ¼ δαe. As for the case with RG running,
we calculate the predicted νe event rates R0ðνeÞ by
multiplying the transition probability in Eq. (3.13) with
the νe and νμ MC neutrino event rates [RðνeÞ and RðνμÞ],
R0ðνeÞ≡ Pνe→νeRðνeÞ þ Pνμ→νeRðνμÞ. We take σðνeÞ ≈
σðνμÞ since the neutrino energy is much larger than the
charged lepton masses.
Note that the transition probabilities Pνe→νe and Pνμ→νe

with the RG running effect are Q2
d dependent as discussed

in Sec. III. So the typical high-energy neutrinos at SBL
experiments have the advantage of producing large
momentum transfer to enhance the RG running effect.
However, there is no such momentum transfer information
in the published SBL experimental data [97–99]. So in the
transition probability calculation, we take the averaged
oscillation probability by integrating Eq. (3.13) over theQ2

d
distribution extracted from the GENIE simulation.

FIG. 11. The νe=ν̄e CC event rates for NuTeV with the neutrino mode (upper left), NuTeV with the antineutrino mode (upper right),
NOMAD with the neutrino mode (lower left), and CHARM-II with both modes (lower right), respectively. Besides the data points
(black dot with error bar), the RG running effect is shown with βδ ¼ 0 (black), 1 × 10−2 (blue), 2 × 10−2 (red), 3 × 10−2 (green), and
4 × 10−2 (purple).
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Figure 11 shows the predicted electron-flavor neutrino
event rates as well as the experimental data from NuTeV,
NOMAD, and CHARM-II. For all experiments, the pre-
dicted event rates with a percentage level βδ are roughly
Oð10%Þ more than the MC prediction without flavor
transition. Note that flipping the sign of βδ does not affect
the predicted event rates since βδ only appears as the squared
term sin2ðΔδD=2Þ in Eq. (3.13). Such variations are com-
parablewith the experimental uncertainties whichmeans the

experimental sensitivity to βδ can reach percentage level.
Moreover, with the predicted event rates being a linear
combination of both the νeMCneutrino event rateRðνeÞ and
the νμ counterpart RðνμÞ, the largest variation between the
predicted and expected event rates does not exactly occur at
the νe event rate peak position since the νe and νμ fluxes peak
at different energies [97–99].
To obtain the sensitivity on βδ, we consider the following

χ2 function,

χ2 ≡Xnbins
i¼1

0
B@Ndata;i − ð1þ beÞNfit;i

νe→νe − ð1þ bμÞNfit;i
νμ→νeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ndata;i þ ðNfit;i
νe→νeσ

e
i Þ2 þ ðNfit;i

νμ→νeσ
μ
i Þ2

q
1
CA

2

þ
�
be

σe

�
2

þ
�
bμ

σμ

�
2

; ð5:1Þ

where Ndata;i and Nfit;i
να→νe are the experimental data and

predicted event number in the ith energy bin, respectively.
The nuisance parameter be (bμ) describes the total
normalization uncertainty σe (σμ) for the electron-flavor
(muon-flavor) neutrino flux. Moreover, the parameters σei
and σμi are the systematic uncertainties in each energy bin
[97,99,103]. We obtain the constraint on βδ by minimiz-
ing χ2 over the nuisance parameters and subtracting the
global minimum value χ2min, Δχ2 ≡ χ2 − χ2min, as shown in
Fig. 12. For NuTeV with both ν (dashed blue) and ν̄
modes (dot-dashed green), the Δχ2 curve is flat in the
region of jβδj ≲ 4 × 10−2, but raises quickly at larger
values. The NOMAD experiment (dotted orange) is
more sensitive to smaller jβδj than NuTeV with higher

statistics. For NOMAD and the νmode at NuTeV, the Δχ2
minimum lies at βδ ¼ 0, while the ν̄ mode at NuTeV
slightly prefers a nonzero βδ. Moreover, the CHARM-II
experiment (solid red) disfavors βδ ¼ 0 by ∼2σ since
the observed data points have an excess over the
expected event rates as shown in Fig. 11. Note that all
these Δχ2 curves are symmetric around βδ ¼ 0 since the
predicted event rates do not depend on the sign of βδ as
explained before. The combined result (solid black) of
these experiments gives a bound of jβδj≲ 4 × 10−2

(5 × 10−2) at 68% (95%) confidence level with the best
fit being jβδj ≈ 2.5 × 10−2.
For comparison, we show the 68% and 95% sensitiv-

ities on βδ as dark- and light-green bands in the left panel
of Fig. 10. Since the βδ sensitivities at SBL experiments
is actually comparable with the one at DUNE, their
synergy should further improve the sensitivity. As the
SBL experiments (NuTeV, NOMAD, and CHARM-II)
already have existing data, their constraints on βδ can be
treated as priors. The Δχ2 curves shown in the right panel
of Fig. 10 does improve after taking the SBL priors into
consideration. Note that the current priors at SBL
experiments are obtained without considering the
momentum transfer distribution due to lack of informa-
tion. A more detailed analysis with full data from the
experimental side should significantly enhance the
existing priors.

VI. CONCLUSION AND DISCUSSION

We establish a general and complete formalism for
studying the RG running effect on the neutrino oscillation.
Especially, our formalism allows an energy dependent
momentum transfer for the forward scattering and hence
the matter potential. With a broad momentum transfer
distribution instead of a single fixed value, our study shows
that the degeneracy between the RG running parameter βδ
and the genuine CP phase δD will significantly reduce the

FIG. 12. The Δχ2 (≡χ2 − χ2min) as a function of βδ for NuTeV
with the neutrino mode (dashed blue), NuTeV with the anti-
neutrino mode (dot-dashed green), NOMAD with the neutrino
mode (dotted orange), CHARM-II with both neutrino and
antineutrino modes (solid red), and their combination (solid
black). Moreover, the 1σ, 2σ, and 3σ confidence levels are shown
by horizontal black dotted lines.
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CP phase sensitivity at DUNE. With mismatch between the
momentum transfers in the neutrino production and detec-
tion processes, the transition probability of the appearance
channels does not vanish even in the limit of zero distance.
Consequently, the short-baseline experiments can provide
an independent measurement of the RG running parameter
βδ and its synergy with the long-baseline DUNE can help to
disentangle the degeneracy and restore the CP phase
sensitivity to some extent. Due to lack of information on
the momentum transfer, the βδ sensitivity at short-baseline
experiments (NuTeV, NOMAD, and CHARM-II) is com-
parable with the one at DUNE. We expect more

disentangling capability with full data and detailed analysis
from the experimental side.
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