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We construct symmetry-preserving lattice regularizations of 2D QED with one and two flavors of Dirac
fermions, as well as the “3450” chiral gauge theory, by leveraging bosonization and recently proposed
modifications of Villain-type lattice actions. The internal global symmetries act just as locally on the lattice
as they do in the continuum, the anomalies are reproduced at finite lattice spacing, and in each case we find
a sign-problem-free dual formulation.
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I. INTRODUCTION

Numerical Monte Carlo simulations of quantum field
theories (QFTs) discretized on Euclidean spacetime lattices
are one of the few known nonperturbative techniques to
study strongly coupled QFTs. However, it is famously
difficult to discretize fermions while preserving all of their
symmetries [1]. For example, a free massless Dirac fermion
has the internal global symmetry ½ðUð1ÞV ×Uð1ÞAÞ=
Z2�⋊ðZ2ÞC for even d. The continuous symmetries have
a mixed ’t Hooft anomaly, and standard lattice regulariza-
tions do not preserve the continuum version of the chiral
symmetry at finite lattice spacing a.
If we integrate out a massless Dirac fermion in a

Euclidean QFT, we obtain the path integral

Z ¼
Z

Dϕ det ½=DðϕÞ�e−SðϕÞ; ð1Þ

where =DðϕÞ ¼ γμDμðϕÞ is the Dirac operator and ϕ stands
for an appropriate set of bosonic fields with path integral
measure Dϕ and Euclidean action SðϕÞ. The starting point
for lattice Monte Carlo studies is a discretization of Z that

preserves as much of the internal symmetry of the QFT as
possible.
Replacing the massless continuum Dirac operator by a

simple lattice difference operator on a (hyper)cubic lattice
does not give the desired symmetries and anomalies.
Instead, it yields 2d massless Dirac fermions in the
continuum limit with the symmetry charges of the “dou-
bler” fermions such that the chiral anomaly cancels [2,3].
The Nielsen-Ninomiya theorem [4–7] states that in fact
there is no lattice Dirac operator which is simultaneously
local, has the desired continuum limit with just one
massless Dirac fermion, and is consistent with a locally
acting chiral symmetry fΓ; =Dg ¼ 0 where fΓ; γμg ¼ 0.
The standard ways around this “fermion doubling

problem” all give up some desirable features of the
continuum theory. Wilson fermions remove the doublers
but explicitly break chiral symmetry [2,3,8]. Staggered
fermions [9–13] do not remove all the doublers.1 Domain-
wall and overlap fermions [16–24], which satisfy2 the
Ginsparg-Wilson relation fΓ; =Dg ¼ a=DΓ=D [25], remove
all of the undesired doubler modes at the cost of making
both chiral symmetry transformations and the Dirac oper-
ator itself nonlocal at finite lattice spacing [26].
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1However, when the continuum theory of interest has the same
number of fermions as produced via doubling, one can use
staggered fermions (or the closely related Kahler-Dirac fermions)
to reproduce the anomalies of the continuum theory; see e.g.,
[14,15].

2In the case of domain-wall fermions the Ginsparg-Wilson
relation is satisfied in the limit where the extra dimension is
infinitely large.
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This was historically viewed as an unavoidable conse-
quence of anomalies, which in popular textbook presenta-
tions are characterized as solely arising from subtleties in
regularizing fermions. Relatedly, there is a belief that ’t
Hooft anomalies are necessarily absent in lattice theories
with locally acting symmetries [1,2,4,5,25], so that the
overlap formulation is the best one can do [16–24].
However, anomalies are not restricted to fermionic

systems, and it has recently become appreciated that there
exist lattice discretizations in which anomalies of locally
acting symmetries can appear even at finite lattice spacing
[27–32]. We show that these results straightforwardly lead
to lattice discretizations of Dirac fermions coupled to
Abelian gauge fields in d ¼ 2 which preserve the internal
symmetries and anomalies exactly, with chiral symmetries
acting locally even at finite lattice spacing. Our approach is
to first apply Abelian bosonization to Nf Dirac fermions
and then discretize the resulting bosonic theory using an
appropriate modified Villain action.3 We discuss how this
works in 2D QED with Nf ¼ 1 and Nf ¼ 2 charge Q
fermions and in the “3450”Abelian chiral gauge theory. We
also discuss a related spatial lattice Hamiltonian for Nf ¼ 1

QED in Appendix A.

A. Bosonization

Consider the charge Q Schwinger model: 2D QED with
a massless Dirac fermion coupled to a Uð1Þ gauge field aμ
with electric charge Q∈Z [36–50]. We normalize aμ such
that 1

4π

R
M d2xϵμνfμν ∈Z, where fμν ¼ ∂μaν − ∂νaμ, and

write the action as

S ¼
Z

d2x

�
1

4e2
fμνfμν þ ψ̄γμð∂μ − iQaμÞψ

�
: ð2Þ

The Nielsen-Ninomiya theorem constrains discretizations
of =D but does not directly constrain det =D. We thus aim to
circumvent this theorem by discretizing det =D directly, by
using the fact that in d ¼ 2 [38,39,51,52]

detð=DðaμÞÞ ¼
Z

Dφ exp

�
−
Z

d2x

�
1

8π
∂μφ∂

μφ

þ iQ
2π

ϵμνaμ∂νφ

��
: ð3Þ

In this “bosonized” action φ is a compact real scalar field
φ≡ φþ 2π and the mapping of the Uð1ÞV and Uð1ÞA

currents is ψ̄γμψ ↔ − 1
2π ϵ

μν
∂νφ and ψ̄γμγ5ψ ↔ i

4π ∂μφ. We
hasten to emphasize that the existence of a map to bosonic
variables (3) does not mean that the fermion discretization
problem is trivially solvable. Such a solution requires
exhibiting a lattice action in which all the desired sym-
metries and anomalies are preserved.
The Adler-Bell-Jackiw (ABJ) anomaly is encoded at tree

level in (3), where it is clear that the 0-form symmetry
counting chiral charges of local operators is ðZQÞA, acting as
φ → φþ 2πk=Q, rather than Uð1ÞA. There is also a 1-form
[53] “electric” symmetry ðZQÞe which counts the charges of
Wilson loopsmoduloQ, as well as a mixed ’t Hooft anomaly
between ðZQÞA and ðZQÞe which is matched by the sponta-
neous breaking of both symmetries, with thewalls separating
chiral vacua carrying electric charge [42–44,46–49]. The
spectrum in each degenerate discrete chiral vacuum consists
of a single free massive scalar field with mass mγ ¼ eQ=π,
often called the Schwinger boson.

II. MODIFIED VILLAIN DISCRETIZATION

We will work with an N × N periodic Euclidean space-
time lattice with spacing a ¼ 1, with sites s, links l, and
plaquettes p. The corresponding simplices on the dual
lattice are denoted by s̃, l̃, and p̃. Following Villain [54],
we represent the continuum Uð1Þ gauge field aμ by a pair
of lattice fields fal ∈R; rp ∈Zg and the compact scalar
field by the pair fφs̃ ∈R; nl̃ ∈Zg on the dual lattice. We
adopt the modified [27,28] Villain formulation and also
introduce an auxiliary field χs ∈R which can be viewed as
the T-dual of φs̃. See Fig. 1 for an illustration.
The action for our discretization of Nf ¼ 1 QED is

SNf¼1 ¼
β

2
½ðdaÞp − 2πrp�2þ

κ

2
½ðdφÞl̃ − 2πnl̃�2− iχsðdnÞ⋆s

þ iQ
2π

φ⋆p½ðdaÞp− 2πrp�− iQaln⋆l; ð4Þ

where repeated indices are summed and d is the lattice
exterior derivative ðdωÞcrþ1 ¼ P

cr ∈ ∂crþ1 ωcr , where cr is an
r cell, so that, for example, ðdχÞl ¼ χsþl̂ − χs, and d2 ¼ 0.

FIG. 1. The setting for the field content of our lattice action (4).
The solid grid is the primary lattice with sites s, links l, and
plaquettes p. The dotted grid is the dual lattice with sites s̃, links
l̃, and plaquettes p̃. The three red fields φ, χ, and n are associated
with the continuum φ. The two blue fields a and r correspond to
the continuum aμ.

3A more conventional discretization of the bosonized
Schwinger model was studied in Refs. [33,34]. Here our main
focus is on the symmetries and global aspects of the model, and
our analysis leverages a number of special features of the
modified Villain formalism. An alternative approach to discre-
tization of bosonized 2D gauge theories that shares some (but not
all) features of the modified Villain construction was recently
discussed in Ref. [35].
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The Hodge star ⋆ maps an r cell cr on the lattice to the
(d − r) cell ð⋆cÞd−r on the dual lattice which pierces cr.4

The partition function is

Z ¼
Y
s;s̃

Z
R
DχsDφs̃

Y
l

Z
R
Dal

X
nl ∈Z

Y
p

X
rp ∈Z

e−SNf¼1 ; ð5Þ

where the products are over all sites, links, and dual sites of
our periodic square lattice with N × N sites. Similar
expressions can be written for the other gauge theories
considered in this paper. The Z gauge redundancy on each
site makes Z formally infinite, and readers who find this
uncomfortable can work in the “Villain” gauge where
integrals over R are replaced by integrals over the interval
ð−π; π�; see e.g., Refs. [27,55] for discussions of various
possible gauge choices. However, Z is in any case not an
observable, and all physical observables are necessarily
finite even without this gauge choice.
The gauge redundancies of the lattice action (4) are

al → al þ ðdλÞl þ 2πml; rp → rp þ ðdmÞp; ð6aÞ

φs̃ → φs̃ þ 2πks̃; nl̃ → nl̃ þ ðdkÞl̃; ð6bÞ

χs → χs þQλs þ 2πhs; ð6cÞ

where fλs ∈R; ml; ks̃; hs ∈Zg are gauge parameters. They
ensure that fa; rg and fχ;φ; ng describe a Uð1Þ gauge
field and a 2π-periodic boson with a conserved winding
charge, with the topological properties one expects in the
continuum. For example, the instanton number on the
spacetime torus I ¼ − 1

2π

P
p ½ðdaÞp − 2πrp� ¼

P
p rp is

an integer. The path integral over χs implies that ðdnÞp̃ ¼
0 on shell, the iQ

2π term in the lattice action (4) is the analog
of the continuum iQ

2π term (3), and the last contribution
to the lattice action (4) is necessary to maintain gauge
invariance [28].
Given that β ¼ 1=ð2e2a2Þ, to get a continuum limit with

fixed Le, where L is the physical box size L ¼ Na, we
should take N → ∞ with β=N2 fixed. While naively one
should also set κ ¼ 1=ð4πÞ to reach the continuum (3), this
parameter value is not protected by any symmetries of the
lattice theory and can receive some finite renormalization
[54,56,57]. Varying κ amounts to varying the coefficient of
the marginal Thirring term ðψ̄γμψÞ2.
The lattice action (4) has precisely the desired global

symmetries of the continuum (2). There is no continuous
Uð1ÞA symmetry, but thanks to the quantization of instan-
ton number, there is a remnant ðZQÞA symmetry that acts as
φs̃ → φs̃ þ 2πq=Q with q∈Z. This reproduces the

expected ABJ chiral anomaly. The ðZQÞe symmetry acts
as al → al þ 2π

Q vl with v∈Z and dv ¼ 0, also matching
the continuum.
To see the ’t Hooft anomaly between ðZQÞe and ðZQÞA

on the lattice, it is easiest to linearize the quadratic terms in
the action by integrating in auxiliary fields ζl; ξs̃ ∈R and
summing by parts, turning the original action (4) into5

S0Nf¼1 ¼
�
1

2κ
ζ2l þ iζl½ðdφÞ⋆l − 2πn⋆l�

�

þ
�
1

2β
ξ2⋆p þ iξ⋆p½ðdaÞp − 2πrp�

�

þ iQ
2π

φ⋆p½ðdaÞp − 2πrp� − in⋆l½Qal − ðdχÞl�:
ð7Þ

The generators of the axial ðZQÞA and electric ðZQÞe
symmetries are topological line and local operators on
the lattice and dual lattice, respectively:

ðUAÞ½C� ¼ ei
P

l∈C
ðalþ2π

QζlÞ; ðUeÞs̃ ¼ eiðφs̃þ2π
Qξs̃Þ; ð8Þ

where C is a closed curve. The fact that ðUAÞ½C� is charged
under ðZQÞe and ðUeÞp is charged under ðZQÞA encodes the
mixed ’t Hooft anomaly of these symmetries, just as in the
continuum.

III. ABSENCE OF A SIGN PROBLEM

The discretizations provided above, and indeed those
presented below, provide symmetry-preserving nonpertur-
bative definitions of their respective models. While this is
interesting in its own right, it is natural to ask whether these
definitions have some practical value. Can we learn some-
thing new about the physics of these models just from
defining them nonperturbatively, either numerically or
analytically? On the analytic side, we will see in Sec. V
that putting a simple chiral gauge theory (the 3450 model)
on the lattice reveals the presence of an exotic symmetry of
the model that is not at all obvious from continuum
analyses. On the numerical side, one might initially worry
that the constructions described in this paper are completely
useless, because direct numerical Monte Carlo with the
complex lattice actions (4) and (7) would face a severe sign
problem. We now show that this issue can be eliminated by
a change of variables, so that the discretizations we give
here can be explored using numerical Monte Carlo
simulations.
Summing (i.e., path integrating) over nl̃, rp in the

auxiliary-field action (7) yields constraints that can be

4Differential forms on the lattice are reviewed in Appendix A
of Ref. [27]. Two useful facts are that ⋆2 ¼ ð−1Þrðd−rÞ on an r cell
and the identity

P
crþ1ðdAÞcrþ1B⋆crþ1 ¼ ð−1Þrþ1

P
cr AcrðdBÞ⋆cr.

5Throughout the paper we ignore any overall constant factors
in the partition function which appear in “dualization” proce-
dures.
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solved by setting

ζl ¼ 1

2π
ðdχÞl −

Q
2π

al − ul; ξs̃ ¼ −
Q
2π

φs̃ þ ts̃ ð9Þ

with ul; ts̃ ∈Zwhich transform as ts̃ → ts̃ þQks̃ and ul →
ul þ ðdhÞl −Qml under discrete gauge transformations.
The field u also transforms under ðZQÞe transformations
ul → ul − 2πvl=Q, while t transforms under ðZQÞA as
ts̃ → ts̃ þ q. Plugging the constraints (9) into the action (7)
and dropping total derivatives and integer multiples of 2πi,
we obtain an action

1

2κ

�
1

2π
ðdχÞl −

Q
2π

al − ul

�
2

þ Q2

2βð2πÞ2
�
φs̃ −

2πts̃
Q

�
2

−
i
2π

ðQal þ 2πulÞðdφÞ⋆l þ it⋆pðdaÞp: ð10Þ

Shifting a → aþ 1
Q dχ −

2π
Q u and dropping a total deriva-

tive gives

1

2κ

�
Q
2π

al

�
2

þ Q2

2βð2πÞ2
�
φs̃ −

2πts̃
Q

�
2

−
i
2π

QalðdφÞ⋆l þ it⋆p

�
ðdaÞp −

2π

Q
ðduÞp

�
; ð11Þ

and subsequently integrating over a yields

SNf¼1;dual
¼ κ

2

�
ðdφÞl̃ −

2π

Q
ðdtÞl̃

�
2

þ 1

2β

�
Q
2π

�
2

×

�
φs̃ −

2π

Q
ts̃

�
2

−
2πi
Q

t⋆pðduÞp: ð12Þ

This actiondescribesQ copies (“universes” [42,46–48,58–63])
of a free massive scalar particle, as expected from continuum
arguments. Adding a fermion mass term in the original action
(2) corresponds to adding

P
s̃ cosðφs̃Þ to the dual action (12),

which would lead to strong coupling in general.
The sole imaginary term in the dual action (12)

involves u, but summing over u just gives the constraint
ðdtÞl̃ ¼ 0 mod Q. One can thus avoid the sign problem
entirely by proposing updates for ts̃ that satisfy ðdtÞl̃¼
0modQ in a Monte Carlo calculation.
Procedures to generate field configurations which satisfy

constraints such as ðdtÞl̃ ¼ 0 mod Q, and hence avoid
apparent sign problems, are well known; see, for example,
Ref. [64]. Nevertheless, to make our presentation self-
contained, we now give a brief discussion of how simple
constraints such as the one above—and indeed others that
we encounter later in this paper—can be taken into account
in Monte Carlo calculations without sign problems.
Consider a lattice field theory with an action S where the

only term where the field u appears is

S ∋
2πi
Q

ulðdtÞl; ð13Þ

where Q∈N, ul ∈Z, and ts ∈Z. The dual one-flavor (12),
two-flavor (20), and 3450 (29) models all have this
character.
Because it is purely imaginary, direct Monte Carlo

evaluation of the QFT path integral based on importance
sampling with this term as part of the action suffers from a
sign problem. However, the path integral over u can be
done analytically and yields a delta function setting

ðdtÞl ¼ 0 mod Q: ð14Þ

If we can make proposals that maintain this constraint but
are otherwise ergodic, we will consider all supported
configurations of ts and avoid the sign problem caused
by the phase (13).
There is a simple solution to the constraint (14) on a

spacetime torus, where we can write6

ts ¼ xþQys; ð15Þ

x; ys ∈Z and x is a constant so that ðdxÞl ¼ 0. This
decomposition is not unique, since (for example) we can
shift x by Q and all y’s by −1 without changing t. But the
key point is that any constraint-satisfying ts can be written
in the form above. This helps us define two kinds of
proposals which together reach all constraint-satisfying
configurations.
The first proposal is a global update of x. We randomly

pick a site-independent integer Δx∈ ½−X;þX� with
X∈Z and Metropolis test ts → ts þ Δx for all sites s
simultaneously.
The second is a local update of y which we can sweep

across the lattice. On a particular site s we pick an integer
Δys ∈ ½−Y;þY� with Y ∈Z and test ts → ts þQΔys.
An ergodic algorithm should offer proposals of both

kinds, and their relative frequency may be adjusted to
control autocorrelation times. This algorithm also mani-
festly satisfies detailed balance thanks to the Metropolis
tests described above. The algorithm parameters X and Y,
or more generally the distributions for Δx and Δys, may be
adjusted to optimize acceptance and thermalization.
Similarly, suppose the action includes a term

S ∋ iηpðdnÞp; ð16Þ

where ηp ∈R, nl ∈Z, and η does not appear in any other
terms. The dual 3450 action (29) has a term of this
character. Integrating out η yields the constraint ðdnÞp ¼ 0.

6Formally, this very simple solution is possible because all of
the integer cohomology groups of a torus are torsion-free.
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The field nl may be split into a closed 1-form wl ∈Z
and an exact 1-form ðdzÞl ∈Z:

nl ¼ wl þ ðdzÞl: ð17Þ

As we will see below, updates of z are local, while updates
of w “wrap” around cycles of the torus. Again, for any
given field configuration nl, the decomposition above is
not unique, but the key point is that any constraint-
satisfying nl can be written in the form above.
As before, we offer two kinds of proposals, depicted in

Fig. 2, which together reach all constraint-satisfying
configurations of n.
We first an offer update of the closed 1-form w. We

update a torus-wrapping strip of parallel links at once, as
shown by the blue and green updates in Fig. 2. We pick a
single integer Δw∈ ½−W;þW� withW ∈Z and Metropolis
test nl → nl þ Δw for all the links on the strip. We can
sweep this update across all the strips of the lattice in either
orientation.
The second proposal offers a local update to the exact

1-form dz. We pick Δz∈ ½−Z;þZ� with Z∈Z and a site s
and build a 0-form z that vanishes everywhere except at s
where it is −Δz. We propose nl → nl þ ðdzÞl, which
amounts to the simultaneous proposal

ns;0̂ → ns;0̂ þ Δz; ns−0̂;0̂ → ns−0̂;0̂ − Δz;

ns;1̂ → ns;1̂ þ Δz; ns−1̂;1̂ → ns−1̂;1̂ − Δz; ð18Þ

where 0̂ and 1̂ are unit vectors in the positive space and time
directions.
An ergodic algorithm should offer proposals of both

kinds, and as before their relative frequency may be
adjusted to control autocorrelation times. The distributions
ofΔw andΔzmay be adjusted to optimize performance, for
example by changing W and Z.

The constrained update algorithms presented here are
simple examples of field update methods which evade
the sign problem. We again emphasize that the problem
of constructing ergodic detailed-balanced algorithms to
sample discrete gauge fields satisfying flatness constraints
has long been solved in the literature, and we have only
described the algorithms above to make our paper self-
contained. The specific algorithms we have presented
might have long autocorrelation times in some para-
meter regimes, especially given that some of the proposals
touch a number of variables growing with the lattice size N
and may be rejected often. In practice one may want to
construct more efficient constraint-satisfying field update
algorithms. For example, worm algorithms [65,66] can
quickly decorrelate worldline formulations which have
closed-loop constraints; it would be interesting to try
and adapt these powerful tools to our actions.

IV. 2D QED WITH Nf = 2

Let us now consider 2D QED with two flavors of
massless Dirac fermions ψ and ψ̂ with a common charge
Q. The global flavor symmetry is

GNf¼2 ¼
SUð2ÞL × SUð2ÞR

Z2

× ðZ2ÞG × ðZQÞA;

where SUð2ÞL;R act on the left and right-handed compo-
nents of ψ and ψ̂ , the quotient is by the gauge trans-
formation ψ ; ψ̂ → −ψ ;−ψ̂ , ðZ2ÞG is G parity [67], and the
discrete axial symmetry ðZQÞA is the same as before. There
is also a ðZQÞe 1-form symmetry. This model is believed
to be equivalent to a self-dual c ¼ 1 compact boson
conformal field theory (CFT) plus a decoupled massive
Schwinger boson [38,39,68,69]. Mass terms and other
perturbations can make this model strongly coupled, and
so this field theory has been a popular testing ground for
analytic and numeric approaches to confining gauge
theories [33,42–44,70–90].
Abelian bosonization maps ψ ; ψ̂ to a pair of 2π-periodic

compact bosons φ; φ̂, so we can discretize it in a parallel
way to the one-flavor case (4):

SNf¼2 ¼
β

2
½ðdaÞp − 2πrp�2

þ κ

2
ð½ðdφÞ⋆l − 2πn⋆l�2 þ ½ðdφ̂Þ⋆l − 2πn̂⋆l�2Þ

þ iQ
2π

ðφ⋆p þ φ̂⋆pÞ½ðdaÞp − 2πrp�
− iQðn⋆l þ n̂⋆lÞal þ in⋆lðdχÞl þ in̂⋆lðdχ̂Þl;

ð19Þ

where a;φ; φ̂; χ; χ̂ ∈R, n; n̂; r∈Z, and gauge transforma-
tions act as in the one-flavor case (6) plus the analogous
shifts of φ̂, n̂, and χ̂ with k̂; ĥ∈Z.

FIG. 2. Two kinds of proposals for nl which satisfy ðdnÞp ¼ 0.
In red is a local update which is an exact form, i.e., the exterior
derivative dz of a single-site 0-form. The blue and green updates
consist of noncontractible strips of links and are closed because
opposite edges of a plaquette contribute inversely to ðdnÞp.
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As before, the lattice parameter β ¼ 1=ð2e2a2Þ and the
continuum limit requires the same scaling as in Nf ¼ 1

QED. However, we will see below that now κ ¼ 1=4π is
associated with an enhanced symmetry of the action (19),
and thus we can set κ ¼ 1=4π on the lattice and be sure
that the lattice theory will flow precisely to Nf ¼ 2 charge
Q massless QED in the continuum limit without any
Thirring terms.
The Abelian subgroup of GNf¼2 is manifestly respected

by the two-flavor action (19), and we will argue below that
the theory flows to a continuum limit where all of GNf¼2 is
preserved. Following a similar dualization procedure to the
Nf ¼ 1 case (see Appendix B) we reach

SNf¼2;dual ¼
1

4κð2πÞ2 ½ðdσÞl − 2πul�2 þ iϕ⋆pðduÞp

þ κ

4

�
ðdηÞl̃ −

2π

Q
ðdtÞl̃

�
2

−
2πi
Q

ûlðdtÞ⋆l

þ 1

2β

�
Q
2π

�
2
�
ηs̃ −

2π

Q
ts̃

�
2

; ð20Þ

where the fields u; û; t∈Z emerge during the dualization
process and

σ ¼ χ − χ̂; η ¼ φþ φ̂; ϕ ¼ φ̂

2
−
φ

2
−

π

Q
t

are real and invariant under Uð1Þ gauge transformations.
The remaining gauge redundancies are

σs → σs þ 2πhs; ul → ul þ ðdhÞl; ð21aÞ

ηs̃ → ηs̃ þ 2πks̃; ts̃ → ts̃ þQks̃; ð21bÞ

ϕs̃ → ϕs̃ þ 2πĥs̃; ûl → ûl þ ðdwÞl þQgl; ð21cÞ

with all gauge parameters taking values in Z. Finally, the
terms with factors of i simply impose constraints ðduÞp ¼
0 and ðdtÞl̃ ¼ 0modQ, and solving these constraints when
generating field configurations in a Monte Carlo calcula-
tion avoids the sign problem, as discussed in the preceding
section.
The dual formulation (20) shows that in the massless

limit our lattice theory decomposes into two decoupled
sectors. The top line of (20) is simply the modified Villain
discretization of the compact boson σ. But when we set
κ ¼ 1=ð4πÞ, the effective radius of σ makes the theory
self-dual under Poisson resummation on ul, which imple-
ments T-duality on the lattice [28]. This implies the
existence of a topological line operator which is absent for
generic κ [91,92], so that the κ ¼ 1=ð4πÞpoint is protectedby
an enhanced symmetry against quantum corrections. The
continuum limit is thus guaranteed to be the self-dual c ¼ 1
compact bosonCFTwith non-Abelian ½SUð2Þ × SUð2Þ�=Z2

global symmetry. The decoupled “Schwinger boson”QFT in
the lower lines of the dual action (20) matches the remaining
symmetries:

ðZ2ÞG∶ ηs̃ →−ηs̃; ϕs̃ → ϕs̃þ
2π

Q
t;

ûl →−ûlþul; ts̃ →−ts̃;

ðZQÞA∶ ηs̃ → ηs̃þ
2πq
Q

; ts̃ → ts̃þqs̃; q∈Z;

ðZQÞe∶ ûl → ûlþ
2π

Q
vl; vl∈Z; ðdvÞp ¼ 0: ð22Þ

V. CHIRAL GAUGE THEORY

We now turn to a popular example [32,93–110] of a
2D Abelian chiral gauge theory, namely the 3450 model,
which has two left-handed Weyl fermions ψL and ψ̂L
coupled to a Uð1Þ gauge field with charges 3 and 4 as well
as two right-handedWeyl fermions ψR and ψ̂R with charges
5 and 0.7 This QFT satisfies the gauge anomaly cancellation
condition ðQLÞ2 þ ðQ̂LÞ2 ¼ ðQRÞ2 þ ðQ̂RÞ2 as well as the
gravitational ’t Hooft anomaly cancellation condition on
the left and right central charges cL ¼ cR. After repack-
aging the matter into two Dirac fermions ψ ¼ ðψR;ψLÞ⊤
and ψ̂ ¼ ðψ̂R; ψ̂LÞ⊤, the gauge field couples to the vector
and axial currents of ψ and ψ̂ with charges QV ¼ 8,
QA ¼ −2, Q̂V ¼ 4, and Q̂A ¼ 4, and the gauge anomaly
cancellation condition becomes QVQA þ Q̂VQ̂A ¼ 0.
We will study the variant of the 3450 model with a

gauged ð−1ÞF symmetry to avoid dealing with the Arf
invariant [111,112]. Our discretization takes the form

S3450 ¼
β

2
½ðdaÞp − 2πrp�2 þ

κ

2
ð½ðdφÞl̃ −QAafðl̃Þ − 2πnl̃�2

þ ½ðdφ̂Þl̃ − Q̂Aafðl̃Þ − 2πn̂l̃�2Þ

þ i
2π

ðQVφ⋆p þ Q̂Vφ̂⋆pÞ½ðdaÞp − 2πrp�
− iðQVn⋆l þ Q̂Vn̂⋆lÞal þ in⋆lðdχÞl þ in̂⋆lðdχ̂Þl
− irfð⋆sÞðQAχs þ Q̂Aχ̂sÞ; ð23Þ

where f∶ s → sþ 1
2
ðx̂þ ŷÞ shifts cells from the lattice to

the dual lattice, and the gauge redundancies are

al→alþðdλÞlþ2πml; rp→ rpþðdmÞp;
φs̃→φs̃þQAλfðs̃Þ þ2πks̃; φ̂s̃→ φ̂s̃þQ̂Aλfðs̃Þ þ2πk̂s̃;

nl̃→nl̃þðdkÞl̃−QAmfðl̃Þ; n̂l̃→ n̂l̃þðdk̂Þl̃−Q̂Amfðl̃Þ;

χs→ χsþQVλsþ2πhs; χ̂s→ χ̂sþQ̂Vλsþ2πĥs: ð24Þ

7In particular, [32] mentioned that a Villain Hamiltonian
[29,31] formulation of the 3450 model should exist.
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Modulo 2πi and total derivative terms, the gauge variation
of S3450 is

ΔS3450 ¼ iðQVQA þ Q̂VQ̂AÞ
�
mlaf−1ð⋆lÞ

þ λs

�
1

2π
ðdaÞf−1ð⋆sÞ − rf−1ð⋆sÞ − rfð⋆sÞ

− ðdmÞfð⋆sÞ
��

; ð25Þ

which vanishes precisely when the charges satisfy the
anomaly cancellation condition.
The function f was introduced to allow the Uð1Þ gauge

field to couple to fields that live on the “primary” lattice as
well as on the dual lattice, which is necessary in the present
context when trying to couple the gauge field to both vector
and axial currents. But the presence of the function f in
(23) appears to break Z4 lattice rotation symmetry. Also,
ImS3450 ≠ 0, leading to an apparent sign problem.
However, following the same method as in Nf ¼ 1, 2
vectorlike QED, one can derive (see Appendix C) a dual
representation which both avoids the sign problem and
shows that Z4 lattice rotation symmetry is actually pre-
served, since it is manifest in the dual variables. This dual
representation can be written as

S ¼ κ

2

1

5
ððdϕÞ⋆l − 2πv⋆lÞ2

þ 1

2κ

1

20ð2πÞ2 ð2ðdψ̂Þl̃ − 2πððdyÞl̃ − 4vl̃ÞÞ2

þ 1

2β

1

ð2πÞ2 ð4ϕs̃ þ 2ψ̂ s̃ − 2πys̃Þ2

þ iσ⋆p̃ðdvÞp̃ − iπn̂⋆l̃ðdyÞl̃ − 2πi
4

5
v⋆lvfðlÞ: ð26Þ

The fields ϕ and ψ̂ are Uð1Þ-gauge invariant combinations
of the fields in (23):

ϕs̃ ¼ 2φs̃ þ φ̂s̃; ψ̂ s̃ ¼ 2χ̂fðsÞ − χfðsÞ: ð27Þ

When ψ̂ s̃ → ψ s̃ þ 2πqs̃ and ϕs̃ → ϕs̃ þ 2πbs̃, the discrete
fields shift as vl̃ → vl̃ þ ðdbÞl̃ and ys̃ → ys̃ þ 4bs̃ þ 2qs̃.
We can simplify the expression above further by intro-

ducing the variable

ρs̃ ≡ π

2
ys̃ −

1

2
ψ̂ s̃ ¼

π

2
ys̃ þ

1

2
χfðsÞ − χ̂fðsÞ; ð28Þ

which shifts as ρs̃ → ρs̃ þ 2πbs̃ under the discrete gauge
transformations described in the preceding paragraph. We
can then rewrite the dualized action of the discretized 3450
chiral gauge theory as

S ¼ κ

10
½ðdϕÞl̃ − 2πvl̃�2 þ

1

10π2κ
½ðdρÞl̃ − 2πvl̃�2

þ 2

π2β
ðϕs̃ − ρs̃Þ2 þ iσ⋆p̃ðdvÞp̃ − iπn̂⋆l̃ðdyÞl̃

− 2πi
4

5
v⋆lvfðlÞ: ð29Þ

This action has several interesting physical consequences.
First, the iπn̂dy term is a decoupled topological Z2 gauge
theory. This topological quantum field theory appears
because the charges of the Dirac fermions in the 3450
chiral gauge theory are even with a minimal charge of 2.
Therefore the model has a Z2 1-form symmetry, and this
symmetry is spontaneously broken. Second, we see that
one linear combination of ϕ and ρ acquires a Schwinger-
type mass. These two features are analogous to the behavior
of the charge-Q Nf ¼ 1 Schwinger model. Third, another
linear combination of ϕ and ρ remains exactly massless,
thanks to the presence of the σdv term, which ensures that
there are no dynamical v vortices, implying that there
cannot be any Berezinskii-Kosterlitz-Thouless transition
[113,114] as a function of κ. This gapless mode matches the
Uð1Þ ×Uð1Þ ’t Hooft anomaly of the 3450 model, which is
analogous to what we saw above in the Nf ¼ 2 vector-
like QED.
The last interesting physical consequence of Eq. (29) we

want to highlight is that the model has an extra Z2 0-form
symmetry that acts by exchanging ϕ and ρ if we set
κ ¼ 1=π. Dialing κ maps to dialing the coefficients of the
Thirring interaction terms ðψ̄γμψÞ2 and ð ¯̂ψγμψ̂Þ2 in the
original fermionic theory. The extra Z2 symmetry is
therefore not present at weak coupling, helping to explain
why it is not obvious in the original fermionic description
of the model. It is even quite opaque after bosonization and
only becomes obvious after finding a particularly simple
duality frame. Another reason this symmetry is not obvious
from the start is that it involves exchanging ϕ, a six-fermion
operator, with ρ, which is an exotic defect operator from the
point of view of the original fermionic description.
Before closing this section, we can return to our original

motivations for looking for a dual representation of
Eq. (23): the sign problem and the lack of a manifest Z4

rotation symmetry. We have already seen that the latter
issue is automatically taken care of by passing to the
representation in Eq. (29), so all that remains is under-
standing why in the end there is no sign problem. The first
two terms in the second line of Eq. (29) yield constraints
ðdvÞp̃ ¼ 0 and ðdyÞl̃ ¼ 0mod 2. We have already seen that
such constraints are easy to enforce when generating field
configurations, and consequently these terms are harmless.
The remaining term in the bottom of Eq. (29) looks
alarming at first glance, but when dv ¼ 0, it can be shown
to be a total derivative (see Appendix C) and can be
dropped, giving a sign-problem-free formulation with a
manifest Z4 rotation symmetry.
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VI. OUTLOOK

We leveraged recent advances in the understanding
of anomalies on the lattice [27–29,31,32] to construct
symmetry-preserving discretizations of d ¼ 2 Abelian
gauge theories with massless fermions with vectorlike
and chiral couplings. These discretizations evade the
Nielsen-Ninomiya theorem essentially because they
directly discretize the fermion determinant det =D rather
than the fermion matrix =D itself, and det =D is rewritten in
terms of a path integral over bosonic fields with local
interactions. We emphasize that in our construction the
vectorlike and chiral symmetries act just as locally at finite
lattice spacing as they do in the continuum, and all of the
ABJ and ’t Hooft anomalies are reproduced on the lattice.
Finally, while the lattice actions we construct are complex,
we have shown that the resulting sign problems can be
avoided by judicious choices of dual variables.
Our results open many directions for future work.

Numerical lattice calculations using this formalism can
be used to explore strongly coupled regions in parameter
space. It would be interesting to see if our approach can be
generalized to d > 2, for example by taking advantage of
advances in the understanding of continuum bosonization
in d ¼ 3 [115–121] and the development of symmetry-
preserving discretizations of Chern-Simons terms [122].
It would also be nice to see if generalizations of our
construction can preserve non-Abelian chiral symmetries at
finite lattice spacing [14,123–130]. Finally, to get inspira-
tion toward constructing more direct symmetry-preserving
fermion discretizations, one can compute the discretized
Dirac operators corresponding to our representations of the
fermion determinant det =D.
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APPENDIX A: HAMILTONIAN FORMULATION

To construct the Hamiltonian for the one-flavor boson-
ized Schwinger model we follow the discussion of Ref. [29]
(see Sec. 3.5 therein for a parallel discussion). We go to

Lorentzian signature, take time to be continuous, drop
the timelike integer-valued fields in the lattice action (4),
and assume that space is discretized on a lattice with
periodic boundary conditions. The Lagrangian density
becomes

L ¼ κ

2
φ̇2
s̃ −

κ

2
½ðdφÞl̃ − 2πnl̃�2 þ

β

2
ȧ2l −

Q
2π

φ⋆lȧl þ χsṅ⋆s:

ðA1Þ

Note that on the 1D lattice ⋆l ¼ s̃;⋆s ¼ l̃. The canonical
momenta (which live on the duals of the cells of their
respective fields) can thus be written as

ðΠφÞl ¼ κφ̇⋆l; ðΠaÞs̃ ¼ βȧl −
Q
2π

; ðA2Þ

ðΠnÞs ¼ χs; ðΠχÞl̃ ¼ 0: ðA3Þ

The lower two lines are second-class constraints. They can
be taken into account using Dirac brackets, which lead us to
the quantum Hamiltonian

H ¼ 1

2κ
ðΠφÞ2l þ

1

2β

�
ðΠaÞs̃ þ

Q
2π

φs̃

�
2

þ κ

2
½ðdφÞl̃ − 2πnl̃�2; ðA4Þ

where φ, Πφ, a, Πa, n, and χ are operators with the
commutation relations

½φs̃; ðΠφÞl� ¼ iδs̃;⋆l;

½al; ðΠaÞs̃� ¼ iδl;⋆s̃;

½nl̃; χ s� ¼ iδ⋆l̃;s; ðA5Þ

1. Gauge operators

In the Hamiltonian formalism the gauge redundancies
must be imposed as constraints. We have four such
redundancies: compactness of χ , compactness of φ, small
gauge transformations of a and χ , and large gauge trans-
formations that ensure that the gauge group is Uð1Þ and not
R. These transformations will be associated with four
operators Gχ , Gφ, Gsmall, and Glarge which have to act like
identity operators on all physical states.
The 2π shifts of χ are generated by

Gχ ¼ ½fsl̃g� ¼ e2πi
P

l̃
sl̃nl̃ ; ðA6Þ

where sl̃ ∈Z. Therefore nl̃ must have an integer spectrum.
The compactness condition for φ is associated with

the transformation φs̃ → φs̃ þ 2πks̃, nl̃ → nl̃ þ ðdkÞl̃,
ðΠaÞs̃ → ðΠaÞs̃ − Q

2π ks̃ with ks̃ ∈Z, which is generated by
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Gφ½fkg� ¼ exp

�
i
X
l

2πk⋆l

�
ðΠφÞl −

Q
2π

al −
1

2π
ðdχ Þl

��
:

ðA7Þ

Therefore the operator

ql ¼ ðΠφÞl þ
Q
2π

al −
1

2π
ðdχ Þl ðA8Þ

must have an integer spectrum. Its commutation relations
are

½ql;φs̃� ¼ iδs̃;⋆l;

½ql; ðΠaÞs̃� ¼
iQ
2π

δl;⋆s̃;

½ql;nl̃� ¼
i
2π

ðδfðlÞ;l̃ − δf−1ðlÞ;l̃Þ; ðA9Þ

where fðlÞ is a positive translation by half a lattice unit,
which takes the lattice to the dual lattice.
Continuous (“small”) gauge transformations a → aþ

dλ and χ → χ þQλ are generated by

GsmallðfλgÞ ¼ exp

�
i
X
l

ðdλÞlðΠaÞl − iQ
X
s

λsn⋆s

�
;

ðA10Þ

where λs ∈R. This yields the Gauss law constraint

ðdΠaÞl̃ þQnl̃ ¼ 0: ðA11Þ

Finally, the large gauge transformations ðΠaÞl →
ðΠaÞl þ 2πml are generated by

GlargeðfmgÞ ¼ ei
P

l
2πmlðΠaÞl ; ml ∈Z; ðA12Þ

which implies that Πa must have an integer spectrum.

2. Symmetry operators

The two internal global symmetries of our Hamiltonian
are associated with the following operators. The ZQ chiral
symmetry is generated by the line operator

UkðLÞ ¼ exp

�
2πik
Q

X
l∈L

�
ðΠφÞl þ

Q
2π

ðΠaÞl
��

¼ e
2πik
Q

P
l
ql ; ðA13Þ

where L is all of space (that is, a time slice). This means that
ql is a charge density operator (which manages to exist in
this case despite the fact that chiral symmetry is discrete)
and Q ¼ P

l ql is the total charge operator. The equation
of motion of q is q̇ ¼ i½H;q� ¼ 0, so UkðLÞ is conserved,

and the coefficient in front of Q is quantized thanks to the
requirement that UkðLÞ must commute with Glarge.
The ZQ 1-form symmetry is generated by the local

operator

Vwðs̃Þ ¼ e
2πi
Q ðΠaÞs̃ : ðA14Þ

The coefficient in the exponent must be quantized so that
½Vw;Gφ� ¼ 0, and it is topological thanks to the Gauss law.
The ’t Hooft anomaly is encoded in the fact that these

symmetry operators do not commute:

UkðLÞVwðs̃Þ ¼ e
2πikw
Q Vwðs̃ÞUkðLÞ: ðA15Þ

Therefore (A4) provides a Hamiltonian discretization of
the charge Q Schwinger model which encodes all of its
continuum internal symmetries and anomalies.

APPENDIX B: DUALIZING Nf = 2 QED

We start with the action (19), linearize the gauge and
scalar kinetic terms using auxiliary fields, and sum over n,
n̂, and r to find

1

2κ

�
N
2π

�
2
��

al −
1

N
ðdχÞl −

2π

N
yl

�
2

þ
�
al −

1

N
ðdχ̂Þl −

2π

N
ûl

�
2
�

þ 1

2β

�
N
2π

�
2
�
φs̃ þ φ̂s̃ −

2π

N
ts̃

�
2

þ ialðdtÞ⋆p

−
i
2π

ðNal þ 2πylÞðdφÞ⋆l −
i
2π

ðNal þ 2πûlÞðdφ̂Þ⋆l;
ðB1Þ

where y; û; t∈Z. Doing the Gaussian integral over a gives

1

4κ

1

ð2πÞ2 ððdχÞl − ðdχ̂Þl −2πðyl− ûlÞÞ2

þ κ

4

�
ðdφÞelþðdφ̂Þel − 2π

N
ðdtÞel

�
2

þ 1

2β

�
N
2π

�
2
�
φs̃þ φ̂s̃−

2π

N
ts̃

�
2

−
i
2
ðyl − ûlÞððdφÞ⋆l − ðdφ̂Þ⋆lÞ−

i
2

2π

N
ðylþ ûlÞðdtÞ⋆l

ðB2Þ

after dropping total derivatives and multiples of 2πi. Now
let us define σ ¼ χ − χ̂, η ¼ φþ φ̂, ϕ ¼ φ̂

2
− φ

2
− πt

N, and
u ¼ y − û:
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1

4κ

1

ð2πÞ2 ððdσÞl − 2πulÞ2þ
κ

4

�
ðdηÞl̃ −

2π

N
ðdtÞl̃

�
2

þ 1

2β

�
N
2π

�
2
�
ηs̃−

2π

N
ts̃

�
2

þ iulðdϕÞ⋆l −
2πi
N

ûlðdtÞ⋆l;

ðB3Þ
which is the result (20). The first line is the modified Villain
formulation of a compact scalar. If we had started with the
free-fermion radius κ ¼ 1

4π, we end up with an effective
radius κ̃ ¼ 1

2κ
1

ð2πÞ2 ¼ 1
2π, which is the self-dual radius.

For completeness, we note the dual description of the
fermion mass terms:

cosðφÞ → cos

�
η

2
− ϕ −

π

N
t

�
ðB4Þ

and

cosðφ̂Þ → cos

�
η

2
þ ϕþ π

N
t

�
: ðB5Þ

As a result, a flavor-symmetric mass deformation becomes

cosðφÞ þ cosðφ̃Þ → 2 cos

�
η

2

�
cos

�
ϕþ π

N
t

�
: ðB6Þ

Note this is respects the 2π periodicity because when η →
ηþ 2πk and t → tþ Nk, both factors pick up a sign ð−1Þk
which squares away. If we turn on a theta angle, this is
modified to cosðη

2
þ θ

2
Þ cosðϕþ π

N tÞ.

APPENDIX C: DUALIZING THE 3450 MODEL

Let us write the action of the 3450 model using (real)
auxiliary fields ζ, ζ̂, and ξ:

S ¼ 1

2κ
ζ2⋆l̃ þ iζ⋆l̃½ðdφÞl̃ −QAafðl̃Þ − 2πnl̃�

þ 1

2κ
ζ̂2⋆l̃ þ iζ̂⋆l̃½ðdφ̂Þl̃ − Q̂Aafðl̃Þ − 2πn̂l̃�

þ 1

2β
ξ2⋆p þ i

�
ξ⋆p þ

1

2π
ðQVφ⋆p þ Q̂Vφ̂⋆pÞ

�
× ½ðdaÞp − 2πrp� − iðQVn⋆l þ Q̂Vn̂⋆lÞal
þ in⋆lðdχÞl þ in̂⋆lðdχ̂Þl
− irpðQAχf−1ð⋆pÞ þ Q̂Aχ̂f−1ð⋆pÞÞ: ðC1Þ

Summing over rp ∈Z sets

ξ⋆p ¼ −
1

2π
ðQVφ⋆p þ Q̂V φ̂⋆p þQAχf−1ð⋆pÞ

þ Q̂Aχ̂f−1ð⋆pÞ − 2πy⋆pÞ; ðC2Þ
where yl̃ ∈Z. Plugging this back into the action and
integrating out the gauge field al allows us to solve for ζ:

ζ⋆l̃ ¼ 1

QA

�
−Q̂Aζ̂⋆l̃ −

1

2π
ðQAðdχÞ⋆l̃ þ Q̂Aðdχ̂Þ⋆l̃Þ

þ ðdyÞfð⋆l̃Þ −QVnfð⋆l̃Þ − Q̂Vn̂fð⋆l̃Þ

�
: ðC3Þ

If we plug this back into the action and perform a field
redefinition ζ̂l → ζ̂l − 1

2π ðdχ̂Þl, we land on

S ¼ 1

2β

1

ð2πÞ2 ξ
2
s̃ þ

1

2κ

�
ζ̂l −

1

2π
ðdχ̂Þl

�
2

þ 1

2κ

Q̂2
A

Q2
A

�
ζ̂l þ

QA

Q̂A

ðdχÞl
2π

−
ðdyÞfðlÞ þ ufðlÞ

Q̂A

�
2

− i
ζ̂l
QA

�
QAðdφ̂Þ⋆l − Q̂AðdφÞ⋆l þ 2π

Q̂A

QV
u⋆l

�

þ i
QA

ufðlÞ½ðdφÞ⋆l − 2πn⋆l� þ
2πi
QA

ðdyÞfðlÞn⋆l; ðC4Þ

with ξ set to its value in (C2), and for notational conven-
ience we have defined

ul̃ ≡QVnl̃ þ Q̂Vn̂l̃ ¼ QV

Q̂A
ðQ̂Anl̃ −QAn̂l̃Þ; ðC5Þ

where the second equality follows from the anomaly-free
condition. Note this is not a GLð2;ZÞ change of basis, and
we have to remember that ul̃ ∈QVZþ Q̂VZ. The integral
over ζ̂ is Gaussian. To simplify the calculation let us define

ϕs̃ ¼ QVφs̃ þ Q̂Vφ̂s̃; ψ s ¼ QAχs þ Q̂Aχ̂s; ðC6Þ

ηs ¼ Q̂Aχs −QAχ̂s: ðC7Þ

Note that ϕ and ψ are (0-form) gauge invariant but η is not.
One can check that this defines an invertible change of basis
assuming the anomaly-cancelation condition. In terms of
these new variables, the result of integrating over ζ̂ is

S ¼ κ

2

Q̂2
A=Q

2
V

Q2
A þ Q̂2

A

ððdϕÞ⋆l − 2πu⋆lÞÞ2

þ 1

2κ

1

ð2πÞ2
1

Q2
A þ Q̂2

A

ððdψÞl − 2πððdyÞfðlÞ − ufðlÞÞÞ2

þ 1

2β

1

ð2πÞ2 ðϕs̃ þ ψf−1ðs̃Þ − 2πys̃Þ2

þ i
QA

ufðlÞ½ðdφÞ⋆l − 2πn⋆l� þ
2πi
QA

ðdyÞfðlÞn⋆l

−
i
2π

Q̂A=QV

Q2
A þ Q̂2

A

ððdϕÞ⋆l − 2πu⋆lÞÞ

×

�
ðdηÞl − 2π

Q̂A

QA
ððdyÞfðlÞ − ufðlÞÞ

�
: ðC8Þ
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Let us collect the terms linear in du:

iðduÞp̃
�
1

QA
φf−1ð⋆p̃Þ −

Q̂A=QV

Q2
A þ Q̂2

A

η⋆p̃

−
Q̂2

A=ðQAQVÞ
Q2

A þ Q̂2
A

ðϕf−1ð⋆p̃Þ − 2πyfð⋆p̃ÞÞ
�
: ðC9Þ

Ignoring total derivatives, neither φ nor η appear anywhere
else in the action, so we can freely make another change
of variables and define a new field σ⋆p̃ which is equal to
the quantity in brackets (note that this quantity is gauge
invariant). The role of σ is to set ðduÞp̃ ¼ 0.
The remaining imaginary terms in the action are

2πi
QA

ððdyÞfðlÞ − ufðlÞÞn⋆l þ 2πi
Q̂2

A=ðQAQVÞ
Q2

A þ Q̂2
A

u⋆lufðlÞ:

ðC10Þ

The last term is trivial when du ¼ 0. To see this, fix a
plaquette p̃ on the dual lattice whose lower left-hand corner
is at the site x̃. One can verify the identity8

X
l̃¼ðx̃;μÞ

ul̃ufð⋆l̃Þ ¼ −
1

2
ðdðu2ÞÞp̃

þ 1

2
ðduÞp̃ðux̃;0 þ ux̃þ0̂;1 þ ux̃;1 þ ux̃þ1̂;0Þ;

ðC11Þ

where the sum is over the two links emanating from x̃. The
first term is a total derivative which vanishes when summed
over the lattice and the second line vanishes when du ¼ 0.
Recalling the definition of u, we arrive at the dual

formulation (ignoring the term discussed above)

S ¼ κ

2

Q̂2
A=Q

2
V

Q2
A þ Q̂2

A

ððdϕÞ⋆l − 2πðQVn⋆l þ Q̂Vn̂⋆lÞÞ2

þ 1

2κ

1=ð2πÞ2
Q2

A þ Q̂2
A

× ððdψÞl − 2πððdyÞfðlÞ −QVnfðlÞ − Q̂Vn̂fðlÞÞÞ2

þ 1

2β

1

ð2πÞ2 ðϕs̃ þ ψf−1ðs̃Þ − 2πys̃Þ2

þ iσ⋆p̃ðQVðdnÞp̃ þ Q̂Vðdn̂Þp̃Þ

þ 2πi
QA

ððdyÞfðlÞ −QVnfðlÞ − Q̂Vn̂fðlÞÞn⋆l: ðC12Þ

So far we have allowed the charges to be arbitrary but
satisfying the anomaly-cancelation condition. Note that
there are still imaginary terms which remain, indicating a
sign problem. In future work, it would be interesting to
determine the set of 2D chiral gauge theories where one can
avoid this sign problem, possibly by finding alternatives
to (C12) in some cases.
Here we focus on the particular case of the 3450 model,

where the sign problem can indeed be removed thanks
to the fact that the 3450 charge assignments make the last
two terms in (C12) multiples of 2πi. Dropping these terms
we find

S¼ κ

2

1

80
ððdϕÞ⋆l − 2πð8n⋆lþ 4n̂⋆lÞÞ2

þ 1

2κ

1

20ð2πÞ2 ððdψÞl − 2πððdyÞfðlÞ− 8nfðlÞ− 4n̂fðlÞÞÞ2

þ 1

2β

1

ð2πÞ2 ðϕs̃þψf−1ðs̃Þ− 2πys̃Þ2

þ iσ⋆p̃ð8ðdnÞp̃þ 4ðdn̂Þp̃Þ− iπðdyÞfðlÞn⋆l
−
2πi
20

ð8n⋆lþ 4n̂⋆lÞð8nfðlÞ þ 4n̂fðlÞÞ; ðC13Þ

where for completeness we have reinstated the imaginary
term we argued was zero above. Now we can perform a
GLð2;ZÞ change of basis to vl̃ ¼ 2nl̃ þ n̂l̃ and nel as the

integer degrees of freedom:

S ¼ κ

2

1

80
ððdϕÞ⋆l − 8πv⋆lÞ2

þ 1

2κ

1

20ð2πÞ2 ððdψÞl − 2πððdyÞfðlÞ − 4vfðlÞÞÞ2

þ 1

2β

1

ð2πÞ2 ðϕs̃ þ ψf−1ðs̃Þ − 2πys̃Þ2

þ 4iσ⋆p̃ðdvÞp̃ − iπðdyÞfðlÞn⋆l − 2πi
4

5
v⋆lvfðlÞ:

ðC14Þ

We now rescale ϕ → 4ϕ, ψ → 2ψ , and σ → 1
4
σ to reach

S¼ κ

2

1

5
ððdϕÞ⋆l − 2πv⋆lÞ2

þ 1

2κ

1

20ð2πÞ2 ð2ðdψÞl − 2πððdyÞfðlÞ − 4vfðlÞÞÞ2

þ 1

2β

1

ð2πÞ2 ð4ϕs̃þ 2ψf−1ðs̃Þ − 2πys̃Þ2

þ iσ⋆p̃ðdvÞp̃ − iπðdyÞfðlÞn⋆l− 2πi
4

5
v⋆lvfðlÞ: ðC15Þ

The Z4 lattice rotation symmetry is not manifest at this
level—for instance the second and third lines involve the

8This is equivalent to the following identity involving higher
cup products: 2u ∪ u ¼ −dðu ∪1 uÞ þ du ∪1 u − u ∪1 du,
where u is an arbitrary 1-form. See [122] for explicit formulas
for higher cup products on square lattices.
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shift f which does not commute with rotations. However,
the first three lines of the action are invariant if one
performs a (counterclockwise) π=2 rotation together
with a shift ψ s → ψ sþ0̂. The last line just encodes the
constraints, modulo the last term which we argued is a
total derivative. Alternatively, we can make the Z4

lattice rotation symmetry manifest by simply defining
ψ̂ s̃ ¼ ψf−1ðs̃Þ and n̂l̃ ¼ nf−1ð⋆l̃Þ, so that

S ¼ κ

2

1

5
ððdϕÞ⋆l − 2πv⋆lÞ2

þ 1

2κ

1

20ð2πÞ2 ð2ðdψ̂ÞfðlÞ − 2πððdyÞfðlÞ − 4vfðlÞÞÞ2

þ 1

2β

1

ð2πÞ2 ð4ϕs̃ þ 2ψ̂ s̃ − 2πys̃Þ2

þ iσ⋆p̃ðdvÞp̃ − iπn̂
⋆elðdyÞl̃ − 2πi

4

5
v⋆lvfðlÞ: ðC16Þ

The path integrals over σ and n̂ serve to impose
the constraints ðdvÞp̃ ¼ 0; ðdyÞl̃ ¼ 0 mod 2, so thatP

l v⋆lvfðlÞ ¼ 0. Finally, we observe that for any lattice
field gl̃,

P
l g

2
fðlÞ ¼

P
l̃ g

2
l̃
, so that we can rewrite S as

S ¼ κ

2

1

5
ððdϕÞ⋆l − 2πv⋆lÞ2

þ 1

2κ

1

20ð2πÞ2 ð2ðdψ̂Þl̃ − 2πððdyÞl̃ − 4vl̃ÞÞ2

þ 1

2β

1

ð2πÞ2 ð4ϕs̃ þ 2ψ̂ s̃ − 2πys̃Þ2

þ iσ⋆p̃ðdvÞp̃ − iπn̂⋆l̃ðdyÞl̃ − 2πi
4

5
v⋆lvfðlÞ: ðC17Þ

This is form of the dual action we will discuss in the
main text.
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C. Hackett, Gurtej Kanwar, Sébastien Racanière, Danilo J.
Rezende, Fernando Romero-López, Phiala E. Shanahan,
and Julian M. Urban, Flow-based sampling in the lattice
Schwinger model at criticality, Phys. Rev. D 106, 014514
(2022).

[83] Diego Delmastro, Jaume Gomis, and Matthew Yu, Infrared
phases of 2d QCD, J. High Energy Phys. 02 (2023) 157.

[84] Diego Delmastro and Jaume Gomis, RG flows in 2d QCD,
J. High Energy Phys. 09 (2023) 158.

[85] Ross Dempsey, Igor R. Klebanov, Silviu S. Pufu,
Benjamin T. Søgaard, and Bernardo Zan, Phase diagram
of the two-flavor Schwinger model at zero temperature,
Phys. Rev. Lett. 132, 031603 (2024).

[86] Ross Dempsey, Igor R. Klebanov, Silviu S. Pufu, and
Bernardo Zan, Discrete chiral symmetry and mass shift in
the lattice Hamiltonian approach to the Schwinger model,
Phys. Rev. Res. 4, 043133 (2022).

[87] Takuya Okuda, Schwinger model on an interval: Analytic
results and DMRG, Phys. Rev. D 107, 054506 (2023).

[88] Etsuko Itou, Akira Matsumoto, and Yuya Tanizaki, Cal-
culating composite-particle spectra in Hamiltonian formal-
ism and demonstration in 2-flavor QED1þ1d, J. High
Energy Phys. 11 (2023) 231.

[89] Jaime Fabián Nieto Castellanos, Ivan Hip, and Wolfgang
Bietenholz, An analogue to the pion decay constant in the
multi-flavor Schwinger model, Phys. Rev. D 108, 094503
(2023).

[90] Lena Funcke, Karl Jansen, and Stefan Kühn, Exploring the
CP-violating dashen phase in the Schwinger model with
tensor networks, Phys. Rev. D 108, 014504 (2023).

[91] Anton Kapustin and Mikhail Tikhonov, Abelian duality,
walls and boundary conditions in diverse dimensions,
J. High Energy Phys. 11 (2009) 006.

[92] Yichul Choi, Clay Cordova, Po-Shen Hsin, Ho Tat Lam,
and Shu-Heng Shao, Noninvertible duality defects in 3þ 1

dimensions, Phys. Rev. D 105, 125016 (2022).
[93] I. G. Halliday, E. Rabinovici, A. Schwimmer, and

Michael S. Chanowitz, Quantization of anomalous two-
dimensional models, Nucl. Phys. B268, 413 (1986).

[94] Estia Eichten and John Preskill, Chiral gauge theories on
the lattice, Nucl. Phys. B268, 179 (1986).

[95] Rajamani Narayanan and Herbert Neuberger, Massless
composite fermions in two-dimensions and the overlap,
Phys. Lett. B 393, 360 (1997).

[96] Yoshio Kikukawa, Rajamani Narayanan, and Herbert
Neuberger, Monte Carlo evaluation of a fermion
number violating observable in 2-D, Phys. Rev. D 57,
1233 (1998).

[97] Yoshio Kikukawa, Rajamani Narayanan, and Herbert
Neuberger, Finite size corrections in two-dimensional
gauge theories and a quantitative chiral test of the overlap,
Phys. Lett. B 399, 105 (1997).

[98] Tanmoy Bhattacharya, Matthew R. Martin, and Erich
Poppitz, Chiral lattice gauge theories from warped domain
walls and Ginsparg-Wilson fermions, Phys. Rev. D 74,
085028 (2006).

[99] Joel Giedt and Erich Poppitz, Chiral lattice gauge theories
and the strong coupling dynamics of a Yukawa-Higgs
model with Ginsparg-Wilson fermions, J. High Energy
Phys. 10 (2007) 076.

[100] Chen Chen, Joel Giedt, and Erich Poppitz, On the
decoupling of mirror fermions, J. High Energy Phys. 04
(2013) 131.

[101] Erich Poppitz and Yanwen Shang, Lattice chirality and the
decoupling of mirror fermions, J. High Energy Phys. 08
(2007) 081.

[102] Erich Poppitz and Yanwen Shang, Lattice chirality,
anomaly matching, and more on the (non)decoupling of
mirror fermions, J. High Energy Phys. 03 (2009) 103.

BERKOWITZ, CHERMAN, and JACOBSON PHYS. REV. D 110, 014510 (2024)

014510-14

https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1007/BF02744530
https://doi.org/10.1007/BF02744530
https://doi.org/10.1016/0550-3213(85)90458-4
https://doi.org/10.1016/0550-3213(85)90458-4
https://doi.org/10.1016/0550-3213(86)90168-9
https://doi.org/10.1103/PhysRevD.49.4226
https://doi.org/10.1103/PhysRevD.50.7659
https://doi.org/10.1103/PhysRevD.50.7659
https://doi.org/10.1016/0370-2693(95)00310-H
https://doi.org/10.1142/S0217751X9700284X
https://doi.org/10.1103/PhysRevD.86.125008
https://doi.org/10.1103/PhysRevD.86.125008
https://doi.org/10.1103/PhysRevD.88.105030
https://doi.org/10.1103/PhysRevD.88.105030
https://doi.org/10.1007/JHEP02(2017)081
https://doi.org/10.1007/JHEP02(2017)081
https://doi.org/10.1007/JHEP03(2019)175
https://doi.org/10.1007/JHEP03(2019)175
https://doi.org/10.1103/PhysRevLett.125.181601
https://doi.org/10.1007/JHEP10(2022)119
https://doi.org/10.22323/1.430.0372
https://doi.org/10.1016/j.nuclphysb.2015.06.017
https://doi.org/10.1016/j.nuclphysb.2015.06.017
https://doi.org/10.1103/PhysRevD.106.014514
https://doi.org/10.1103/PhysRevD.106.014514
https://doi.org/10.1007/JHEP02(2023)157
https://doi.org/10.1007/JHEP09(2023)158
https://doi.org/10.1103/PhysRevLett.132.031603
https://doi.org/10.1103/PhysRevResearch.4.043133
https://doi.org/10.1103/PhysRevD.107.054506
https://doi.org/10.1007/JHEP11(2023)231
https://doi.org/10.1007/JHEP11(2023)231
https://doi.org/10.1103/PhysRevD.108.094503
https://doi.org/10.1103/PhysRevD.108.094503
https://doi.org/10.1103/PhysRevD.108.014504
https://doi.org/10.1088/1126-6708/2009/11/006
https://doi.org/10.1103/PhysRevD.105.125016
https://doi.org/10.1016/0550-3213(86)90163-X
https://doi.org/10.1016/0550-3213(86)90207-5
https://doi.org/10.1016/S0370-2693(96)01634-6
https://doi.org/10.1103/PhysRevD.57.1233
https://doi.org/10.1103/PhysRevD.57.1233
https://doi.org/10.1016/S0370-2693(97)00276-1
https://doi.org/10.1103/PhysRevD.74.085028
https://doi.org/10.1103/PhysRevD.74.085028
https://doi.org/10.1088/1126-6708/2007/10/076
https://doi.org/10.1088/1126-6708/2007/10/076
https://doi.org/10.1007/JHEP04(2013)131
https://doi.org/10.1007/JHEP04(2013)131
https://doi.org/10.1088/1126-6708/2007/08/081
https://doi.org/10.1088/1126-6708/2007/08/081
https://doi.org/10.1088/1126-6708/2009/03/103


[103] Erich Poppitz and Yanwen Shang, Chiral lattice gauge
theories via mirror-fermion decoupling: A mission (im)
possible? Int. J. Mod. Phys. A 25, 2761 (2010).

[104] Juven Wang and Xiao-Gang Wen, Nonperturbative regu-
larization of (1þ 1)-dimensional anomaly-free chiral fer-
mions and bosons: On the equivalence of anomaly
matching conditions and boundary gapping rules, Phys.
Rev. B 107, 014311 (2023).

[105] JuvenWang and Xiao-GangWen, A solution to the 1þ 1D
gauged chiral fermion problem, Phys. Rev. D 99, 111501
(2019).

[106] David Tong, Comments on symmetric mass generation in
2d and 4d, J. High Energy Phys. 07 (2022) 001.

[107] Meng Zeng, Zheng Zhu, Juven Wang, and Yi-Zhuang You,
Symmetric mass generation in the 1þ 1 dimensional chiral
fermion 3-4-5-0 model, Phys. Rev. Lett. 128, 185301
(2022).

[108] Juven Wang and Yi-Zhuang You, Symmetric mass gen-
eration, Symmetry 14, 1475 (2022).

[109] Juven Wang, CT or P problem and symmetric gapped
fermion solution, Phys. Rev. D 106, 125007 (2022).

[110] Da-Chuan Lu, Meng Zeng, Juven Wang, and Yi-Zhuang
You, Fermi surface symmetric mass generation, Phys. Rev.
B 107, 195133 (2023).

[111] Ryan Thorngren, Anomalies and bosonization, Commun.
Math. Phys. 378, 1775 (2020).

[112] Andreas Karch, David Tong, and Carl Turner, Aweb of 2d
dualities: Z2 gauge fields and Arf invariants, SciPost Phys.
7, 007 (2019).

[113] V. L. Berezinsky, Zh. Eksp. Teor. Fiz. 59, 907 (1971)
[Destruction of long range order in one-dimensional and
two-dimensional systems having a continuous symmetry
group. 1. Classical systems, Sov. Phys. JETP 32, 493
(1971)].

[114] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability
and phase transitions in two-dimensional systems, J. Phys.
C 6, 1181 (1973).

[115] Ofer Aharony, Baryons, monopoles and dualities in Chern-
Simons-matter theories, J. High Energy Phys. 02 (2016)
093.

[116] Nathan Seiberg, T. Senthil, Chong Wang, and Edward
Witten, A duality web in 2þ 1 dimensions and condensed
matter physics, Ann. Phys. (N.Y.) 374, 395 (2016).

[117] Andreas Karch and David Tong, Particle-vortex
duality from 3d bosonization, Phys. Rev. X 6, 031043
(2016).

[118] Andreas Karch, Brandon Robinson, and David Tong, More
Abelian dualities in 2þ 1 dimensions, J. High Energy
Phys. 01 (2017) 017.

[119] Chong Wang, Adam Nahum, Max A. Metlitski, Cenke
Xu, and T. Senthil, Deconfined quantum critical
points: Symmetries and dualities, Phys. Rev. X 7,
031051 (2017).

[120] Po-Shen Hsin and Nathan Seiberg, Level/rank duality and
Chern-Simons-matter theories, J. High Energy Phys. 09
(2016) 095.

[121] Andreas Karch, David Tong, and Carl Turner, Mirror
symmetry and bosonization in 2d and 3d, J. High Energy
Phys. 07 (2018) 059.

[122] Theodore Jacobson and Tin Sulejmanpasic, Modified
Villain formulation of Abelian Chern-Simons theory, Phys.
Rev. D 107, 125017 (2023).

[123] Martin Luscher, Weyl fermions on the lattice and the
nonAbelian gauge anomaly, Nucl. Phys. B568, 162
(2000).

[124] Xiao-GangWen, A lattice non-perturbative definition of an
SO(10) chiral gauge theory and its induced standard
model, Chin. Phys. Lett. 30, 111101 (2013).

[125] Yoni BenTov, Fermion masses without symmetry breaking
in two spacetime dimensions, J. High Energy Phys. 07
(2015) 034.

[126] Venkitesh Ayyar and Shailesh Chandrasekharan, Massive
fermions without fermion bilinear condensates, Phys. Rev.
D 91, 065035 (2015).

[127] Venkitesh Ayyar and Shailesh Chandrasekharan, Origin of
fermion masses without spontaneous symmetry breaking,
Phys. Rev. D 93, 081701 (2016).

[128] Venkitesh Ayyar and Shailesh Chandrasekharan, Fermion
masses through four-fermion condensates, J. High Energy
Phys. 10 (2016) 058.

[129] Michael DeMarco and Xiao-Gang Wen, A novel non-
perturbative lattice regularization of an anomaly-free
1þ 1d chiral SUð2Þ gauge theory, arXiv:1706.04648.

[130] Shlomo S. Razamat and David Tong, Gapped chiral
fermions, Phys. Rev. X 11, 011063 (2021).

EXACT LATTICE CHIRAL SYMMETRY IN 2D GAUGE THEORY PHYS. REV. D 110, 014510 (2024)

014510-15

https://doi.org/10.1142/S0217751X10049852
https://doi.org/10.1103/PhysRevB.107.014311
https://doi.org/10.1103/PhysRevB.107.014311
https://doi.org/10.1103/PhysRevD.99.111501
https://doi.org/10.1103/PhysRevD.99.111501
https://doi.org/10.1007/JHEP07(2022)001
https://doi.org/10.1103/PhysRevLett.128.185301
https://doi.org/10.1103/PhysRevLett.128.185301
https://doi.org/10.3390/sym14071475
https://doi.org/10.1103/PhysRevD.106.125007
https://doi.org/10.1103/PhysRevB.107.195133
https://doi.org/10.1103/PhysRevB.107.195133
https://doi.org/10.1007/s00220-020-03830-0
https://doi.org/10.1007/s00220-020-03830-0
https://doi.org/10.21468/SciPostPhys.7.1.007
https://doi.org/10.21468/SciPostPhys.7.1.007
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1007/JHEP02(2016)093
https://doi.org/10.1007/JHEP02(2016)093
https://doi.org/10.1016/j.aop.2016.08.007
https://doi.org/10.1103/PhysRevX.6.031043
https://doi.org/10.1103/PhysRevX.6.031043
https://doi.org/10.1007/JHEP01(2017)017
https://doi.org/10.1007/JHEP01(2017)017
https://doi.org/10.1103/PhysRevX.7.031051
https://doi.org/10.1103/PhysRevX.7.031051
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1007/JHEP07(2018)059
https://doi.org/10.1007/JHEP07(2018)059
https://doi.org/10.1103/PhysRevD.107.125017
https://doi.org/10.1103/PhysRevD.107.125017
https://doi.org/10.1016/S0550-3213(99)00731-2
https://doi.org/10.1016/S0550-3213(99)00731-2
https://doi.org/10.1088/0256-307X/30/11/111101
https://doi.org/10.1007/JHEP07(2015)034
https://doi.org/10.1007/JHEP07(2015)034
https://doi.org/10.1103/PhysRevD.91.065035
https://doi.org/10.1103/PhysRevD.91.065035
https://doi.org/10.1103/PhysRevD.93.081701
https://doi.org/10.1007/JHEP10(2016)058
https://doi.org/10.1007/JHEP10(2016)058
https://arXiv.org/abs/1706.04648
https://doi.org/10.1103/PhysRevX.11.011063

