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We present a determination of the structure functions of the off-forward Compton amplitude H1 and E1

from the Feynman-Hellmann method in lattice QCD. At leading twist, these structure functions give
access to the generalized parton distributions (GPDs) H and E, respectively. This calculation is performed
for an unphysical pion mass of mπ ¼ 412 MeV and four values of the soft momentum transfer,
t ≈ 0;−0.3;−0.6;−1.1 GeV2, all at a hard momentum scale of Q̄2 ≈ 5 GeV2. Using these results, we
test various methods to determine properties of the real-time scattering amplitudes and GPDs: (1) we fit
their Mellin moments, and (2) we use a simple GPD ansatz to reconstruct the entire distribution. Our final
results show promising agreement with phenomenology and other lattice results and highlight specific
systematics in need of control.
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I. INTRODUCTION

Generalized parton distributions (GPDs) are among the
most important hadron structure observables, giving access
to the spatial probability distributions of quarks [1], as well
as the spin [2], force, and pressure distributions within a
hadron [3,4].
While GPDs can in principle be determined from hard

exclusive scattering processes, in practice such experimen-
tal determinations face certain difficulties [5–7]. In this
context, first principles calculations of GPDs from lattice
QCD can be extremely useful in both guiding and compar-
ing to experiment. There have already been a handful of
studies exploring the ability of lattice results to aid
experimental GPD fits [8–12].
While lattice calculations cannot directly determine

GPDs, they can be used to reconstruct them. Historically,
this has been limited to determinations of the first three

Mellin moments of GPDs, calculated from local twist-two
operators [13–20]. Recent advances since 2015 have opened
new avenues for reconstructing GPDs from nonlocal oper-
ators, notably the quasi- [21] and pseudodistribution [22]
approaches, which have yielded promising initial determi-
nations of GPDs [23–27].
In this paper, we apply the Feynman-Hellmann method

to determine the off-forward Compton amplitude (OFCA)
and thereby access GPDs. A major distinction between this
method and those mentioned above is that we calculate a
lattice version of the scattering amplitude from which
GPDs are determined experimentally. As such, we have
the potential to calculate phenomenologically interesting
properties that are inaccessible to other methods.
So far, the forward Compton amplitude has been the

focus of the Feynman-Hellmann calculations [28,29],
including studies of the scaling behavior and higher-
twist structures [30,31] and the subtraction function [32].
Similarly, a calculation of the off-forward Compton ampli-
tude could determine the Q̄2 scaling of this amplitude, of
which there have only been limited experimental studies
[33–36]. For the OFCA the Q̄2 scaling behavior could be
extremely useful in isolating the leading-twist contribution,
as most deeply virtual Compton scatting experiments have
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a relatively modest hard scale of Q2 ≈ 1–12 GeV2 and
contain additional jtj=Q2 corrections [37,38]. Moreover,
this method can determine the off-forward subtraction
function, which is a key input for experimental determi-
nations of the proton pressure distribution [4,39].
In this work we focus on determining the subtracted

structure functions of the OFCA for a single hard scale,
Q̄2 ≈ 5 GeV2. We build upon our previous paper on the
OFCA [40], where we developed the formalism for this
calculation and presented exploratory numerical results.
Here, we present major improvements on this numerical
calculation: we separately determine the H1 and E1

structure functions, which can be uniquely related to
twist-two GPDs, over a wider range of kinematics.
These improvements allow us to focus on modeling and
determining GPD properties: (1) we determine the Mellin
moments ofH1 and E1 with a largely model-independent fit
and (2) fit our Compton amplitude results using a phe-
nomenologically motivated GPD ansatz.

II. BACKGROUND

Our purpose in this paper is to determine the OFCA and
its structure functions from lattice QCD. The notation of
this paper follows that of Ref. [40], in which can be found
derivations and full expressions for analytic results
used here.
The OFCA is defined as

Tμν ≡ i
Z

d4ze
i
2
ðqþq0Þ·zhP0jTfjμðz=2Þjνð−z=2ÞgjPi; ð1Þ

where jμ is the electromagnetic current operator. See Fig. 1
for the diagram of this process.
In terms of kinematics, we use the basis of momentum

vectors

P̄¼ 1

2
ðPþP0Þ; q̄¼ 1

2
ðqþq0Þ; Δ¼P0−P; ð2Þ

which gives us two scaling variables and two momentum
scales,

ω̄¼ 2P̄ · q̄
−q̄2

; ξ¼ Δ · q̄
2P̄ · q̄

; Q̄2¼−q̄2; t¼Δ2: ð3Þ

For this work, we focus on zero-skewness kinematics,
ξ ¼ 0, which is enforced by choosing q̄ · Δ ¼ 0.
The general OFCA is parametrized by 18 linearly

independent off-forward structure functions [41,42]

Tμν ¼−
1

2P̄ · q̄

�
h · q̄H1þe · q̄E1

��
gμν−

q0μqν
q ·q0

�
þ… ð4Þ

where we have defined the Dirac bilinears

hμ ¼ ūðP0ÞγμuðPÞ and eμ ¼ ūðP0Þ iσμκΔ
κ

2mN
uðPÞ: ð5Þ

See Ref. [40] for a full parametrization of the Compton
amplitude; the tensor decomposition with all zero-skewness
structures is given in Eq. (A1). For this work, we are
interested in the helicity-conserving H1 and helicity-
flipping E1 structure functions, which respectively give
access to the H and E GPDs at leading twist. Our structure
functionsH1 andE1 are comparable to theH andE Compton
form factors used in experimental analyses [43–45].
The Euclidean Compton amplitude we calculate in lattice

QCD can only be related to the Minkowski amplitude if we
use the kinematics jω̄j < 1 [29]. However, the real-time
scattering amplitude at zero skewness has the kinemat-
ics jω̄j > 1.
As such, we use a dispersion relation to connect our

lattice results H1ðω̄; t; Q̄2Þ to the real-time structure func-
tion, H1ðx; t; Q̄2Þ,

H̄1ðω̄; t; Q̄2Þ ¼ 2ω̄2

π

Z
1

0

dx
xImH1ðx; t; Q̄2Þ

1 − x2ω̄2
; ð6Þ

where H̄1ðω̄; t; Q̄2Þ ¼ H1ðω̄; t; Q̄2Þ −H1ð0; t; Q̄2Þ, the
subtracted structure function. An analogous result can be
derived for the E1 structure function.
At t ¼ 0, the forward limit, H1 reduces to the forward

Compton structure function F 1, and one may use the
optical theorem to write Eq. (6) as

F̄ 1ðω; Q2Þ ¼ 4ω2

Z
1

0

dx
xF1ðx;Q2Þ
1 − x2ω2

; ð7Þ

where F1 is the deep inelastic scattering structure function.
In the leading-twist approximation (Q̄2 ≫ Λ2

QCD),
Eq. (6) becomes [40]

H̄1ðω̄; tÞ ¼ 2ω̄2

Z
1

−1
dx

xHðx; tÞ
1 − x2ω̄2

; ð8Þ

whereHðx; tÞ is the twist-two helicity-conserving GPD. An
analogous result exists for the replacements H1 → E1

and H → E.
From Eqs. (6) and (8) we see that it is in principle

possible to reconstruct the real-time scattering amplitude
FIG. 1. Diagram of off-forward γ�ðqÞNðPÞ → γ�ðq0ÞNðP0Þ
scattering.
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and the GPDs from our Euclidean Compton amplitude.
However, such a reconstruction is hampered by the fact that
Eqs. (6) and (8) have the form of a Fredholm integral
equation of the first kind, which is an ill-conditioned
inverse problem known to have numerically unstable
solutions [46].
As such, in this work we employ two strategies to access

the structure functions—similar techniques have been
explored for the quasi- and pseudodistribution methods
[26,47,48]. First, we expand Eq. (6) about ω̄ ¼ 0, which
gives us a power series in itsMellin moments. By varying ω̄,
we can then determine a finite set of the moments. Such an
extraction of structure function moments has been per-
formed for the forward Compton amplitude [28,29,31] and
in an exploratory calculation of the OFCA [40].
While such a fit on the level of moments gives us a

largely model-independent determination, it is difficult to
reconstruct the full structure function/GPD from a limited
number of moments. As such, for our second fit method we
use a phenomenologically-motivated GPD ansatz. In this
work, we take

Hðx; tÞ ∝ x−α0−α
0tð1 − xÞβ: ð9Þ

Similar parametrizations have been widely used in both the
phenomenological studies of GPDs [49–59] and fits to
lattice results from other methods [9,10]. Our implemen-
tation of this model-dependent fit follows previous work
trialed in the forward case [46,60].
For both fitting approaches, we emphasize that the

purpose is not to perform a perturbative matching and
extract a leading-twist GPD. Instead, our long-term goal is
a determination of the moments and real-time structure
function including their power corrections and higher-
twist effects. Such corrections provide us with useful
information about the scale dependence of the amplitude,
which has not been studied experimentally in great detail
for off-forward Compton scattering. However, for the
present work we perform calculations for a single Q̄2

value to focus on determining the structure functions and
their moments.

III. DETERMINATION OF THE OFF-FORWARD
COMPTON AMPLITUDE

To calculate the Compton amplitude in lattice QCD, we
use the Feynman-Hellmann (FH) method, which has
proven to be a powerful tool to compute matrix elements
with one and two operator insertions and a useful alter-
native to the direct computation of three- and four-point
functions.
This is implemented on the level of quark propagators,

which are perturbed by two background fields,

Sðλ1;λ2Þðxn − xmÞ ¼ ½M − λ1O1 − λ2O2�−1n;m; ð10Þ

where M is the Wilson fermion matrix and λ1;2 are the FH
couplings.
The perturbing operators are

½Oi�n;m ¼ δn;mðeiqi·zn þ e−iqi·znÞγ · êk; i ¼ 1; 2; ð11Þ

where q1;2 are the inserted momentum, and êk picks the
direction of the vector current.
From these perturbed two-point quark propagators, we

then construct a perturbed nucleon correlator,

GΓ
λ ðτ;p0Þ ¼

X
x

e−ip
0·xΓβαλhΩjχαðx; τÞχ̄βð0ÞjΩiλ; ð12Þ

where χ̄ and χ are the nucleon creation and annihilation
operators, p0 is the sink momentum, τ is the Euclidean time,
Γ is a spin-parity projector, λ ¼ ðλ1; λ2Þ, and jΩiλ is the
perturbed vacuum.
These perturbed nucleon propagators can be related to

the OFCA by the Feynman-Hellmann-like relation [40]

RΓ
λ ðp0; τÞ ≃τ≫a τλ2

2ENðp0ÞR
Γ
μμ; ð13Þ

where RΓ
λ is the following combination of perturbed and

unperturbed nucleon correlators:

RΓ
λ ¼

GΓ
ðλ;λÞ þ GΓ

ð−λ;−λÞ − GΓ
ðλ;−λÞ − GΓ

ð−λ;λÞ
4G

Γunpol

ð0;0Þ
; ð14Þ

at some sink momentum p0 and sink time τ, and λ is the
magnitude of the Feynman-Hellmann coupling.
The quantity RΓ

μν is defined as

RΓ
μν ¼

P
s;s0 tr½ΓuðP0; s0ÞTμνūðP; sÞ�P
str½ΓunpoluðP0; sÞūðP0; sÞ� ; ð15Þ

and Tμν is the OFCA.
The spin-parity projectors we use are defined in

Euclidean space as

Γunpol ¼
1

2
ðIþ γ4Þ; Γpol−ê¼−

i
2
ðIþ γ4Þê · γγ5: ð16Þ

We insert the perturbed quark propagators either for
the doubly represented (u) quarks or the singly represented
(d) quarks individually. This means that in practice we
calculate

Tff
μν ¼ i

Z
d4zeiq̄·zhP0jTfjfμðz=2Þjfνð−z=2ÞgjPi; ð17Þ

where jfμ ¼ ZV ψ̄fγμψf, the local vector current with flavor
f ¼ u or d, and renormalization factor ZV. For most
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analytic expressions we suppress flavor indices; however,
we include them for our numerical results.
The kinematics of the Compton amplitude are then

completely derived from our sink momentum p0 and our
two inserted momenta q1;2. For instance, our momentum
vectors, Eq. (2), become

p̄¼ 1

2
ðp0 þpÞ; q̄¼ 1

2
ðq1þq2Þ; Δ¼q1−q2; ð18Þ

where p ¼ p0 − Δ is the source momentum. From these,
the momentum scalars in Eq. (3) become

ω̄ ¼ 2p̄ · q̄
q̄2

; Q̄2 ¼ q̄2; t ¼ −Δ2: ð19Þ

To ensure the skewness variable is zero, we keepΔ · q̄ ¼ 0,
or equivalently jq1j ¼ jq2j.
The key kinematic choice made in this work in contrast

to Ref. [40] is to keep êk ∝ q1 − q2 ≡ Δ, where êk picks
the current direction in Eq. (11). Note that êk is always
chosen to be a purely spatial vector. This means our vector
current jμ is collinear with the soft momentum transfer Δμ.
As shown in Appendix A, the choice êk ∝ Δ eliminates

all structure functions except H1 and E1 from the μ ¼ ν ¼
k OFCA,

Tkk ¼ −
1

2P̄ · q̄

�
h · q̄H1 þ e · q̄E1

�
; ð20Þ

where hμ and eμ are the bilinears defined in Eq. (5); recall
that k is always a spatial direction (i.e., it has no temporal
component). This is a major improvement on our previous
work [40], where only a linear combination of the H1;2;3

and E1;2 was accessible, and we were required to make
leading-twist approximations to isolate these.
Inserting Eq. (20) into the ratio of spin-parity traces

given in Eq. (15), we obtain

RΓ
kk ¼ NH

Γ H1 þ NE
ΓE1; ð21Þ

where the N factors are from the bilinear coefficients of
Eq. (20) inserted into the traces of Eq. (15).
Therefore, by using the two spin-parity projectors of

Eq. (16), we determineH1 and E1 from the matrix equation

 
Runpol

kk

Rpol
kk

!
¼
 
NH

unpol NE
unpol

NH
pol NE

pol

! 
H1

E1

!
: ð22Þ

The matrix of N factors has a determinant ∼1 for all our
kinematics, making the inversion practical in all cases.

A. Calculation details

We perform our calculation of the off-forward Compton
amplitude on a single set of gauge fields generated by
QCDSF/UKQCD [61] with 2þ1 quark flavors at the SU(3)
flavor symmetric point, which yields an unphysical pion
mass of mπ ¼ 412 MeV. See Table I for further details. In
calculating the two-point correlator, Eq. (12), we use the
nucleon operator,

χαðxÞ ¼ εabcuaαðxÞ½ubðxÞCγ5dcðxÞ�; ð23Þ

with the quark fields smeared in a gauge-invariant manner
by Jacobi smearing [62], where the smearing parameters
are tuned to produce a rms radius of ≃0.5 fm.
We determine four sets of perturbed propagators, cor-

responding to four sets of kinematics for the Compton
amplitude with soft momentum transfers t ¼ 0;−0.29;
−0.57;−1.14 GeV2 all with a hard momentum transfer
of Q̄2 ≈ 5 GeV2 (see Table II for details). Furthermore, we
determine the propagators for two magnitudes of the
Feynman-Hellmann coupling λ: for t¼ 0;−0.29GeV2 we
use λ ¼ ð0.0125; 0.025Þ, and for t ¼ −0.57;−1.14 GeV2

we use λ ¼ ð0.00625; 0.0125Þ.
Our determination of the Compton amplitude from these

correlators is similar to that from Ref. [40]: we fit our
correlator ratio in Eq. (13) as a linear function in Euclidean
time, using a similar weighted averaging method as in

TABLE I. Details of the gauge ensembles used in this work.

Nf cSW β κl, κs N3
L × NT a (fm) mπ (MeV) ZV Ncfg

2þ 1 2.48 5.65 0.122005 483 × 96 0.068 412 0.871 537

TABLE II. Current insertion momenta q1;2 and derived kinematics for the four sets of correlators.

L
2π q1,

L
2π q2

L
2πΔ

L
2π q̄ t ðGeV2Þ Q̄2 ðGeV2Þ Nmeas

(5, 3, 0) � � � � � � 0 4.86 1605
(4, 3, 3) (3, 4, 3) ð1;−1; 0Þ ð7

2
; 7
2
; 3Þ −0.29 4.79 1031

(5, 3, 1) ð5; 3;−1Þ (0, 0, 2) (5, 3, 0) −0.57 4.86 1072
(4, 2, 4) (2, 4, 4) ð2;−2; 0Þ (3, 3, 4) −1.14 4.86 1031
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Ref. [63]. Subsequently, we fit this as a quadratic in λ—see
Appendix B for details.
For each set of q1;2 we require a new set of inversions—

see Eq. (19). However, given a pair of q1;2, the ω̄ variable
can be expressed as

ω̄ ¼ 4p0 · ðq1 þ q2Þ
ðq1 þ q2Þ2

ð24Þ

for Δ · q̄ ¼ 0. As such, by varying the sink momentum p0,
we can obtain results at multiple values of ω̄ for a single set
of t and Q̄2 values. See Appendix C, Table VI for all ω̄
values used in this work.
In Fig. 2, we plot the ω̄ dependence of the t ¼

−0.57 GeV2 results and illustrate the determination of
the H1 and E1 structure functions from the spin-parity
traced quantity R, given in Eq. (15). We observe good
signal for R for both spin-parity projectors, as well as the
subtracted Compton structure functions H̄1 and Ē1.
Moreover, these quantities all have the ω̄2 polynomial
behavior expected from Eq. (6). Results for the uu quark
H̄1 structure function across all t values are presented in
Fig. 3; see Fig. 11 in Appendix D for dd quark results.

IV. MELLIN MOMENT FIT

Our first fit strategy is to determine the Mellin moments
of the real-time scattering amplitudes. To this end we
Taylor expand the dispersion relation Eq. (6) about ω̄ ¼ 0,

FIG. 2. Top: the ratio defined in Eq. (15) for unpolarized and y-
direction polarized spin-parity projectors with the ω̄ ¼ 0 term
subtracted. Bottom: the resulting subtracted off-forward structure
functions, H̄1 and Ē1. All results are for t ¼ −0.57 GeV2 and
uu − dd quarks.

FIG. 3. The subtracted Compton structure function H̄1ðω̄; tÞ for all t values; uu results only. Note that our fits only use points for
which jp0j < 1 GeV; the shaded points are those with a sink momentum greater than this. Curves correspond to all the fits performed in
this work: the model-independent fit, Eq. (28) (moment); and the model-dependent fits, Eq. (40), using the three sets of priors in
Table IV (wide, medium, and thin). Note: the upper limit on the y axis is held fixed between the panels to demonstrate the change in
magnitude with −t.
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H̄1ðω̄; t; Q̄2Þ ¼ 2
X∞
n¼1

ω̄2nA2n;0ðt; Q̄2Þ;

Ē1ðω̄; t; Q̄2Þ ¼ 2
X∞
n¼1

ω̄2nB2n;0ðt; Q̄2Þ; ð25Þ

where A2n;0 and B2n;0 are the nth Mellin moments of the
zero-skewness structure functions,

A2n;0ðt; Q̄2Þ ¼ 2

π

Z
1

0

dxxn−1ImH1ðx; t; Q̄2Þ;

B2n;0ðt; Q̄2Þ ¼ 2

π

Z
1

0

dxxn−1ImE1ðx; t; Q̄2Þ: ð26Þ

In a twist expansion, these moments can be expressed as [40]

A2n;0ðt; Q̄2Þ ¼ CðαSðQ̄ÞÞA2n;0ðtÞ þ higher twist;

B2n;0ðt; Q̄2Þ ¼ CðαSðQ̄ÞÞB2n;0ðtÞ þ higher twist; ð27Þ

where C is the Wilson coefficient and An;0 and Bn;0 are the
generalized form factors (GFFs), given by the moments of
the GPDs Hðx; tÞ and Eðx; tÞ, respectively.
We emphasize that Eq. (27) is included to illustrate the

connection between the structure function moments (An;0
and Bn;0) and the leading-twist GFFs (An;0 and Bn;0). As
Eq. (27) states, it is necessary to project our results to
operator product expansion to extract the leading-twist
GFFs. In this work, however, we calculate the physical
Compton amplitude and extract the moments of the
physical structure functions [lhs of Eq. (27)] akin to an
experimental determination, which include the appropri-
ately renormalized leading-twist contributions and the
Wilson coefficients that involve the mixing effects, and
the higher-twist contributions.

A. Fit details

From Eq. (25), we can fit the leading Nmax moments of
the subtracted structure functions to a power series in ω̄,

fðω̄Þ ¼ 2
XNmax

n¼1

ω̄2nM2n; ð28Þ

where M2n are the moments of either H̄1 or Ē1 as
per Eq. (26).
For the t ¼ −0.29 GeV2 results we note we cannot

access the ω̄ ¼ 0 point; see Appendix C for an explanation.
As such, we fit the ω̄ ¼ 0 value simultaneously with our
moments to the unsubtracted structure functions,

fðω̄Þ ¼ fð0Þ þ 2
XNmax

n¼1

ω̄2nM2n: ð29Þ

This allows us to determine the leading moments of each
of the Compton structure functions H1 and E1, which at
leading twist are the GFFs A2n;0 and B2n;0, respectively.

We use the Bayesian Markov chain Monte Carlo
(MCMC) package PyMC [64,65] to perform this fit. This
allows us to sample the model parameters from prior
distributions that reflect physical constraints.
For the t ¼ 0 kinematics our results are simply the

forward Compton structure function F 1, which is positive
definite and hence has monotonically decreasing Mellin
moments [29],

0 ≤ Anþ1;0ðt ¼ 0Þ ≤ An;0ðt ¼ 0Þ; ð30Þ

where in this section we suppress the Q̄2 argument of the
moments for convenience.
Hence for the nth moment, we use a uniform prior

distribution in the range An;0ð0Þ∈ ½0;An−2;0ð0Þ�. We
chooseA2;0ð0Þ∈ ½0; 1� for the prior on the leading moment.
For the off-forward results, we no longer have monot-

onicity, so we use positivity constraints on the GPDs [66],
which at ξ ¼ 0 are

jHðx; tÞj ≤ qðxÞ; jEðx; tÞj ≤ 2mNffiffiffiffiffi
−t

p qðxÞ; ð31Þ

where qðxÞ is the leading-twist parton distribution function.
From these, it is simple to determine the bounds on the
moments at ξ ¼ 0,

jA2n;0ðtÞj ≤ a2n; jB2n;0ðtÞj ≤
2mNffiffiffiffiffi
−t

p a2n; ð32Þ

where an is the nth parton distribution function moment.
Although Eq. (32) is derived for leading-twist GPDs we

use it nonetheless, noting that we are at a reasonably large
Q̄2 and that these bounds are not overly strict. As such, we
adapt Eq. (32) to the prior

jA2n;0ðtÞj≤A2n;0ð0Þ; jB2n;0ðtÞj≤
2mNffiffiffiffiffi
−t

p A2n;0ð0Þ: ð33Þ

For the An;0ð0Þ bounds we use the mean plus one standard
deviation of the moments calculated from the t ¼ 0 results.
This fit is performed individually for each t value

across the ω̄ values given in Table VI of Appendix C.
Note that in our fit we only use ω̄ values for which the sink
momentum is

jp0j < 1 GeV; ð34Þ

as these are the points for which (1) we can better ensure
ground state isolation, and (2) OðapμÞ discretization
artifacts are expected to be negligible for these points.
We discuss these systematics further in the next section.
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B. Results

As we can see in Fig. 3, the moment fit (labeled
“moment”) describes the ω̄ dependence of H̄1 data well,
with most points being consistent within a standard
deviation of the fits. Moreover, the fits are even consistent
with some of the jp0j ≥ 1 GeV points that were not
included in the fits. We note that, for points with
jp0j < 1 GeV, the t ¼ 0;−0.29;−0.57 GeV2 results do
not have ω̄ points greater than ω̄ ≈ 0.8, while for
t ¼ −1.14 GeV2, there are no such points beyond
ω̄ ≈ 0.6. This limits our ability to constrain the higher
moments in the present work. Moreover, since the t ¼
−0.29 GeV2 results require us to fit the ω̄ ¼ 0 subtraction
function, instead of determining it directly, these fits are
generally of a poorer quality. Note in Fig. 3 for the t ¼
−0.29 GeV2 we subtract off the fitted ω̄ ¼ 0 point.
See Appendix E for the posterior distributions from

the Bayesian Markov chain Monte Carlo fits. Note that,
while using the fit function in Eq. (28), it is necessary to
choose the number of moments to fit, Nmax. To make this
choice, we compare the effect of varying this parameter in
Fig. 13. For Nmax ≥ 3 the order of truncation has negli-
gible impact on the leading moments, and therefore we
take Nmax ¼ 7.
In addition to determining our OFCA moments, we also

determine the generalized form factors An;0 and Bn;0 for
n ¼ 1, 2 using the local twist-two operators on the same
set of gauge configurations. The matrix elements of these
local operators are computed using standard three-point
function methods [14]—see Appendix F for the details.
As per Eq. (27), the off-forward structure function
moments A2n;0 and B2n;0 correspond to the GFFs A2n;0

and B2n;0, respectively, up to higher twist, power correc-
tions, and the Wilson coefficient. As such, the A2;0 and
B2;0 GFFs determined from local operators are a useful
point of comparison.
Finally, we fit n ¼ 2 moments as a function of t, using

the dipole parametrization

GðtÞ ¼ Gð0Þ�
1 − t=m2

dip

�
2
: ð35Þ

Given the large uncertainties on our points, we only use this
simple parametrization and do not test the effects of
different parametrizations for form factor fits. See
Table III for the parameters of our dipole fits for uu −
dd quarks.
In Fig. 4 we plot the OFCA moments A2;0 and B2;0 as

functions of the soft momentum transfer t, including a
comparison to A2;0 and B2;0 GFFs. We observe good
agreement between the helicity-conserving moments A2;0

and the GFF A2;0 across the range of t values. Similarly,
there is reasonable agreement between the helicity-flipping
moments B2;0 and B2;0.

However, we emphasize that, even with complete control
of lattice systematics, our structure function moments
should be distinct from the leading-twist GFFs, and as
such we do not attempt a strong comparison between these
results. Nor do we attempt a separation of the leading-twist
contributions and the power corrections; such a determi-
nation has been performed on our forward Compton
amplitude results where more Q2 values are available [31].
An equivalent study of the Q̄2 dependence of the off-
forward Compton amplitude could provide useful informa-
tion on the nonleading-twist contributions to these
moments. It is, however, encouraging that there is reason-
able agreement between the t dependence of the Compton
amplitude moments and that of the local twist-two
operators.
Finally, we note that the parameters from our dipole fits

broadly agree with other fits to generalized form factors

TABLE III. Summary of parameters from dipole fit. All results
for uu − dd quarks.

Gð0Þ mdip

A2;0 0.226(59) 1.8(1.1)
B2;0 0.50(26) 1.8(1.3)

FIG. 4. The n ¼ 2 off-forward Compton amplitude moments
A2n;0 (top) and B2n;0 (bottom) determined from a moment fit.
These are the moments ofH1 and E1 as in Eq. (26). The Compton
amplitude results are for the uu − dd quarks. We compare this to
A2;0 and B2;0 GFFs for u − d quark combination, calculated from
the local twist-two lattice operators on the same set of gauge
configurations. Note the twist-two operators are renormalized
using the regularization independent momentum subtraction
scheme RI0=MOM, while the OFCA amplitude moments contain
all power corrections and higher-twist contributions.
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calculated from local twist-two operators at similar pion
masses [17]. Moreover, we determine the u − d quark
angular momentum from the Ji sum rule [2],

hJ3u−di ≈
1

2
½Auu−dd

2;0 ð0; Q̄2Þ þ Buu−dd
2;0 ð0; Q̄2Þ� ¼ 0.36ð16Þ;

ð36Þ

neglecting the nonleading-twist corrections to our
moments. Again, this agrees with determinations from
local twist-two operators at similar pion masses [17],
although our errors are very large mostly owing to the
statistical uncertainties on the B2;0ð0; Q̄2Þ dipole fit.
Despite the size of these uncertainties, this calculation

provides an alternative means of determining the Ji sum
rule. Moreover, determinations of the OFCAwith multiple
Q̄2 values would allow us to analyze the hard scale
dependence of this quantity, which is not achievable from
other methods.

V. MODEL FIT

In the previous section, we determined the Mellin
moments of the real-time off-forward structure functions
from our Euclidean OFCA. While this determination is
largely model independent, it is difficult to reconstruct the
complete real-time structure functions (and hence GPDs)
from a limited set of Mellin moments.
As such, for our second fit strategy we use the phenom-

enological parametrization of a GPD (or off-forward
structure function),

Hðx; tÞ ¼ Cx−αðtÞð1 − xÞβ; ð37Þ

with αðtÞ ¼ α0 þ α0t, where α0 is the Regge slope
parameter.
Note that this parametrization is normalized by the factor

C ¼ A
Z

1

0

dxx−α0ð1 − xÞβ ¼ A
Γð3 − α0 þ βÞ

Γð2 − α0ÞΓðβ þ 1Þ ; ð38Þ

which ensures that A2;0ðt ¼ 0; Q̄2Þ ¼ A. This gives us a
total of four parameters in our model: A; α0;α0, and β. We
then perform a global fit with this parametrization to our
Compton amplitude results for all t values.
The model in Eq. (37) and similar Regge-inspired para-

metrizations of GPDs have been used widely to determine
GPD properties from various experimental processes [49–
59], as well as in fits to other lattice results [9,10].
Inserting the ansatz in Eq. (37) into our dispersion

relation, Eq. (8), we obtain

H̄1ðω̄; tÞ¼ 2Cω̄2
Γð2−αðtÞÞΓðβþ1Þ
Γð3þβ−αðtÞÞ

× 3F2

�
1;ð2−αðtÞÞ=2;ð3−αðtÞÞ=2

ð3þβ−αðtÞÞ=2;ð4þβ−αðtÞÞ=2; ω̄
2

�
;

ð39Þ

where 3F2 is a generalized hypergeometric function.
Equation (39) can be expressed as the sum of moments,

H̄1ðω̄; tÞ ¼ 2C
X∞
n¼1

ω̄2n Γð2n − αðtÞÞΓðβ þ 1Þ
Γð1þ 2n − αðtÞ þ βÞ ; ð40Þ

with the nth moment as

An;0ðtÞ ¼ C
Γðn − αðtÞÞΓðβ þ 1Þ
Γð1þ n − αðtÞ þ βÞ ; ð41Þ

which is similar to Regge-inspired models of elastic form
factors [67].
To simplify the implementation of the fit, we use Eq. (40)

as our fit function, truncating at a very high order, n ¼ 50,
which ensures even marginal effects from the higher
moments are negligible.
We note that this model is best justified for valence

quarks, though our results include sea quark contributions
[i.e., Hð−x; tÞ] that we take to be suppressed. The
assumption that our distributions are dominated by valence
quark contributions allows us to make the further constraint
on our parameters thatZ

1

0

dxHqðx; t ¼ 0Þ ¼ Fq
1ðjtj ¼ 0Þ ¼ Nq; ð42Þ

for Nq the number of valence quarks of flavor q. While
Eq. (42) is strictly only true for leading twist, it should
nonetheless be a good approximation for Q̄2 ≈ 5 GeV2.
Equation (42) gives us

α0 ¼
Nq − Að2þ βÞ

Nq − A
; ð43Þ

which we use to remove the parameter α0 from our fits.

A. Fit details

We fit the model in Eq. (40) simultaneously to all
our soft momentum transfer values: t¼0;−0.29;−0.57;
−1.14GeV2. Note that we only fit theH1 structure function
as the E1 results are typically poorer quality and lack the
t ¼ 0 Compton amplitude.
The fit is again performed with Bayesian MCMC.

However, in contrast to the moment fits, there are no
model-independent priors for these parameters. As such, to
test the dependence of this fit on our priors we vary the
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width of the priors around approximate phenomenologi-
cally expected values: α0 ¼ 0.9 GeV−2 [49–51] and β ¼ 3,
while keeping A∈ ½0; 1� for all fits. We fit to our uu and dd
structure functions separately, with three parameters for
each flavor. All prior distributions are uniform. See
Table IV for a summary of the three priors.
As with the Mellin moment fits, we only use ω̄ values for

which the sink momentum is jp0j < 1 GeV.

B. Results

In Fig. 3, we plot the fits to the uu quark Compton
structure function H̄1 for all t values; see Fig. 11 for dd
quark results. Among the three sets of priors for model-
dependent fits, we see good agreement in ω̄ space apart
from the regions that are not constrained (i.e., where there
are no ω̄ values in the fit). Comparing the model-indepen-
dent moment fit and our model fits, discrepancies are
apparent for ω̄≳ 0.3.
In Fig. 5, we plot the posterior distributions of the model

parameters; see Fig. 10 of Appendix D for d quark results.
We similarly observe good agreement for the A parameter
among the three sets of priors, reasonable agreement in α0,
and a discrepancy among the three fits for the β parameters.
The discrepancies between the model fits for large ω̄ and

the model dependence of β parameter are related. As
discussed in the previous section, higher moments are

constrained by the large ω̄ values of our Compton ampli-
tude. In terms of our model parametrization, higher
moments are more dependent on the x → 1 behavior of
the GPD, which is determine by β. As such, a unique
determination of β requires accurate and precise determi-
nations of the Compton amplitude for large ω̄, which we
currently do not have. We emphasize that the determination
of higher-quality large ω̄ values is simply a matter of
systematic improvement, not a fundamental limitation.
For the “medium” and “thin” priors, we find α0 values of

≈0.9 GeV−2 for both u and d quarks, while for the “wide”
priors the mean of the distributions is slightly larger,
although still consistent with the other two fits. This
compares well with phenomenological studies, which give
the range α0 ≈ 0.8–1.8 GeV−2 for valence quarks found in
both deeply virtual Compton scattering analyses and fits to
elastic form factors [49–51,54,57,58]. Moreover, the thin
and medium results compare well with the value of α0 ¼
0.871ð6Þ GeV−2 found in global fits to the light hadron
masses [68]. See Table V for all α0 results.
In Fig. 6, we show the u quark results forAn;0, the Mellin

moments ofH1 determined from this model fit; see Fig. 12
of Appendix D for d quark results. We also include the
moments determined from the model-independent moment
fit, Eq. (28). Moreover, we compare these to the Dirac
elastic form factor (i.e., A1;0) and A2;0 as discussed in the
previous section, both determined on the same set of gauge
configurations from twist-two local operators—see
Appendix F for details of this calculation. Again, we
strongly emphasize, as per Eq. (27), our An;0 moments
and the An;0 GFFs are not necessarily equivalent.
We see very strong agreement between our medium and

thin fits and the three-point results for A1;0. While this
agreement is enforced at t ¼ 0 by the condition Eq. (42),
the agreement in the t dependence is nonetheless promis-
ing. However, the wide parameters show a markedly
steeper drop off in t. For A2;0 we see a stronger agreement
among the three priors for the model fits than for A1;0 and
reasonable agreement of these with both the direct moment
fits and the three-point results.
For the A4;0 results, there is slightly less agreement

among the three sets of priors in the model fit and the
direct moment fits are less well-constrained compared
to A2;0. As can be seen in Fig. 3, the direct moment
fits are highly unconstrained for large ω̄, especially for

TABLE IV. Priors for the three parameters.

A α0 (GeV−2) β

Wide [0, 1] [0.0, 2.5] [0, 8]
Medium [0, 1] [0.2, 1.7] [1, 6]
Thin [0, 1] [0.4, 1.4] [2, 4]

FIG. 5. Posterior distributions of our three model parameters
for u quarks; note that α0 is not a model parameter but its
posterior can be reconstructed with Eq. (43).

TABLE V. The values of the Regge slope parameter α0 for the
two flavors and three sets of model priors.

α0 ðGeV−2Þ u d

Wide 1.32(57) 1.12(63)
Medium 0.92(36) 0.92(41)
Thin 0.85(26) 0.89(28)
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t ¼ −0.29;−1.14 GeV2, which explains the irregularity in
these results.
In Fig. 7, we plot the x space GPD for the u quark and

medium priors. While this result is roughly the expected
shape, we note that the GPD appears to have a somewhat
slow drop off for x → 1, and the peak of xHðx; 0Þ should be

closer to 0.2 than 0.4, although the position of this peak is
dependent on the hard scale and pion mass. Such features
are likely a result of the β values skewing small, which is
equivalent in moment space to the higher moments not
falling quickly enough. As discussed previously, more and
better quality results for large ω̄ are necessary to better
constrain the higher moments and the β parameter.
Finally, in Fig. 8 we plot the impact parameter space

distribution xHðx; bÞ [1] obtained via a Fourier trans-
formation (Δ → b, where b ¼ jbj) for the d quark, using

FIG. 6. The Compton amplitude momentsAn;0, determined from the model-dependent fit, Eq. (40), with the three sets of priors (wide,
medium and thin). We compare these to the moments from the direct moment fit, Eq. (28) (moment); all results for u quarks. In addition
we compare our Compton amplitude moments to the GFFs calculated with local twist-two operators on the same gauge configurations
(“An;0 3-pt”). We emphasize again that the Compton amplitude moments An;0 are distinct from the leading-twist GFFs An;0, although
they can be related via Eq. (27).

FIG. 7. The helicity-conserving GPD, Hðx; tÞ, for u quarks,
determined from fitting the model parametrization Eq. (40) to our
Compton amplitude results. This uses the medium priors given in
Table IV.

FIG. 8. The impact parameter space distribution xHðx; bÞ for d
quarks, determined from the model parametrization fit using the
medium priors given in Table IV. Note colors correspond to z axis
value and are simply to help convey the shape.
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the mean values of the medium priors. The distribution
Hðx; bÞ can be interpreted as the probability density for a d
quark in a fast-moving nucleon as a function of the
momentum fraction x and a distance b from the nucleon’s
center of mass. Therefore, weighted by x, the distribution
xHðx; bÞ is the momentum density. At this stage given our
control of lattice systematics, such a plot is simply a
demonstration that our method can be used to reconstruct
the impact parameter space distributions.
In general, we note that the GPD ansatz (37) is successful

in describing our data and reproducing physically expected
properties of GPDs, despite its simplicity. Future studies
with higher-quality data could test a range of different GPD
models.

C. Systematics and future improvements

The results presented here indicate a great deal of
potential for lattice QCD calculations of the off-forward
Compton amplitude, as a means to provide unique and
complementary physical information about GPDs and off-
forward scattering. However, we have also revealed and
clarified areas in need of improvement. The most signifi-
cant of these is the need for more accurate and precise
determinations of points with large sink momenta. As
discussed, these points give us access to large ω̄ values and
hence are crucial in constraining higher moments.
To improve the quality of the signal, there exist numer-

ous methods to better isolate the ground state for correlators
with large sink momentum [69–71], which are already used
widely in the calculation of quasi- and Ioffe time distri-
butions. Such methods are capable of determining the
ground state in correlators with sink momenta as large as
jp0j ≈ 3 GeV, three times greater than the largest sink
momentum used in our fits.
In addition, we have treated ourH1 and E1 data as if they

were continuum results, without attempting to account for
any discretization artifacts. We are currently expanding on
previous work of a lattice operator product expansion of the
Compton amplitude [72] that would allow us to control
such artifacts.
In Sec. V, we have adopted a phenomenological para-

metrization for our off-forward structure function [Eq. (37)]
under the assumptions that the Wilson coefficients are
trivial, and the higher-twist effects are negligible at the Q̄2

scale that we work. While the latter assumption is sup-
ported by our forward Compton amplitude calculations
[29,31], it would be interesting to resolve the scale
dependence of the off-forward structure functions in a
future work by studying their Q̄2 behavior in a global
analysis, similar to what has been attempted for the forward
structure functions [60].
Finally, the lattice systematics that are not specific to our

method—the unphysical quark masses, lattice spacing, and
volume—must be accounted for before a strong compari-
son can be made with phenomenology.

VI. SUMMARY AND CONCLUSIONS

In this study, we present a significantly improved
determination of the structure functions of the OFCA. In
particular, we determine the structure functions H1 and E1

independently for a wider range of kinematics than our
previous study [40]. This separation allows us to perform a
more in-depth attempt at determining properties of the real-
time structure functions despite the inverse problem.
We also calculate the n ¼ 1, 2 generalized form factors

from the local twist-two lattice operators to compare to our
Compton amplitude results. Although we do not perform a
perturbative matching of our Compton amplitude moments,
we nonetheless note reasonable agreement between the
Compton amplitude moments and twist-two GFFs.
Similarly, our determinations of the Regge slope parameter
α0 broadly agree with those from fits to experiment. These
agreements are promising and show that our method is
capable of determining meaningful physical information.
Our analysis also clarifies key systematics in need of

addressing; in particular, our determinations of the structure
functions for large ω̄, which requires large sink momenta
for our correlators, appear to suffer from lattice artifacts. As
discussed in the previous section, addressing these sys-
tematics is simply a matter of using and/or building upon
existing techniques, making a precise and accurate deter-
mination of the off-forward Compton amplitude com-
pletely achievable.
An improved lattice QCD determination of the OFCA

would provide a valuable comparison for studies in the
quasi- and pseudodistribution formalisms. Moreover, our
method is unique in being able to determine nonleading-
twist effects, as has been done for the forward Compton
amplitude [30,31]. Such effects could provide useful
phenomenological information, as most experimental stud-
ies of hard exclusive processes have a modest hard scale of
Q2 ≈ 1–12 GeV2 and contain additional jtj=Q2 correc-
tions [37,38].
Moreover, past work to determine the subtraction func-

tion of the forward Compton amplitude [32] could be
extended to the OFCA subtraction function. This off-
forward subtraction function is a key input for determi-
nations of the proton pressure distribution [4,39] and as
such could significantly reduce the errors of model-inde-
pendent measurements of this quantity.
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APPENDIX A: ISOLATING H1 AND E1

We start with the tensor decomposition from Ref. [40],
removing the terms that vanish for ξ ¼ 0 [42],

T̄μν ¼
1

2P̄ · q̄

n
−
�
h · q̄H1 þ e · q̄E1

�
gμν þ

1

P̄ · q̄

�
h · q̄H2 þ e · q̄E2

�
P̄μP̄ν þH3hfμP̄νg

o

þ i
2P̄ · q̄

ϵμνρκq̄ρ
n
h̃κH̃1 þ ẽκẼ1 þ

1

P̄ · q̄

h
ðP̄ · q̄h̃κ − h̃ · q̄P̄κÞH̃2

io
þ
�
P̄μq0ν þ P̄νqμ

��
h · q̄K1 þ e · q̄K2

�
þ qμq0νðh · q̄ − e · q̄ÞK5 þ

�
hμq0ν þ hνqμ

�
K7; ðA1Þ

where we note T̄μν is the Compton amplitude without gauge
projection; that is, it contains no terms with uncontracted q0μ
and qν. Further note that hμ and eμ are given in Eq. (5) and
h̃μ ¼ ūðP0Þγμγ5uðPÞ and ẽμ ¼ ΔμūðP0Þγ5uðPÞ=2mN .
The key kinematic choice for this work in contrast to

Ref. [40] is that we take êk ∝ Δ, where êk is the vector that
picks the direction of the current in Eq. (11). As both q̄ and
p̄ are orthogonal to Δ, the choice êk ∝ Δ means that any
terms in our tensor decomposition with an uncontracted q̄μ
or P̄μ vanish. Therefore, only tensor structures with gμν or
ΔμΔν survive. The former are associated with H1 and E1

amplitude, while the latter are suppressed.
As such, this kinematic choice minimizes the effects of

EM gauge-dependent terms (i.e., any terms with uncon-
tracted q0μ and qν) and hence discretization artifacts, as our
local current does not satisfy the continuumWard identities
[75,76]. Moreover, it helps us isolateH1 and E1 instead of a
linear combination of other structure functions.
Explicitly, this choice means that the polarized structure

functions H̃1;2 and Ẽ1;2 are attached to

ΔfμϵνgσρκΔσq̄ρh̃κ;

after gauge projection. Since μ, ν are the Compton
amplitude’s indices, with the êk ∝ Δ condition we have
μ ¼ ν ¼ σ, and hence the above equation must vanish. This
completely removes all polarized amplitudes.
Further, the K1;2;5;7 amplitudes have no gμν tensor

structure. Therefore, after gauge projection, the only con-
tribution that survives is

ΔkΔk

q · q0
K1;2;5;7 ∼

−t
Q̄2

K1;2;5;7:

Hence these tensor structures, which are already non-
leading twist, receive an additional kinematic suppression
of jtj=Q̄2.
Therefore, up to highly suppressed terms containing the

K amplitudes, the gauge-projected Compton amplitude is

Tkk ¼
1

2P̄ · q̄

��
h · q̄H1 þ e · q̄E1

��
1þ q0kqk

q · q0

�
þ 1

P̄ · q̄

�
h · q̄H2 þ e · q̄E2

�

×

�
P̄kP̄k −

P̄ · q̄
q · q0

ðq0kP̄k þ P̄kqkÞ þ
�
P̄ · q̄
q · q0

�
2

q0kqk

�
þH3

�
P̄khk −

P̄ · q̄
q · q0

ðq0khk þ hkqkÞ þ
P̄ · q̄h · q̄
ðq · q0Þ2 q0kqk

��
: ðA2Þ

The Dirac bilinear hμ is orthogonal to Δμ, so that the hk terms, which are proportional to h · Δ, must vanish. Moreover, as
previously explained, P̄k ¼ 0 ¼ q̄k. Therefore, Eq. (A2) becomes

Tkk ¼
1

2P̄ · q̄

�
ðh · q̄H1 þ e · q̄E1Þ

�
1 −

ΔkΔk

4q · q0

�
−

P̄ · q̄
4ðq · q0Þ2 ðh · q̄ðH2 þH3Þ þ e · q̄E2ÞΔkΔk

�
: ðA3Þ

In Ref. [40] it was shown that for large Q̄2 the H and E structure functions satisfy the off-forward Callan-
Gross relation
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ω̄

2
ðH2þH3Þ¼H1þΔHCG;

ω̄

2
E2¼ E1þΔECG; ðA4Þ

where we have included ΔHCG and ΔECG, the OðαSÞ
violations to this Callan-Gross relation.
Further, note that q · q0 ¼ −Q̄2 þ t=4. Hence Eq. (A3)

becomes

Tkk ¼
1

2P̄ · q̄

	�
h · q̄H1þe · q̄E1

�

×

�
1−

ΔkΔk

4ðQ̄2− t=4Þ
t

4ðQ̄2− t=4Þ
�

−
�
h · q̄ΔHCGþe · q̄ΔECG

� ΔkΔk

4ðQ̄2− t=4Þ
Q̄2

Q̄2− t=4



:

ðA5Þ
Given that ΔHCG and ΔECG are OðαSÞ, with the extra
jtj=Q̄2 suppression, they are at best Q̄−3. Therefore, up to
Q̄−3 corrections, the OFCA is

Tkk ¼
1

2P̄ · q̄

�
h · q̄H1 þ e · q̄E1

�
: ðA6Þ

This is a drastic improvement on Ref. [40], where we
truncated all terms that were not leading order (Q̄−1 and
higher) and only isolated a linear combination ofH1;2;3 and
E1;2. Here, we have either eliminated completely unwanted
tensor structures or suppressed them by a further jtj=Q̄2,
with only a simple linear combination of H1 and E1

remaining.

APPENDIX B: DETERMINATION OF THE
COMPTON AMPLITUDE

As in Eq. (13), we determine the combination of
perturbed correlators defined in Eq. (14),

Rλ ¼
Gðλ;λÞ þ Gð−λ;−λÞ − Gðλ;−λÞ − Gð−λ;λÞ

Gð0;0Þ
:

This combination isolates the λ2 contribution up to Oðλ4Þ
corrections.
First, we fit Rλ as a function of the Euclidean time τ.

Apropos Eq. (13), these correlators should have a linear τ
dependence, so we fit the function fðτÞ ¼ Aτ þ B, where
the slope is proportional to the Compton amplitude. This fit
is performed using a weighted averaging method similar to
Ref. [63], where multiple Euclidean time windows are fit
and then averaged over with each window weighted by

w̃i ¼ pðδAiÞ−2P
i0pðδAi0 Þ−2 ; ðB1Þ

where Ai is the slope parameter from the ith fit window, δAi

is the statistical error, and p is the p-value determined by

p ¼ Γ̃ðNd:o:f:=2; χ2=2Þ=Γ̃ðNd:o:f:=2Þ;

where Γ̃ is the regularized upper incomplete gamma
function.
The minimum Euclidean time to include in the fits is

chosen by eye, while the largest is chosen using the

FIG. 9. Left: the fits in τ to the quantity Rλ defined in Eq. (14). The light shaded band is the full extent of all fit windows, while the
darker shaded band is the fit window with the highest weight given by Eq. (B1). Right: the fits in λ to Rλ after the fits in Euclidean time.
Top: the unpolarized spin-parity projector. Bottom: the y-polarized projector. All results for t ¼ −0.57 GeV2 and uu quark combination.
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unperturbed correlator’s noise-to-signal ratio (we choose a
number of standard deviationsNσ, and the largest time slice
is chosen as last time slice for which the unperturbed
correlator is more than Nσ standard deviations from zero).
Finally, to keep the degrees of freedom greater than zero,
we need a fit window of minimum length 3a.
After the Euclidean fits, we perform fits in the Feynman-

Hellmann parameter λ. The combination of correlators Rλ

must be a polynomial in λ2, where the λ2 coefficient is
proportional to the Compton amplitude. Since we only
determine two λ values in the range [0.0625, 0.025] for
each of our inversions, we only perform a one parameter fit:
fðλÞ ¼ bλ2. However, as tested in Ref. [40] the higher order
in λ terms do not have a major impact on our results,
especially at our current level of precision.
The results of these fits for t ¼ −0.57 GeV2 and uu

quarks are presented in Fig. 9. We observe that in Euclidean
time the results, while still reasonably noisy, are well
described by the linear fit function. Similarly, in the
Feynman-Hellmann parameter, the results are well
described by the quadratic fit.

APPENDIX C: SINK MOMENTA

In our Compton amplitude determination, the sink
momentum determines the value of ω̄, which encodes the
x dependence of the GPD. In particular, accurate and precise
determinations of large ω̄ values are crucial to determining
higher moments and allowing a full reconstruction of
the GPD.
It is convenient to define the dimensionless sink

momentum,

n0 ¼
�
L
2π

�
p0; ðC1Þ

where for our work the momentum interval is 2π=L≈
380 MeV.
For the forward results we do not calculate the Compton

amplitude for n02 > 9, while for the off-forward Compton
amplitude we do not calculate beyond n02 > 10. Without
methods to improve the isolation of the ground state,
beyond these sink momenta the signal is of poor quality.
As per our discussion in Sec. II, we do not calculate results
for jω̄j > 1.
Similarly, in all our fits we do not include results for

which n02 ≥ 7, which corresponds to jp0j ≥ 1 GeV, as
ground state isolation is generally poorer and OðapμÞ
artifacts are expected to be significant for these sink
momenta. This is discussed further in the text.
In Table VI we present the dimensionless sink momen-

tum and corresponding ω̄ values for all results in this work.
Note that we average over equivalent kinematics: for the
unpolarized projector, the value of Rμμ [see Eq. (15)] does
not change with ω̄ → −ω̄ or Δ → −Δ, and hence we
average over these. For the polarized projector, there is a

TABLE VI. Dimensionless sink momenta n0 and correspond-
ing ω̄ values for the four different sets of Compton amplitude
results. Momenta in italics have jp0j ≥ 1 GeV and are hence
excluded from our fits.

t ¼ 0

n0 ω̄ n02

(0, 0, 0) 0.0 0
ð−1; 2; 0Þ 0.06 5
ð1;−1; 0Þ 0.12 2
(0, 1, 0) 0.18 1
ð2;−;0Þ 0.24 8
(1, 0, 0) 0.29 1
(0, 2, 0) 0.35 4
ð2;−1; 0Þ 0.41 5
(1, 1, 0) 0.47 2
(0, 3, 0) 0.53 9
(2, 0, 0) 0.59 4
(1, 2, 0) 0.65 5
(2, 1, 0) 0.76 5
(3, 0, 0) 0.88 9
(2, 2, 0) 0.94 8

t ¼ −0.29 GeV2

n0 ω̄ n02

ð1; 0;−1Þ 0.03 2
ð0;−1; 2Þ 0.15 5
(1, 0, 0) 0.21 1
ð2; 1;−2Þ 0.27 9
ð0;−1; 3Þ 0.33 10
(1, 0, 1) 0.39 2
ð2; 1;−1Þ 0.45 6
(1, 0, 2) 0.57 5
(2, 1, 0) 0.63 5
(1, 0, 3) 0.75 10
(2, 1, 1) 0.81 6

t ¼ −0.57 GeV2

n0 ω̄ n02

(0, 0, 1) 0.0 1
ð−1; 2; 1Þ 0.06 6
ð1;−1; 1Þ 0.12 3
(0, 1, 1) 0.18 2
ð2;−2; 1Þ 0.24 9
(1, 0, 1) 0.29 2
(0, 2, 1) 0.35 5
ð2;−1; 1Þ 0.41 6
(1, 1, 1) 0.47 3
(0, 3, 1) 0.53 10
(2, 0, 1) 0.59 5
(1, 2, 1) 0.65 6
(2, 1, 1) 0.76 6

(Table continued)
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relative minus sign for each of the changes ω̄ → −ω̄ or
Δ → −Δ in Rμμ, and hence we average over these
accounting for the minus sign.
As mentioned in the text, there is no ω̄ ¼ 0 point for the

t ¼ −0.29 GeV2 results. Recall from Eq. (19) that
ω̄ ∝ p̄ · q̄, where

p̄ ¼ 1

2
ðp0 þ pÞ ¼ 1

2
ð2p0 þ ΔÞ: ðC2Þ

Therefore, to access ω̄ ¼ 0 we need to set p̄ ¼ 0, which
implies p0 ¼ −Δ=2 from the above equation. However, for
the t ¼ −0.29 GeV2 results, Δ ¼ 2π

L ð1;−1; 0Þ, and hence
ω̄ ¼ 0 implies that p0 ¼ 2π

L ð−0.5; 0.5; 0Þ, which is not
accessible with our discretized momentum.

APPENDIX D: ADDITIONAL d QUARK RESULTS

In Fig. 11 we present all the fits performed in ω̄ space for
the d quarks for theH1 structure function. We note that the
d quark results typically have a poorer signal-to-noise ratio
than those for the uu quark combination.

TABLE VI. (Continued)

t ¼ −0.57 GeV2

n0 ω̄ n02

(3, 0, 1) 0.88 10
(2, 2, 1) 0.94 9

t ¼ −1.14 GeV2

n0 ω̄ n02

ð1;−1; 0Þ 0.0 2
ð2; 0;−1Þ 0.12 5
ð0;−2; 2Þ 0.12 8
ð1;−1; 1Þ 0.24 3
(2, 0, 0) 0.35 4
ð1;−1; 2Þ 0.47 6
(2, 0, 1) 0.59 5
(3, 1, 0) 0.71 10
(2, 0, 2) 0.82 8

FIG. 10. All results and labels as in Fig. 5 except for d quarks.

FIG. 11. All results and labels as in Fig. 3 except for d quarks.
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In Fig. 10, we present the posterior distributions for the
model fit of the d quark results. We note that the α0
posteriors have a less well-defined Gaussian form when
compared to the u quark results, Fig. 5. Further, the β
parameter is largely unconstrained, but in contrast to the u
quark, the d quark results for this parameter are not as
strongly skewed to the lower bound.
In contrast to the u quark results (see Fig. 3), the d

quark model fits appear to have less dependence on the

prior distribution—i.e., the wide, medium, and thin
results show better agreement. This can also be seen in
Fig. 12, where we plot the results for the moments of the d
quarks.
Similar to the u quark results, we note reasonable

agreement between the model fits, the direct moment fits,
and the leading-twist GFFs determined from the local twist-
two operators (labeled An;0 3-pt). Moreover, the A4;0

moment is not well determined compared to A2;0.

FIG. 12. All results and labels as in Fig. 6 except for d quarks.

FIG. 13. Posterior distributions for the moments of the off-forward structure functionsH1 (top) and E1 (bottom) using the fit function
in Eq. (28). Here Nmax is the number of moments included in the fits, with n ¼ 2Nmax as the highest moment. The range of the uniform
priors is given in Eq. (33). All results for t ¼ −0.57 GeV2 and uu quark combination only.
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APPENDIX E: MELLIN MOMENT FIT

For the direct fits to the Mellin moments, using the fit
function Eq. (28), we use uniform prior distributions given
by the constraints in Eq. (33).
The posteriors of these fits are presented in Fig. 13 for

t ¼ −0.57 GeV2 and u quarks. We observe that the order of
truncation Nmax has negligible effect on the n ¼ 2, 4
moments for Nmax > 2. However, for the An;0 moments,
we note that the n ¼ 4, 6 distributions are highly skewed
towards the upper bound. This suggests that the bounds in
Eq. (33) are overconstraining for our results. This could be
the result of (1) systematics such as the lack of large ω̄
results or discretization artifacts or (2) that the GPD
positivity bound Eq. (31) is broken at Q̄2 ≈ 5 GeV2. At
our current precision and control of systematics, we cannot
draw strong conclusions. However, this demonstrates a
possible application for our data in testing theoretical GPD
constraints at moderately large Q̄2.

APPENDIX F: GENERALIZED FORM FACTORS
FROM LOCAL OPERATORS

At various points in this work, we have compared our
Compton structure function moments, An;0 and Bn;0, to the
leading twist generalized form factors An;0 and Bn;0 (see

Figs. 4, 6, and 12). We determine these generalized form
factors using the standard technique of calculating the
matrix elements of twist-two local operators using three-
point functions.
For A1;0 and B1;0 (note we do not compare B1;0 to our

Compton amplitude moments), we use all components of
the local vector current,

jμ ¼ ψ̄γμψ ; for μ ¼ 1; 2; 3; 4: ðF1Þ

For A2;0 and B2;0 we use the operators

Ov2a ¼
1

2

X3
i¼1

ðOV
4i þOV

i4Þ and Ov2b ¼ OV
44 −

1

3

X3
i¼1

OV
ii ;

ðF2Þ

where

OV
μν ¼ ψ̄γμiD

↔

νψ : ðF3Þ

To determine the matrix elements of these operators, we
compute the three-point correlation function,

GΓ
3−ptðp0; τ;Δ; τinsÞ ¼

X
x1;x2

e−ip
0·x2eiΔ·x1Γαβhχβðx2; τÞOðx1; τinsÞχ†αð0; 0Þi: ðF4Þ

The transfer 3-momentum is defined as Δ ¼ p0 − p. The local operator O is inserted at time slice τins, where τ > τins > 0.
We use the spin-parity projectors given in Eq. (16), making use of all polarization directions (x, y, and z).
To isolate ground state contribution we construct the ratio

R3−pt ¼
GΓ
3−ptðp0; τ;Δ; τinsÞ
G2−ptðp0; τÞ

�
G2−ptðp0; τÞG2−ptðp0; τinsÞG2−ptðp; τ − τinsÞ
G2−ptðp; τÞG2−ptðp; τinsÞG2−ptðp0; τ − τinsÞ

�1
2

: ðF5Þ

FIG. 14. Euclidean time dependence of the ratio in Eq. (F5) for the operator ψ̄γ4ψ (left) and the operatorOv2b (right). Both ratios have
the unpolarized spin-parity projector and sink momenta p0 ¼ ð1; 0; 0Þ, which implies Δ2 ¼ 0.
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In order to control excited state contamination, we make
use of a two-state ansatz for the correlation functions
similar to that in Ref. [77] for our Euclidean time fits. See
Fig. 14 for selected Euclidean time fits to R3−pt.
These calculations are performed on the same set

of gauge configurations as our OFCA calculation—see

Table I—using Nmeas ¼ 1074, making their statistics
comparable to our Compton amplitude results (see
Table II). We calculate the three-point correlators
for 16 values of the soft momentum transfer
t ¼ −Δ2. The results are multiplicatively renormalized
in RI0=MOM.
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