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Heavy neutral gauge bosons arise in many motivated models of beyond the Standard Model Physics.
Experimental searches require that such gauge bosons are above the TeV scale in most models which means
that the tools of effective field theories, in particular the Standard Model effective field theory (SMEFT), are
useful. We match the SMEFT to models with heavy Z0 bosons, including effects of dimension-8 operators,
and consider the restrictions on model parameters from electroweak precision measurements and from Drell
Yan invariant mass distributions and forward-backward asymmetry, AFB, measurements at the LHC. The
results demonstrate the model dependence of the resulting limits on SMEFT coefficients and the relatively
small impact of including dimension-8 matching. In all cases, the limits from invariant mass distributions are
stronger than from AFB measurements in the Z0 models we consider.
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I. INTRODUCTION

The search for new physics at the LHC is one of the
major efforts of the high luminosity run. New physics can
manifest itself through the discovery of new particles or
in deviations from Standard Model (SM) predictions.
Precision measurements are often sensitive to very high
mass scales above those that can be probed by direct
particle production, motivating an effective field theory
program of probing for small differences from SM pre-
dictions. In the scenario when no new particles are
discovered, the SM effective field theory (SMEFT) [1] is
a useful tool where new physics is described by an effective
Lagrangian L that is an expansion around the SM,

L ¼ LSM þ
X
α;d>4

CðdÞ
α OðdÞ

α

Λd−4 : ð1Þ

Any new physics is entirely contained in the coefficient

functions, CðdÞ
α , and the operators OðdÞ

α contain only SM
particles and respect the SM SUð3Þ × SUð2ÞL × Uð1ÞY
gauge symmetry. The expansion is then in inverse powers
of a heavy scale Λ. The odd dimension operators violate
lepton number [2] and will not be considered here.

A nonzero measurement of a coefficient, CðdÞ
α , would be

direct evidence for new physics and the goal of the LHC

SMEFT program is to make precise measurements of
these coefficients.
Experimental observables are often computed using

the SMEFT Lagrangian truncated at dimension-6. At this

order, the only sensitivity is to the combination, Cð6Þ
i =Λ2.

A complete basis for dimension-6 and dimension-8 oper-
ators exists [3–11], but there are too many operators for a
general study of most processes to be feasible [12–15], and
typically only a small subset of the dimension-8 operators
are studied [16–20]. One approach that has proven useful is
to match the SMEFT to a specific UV complete model with
non-SM particles at the high scale Λ which generates a
relatively small number of operators whose effects can
then be studied in low energy and weak scale processes.
Different UV models have different patterns of coefficients
and the hope is that by exploring these patterns, informa-
tion about high scale physics can be obtained [21–24].
The matching of dimension-6 operators to scenarios with

a single new heavy particle is a solved problem, both at tree
level and at one-loop [25–28]. The matching to more
complicated models, including dimension-8 contributions
at tree level, has been performed for only a small number of
cases: the two-Higgs doublet model [29,30], singlet [30–32],
top vectorlike quark [33], and scalar triplet models [34].
Here we extend this program to include heavy neutral
gauge bosons.
Heavy vector bosons are particularly interesting because

they appear in many theoretically motivated extensions
of the SM [35–59]. We match Z0 models with no SM
hypercharge and arbitrary SUð3Þ × SUð2ÞL × Uð1ÞY
invariant couplings to SM particles to the dimension-6
and dimension-8 SMEFT Lagrangians and study the
resulting patterns of coefficients that arise. We also include
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an arbitrary kinetic mixing term in these models which
turns out to have important phenomenological conse-
quences. Direct searches for heavy Z0 models at the LHC
give model dependent limits of Oð2 − 5Þ TeV [60,61],
suggesting that the SMEFT framework is applicable.
Restrictions on heavy Z0 models matched to the SMEFT
come primarily from electroweak precision observables,
along with Drell-Yan invariant mass distributions and
forward backward asymmetries at the LHC and we study
the interplay of these constraints and examine the sensi-
tivity to the specifics of the Z0 models.
The paper contains a description of the Z0 models we

consider in Sec. II and presents results for the SMEFT
matching to dimension-8 in Sec. III. The phenomenology
of Drell-Yan production and the forward backward asym-
metry at the LHC are compared with Z pole observables
in Sec. IV and the numerical relevance of dimension-8
contributions to the computation of these observables is
considered, along with the model dependence of our
results. Section V contains our conclusions.

II. MODELS WITH A HEAVY Z0

While there are many models extending the SM with
new Uð1Þ0 symmetries, we focus on a select few in this
work and assume that the Z0 is a singlet under all SM gauge
groups. The models are distinguished by the charges of the
SM particles under the new symmetry, and if the Uð1Þ0 is
spontaneously broken, also by the breaking scale. An
analysis of how to differentiate between models in the
case of a direct discovery at a future collider has recently
been presented in Ref. [62]. Note that in principle a mass
term for the associated Z0 boson of a Uð1Þ0 model can also
be generated via the Stückelberg mechanism [63–66]. The
Z0 in this case behaves like a heavy dark photon and the
distinction between the two is arbitrary and the Uð1Þ0
remains unbroken. Below we give a brief summary of the
models studied in this paper in order to set the notation.
a. SecludedUð1Þ0: If the new symmetry belongs to a dark

sector that is completely decoupled from the SM, the Z0
interacts with SM particles only through kinetic mixing.
This model is fully characterized by the strength of the
kinetic mixing ϵ and the mass MZ0 .
b. Hypercharge mirror: In hypercharge mirror models

it is assumed that the additional Uð1Þ0 is a simple copy of
the SM Uð1ÞY hypercharge gauge symmetry. The Uð1Þ0
charges of the SM fermions are therefore their respective
hypercharges, and they couple to the Z0 with the coupling
constant gD, which is often assumed to be comparable in
size to the electroweak coupling constants, though smaller
or larger values are not forbidden in general. The values
considered in this work always respect the perturbativity
limit, gD < 4π. Note that we do not include an analysis
of the sequential Standard Model (SSM) in our work.
The SSM assumes that a copy of the whole SM gauge
structure exists at a higher scale. Since the Z0 is naturally

accompanied by W0 bosons of similar mass, their
contributions would need to be taken into account when
matching the SSM onto SMEFT and examining phenom-
enological restrictions [52,67–70].
c. Gauging SM accidental symmetries: The SM features

four accidental Uð1Þ symmetries, the individual lepton
numbers (Le, Lμ, and Lτ) and baryon number (B),
respectively. However, the requirement of Adler-Bell-
Jackiw anomaly cancellation dictates that only the
differences of two lepton numbers Li − Lj or the difference
of total baryon and lepton number B − L, with L ¼
Le þ Lμ þ Lτ, can be gauged in a consistent manner,
assuming right-handed neutrinos are also added to the
matter content. Under a Uð1ÞLi−Lj

symmetry a lepton of
generation i has charge þ1 and a lepton of generation j has
charge −1. In the Uð1ÞB−L case all quarks have Uð1ÞB−L
charge þ1=3 and the leptons have charge −1. All other
particles are uncharged under the Uð1Þ symmetry in both
cases. Note that for Drell-Yan processes a heavy Z0

B−L will,
once integrated out of the theory, give rise to mixed quark-
lepton four-fermion operators, while a Z0

Li−Lj
will only alter

the couplings of the SM Z boson to leptons.
d. Models based on E6 symmetries: In the literature, E6

models have played an important role as possible GUT
symmetry candidates [35,36,40,41]. Their general breaking
pattern is given by

E6 → SOð10Þ × Uð1Þψ → SOð5Þ × Uð1Þψ × Uð1Þχ : ð2Þ

In E6 models, the left-handed SM fermion families are
promoted to a fundamental 27-plet, eventually decompos-
ing into 27 → ð10þ 5� þ 1Þ þ ð5þ 5�Þ þ 1. Each 27-plet
furthermore contains a conjugate of a right-handed neutrino
νc and a new scalar S, both of which are singlets under the
SM gauge groups. We will consider them as examples of
anomaly-free models incorporating additional Uð1Þ sym-
metries, while being agnostic about the underlying grand
unifying theory. Furthermore, we assume that there is only
one Z0 boson present corresponding to the linear combi-
nation of E6 charges

QE6
¼ cos θE6

Qχ þ sin θE6
Qψ ; ð3Þ

and 0 ≤ θE6
≤ π is the mixing angle between the two Uð1Þ

symmetries. Note that all E6 models feature an implemen-
tation of two-Higgs doublet models (2HDM). Since the
exact realization of the 2HDM affects the Higgs charges
and couplings and hence the matching of the heavy Z0 onto
SMEFT operators, we will assume a type-I implementation
of the 2HDM [71].
In previous works several benchmark models of E6 have

been studied. The ψ and χ models assume that only one
of the Uð1Þ symmetries is actually realized, and correspond
to the mixing angles θψ ¼ π=2 and θχ ¼ 0, respectively.
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The ηmodel is an example of E6 directly breaking to SOð5Þ
via the Wilson line mechanism, and occurs in Calabi-Yau
compactifications of the heterotic string [39]. It corre-
sponds to the mixing angle θη ¼ π − arctan

ffiffiffiffiffiffiffiffi
5=3

p
. The

orthogonal case, where E6 breaks to SOð10Þ which is then
directly broken to the SM gauge group, is called the inert
model, and the mixing angle is θI ¼ arctan

ffiffiffiffiffiffiffiffi
3=5

p
[41]. In

the neutral model with mixing angle θN ¼ arctan
ffiffiffiffiffi
15

p
, the

right-handed neutrino νc has zero charge, hence allowing a
large Majorana mass and the see-saw mechanism to take
place [37,72–74]. Essentially the roles of the new scalar S
and νc are interchanged with regard to the χ model.
Additionally, it can be regarded as an implementation of
alternative left-right models [38,75]. Lastly, the secluded
sector model with mixing angle θS ¼ arctanð ffiffiffiffiffi

15
p

=9Þ was
inspired by supersymmetric extensions of the SM [36,76].
In principle, other exotic models featuring heavy Z0

realizations are feasible, like models where the Z0 is a
Kaluza-Klein excitation of a SM field [42–45,77–83], but
they will be omitted in this work for simplicity. In Table I,
we collect the Uð1Þ0 charges, Qf, of SM particles in the
different models considered here, where qkL, l

k
L are the left-

handed fermion doublets, H is the SM Higgs doublet, and
ukR; d

k
R, and lkR are the right-handed quarks and charged

lepton, with k a generation index.1 The Uð1Þ0 charges only
depend on the generation for the leptons and we will often
omit this index in the quark sector.
Note that since a kinetic mixing of the Z0 with the SM

hypercharge gauge boson of strength ϵ is always possible,
wewill always take it into account in our results. In the dark
matter literature, ϵ is often thought to be small, motivated
in part by stringent experimental bounds (see for example
[84]). However, since we consider heavy Z0 models, this is
not necessarily the case for us. If we assume that ϵ ¼ 0 at a

high scale, which must be the case if the Uð1Þ0 or Uð1ÞY is
embedded in a non-Abelian group such as in the E6 models,
ϵ will necessarily be generated by renormalization group
evolution since the SM fermions are charged under both.
This can easily generate ϵ ∼Oð10−2 − 1Þ, depending on
the values of the Uð1Þ0 gauge coupling, the charged matter
content, and the relevant UV scale. If the two Uð1Þ gauge
groups are not embedded in any non-Abelian gauge group,
then there is no a priori reason to take ϵ to be small even at
the high scale. Since we only have access to low energy
information, wewill take a bottom-up perspective, allowing
for ϵ ∼ 1 in our results.

III. SMEFT AND MATCHING

In this section, we review the basics of SMEFT that are
relevant for the matching to Z0 models. We begin with the
SMEFT Lagrangian of Eq. (1) truncated at dimension-8.

The goal is to compute the coefficient functions Cð6Þ
i

and Cð8Þ
i that arise from integrating a heavy Z0 out of

the theory [85]. We add a real spin-1 boson Z0 that is a
singlet under all SM gauge groups and consider the most
general renormalizable Lagrangian,

LZ0 ¼ −
1

4
Z0
μνZ0μν þ 1

2
M2

Z0Z0
μZ0μ −

ϵ

2
BμνZ0μν

þ ðgH;2Þ2Z0
μZ0μjH†Hj − Z0

μJ μ; ð4Þ

where Bμ is the Uð1ÞY hypercharge gauge field and Bμν ¼
∂μBν − ∂νBμ is its field strength. We define the current,

J μ ¼ ðigHÞ
�
H†D

↔μ
H
�
þ
X
f

�
gfLij f̄

i
Lγ

μfjL þ gfRij f̄
i
Rγ

μfjR
�
;

ð5Þ

where H†D
↔μ

H ¼ H†ðDμHÞ − ðDμH†ÞH with Dμ ¼ ∂μ þ
ig0YHBμ þ igWa

μTa the usual covariant derivative. The

TABLE I. Charges, Qf, of SM particles under the new gauge symmetry associated with the Z0 corresponding to
the models described in the text. i; j; k are generation indices with fkL ¼ ðqkL; lkLÞ, ðfkR ¼ ukR; d

k
R; e

k
RÞ. Here, YD is the

mirror hypercharge, hence the charges under this symmetry are exactly the SM hypercharges. In this table we omit
the case of pure kinetic mixing, where all particles are uncharged under the new symmetry.

SM particle YD B − L Li − Lj E6, ψ E6, χ E6, η E6, inert E6, neutral E6, secluded

H 1
2

0 0 −1ffiffi
6

p −1ffiffiffiffi
10

p 1

2
ffiffiffiffi
15

p 1
2

−3
2
ffiffiffiffi
10

p −7
4
ffiffiffiffi
15

p

qkL
1
6

1
3

0 1

2
ffiffi
6

p −1
2
ffiffiffiffi
10

p −1ffiffiffiffi
15

p 0 1

2
ffiffiffiffi
10

p −1
4
ffiffiffiffi
15

p

ukR
2
3

1
3

0 1

2
ffiffi
6

p −1
2
ffiffiffiffi
10

p −1ffiffiffiffi
15

p 0 1
2
ffiffiffiffi
10

p −1
4
ffiffiffiffi
15

p

dkR − 1
3

1
3

0 1

2
ffiffi
6

p 3

2
ffiffiffiffi
10

p 1

2
ffiffiffiffi
15

p − 1
2

1ffiffiffiffi
10

p 2ffiffiffiffi
15

p

lkL − 1
2

−1 δik − δjk 1

2
ffiffi
6

p 3

2
ffiffiffiffi
10

p 1

2
ffiffiffiffi
15

p − 1
2

1ffiffiffiffi
10

p 1ffiffiffiffi
15

p

lk
R −1 −1 δik − δjk 1

2
ffiffi
6

p −1
2
ffiffiffiffi
10

p −1ffiffiffiffi
15

p 0 1

2
ffiffiffiffi
10

p −1ffiffiffiffi
15

p

1Depending on the model, fkR may also include right-handed
neutrinos νkR. This is not relevant for the phenomenology we
consider and so we ignore it.
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couplings of Eqs. (4) and (5) can be determined for each of
the models described in the previous section in terms of the
Uð1Þ0 gauge coupling gD and the particle charges of Table I,

gH;2 ¼ gH ¼ QHgD g
qkL
ij ¼ QqkLgDδij

g
ukR
ij ¼ QukRgDδij g

dkR
ij ¼ QdkRgDδij: ð6Þ

For all of the models except Uð1ÞLi−Lj
,

g
lkL
ij ¼ QlkLgDδij g

ekR
ij ¼ QekRgDδij; ð7Þ

while for Uð1ÞLi−Lj
lepton flavor dependence enters,

g
lkL
ij ¼ Q

lkL
ij gD g

ekR
ij ¼ Q

ekR
ij gD: ð8Þ

Before any simplifications, after integrating out the
heavy Z0 we immediately have, up to dimension-8,

δL ¼ −
1

2M2
Z0
J μJ μ −

ϵ

M2
Z0
ð∂νBμνÞJ μ −

ϵ2

2M2
Z0
ð∂νBμνÞ2

þ ϵ2

2M4
Z0
ð∂νBμνÞ∂2ð∂αBμαÞ þ

ϵ

M4
Z0
ð∂νBμνÞ∂2J μ

þ 1

2M4
Z0
J μ

∂
2J μ þ

ϵ2g2H;2

M4
Z0

H†Hð∂νBμνÞ2

þ 2ϵg2H;2

M4
Z0

H†Hð∂νBμνÞJ μ þ
g2H;2

M4
Z0
H†HJ μJ μ; ð9Þ

where δL≡ L − LSM. We first make a field redefinition to
remove the dimension-6 terms involving ∂νBμν,

Bμ → Bμ −
ϵ2

2M2
Z0
½ð∂νBμνÞ þ jμ�−

ϵ

M2
Z0
J μ;

∂νBμν → ∂νBμν þ ϵ2

2M2
Z0
∂
2ð∂νBμνÞ þ ϵ2

2M2
Z0
∂
2jμ þ ϵ

M2
Z0
∂
2J μ;

ð10Þ

where jμ ¼ ig0
2
ðH†Dμ

↔
HÞ þ g0

P
f Yff̄γμf is the SM hyper-

charge current with f∈ ðQL; LL; uR; dR; eRÞ, g0 is the
SM hypercharge gauge coupling and we omit generation
indices for simplicity. Including the newly generated
dimension-8 terms, this gives us

δL¼ −
1

2M2
Z0
J μJ μ −

ϵ2

2M2
Z0
jμjμ −

ϵ

M2
Z0
jμJ μ þ

1

M4
Z0

��
ϵ2

2
−
3ϵ4

8

�
ð∂νBμνÞ∂2ð∂αBμαÞ þ ðϵ− ϵ3Þð∂νBμνÞ∂2J μ

−
ϵ4

4
ð∂νBμνÞ∂2jμ þ

�
1

2
−
ϵ2

2

�
J μ∂

2J μ þ ϵ4

8
jμ∂2jμ þ

g02ϵ3

4
ðH†HÞJ μjμ þ

�
ϵ2g2H;2 þ

g02ϵ4

16

�
ðH†HÞð∂νBμνÞ2

þ
�
2ϵg2H;2 þ

g02ϵ3

4

�
ðH†HÞð∂νBμνÞJ μ þ

�
g2H;2 þ

g02ϵ2

4

�
ðH†HÞJ μJ μ þ

g02ϵ4

16
ðH†HÞjμjμ þ

g02ϵ4

8
ðH†HÞð∂νBμνÞjμ

�
:

ð11Þ

At dimension-8, we may use the SM equations of motion
to simplify terms since any additional contributions appear
at OðM−6

Z0 Þ. We have already used this above to eliminate
any terms of the form ∂μjμ and ∂μJ μ for brevity. Using
∂νBμν ¼ jμ and integration by parts, this yields the simple
Lagrangian

δL ¼ −
1

2M2
Z0
ðJ μ þ ϵjμÞ2 −

1

2M4
Z0
ð1 − ϵ2Þ½∂μðJ ν þ ϵjνÞ�2

þ 1

M4
Z0

�
g2H;2 þ

g02ϵ2

4

�
ðH†HÞðJ μ þ ϵjμÞ2; ð12Þ

where the first term corresponds to the dimension-6
operators and the remaining two terms correspond to the
dimension-8 operators. We note that we have made no

assumptions about the relative size of ϵ. In the pure kinetic
mixing limit, gH;2 ¼ J μ ¼ 0, Eq. (12) clearly matches
Eq. (6.9) of Ref. [86].
It is worth pointing out that in all of the models we

consider, the Z0 arises from a UV gauge group, and so the
quadratic and linear couplings to the Higgs are forced to be
equal by gauge invariance, gH;2 ¼ gH. This assumption
may be relaxed in more complicated scenarios where there
is no such constraint, such as composite models. However,
the only place gH;2 enters is at dimension-8 in the final term
of Eq. (12), where it always multiplies another coupling
that appears at dimension-6. The contribution to any
observable we will consider from gH;2 is therefore always
going to be suppressed by a factor v2=Λ2 compared to the
leading contribution, making it a small correction even for
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large values of gH;2. It would be interesting to see how this
coupling appears when matching at 1-loop, which we leave
for future work.
An alternative approach to matching a generic Z0

Lagrangian onto the SMEFT is to transform Eq. (4) into
the canonically normalized basis by removing the kinetic
mixing term. This is achieved by the field redefinition

�
Bμ

Z0
μ

�
¼
0
@ 1 −ϵffiffiffiffiffiffiffi

1−ϵ2
p

0 1ffiffiffiffiffiffiffi
1−ϵ2

p

1
A Bc

μ

Z0c
μ

!
; ð13Þ

where the superscript c denotes gauge fields in the
canonical basis. Specifically, this rotation transforms

−
1

4
BμνBμν −

ϵ

2
BμνZ0μν −

1

4
Z0
μνZ0μν

→ −
1

4
Bc
μνBcμν −

1

4
Z0c
μνZ0cμν: ð14Þ

When matching onto SMEFT, this procedure has the
advantage that terms involving ∂νBμν are not present after
the Z0 has been integrated out, removing the necessity for
further field redefinitions. Note, however, that additional
contributions arise from the SM Lagrangian, because
terms like ðDcμHÞ†ðDc

μHÞ now contain Z0 terms from
the redefinition of Eq. (13). Hence, the clear separation
between the SM and the new physics Lagrangian is
dissolved when eliminating the kinetic mixing. We have
confirmed that both approaches lead to the same matching
onto the SMEFT Lagrangian of Eq. (12).
The physical mass of the Z0 boson is not equivalent to the

parameterMZ0 in the Lagrangian, Eq. (4), in the presence of
nonvanishing kinetic mixing ϵ ≠ 0 or coupling to the Higgs
gH ≠ 0. Transforming to the canonically normalized basis
according to Eq. (13) and taking corrections from the neutral
W3 and B bosons of the SM weak and hypercharge gauge
symmetries into account, we find that the physical masses of
the neutral gauge bosons of the SM along with the Z0 boson
after electroweak symmetry breaking are given by

m2
γ ¼ 0

ðmphys
Z Þ2 ¼ ðmSM

Z Þ2
�
1− ðg0ϵþ 2gDQHÞ2

v2

4M2
Z0

�
þOðM−4

Z0 Þ

ðmphys
Z0 Þ2 ¼ M2

Z0

ð1− ϵ2Þþ
v2

4

Q2
Hg

2
Dþ g02ϵ2

1− ϵ2

þðg0ϵþ 2gDQHÞ2
v2

4

ðmSM
Z Þ2
M2

Z0
þOðM−4

Z0 Þ: ð15Þ

Here, ðmSM
Z Þ2 ¼ v2

4
ðg2 þ g02Þ is the SM ðmassÞ2 of the Z.

The expansion is valid for large Z0 masses and arbitrary
mixing parameters ϵ between the Z0 and the hypercharge
bosons. The SM Z couplings and mass are shifted from their

SM values due to this mass mixing, an effect that is captured
in the SMEFT through the operators Oϕf, OϕD, as we will
see. We will always work in an expansion in the Lagrangian
parameter MZ0, though studies have suggested that expand-
ing around the physical mass may lead to improved agree-
ment with the full UV model [87].

A. Dimension-6

While Eq. (12) is compact, the expressions for the
Wilson coefficients are not immediately evident. Here
we include them, starting at dimension-6 in the Warsaw
basis [88] and using the notation of Ref. [89]. Inserting the
expressions for the currents J μ, jμ and expanding, we find
for LLLL type coefficients (we omit the superscript (6) in
this section),

Cll½ijkl�
Λ2

¼−
1

2M2
Z0
ðglLij þϵg0YlδijÞðglLkl þϵg0YlδklÞ;

Cð1Þ
lq ½ijkl�
Λ2

¼−
1

M2
Z0
ðglLij þϵg0YlδijÞðgqLkl þϵg0YqδklÞ;

Cð1Þ
qq ½ijkl�
Λ2

¼−
1

2M2
Z0
ðgqLij þϵg0YqδijÞðgqLkl þϵg0YqδklÞ: ð16Þ

Denoting right-handed fermions by f ¼ ukR; d
k
R; e

k
R with

i, j, k, l generation indices, we obtain the RRRR type
coefficients,

Cff½ijkl�
Λ2

¼−
1

2M2
Z0
ðgfRij þϵg0YfδijÞðgfRkl þϵg0YfδklÞ;

Cff0 ½ijkl�
Λ2

¼−
1

M2
Z0
ðgfRij þϵg0YfδijÞðgf

0R
kl þϵg0Yf0δklÞ; f≠f0;

Cð1Þ
ud ½ijkl�
Λ2

¼−
1

M2
Z0
ðguRij þϵg0YuδijÞðgdRkl þϵg0YdδklÞ: ð17Þ

The mixed LLRR ψ4 coefficients are

Clf½ijkl�
Λ2

¼ −
1

M2
Z0
ðglLij þ ϵg0YlδijÞðgfRkl þ ϵg0YfδklÞ;

Cð1Þ
qf ½ijkl�
Λ2

¼ −
1

M2
Z0
ðgqLij þ ϵg0YqδijÞðgfRkl þ ϵg0YfδklÞ: ð18Þ

In the operator class ψ2H2D, we find the coefficients,

Cð1Þ
φl ½ij�
Λ2

¼ −
1

2M2
Z0
ð2gH þ ϵg0ÞðglLij þ ϵg0YlδijÞ; ð19Þ

Cð1Þ
φq ½ij�
Λ2

¼ −
1

2M2
Z0
ð2gH þ ϵg0ÞðgqLij þ ϵg0YqδijÞ; ð20Þ

Cφf½ij�
Λ2

¼ −
1

2M2
Z0
ð2gH þ ϵg0ÞðgfLij þ ϵg0YfδijÞ: ð21Þ
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Finally, we obtain the coefficient,

−
1

8M2
Z0
ð2gH þ ϵg0Þ2ðH†D

↔

μHÞ2 ¼ −
1

4M2
Z0
ð2gH þ ϵg0Þ2OT;

ð22Þ

where OT ≡ 1
2
ðH†D

↔

μHÞ2 is the operator that generates the
oblique T parameter. This may be decomposed into a
combination of Oφ□ and OφD via the relation OT ¼
− 1

2
Oφ□ − 2OφD to yield

Cφ□

Λ2
¼ 1

8M2
Z0
ð2gH þ ϵg0Þ2; ð23Þ

CφD

Λ2
¼ 1

2M2
Z0
ð2gH þ ϵg0Þ2: ð24Þ

Note that since T ∝ CT ∝ −ð2gH þ ϵg0Þ2, the contribution
to the oblique T parameter is always negative. In general,
we see that the presence of an ϵ contribution allows for
many directions with vanishing 4-fermion coefficients.

B. Dimension-8

Since all operators come from terms of the form
ðJ μ þ ϵjμÞ2, the operators at dimension-8 may be con-
structed in terms of the dimension-6 coefficients of the
previous section in an obvious way. We define our notation
for the generated operators in Table II, using the notation of
Ref. [7] for operators corresponding to that basis and a

superscript (8) for the remainder of the operators. To keep
the connection to the dimension-6 operators manifest, we do
not attempt to fully translate into the basis of Ref. [7]. We
suppress flavor indices throughout since they are the same
between the dimension-8 and dimension-6 pieces. Starting
with the four-fermion operators with H†H factors, we find

Cð1Þ
l4H2

Λ4
¼ −

�
4g2H;2 þ g02ϵ2

2M2
Z0

�
Cll

Λ2
;

Cð1Þ
l2f2H2

Λ4
¼ −

�
4g2H;2 þ g02ϵ2

2M2
Z0

�
Cð1Þ
lf

Λ2
;

Cð1Þ
q4H2

Λ4
¼ −

�
4g2H;2 þ g02ϵ2

2M2
Z0

�
Cð1Þ
qq

Λ2
;

Cf4H2

Λ4
¼ −

�
4g2H;2 þ g02ϵ2

2M2
Z0

�
Cff

Λ2
;

Cf2f02H2

Λ4
¼ −

�
4g2H;2 þ g02ϵ2

2M2
Z0

�
Cff0

Λ2
;

Cð1Þ
u2d2H2

Λ4
¼ −

�
4g2H;2 þ g02ϵ2

2M2
Z0

�
Cð1Þ
ud

Λ2
;

Cð1Þ
l2q2H2

Λ4
¼ −

�
4g2H;2 þ g02ϵ2

2M2
Z0

�
Cð1Þ
lq

Λ2
;

Cð1Þ
q2f2H2

Λ4
¼ −

�
4g2H;2 þ g02ϵ2

2M2
Z0

�
Cð1Þ
qf

Λ2
: ð25Þ

TABLE II. Definitions for the dimension-8 operators generated in this paper. Here fk ¼ ðekR; ukR; dkRÞ denotes right
handed fermions with generation index k, and f ≠ f0. We use the notation of Ref. [7] for operators already in that
basis, while others are indicated by the superscript (8).

Oð1Þ
l4H2 ½ijkl� ðl̄iγμljÞðl̄kγμllÞðH†HÞ Oð1Þ

l4D2 ½ijkl� Dνðl̄iγμljÞDνðl̄kγμllÞ
Oð1Þ

q4H2 ½ijkl� ðq̄iγμqjÞðq̄kγμqlÞðH†HÞ Oð1Þ
q4D2 ½ijkl� Dνðq̄iγμqjÞDνðq̄kγμqlÞ

Oð1Þ
l2q2H2 ½ijkl� ðl̄iγμljÞðq̄kγμqlÞðH†HÞ Oð1Þ

l2q2D2 ½ijkl� Dνðl̄iγμljÞDνðq̄kγμqlÞ

Of4H2 ½ijkl� ðf̄iγμfjÞðf̄kγμflÞðH†HÞ Of4D2 ½ijkl� Dνðf̄iγμfjÞDνðf̄kγμflÞ
Of2f02H2 ½ijkl� ðf̄iγμfjÞðf0kγμf0lÞðH†HÞ Of2f02D2 ½ijkl� Dνðf̄iγμfjÞDνðf0kγμf0lÞ
Oð1Þ

u2d2H2 ½ijkl� ðūiγμujÞðd̄kγμdlÞðH†HÞ Oð1Þ
u2d2D2 ½ijkl� DνðūiγμujÞDνðd̄kγμdlÞ

Oð1Þ
l2f2H2 ½ijkl� ðl̄iγμljÞðf̄kγμflÞðH†HÞ Oð1Þ

l2f2D2 ½ijkl� Dνðl̄iγμljÞDνðf̄kγμflÞ
Oð1Þ

q2f2H2 ½ijkl� ðq̄iγμqjÞðf̄kγμflÞðH†HÞ Oð1Þ
q2f2D2 ½ijkl� Dνðq̄iγμqjÞDνðf̄kγμflÞ

Of2H4D½ij� iðf̄iγμfjÞðH†D
↔

μHÞðH†HÞ Oð8Þ
D2ϕf

½ij� iDνðf̄iγμfjÞDνðH†D
↔

μHÞ
Oð1Þ

l2H4D
½ij� iðl̄iγμljÞðH†D

↔

μHÞðH†HÞ Oð8Þ
D2ϕl

½ij� iDνðl̄iγμljÞDνðH†D
↔

μHÞ
Oð1Þ

q2H4D
½ij� iðq̄iγμqjÞðH†D

↔

μHÞðH†HÞ Oð8Þ
D2ϕq

½ij� iDνðq̄iγμqjÞDνðH†D
↔

μHÞ
Oð8Þ

T
1
2
ðH†HÞðH†D

↔

μHÞ2 Oð8Þ
D4ϕ4

1
2
ðH†D

↔

μHÞ□ðH†D
↔μ

HÞ
Oð8Þ

ϕ□
ðH†HÞ2□ðH†HÞ Oð8Þ

ϕD
ðH†HÞjH†DμHj2
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Similarly, for the four-fermion operators with two deriva-
tives, we have the matched coefficients,

Cð1Þ
l4D2

Λ4
¼
�
1− ϵ2

M2
Z0

�
Cll

Λ2
;

Cð1Þ
l2q2D2

Λ4
¼
�
1− ϵ2

M2
Z0

�
Cð1Þ
lq

Λ2
;

Cð1Þ
q4D2

Λ4
¼
�
1− ϵ2

M2
Z0

�
Cð1Þ
qq

Λ2
;

Cf4D2

Λ4
¼
�
1− ϵ2

M2
Z0

�
Cff

Λ2
;

Cf2f02D2

Λ4
¼
�
1− ϵ2

M2
Z0

�
Cff0

Λ2
;

Cð1Þ
u2d2D2

Λ4
¼
�
1− ϵ2

M2
Z0

�
Cð1Þ
ud

Λ2
;

Cð1Þ
l2f2D2

Λ4
¼
�
1− ϵ2

M2
Z0

�
Cð1Þ
lf

Λ2
;

Cð1Þ
q2d2D2

Λ4
¼
�
1− ϵ2

M2
Z0

�
Cð1Þ
qf

Λ2
:

ð26Þ

Moving on to two-fermion operators, we find the following
coefficients:

Cf2H4D

Λ4
¼−

�
4g2H;2þg02ϵ2

2M2
Z0

�
Cϕf

Λ2
;

Cð8Þ
D2ϕf

Λ4
¼
�
1−ϵ2

M2
Z0

�
Cϕf

Λ2
;

Cð1Þ
l2H4D

Λ4
¼−

�
4g2H;2þg02ϵ2

2M2
Z0

�
Cð1Þ
ϕl

Λ2

Cð8Þ
D2ϕl

Λ4
¼
�
1−ϵ2

M2
Z0

�
Cð1Þ
ϕl

Λ2
;

Cð1Þ
q2H4D

Λ4
¼−

�
4g2H;2þg02ϵ2

2M2
Z0

�
Cð1Þ
ϕq

Λ2
;

Cð8Þ
D2ϕq

Λ4
¼
�
1−ϵ2

M2
Z0

�
Cð1Þ
ϕq

Λ2
;

ð27Þ

where we should emphasize that the operators with a
superscript (8) are not written in the basis of Ref. [7].
Finally, there are two bosonic operators that are generated,
with coefficients given by

Cð8Þ
T

Λ4
¼ −

�
4g2H;2 þ g02ϵ2

2M2
Z0

�
CT

Λ4
;

Cð8Þ
D4ϕ4

Λ4
¼
�
1 − ϵ2

M2
Z0

�
CT

Λ2
; ð28Þ

where CT is defined by Eq. (22). Of these two operators,

only Oð8Þ
T contributes to the observables we will consider. In

terms of the operators in Table II, Oð8Þ
T is redundant due to a

similar relation to that we used for OT at dimension-6. In
particular, we have

Oð8Þ
T ¼ 1

2
ðH†HÞðH†D

↔

μHÞ2;

¼ −
1

4
ðH†HÞ2□ðH†HÞ − 2ðH†HÞjH†DμHj2;

≡ −
1

4
Oð8Þ

ϕ□ − 2Oð8Þ
ϕD: ð29Þ

Since the relationship at dimension-6 is identical to that of
Eq. (29) other than a factor of 2, we have

Cð8Þ
ϕ□

Λ4
¼ −

�
4g2H;2 þ g02ϵ2

4M2
Z0

�
Cϕ□

Λ2
;

Cð8Þ
ϕD

Λ4
¼ −

�
4g2H;2 þ g02ϵ2

2M2
Z0

�
CϕD

Λ2
: ð30Þ

IV. RESULTS

We are now in a position to present our numerical results
and compare constraints from electroweak precision
observables (EWPOs) and invariant mass measurements
and forward backward asymmetries from neutral Drell-Yan
production at the LHC. For each dataset, we obtain limits
for the matching scenarios presented in the previous section
corresponding to the UV complete models of Sec. II.
SMEFT observables are expanded as

dσ ¼ dσSM þ 1

Λ2

X
i

að6Þi Cð6Þ
i

þ 1

Λ4

�X
ij

bð6Þij C
ð6Þ
i Cð6Þ

j þ
X
i

að8Þi Cð8Þ
i

�
; ð31Þ

where the numerical factors, að6Þi ; bð6Þij , and að8Þi are process
dependent.
Bounds on SMEFT coefficients can be derived from fits

to the EWPOs [90] and in many UV models, these provide
the most stringent constraints. The Z and W boson pole
observables that we consider are

MW;ΓW;ΓZ; σh; Re; Rμ; Rτ; Rc; Rb; Ae;

Aμ; Aτ; Ac; Ab; Ae;FB; Aμ;FB; Aτ;FB; Ac;FB; Ab;FB: ð32Þ

We perform a χ2 fit to the data in Table III of Ref. [91],
using as the SM contribution the most precisely known
theoretical values given in this table. Both the

ðdimension-6Þ2 contributions (the bð6Þij =Λ4 terms) and the

dimension-8 contributions (the að8Þi =Λ4 terms) are included
at tree level for each Z0 model described in the previous
section. Following Ref. [91], we allow for an arbitrary
flavor structure in the leptonic sector and take as our input
parameters, Gμ ¼ 1.1663787ð6Þ × 10−5 GeV−2, mphys

Z ¼
91.1876� :0021 GeV, mphys

W ¼ 80.379� 0.012 GeV,
αsðmphys

Z Þ ¼ 0.1181� 0.0011, Mh ¼ 125.25� 0.17 GeV,
and Mt ¼ 172.69� 0.5 GeV.
In addition to EWPOs, we include high invariant mass

Drell-Yan data from four LHC datasets in our SMEFT fits.
Drell-Yan (DY) is a sensitive probe of 4-fermion inter-
actions since at dimension-6, these interactions are
enhanced by a factor of ðenergyÞ2 relative to the SM tree
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level result [19,92–95]. This is in contrast to the EWPOs
results, where SMEFT effects scale as ðmphys

Z Þ2=Λ2. The
SMEFT limits on Z0 models are often interpreted in terms
of oblique parameters [96–98], although the complete
SMEFT fit can yield additional information. The DY
data we include consists of dσ=dmll measurements at
8 TeV [99] and 13 TeV [61], as well as high invariant mass
forward-backward asymmetry (AFB) measurements at
8 TeV [100] and 13 TeV [101].2 These datasets were
recently considered in Ref. [102] as well. Note that while
we will refer to both measurements simply as AFB, the
8 TeV and 13 TeV CMS studies use different definitions.
The forward backward asymmetry AFB is defined by

AFB ≡ Δσ
σ

¼ σF − σB
σF þ σB

; ð33Þ

where σF and σB are the total cross sections for forward and
backward events, defined by cos θ > 0 and cos θ < 0,
respectively, where θ is the angle between the incoming
quark and outgoing negatively charged lepton in the
dilepton center of mass frame. In the lab frame, this angle
is given by

cos θ� ¼ 2ðPþ
1 P

−
2 − P−

1P
þ
2 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2ðK2 þ K2
TÞ

p ; ð34Þ

where P�
i ¼ ðEi � pz

i Þ=
ffiffiffi
2

p
, with Ei and pi the energy

and four-momentum of lepton i ¼ 1ð2Þ for l−ðlþÞ, and
K ¼ p1 þ p2. However, to define the positive axis, this
definition requires the identification of the quark direction,
which is only accessible in simulation. In the 8 TeV study,
CMS approximately identifies this with the z-component of
the dilepton invariant mass,

cos θ ¼ jKzj
Kz cos θ�; ð35Þ

while in the 13 TeV study, CMS identifies it with a template
fit using Monte Carlo simulations where one has access to
truth level information.
Owing to this complication, we use the SM predictions

and associated uncertainties provided by CMS for the
13 TeV AFB measurement. For our SMEFT predictions,
we will manually pick out the truth-level quark direction
from our Monte-Carlo as an approximation for their
procedure, which was seen in Ref. [102] to yield reasonable
agreement with CMS for the SM prediction. Likewise, for
the 13 TeV dσ=dmll measurement, the results are not
unfolded by CMS, and so we cannot directly compare with

our own predictions without background estimates for the
non-DY backgrounds. We use the CMS SM predictions
for this dataset as well. For the 8 TeV dσ=dmll and AFB
measurements [99], we compute the SM predictions to
NLO QCD using MCFM [103] with NNPDF 3.1 parton
distribution functions [104].3 While the NNLO SM QCD
corrections are also available, we have checked that
their impact is numerically small, so we neglect them.
Electroweak Sudakov logarithms become important at high
invariant masses and must also be included. We use the
exact electroweak corrections as computed by MCFM,
multiplying our SM NLO QCD distributions by k-factors
defined bin-by-bin as ki ¼ ðσiLO þ δiEWÞ=σiLO for bin i. For
the invariant mass distributions and the 8 TeV AFB dataset
we use a scale μR ¼ μF ¼ mll, while for the 13 TeV AFB
we use a scale μR ¼ μF ¼ HT following Ref. [102], where
HT is the sum of the final state transverse momenta. Our
theory uncertainties for the 8 TeV datasets are computed by
a 6-point scale variation around the central scale value
μR;F ¼ ð1=2mll; mll; 2mllÞ and turning the maximum
deviation for each bin into a symmetric uncertainty.
We compute the SMEFT contributions for the DY

observables at LO QCD using MadGraph5 [105]. We
obtain our SMEFT model files using a combination of
SMEFTsim [106] and SmeftFR [107], modified to add the
relevant fermionic dimension-8 operators. The forward
backward asymmetries are computed to Oð1=Λ4Þ,

AFB ¼ ASM
FB þ 1

Λ2

X
i

Cð6Þ
i

 
Δâð6Þi

σSM
−
âð6Þi ΔσSM

σ2SM

!

þ 1

Λ4

X
ij

Cð6Þ
i Cð6Þ

j

"
Δb̂ð6Þij

σSM
−

 
b̂ð6Þij ΔσSM þ âð6Þi Δâð6Þj

σ2SM

!

þ âð6Þi âð6Þj ΔσSM
σ3SM

#

þ 1

Λ4

X
i

Cð8Þ
i

 
σSMΔâ

ð8Þ
i − âð8Þi ΔσSM
σ2SM

!
; ð36Þ

where ΔσSM is computed as in the previous paragraph,
Δða; bÞ are defined analogously toΔσ, and we note that the
coefficients âð6Þi ; b̂ð6Þij and âð8Þi are specific to the DY process
and depend on the energy and experimental cuts. For the
σSM and ΔσSM appearing in the SMEFT expansion of
Eq. (36) we use LO predictions to match the order of
our SMEFT predictions, while for ASM

FB we use the full
NLOþ EW MCFM or CMS predictions.
Other than the pure kinetic mixing model, all of the

models discussed in Sec. II are three-parameter models,2We assume these datasets to be uncorrelated. Note that any
nonzero correlation should have minimal impact on our final
results since they are driven primarily by the 13 TeV dσ=dmll
distributions.

3We find small differences of Oð3 − 5%Þ in our results when
using NNPDF3.0 parton distribution functions.
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corresponding to the massMZ0 , the gauge coupling gD, and
kinetic mixing ϵ. To begin, we first show the 95% lower
limits on MZ0 in Fig. 1, where we set ϵ ¼ 1 for the pure
kinetic mixing case, and gD ¼ 1 with ϵ ¼ 0 for other
models. This includes the combination of EWPOs,
and AFB, and dσ=dmll from our DY datasets, with all
SMEFT contributions computed up to Oð1=Λ4Þ. The
mirror hypercharge and gauged B − L models are strongly
constrained to MZ0 ≳ 10 TeV, since they both generate the

semileptonic four-fermion operators relevant for Drell-Yan.
In the pure kinetic mixing case (ϵ ¼ 1), the lower con-
straining power compared to the mirror hypercharge model
is entirely from g0 ∼ 0.3, (as opposed to gD ¼ 1 shown in
the figures), since the pattern of operators is the same.
Likewise, the small fractional charges in the E6 models lead
to a significantly weaker mass reach compared to the mirror
hypercharge and B − L models. The Le − Lμ model does
not generate any semileptonic four-fermion operators, and
so the constraining power is much weaker. We do not show
the Lμ − Lτ or Le − Lτ models in Fig. 1, as they are
completely unconstrained by the observables we consider
when ϵ ¼ 0. In Fig. 2, we set ϵ ¼ �0.5 to show the impact
of kinetic mixing on the MZ0 exclusion limits. In this case,
constraints on the Lμ − Lτ and Le − Lτ models emerge at
the 4–5 TeV level, and the constraints on the other models
either strengthen or weaken significantly depending on the
sign of ϵ.
These limits on MZ0 can be compared to those obtained

through general SMEFT fits derived in the literature using
EWPOs, Higgs data, diboson production, and top data
[23,108–113]. In a global fit, all SMEFT operators of the
Warsaw basis are taken into account, and the new physics
model is unspecified. These fits can be extended by
assuming that the coefficients have the pattern correspond-
ing to a single new heavy particle with general couplings to
the SM particles [109,114–116]. Performing a global fit
with these restrictions on the Wilson coefficients, it is

FIG. 1. The 95% confidence level (CL) exclusion limit on MZ0

for our considered models assuming the associated coupling
gD ¼ 1 and kinetic mixing ϵ ¼ 0. For the case of pure kinetic
mixing we set ϵ ¼ 1 instead. Note that MZ0 is smaller than the
physical mass mphys

Z0 when there is a nonzero ϵ or QH.

FIG. 2. The 95% CL exclusion limit on MZ0 for our considered models assuming the associated coupling gD ¼ 1 and kinetic mixing
ϵ ¼ �0.5, where the solid (hatched) bars have positive (negative) ϵ. Note thatMZ0 is smaller than the physical massmphys

Z0 when there is a

nonzero ϵ or QH. With jϵj ¼ 0.5, mphys
Z0 ≈ 1.15 ×MZ0 for the models shown here.
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possible to derive a lower mass limit for the Z0, where the
limits come almost exclusively from EWPOs. One typically
finds Mglobal

Z0 ≳Oð1 − fewÞ TeV. We are able to derive
slightly stronger constraints, i.e. higher lower mass limits,
than these SMEFT fits, because in our framework where
specific Z0 models are examined, the couplings to the Z0 are
not arbitrary, but are related as in Eqs. (6)–(8) and also
because of the inclusion of the DY contributions which has
a significant impact. Since most of our Z0 models still
induce a plethora of SMEFT operators, our constraints
are of the same order of magnitude as the fits derived
with generic couplings to a heavy neutral gauge boson
[114,115]. Higher MZ0 constraints derived from individual
operator fits where only one SMEFT Wilson coefficient
is assumed to be nonvanishing at a time are to be taken
with caution, because a realistic new physics scenario is
very unlikely to generate only one nonvanishing SMEFT
operator.
Figure 3 shows constraints on the B − L and mirror

hypercharge models for MZ0 ¼ 4 TeV, including all con-
tributions up to Oð1=Λ4Þ. For both models, the strongest
limits come from measurements of dσ=dmll and the
weakening of the limits for nonzero ϵ and the flat direction
in the mirror hypercharge model when J μ ¼ −ϵjμ are
apparent. For the B − L case, we show in Fig. 4 the same
plot when considering only dimension-6 pieces toOð1=Λ2Þ
andOð1=Λ4Þ. Since the EWPO SMEFT contributions scale
as ðmphys

Z Þ2=Λ2, they are mostly insensitive to the inclusion
of Oð1=Λ4Þ terms. On the other hand, the DY constraints

exhibit significant changes in shape owing to additional
energy enhanced four-fermion operator contributions.
However, these deviations occur primarily in a region
already excluded by EWPOs, and so the combined con-
straints are accurately captured by using only dimension-6
operators. This is further illustrated in Fig. 5 where we
show the combined results at two different values of MZ0

for the B − L and mirror hypercharge models. There are
significant shifts when going from 2 TeV to 4 TeV,
although the linear, Oð1=Λ2Þ, approximation using the
dimension-6 operators is sufficient to describe the physics
in these models at both mass benchmarks. As the LHC
collects more data and the DY observables become more
precise, the inclusion of the Oð1=Λ4Þ terms will become
more important.
Figure 6 compares the results in the various E6 scenarios

including all terms up to Oð1=Λ4Þ, where the allowed
regions span distinct parameter spaces for the different
models. As before, in all cases, the tightest limits come
from dσ=dmll, with AFB playing very little role. This is to
be compared with the results of Ref. [102], which found
significant constraints from AFB on specific dimension-8
coefficients that are not generated in the Z0 models we
consider. This suggests that any conclusion about the
importance of dimension-8 contributions is model depen-
dent. The largest deviations from the dimension-6 only fit
for the E6 scenarios are in the cases of the η model and the
Qψ model. We show the breakdown for these two cases in
Fig. 7, where the ðdimension-6Þ2 contributions eliminate an
approximate flat direction and make a meaningful impact.

FIG. 3. 95% CL constraints in the ðgD; ϵÞ plane for the B − L and mirror hypercharge models with a benchmark mass of
MZ0 ¼ 4 TeV. We show both separately and in combination current constraints from EWPO, DY dσ=dmll and high invariant mass AFB,
including all terms up to Oð1=Λ4Þ.
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However, dimension-8 contributions are still small correc-
tions, even at MZ0 ¼ 2 TeV.
For an example where we relax flavor universality, we

show results for the Le − Lμ model in Fig. 8 in the ðgD; ϵÞ

plane. In the left plot, we show for a benchmark mass of
MZ0 ¼ 4 TeV, the breakdown of the limits from EWPOs
and DY measurements in the eþe− and μþμ− channels,
respectively, where AFB and dσ=dmll have been combined.

FIG. 5. Comparison of the 95% CL constraints in the ðgD; ϵÞ plane when keeping up to linear dimension-6, ðdimension-6Þ2, and linear
dimension-8 contributions to the electroweak precision and Drell-Yan observables. We show results for B − L (left) and mirror
hypercharge (right) Z0 models for a benchmark mass of MZ0 ¼ 2ð4Þ TeV as dashed (solid) lines.

FIG. 4. 95% CL constraints in the ðgD; ϵÞ plane for the B − L model with a benchmark mass of MZ0 ¼ 4 TeV when neglecting
dimension-8 terms. The left plot shows the constraints including dimension-6 SMEFT contributions up toOð1=Λ2Þ, while the right also
includes ðdimension-6Þ2 Oð1=Λ4Þ terms. We show both separately and in combination current constraints from EWPO, DY dσ=dmll,
and high invariant mass AFB.
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FIG. 7. Comparison of the 95% CL constraints in the ðgD; ϵÞ plane when keeping up to linear dimension-6, ðdimension-6Þ2, and linear
dimension-8 contributions to the electroweak precision and Drell-Yan observables. We show results for the η (left) and Qψ (right) E6

models for a benchmark Z0 mass of MZ0 ¼ 2ð4Þ TeV as dashed (solid) lines.

FIG. 6. 95% CL constraints in the ðgD; ϵÞ plane for the E6 models we consider with a benchmark mass of MZ0 ¼ 4 TeV. We show
both separately and in combination current constraints from EWPO, DY dσ=dmll, and high invariant mass AFB including all terms
up to Oð1=Λ4Þ.
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Since only the leptons are charged under the Uð1ÞLe−Lμ
in

this model, the only contributions to DY have a factor of ϵ,
generating a flat direction when ϵ ¼ 0 that is bounded by

EWPOs from the operator Cð1Þ
ll ½1221�. The contributions to

DYare dominated by contributions from the operators Cð1Þ
lq ,

Cqe, Ceu, and Ced. For the DY eþe− and μþμ− channels
separately, when gD ¼ Qe;μg0ϵ, the contribution to Cqe,
Ceu, and Ced cancels, while when gD ¼ 1

2
Qe;μg0ϵ, the

contribution to Cð1Þ
lq cancels. These cancellations lead to

the approximate flat directions seen in the DY eþe− and

FIG. 8. 95% CL constraints in the ðgD; ϵÞ plane for gauged Le − Lμ. (left) We show current constraints from DY eþe− and μþμ−
production (combining dσ=dmll and AFB) and EWPO for a benchmark mass of 4 TeV. (right) For the combination of EWPO’s and DY,
we show the impact on the constraints when keeping SMEFT contributions up to linear dimension-6, quadratic dimension-6, and linear
dimension-8.

FIG. 9. 95% CL constraints in the ðgD; ϵÞ plane for gauged (left) Lμ − Lτ and (right) Le − Lτ. We show current constraints from DY
eþe− and μþμ− production (combining dσ=dmll and AFB) and EWPO for a benchmark mass of 4 TeV.
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μþμ− channels separately, which are removed when com-
bining the two since the charges Qe;μ of the electrons and
muons are different under Uð1ÞLe−Lμ

. The right plot shows

the impact of the ðdimension-6Þ2 and the dimension-8
contributions for MZ0 ¼ 2 TeV and MZ0 ¼ 4 TeV, where
consistently including up to Oð1=Λ4Þ leads to a 2σ
constraint on gD up to ∼30% tighter that from the
Oð1=Λ2Þ result when ϵ ¼ 0, even for MZ0 ¼ 4 TeV.
Once again, this shift is driven primarily by the
ðdimension-6Þ2 terms, while the dimension-8 terms are a
small correction.
Results for the other two lepton number difference

models, Lμ − Lτ and Le − Lτ, are shown in Fig. 9. In

these cases, the operator Cð1Þ
ll ½1221� is not generated, so

ϵ ¼ 0 is a true flat direction. However, if there is a nonzero
ϵ, constraints on gD quickly reemerge, leading to con-
straints of a similar size as the Le − Lμ model. Inclusion of
DY τþτ− data may improve the bound on ϵ, but would
not resolve the flat direction when ϵ ¼ 0. Inclusion of
additional observables sensitive to lepton flavor such as
lþl− → τþτ− at a future lepton collider would be neces-
sary to fully remove this flat direction.

V. CONCLUSION

We have considered SMEFT matching to Z0 models
including all terms of dimension-6 and dimension-8. An
arbitrary kinetic mixing term is also consistently included
and leads to approximate blind directions. Restrictions
on the model parameters are then derived in the SMEFT
framework from EWPOs and from DY mll and AFB
distributions at the LHC. In all cases, AFB plays little role.
The impact of the dimension-8 contributions is small,

while the Oð1=Λ4Þ terms from the ðdimension-6Þ2 coef-
ficients have a significant numerical effect, as does the

presence of a nonzero kinetic mixing. Our limits on a heavy
Z0 mass range from 2–12 TeV and demonstrate the model
dependence of the SMEFT fits. Our results are of the same
order of magnitude as SMEFT fits to a heavy Z0 with
generic couplings to SM particles and illustrate the impor-
tance of considering complete UV models for obtaining
precise limits.
Of course, the operators we have considered may be

probed in other datasets as well. For example, a number of
other low-energy probes of four-fermion operators at
dimension-6 were studied in [117], where they can some-
times be dominant. Low-energy parity violation measure-
ments were shown in [118] to break some flat directions
present when considering Drell-Yan data alone, as well as
to disentangle dimension-6 and dimension-8 effects. It
would be interesting to see how the Z0 model constraints
are impacted when including these additional constraints in
a global fit.
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