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We discuss various formal aspects of contour deformations used to alleviate sign problems; most
importantly, relating these contour deformations to a certain convex optimization problem. As a
consequence of this connection we describe a general method for proving upper bounds on the average
phase achievable by the contour deformation method. Using this method we show that Abelian lattice
Yang-Mills in two spacetime dimensions possesses, for many values of the complex coupling, an
exponential sign problem that cannot be removed via any contour deformation.
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I. INTRODUCTION

Lattice Monte Carlo methods provide a unique non-
perturbative view of the equilibrium properties of quantum
field theories. Unfortunately, lattice calculations in various
regimes are beset by sign problems, resulting in an
exponential scaling in spacetime volume. The most famous
cases are systems with a finite density of relativistic
fermions (or, closely related, the Hubbard model away
from half filling), but similar obstacles arise in many other
cases, including lattice simulations of real-time dynamics.
In a lattice field theory calculation, the partition function

is written as an integral over lattice configurations ϕ of a
Boltzmann factor: Z ¼ R

Dϕe−SðϕÞ. Expectation values
are obtained by differentiating the logarithm of the parti-
tion function with respect to various source terms
inserted into the action, and generically have the form
hOi ¼ 1

Z

R
DϕOðϕÞe−SðϕÞ. When the action SðϕÞ is real

valued, the Boltzmann factor may be interpreted as a (non-
normalized) probability density. Expectation values may
then be evaluated numerically by sampling with respect to
the probability distribution Z−1e−SðϕÞ and computing the
average of the function OðϕÞ on those samples.
A sign problem arises where the action is no longer real

valued, and the Boltzmann factor is therefore not a non-
negative real number. Since the Boltzmann factor cannot be
interpreted as a probability, Monte Carlo methods lose any

direct applicability. To salvage the situation, it is standard to
make use of reweighting. Noting that

hOi ¼
R
e−ReSe−iImSO=

R
e−ReSR

e−ReSe−iImS=
R
e−ReS

≡ hOe−iImSiQ
he−iImSiQ

; ð1Þ

where the dependence on fields ϕ has been elided for
readability, we have expressed the desired expectation
value as a ratio of two “quenched” expectation values.
The quenched expectation hOiQ is defined as an expect-
ation value over a probability distribution proportional to
je−Sj. This restores our ability to make use of Monte Carlo
methods at an exponential price. The denominator

R
e−SR je−Sj≡

Z
ZQ

≡ hσi ð2Þ

is a ratio of two partition functions: the physical parti-
tion function Z and a “quenched” partition function ZQ

obtained by ignoring the imaginary part of the action. As
such, it is typically exponentially small in the spacetime
volume of the system being studied. Resolving it from zero
therefore requires exponentially many samples—this is the
origin of the exponential cost of a sign problem.
Contour deformation methods (see [1] for a review)

proceed from this point by deforming the integral over real-
valued field configurations to some other contour in the
complex plane. When the action is holomorphic, Cauchy’s
integral theorem guarantees that physical quantities do not
depend on the choice of integration contour. At the same
time, the average phase cannot be written as the integral of a
holomorphic function, and therefore may be expected to
change with the choice of contour. The central goal of
different contour deformation methods is to find a contour
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that maximizes the average phase. In recent years a variety
of machine learning approaches to this end have been
explored [2–7].
The object of this work is to explore the nature of, and

provide bounds on, the “best possible” contour—that is, the
one with maximum average phase. The core facts about
contour deformations that will be established in this paper
are as follows:
(1) On any contour which is a local minimum of the

quenched partition function, the effective Boltzmann
factor must have no local phase fluctuations. The
phase can only change at zeros of the Boltzmann
factor.

(2) The Lefschetz thimbles (historically one of the
earliest contours proposed to address the QCD sign
problem [8]) constitute the ℏ → 0 limit of this
optimum.

(3) For any closed differential form α obeying
jαj ≤ je−Sdzj, the integral j Rγ αj is a lower bound
on the quenched partition function obtainable on any
contour in the same homology class as γ.

(4) The task of optimizing such bounds is one of
convex optimization, and is dual to a convex
optimization problem closely related to that of
optimizing contours.

(5) There is no duality gap: the best possible bound of
this form on the quenched partition function is equal
to the optimal quenched partition function obtain-
able by contour deformation.

Finally, as an application of these results, we examine
Abelian lattice Yang-Mills in two spacetime dimensions, at
complex gauge coupling (also studied in [9]). For real-
valued fields this theory, like many others, exhibits a sign
problem that scales exponentially in the spacetime volume.
We find that there are some values of the gauge coupling for
which perfect contours exist, and the exponential sign
problem can be entirely removed via contour deformation.
For other ranges of the complex gauge coupling, however,
we are able to show that no contour deformation can
entirely remove the sign problem. For these values of the
coupling we provide a rigorous, and exponentially falling,
upper bound on the average sign that can be obtained via
contour deformation alone.
This paper is structured as follows. In Sec. II we outline

the basic facts of contour deformations and their applica-
tion to the sign problem. No results in this section are new,
although the derivation in Sec. II B of the properties of
locally perfect contours is crisper and more rigorous than
the original argument in [10]. Section III presents the core
technical innovation in this work: a general method for
establishing lower bounds on the quenched partition
function obtainable by contour deformation (and, therefore,
upper bounds on the performance of contour deformation
algorithms, as measured by the average phase). We observe
in Sec. IV that the task of optimizing this bound is related to

the task of optimizing contours via convex duality, and
show that there is no duality gap. The connection between
locally perfect contours and Lefschetz thimbles is covered
in Sec. V. We apply this class of bounds to two toy
models in Sec. VI, and to Abelian Yang-Mills at complex
coupling in Sec. VII. Finally, Sec. VIII comprises a
discussion of the many questions left open—or raised—
by this work.

II. CONTOUR DEFORMATIONS

The purpose of this section is to review the basic facts of
contour deformations as applied to the sign problem, as
well as to establish useful mathematical background for the
rest of the paper. No result in this section is new, although
the discussion of locally perfect contours is considerably
improved from [10]. The reader familiar with the recent
literature on contour deformation methods may wish to
skip to the section below, referring back to this section only
as needed.

A. Contour integrals and quenched integrals

A partition function in lattice quantum field theory
typically has the form

Z ¼
Z

dNϕe−SðϕÞ; ð3Þ

where the exponent SðϕÞ is referred to as the lattice action,
and theN variables ϕ being integrated over represent a field
configuration.
The integration in Eq. (3) is implicitly taken1 to be over

RN . In the case of a sign problem, the action is a function
from the space RN of field configurations to the complex
numbers. The first step to applying contour deformation
methods to treat this sign problem is to analytically
continue the action, so that e−S is a holomorphic2 function
fromCN to the complexes. For the purpose of this work, we
will assume that this analytic continuation is automatic, and
we will not distinguish between the original action and the
analytically continued one.
With the analytic continuation complete, the partition

function is now rewritten as a contour integral over
RN ⊂ CN . Cauchy’s integral theorem guarantees that con-
tinuous deformations of the contour do not change the
integral, although they can affect the sign problem. As a
result, physical measurements do not change, but the
performance of numerical algorithms may be improved.

1In the case of periodic variables ϕ—including both concrete
examples discussed in Sec. VI below—the original domain of
integration is the N torus ðS1ÞN , and the complexified domain is
topologically ðS1ÞN × RN.

2For bosonic theories, the action S itself is typically holomor-
phic; when fermions have been integrated out, zeros of the
fermion determinant yield logarithmic singularities in the action.
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The central goal of contour deformation-based methods is
to find contours with favorable algorithmic properties.
This procedure is best made precise in the language of

differential forms.3 The underlying theorem that enables the
contour deformation is Stokes’ theorem: for any region Ω
and differential form ω, we have

Z
Ω
dω ¼

Z
∂Ω

ω: ð4Þ

The Boltzmann factor is used to construct a differential
form ω≡ e−S⋀idzi. For a holomorphic Boltzmann factor,
it is straightforward to see that ω is closed:

dω ¼
X
j

∂e−S

∂z
dzj ∧ ½⋀

i
dzi� ¼ 0: ð5Þ

As a result, the integral along the boundary of any region
must vanish. This defines the “permitted” contour defor-
mations: they differ from the original contour only by the
boundary of some region Ω, where dω ¼ 0 holds at least
in Ω.
To discuss the quenched partition function (and therefore

the average phase), we need a notion of the absolute value
of a differential form. This is easy enough: recall that a
differential form is a function from the tangent space to the
complex numbers. We define

jωϕjðv1;…; vkÞ ¼ jωϕðv1;…; vkÞj: ð6Þ

The object jωj may be integrated in the usual way, defining

the quenched partition function ZðγÞ
Q ¼ R

γ jωj. However, jωj
is not a differential form, as it is neither linear nor
antisymmetric in its arguments. We will refer to jωj as
an absolute differential form.4 Absolute differential forms
have the following two properties of note:
(1) If any argument is scaled vi ↦ λvi, then the value of

the absolute differential form is scaled by jλj, and
(2) The value of the absolute differential form is

unaffected by the addition to one vector of a
linear combination of the other vectors.5 That is,
jωjðv1;…Þ ¼ jωjðv1 þ

P
i>1 civi;…Þ.

These properties in turn imply that absolute differential
forms are invariant under permutation of the arguments. As

a result, the integral
R
γ jωj over a contour γ is well defined,

and does not depend on the orientation of γ.
In a numerical computation, the contour γ is always

parametrized by the real plane RN . That is, a function
ϕ̃ðϕÞ∶RN → CN is chosen with image γ. The effective
action is then defined according to

S½ϕ̃�effðϕÞ ¼ Sðϕ̃ðϕÞÞ − log det
∂ϕ̃ðϕÞ
∂ϕ

: ð7Þ

The partition function and quenched partition function may
now be, respectively, expressed as

Z ¼
Z

dNϕe−SeffðϕÞ and ZQ ¼
Z

dNϕje−SeffðϕÞj: ð8Þ

This approach has the practical advantage of being concrete
and amenable to numerical (especially Monte Carlo) meth-
ods. However, it is often unwieldy, and the results in this
paper are more easily expressed in the language of differ-
ential (and absolute) forms. It also has the more serious
shortcoming of excluding a priori any contours which are
not homeomorphic to RN .

B. Perfect and locally perfect contours

Wewant to maximize the average phase hσi≡ Z
ZQ
. As we

are performing this maximization over a class of integration
contours on which the partition function Z is constant, this
is equivalent to minimizing the quenched partition function
over the space of contours.
The most desirable property for a contour γ to have is

that the average phase be exactly 1; that is, the quenched

partition function ZðγÞ
Q should be equal to the absolute value

jZj of the partition function. Any such contour represents a
global minimum of the quenched partition function. The
converse is not true; the global minimum of the quenched
partition function need not achieve ZQ ¼ jZj. In such a case
we would say that there is no perfect contour.
In general, studying the global minima of a function is

difficult. In this case there is little we can say, although as
shown in Appendix A, it can be the case that there are
several distinct perfect contours. For now, let us settle for
examining the properties of local minima of ZQ.
Parametrizing the contour—at least locally—by zðξÞ, we
will take the functional derivative of ZQ with respect to zðξÞ
and examine the requirement that this vanish.
A bit of care is required in defining this derivative. First

consider the case of a real-valued function FðzÞ over the
complex plane. The correct condition on the derivatives of
F for identifying minima (in general, saddle points) is that

0 ¼
�
d
dx

þ i
d
dy

�
Fðxþ iyÞ≡ D

Dz
FðzÞ: ð9Þ

3An excellent introduction and reference for differential forms,
for physicists, is found in [11]. Only the minimal facts will be
reviewed here, with an emphasis on the specialization to contour
integration.

4This terminology is from [12] and is particularly suggestive in
our context. Another name for the same object is an even k
density [13].

5The same is true for ordinary differential forms, from which
absolute differential forms inherit this property.
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Note that the gradient operator used here is not the
holomorphic (or Wirtinger) derivative. This equation guar-
antees that the derivatives of F with respect to the real and
imaginary parts of z separately vanish.
When F happens to be the real part of a holomorphic

function FðzÞ ¼ RefðzÞ, this gradient operator may be
evaluated in terms of the Wirtinger derivative via

D
Dz

RefðzÞ ¼ ∂f
∂z
; ð10Þ

providing a connection to the holomorphic derivative of f
via conjugation. In particular, as long as f is holomorphic,
the condition 0 ¼ ∂f

∂z identifies saddle points.
Similarly, the appropriate saddle point condition on ZQ is

0 ¼ Δ
ΔzðξÞZQ: ð11Þ

By analogy with the case of the ordinary gradient above,
the functional gradient Δ

ΔzðξÞ has the following defining

property: for a real-valued functional G½zðξÞ� that happens
to be the real part of a holomorphic functional g½zðξÞ�,
we have

Δ
ΔzðξÞReg½zðξÞ� ¼

δg
δzðξÞÞ: ð12Þ

Beginning from the saddle-point condition Eq. (11), and
applying the above identity, we find

0 ¼
Z

dξ0e−ReS½zðξ0Þ�jJðξ0Þj

×

�
S½zðξ0Þ − δ

δzðξÞ ðlog det Jðξ
0Þ�Þ

��
: ð13Þ

Here J denotes the Jacobian matrix JijðξÞ ¼ ∂ziðξÞ
∂ξj

.

Differentiating the logarithm, noting that δðξ − ξ0Þ ¼
δðξ − ξ0Þ, and integrating by parts immediately yields

0 ¼ e−ReSeff
�
∂S
∂zi

þ ∂J̄−1ji
∂ξj

− J̄−1ji
∂

∂ξj
ReSeff

�
; ð14Þ

which must be satisfied for all ξ and indices i. The index j is
implicitly summed over.
This expression is difficult to interpret meaningfully. A

primary reason for this is that it contains derivatives with
respect to both z (the complex coordinate of the contour)
and ξ (the parametrizing coordinate). We may address this
by multiplying the whole expression by the Jacobian Jik,
with the now-internal index i summed over. Simplifying
appearances of J−1J ¼ I, we obtain

0 ¼ e−ReSeff
�
∂S
∂zi

Jik − J−1ji
∂Jik
∂ξj

−
∂

∂ξk
ReSeff

�
: ð15Þ

The combination of the first two terms is readily verified to
be none other than the derivative of the effective action with
respect to ξk. As a result, we finally obtain the following
equation which must be satisfied by any local minimum of
ZQ (and is in fact sufficient to guarantee that ZQ is locally
minimized):

0 ¼ e−ReSeff
∂

∂ξk
ImSeff : ð16Þ

We conclude that any local minimum (and in fact, any
local maximum or saddle point) of the quenched partition
function is a contour with no local phase fluctuations.6 The
phase of the integrand ω on such a contour can change only
at points where that phase is undefined—in other words,
where the Boltzmann factor vanishes. The contour there-
fore consists of the disjoint union of individual pieces, each
of which has no sign problem, but which potentially have
differing phases, and are separated by zeros of the
Boltzmann factor (which may be at infinity). We term this
situation a global sign problem, distinguished from the
local sign problem when ∂ImS ≠ 0. In short: local minima
of ZQ may have a global sign problem, but no local sign
problem—we term such contours locally perfect.
Note that these pieces are not Lefschetz thimbles. On

Lefschetz thimbles, the Boltzmann factor has constant
phase but the complex measure dz generically has local
fluctuations. On a locally perfect contour, the Boltzmann
factor e−S has local phase fluctuations which are exactly
canceled by those of the complex measure. Further dis-
cussion of the relation to Lefschetz thimbles is in Sec. V.

C. Analytically continued normalizing flows

In a few cases, perfect contours can be obtained by
analytic continuation of normalizing flows [10]. This
perspective provides evidence for the existence of globally
perfect contours in certain cases where the sign problem
is mild.
A normalizing flow is an invertible map zðxÞ from RN to

some target space (here assumed, for convenience, to beRN

as well), such that the normal distribution on the domain
induces a desired probability distribution pðzÞ on the target
space:

pðzðxÞÞ det ∂z
∂x

¼ e−x
2=2: ð17Þ

A standard theorem asserts that for any probability dis-
tribution on RN , an exact normalizing flow exists [14].

6A much different argument for the same claim appeared first
in [10]; the argument here is more rigorous.
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In practice, for many numerical applications it is useful to
find maps zðxÞ which only approximately satisfy Eq. (17).
This is an increasingly common technique in the context of
lattice field theory for the purpose of accelerating sign-free
Monte Carlo calculations; e.g. [15,16].
Of course, any map zðxÞ is a normalizing flow for some

probability distribution, readily calculated from Eq. (17).
We might then generalize the notion of a normalizing flow
by allowing the map zðxÞ to be complex valued. The
resulting map—termed a complex normalizing flow—
serves to parametrize an integration contour γ ⊂ CN by
the real plane, and in fact defines a probability distribution
on this contour. As a result, we see that a complex
normalizing flow provides a (globally) perfect integration
contour for some distribution pwhich is complex valued on
the real plane.
Physical Boltzmann factors pðzÞ of interest also implic-

itly depend on some generalized coupling constants which
we will label λ. Suppose that for real λ, pðz; λÞ is a (non-
negative real-valued) probability distribution on field con-
figurations z, but when Imλ ≠ 0, we encounter a sign
problem. For values of λ sufficiently close to the real line,
we can find a perfect contour for such a sign problem as
follows. We find a family of normalizing flows zðx; λÞ, such
that z is an analytic function7 of λ. This family of
normalizing flows may be analytically continued some
finite amount off of the line of real λ, and where this is
possible, zðx; λÞ induces a perfect integration contour
for pðz; λÞ.
This perspective will be further explored in Sec. VI A

below, in the case of a one-dimensional integral where
exact information about both the normalizing flows and the
available contour deformations is available.

III. QUENCHED BOUNDS

For some lattice actions, it can be proven that no perfect
contour exists. An extreme case was discussed in [7],
motivated by the existence of partition function zeros on the
plane of complex lattice couplings. Any nonzero lower
bound on the quenched partition function near these points
implies that, sufficiently close to the zero of the partition
function, there is no perfect contour (and in fact the best-
possible average phase approaches 0).
In general, because the partition function does not

depend on the choice of contour, any lower bound on
the quenched partition function translates directly into an
upper bound on the average phase hσi ¼ Z

ZQ
. The purpose of

this section is to detail one method by which such bounds
may be obtained.
One lower bound on the quenched partition function is

well known: ZQ ≥ jZj. This follows from the observation
that, for any differential form ω,

����
Z
γ
ω

���� ≤
Z
γ
jωj: ð18Þ

Note that the usefulness of this inequality stems from the
fact that the right-hand side depends on the choice of
integration contour γ, while the left-hand side is the same
for any homologous contour.
We can potentially improve this bound by finding

another closed differential form α satisfying jαj < jωj.
Now we have a short series of inequalities:����

Z
γ
α

���� ≤
Z
γ
jαj ≤

Z
γ
jωj ¼ ZQ: ð19Þ

Once again, because α is closed, the first expression does
not depend on the choice of contour γ, as long as γ lies in
the physical homology class. For any closed form α
obeying jαj < jωj, the absolute value of

R
α serves as a

lower bound on the quenched partition function.
It is up to the user of this method to find a form α that

gives a useful lower bound on the quenched partition
function (and therefore a useful upper bound on the
achievable average phase). One piece of guidance may
be useful. In physically motivated examples, the form ω is
proportional to dz, or a wedge product ⋀idzi:

ω ¼ e−SðzÞdz: ð20Þ

In these cases, no holomorphic α will yield a nontrivial
bound: α must have some direct dependence on z̄. To see
this, note that a holomorphic αmay be written α ¼ gdz, and
the inequality jαj ≤ jωj implies that jgj ≤ jfj. But both f
and g are holomorphic, and so the quotient—a meromor-
phic function—obeys jg=fj ≤ 1. The only meromorphic
functions with bounded magnitude are constant, so α is
proportional to ω and does not yield a stronger bound.

IV. CONVEX OPTIMIZATION

A convex optimization problem8 is one that can be
written in the following form:

minimize fðxÞ subject to x∈X

and ci ¼ giðxÞ;

where X is a convex set, f a convex, real-valued function on
X, and the functions gi are linear. Note that any convex
constraints, often written 0 ≤ hðxÞ with h a convex func-
tion, have been implicitly included in the definition of X.
In this section we will show that the problem of

optimizing a bound of the form discussed in the previous

7Note that our ability to do this is a stronger statement than the
standard theorem of existence, and is here only a conjecture.

8A canonical introduction and reference for convex optimi-
zation is [17]; we will repeat from there the minimum background
necessary for the results of this work.
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section is an instance of convex optimization. Similarly,
there exists a mild generalization of the contour optimiza-
tion task which is also a convex optimization problem.
These two optimization problems are in fact dual to each

other, in a precise sense. When two convex optimization
problems are dual, any feasible point of the dual problem—
that is, any point which obeys all constraints, but may not
be optimal—is necessarily a lower bound on the set of
feasible points of the original (or primal) problem, and
therefore is a lower bound on the solution to the primal
problem. When the maximum of the dual problem is equal
to the minimum of the primal problem, the problem is said
to exhibit strong duality.
This duality and its consequences are the subject of

Secs. IV B and IV C. In particular, we will show that one
can always find a tight bound of the form considered in the
previous section.

A. Convexity

Denote by Aω the space of closed differential forms α
obeying jαj ≤ jωj. We will first show that this space is
convex, as follows. For any two forms α1; α2 ∈Aω, the
linear combination c1α1 þ c2α2 is closed:

dðc1α1 þ c2α2Þ ¼ c1dα1 þ c2dα2 ¼ 0; ð21Þ

Moreover, as long as c1 þ c2 ¼ 1, this linear combination
is also dominated by jωj:

jc1α1 þ c2α2j ≤ c1jα1j þ c2jα2j ≤ ðc1 þ c2Þjωj: ð22Þ

In the previous section we showed that given a differential
form α∈Aω, we obtain a bound on the quenched partition
function ZQðγÞ ¼

R
γ jωj ≥

R
γ0
jαj, where γ0 is the original

contour of integration9 and γ is any integration contour in
the same homology class. The task of finding the tightest
such bound is equivalent to the task of maximizing j Rγ0 αj
over α∈Aω. This objective function is of course convex.
Alternatively, we might restrict to forms α obeying

R
α∈R,

and then maximize (or minimize)
R
α itself. Either way,

we see that the task of optimizing the bound is one of
convex optimization. To be concrete, the optimization
problem is

maximize

����
Z
γ0

α

���� subject to dα ¼ 0

and jαj ≤ jωj: ð23Þ

Now we move from optimizing bounds on contours to
optimizing the contours themselves. We must begin by
constructing a generalization of the notion of a contour of
integration, which we will term (in a slight abuse of

terminology10) an N chain. An N chain is a linear
combination of (perhaps infinitely many) N contours.
Such linear combinations may in principle be taken with
integer, real, or complex coefficients; in this paper we will
focus on the case of real coefficients. Integration on an N
chain

P
ciΓi is defined via linearity:Z

Γ
α ¼

X
i

ci

Z
Γi

α: ð24Þ

Equivalent definitions are possible, and one in particular
will prove useful later. Recall that the Grassmannian
associated to a point x is the space of N-dimensional linear
subspaces of the tangent space at x. An N chain associates
to each point x and each element of its Grassmannian, a real
number.
We introduced in Sec. II A the notion of an absolute

differential form. Part of the importance of N chains is that,
via integration, they may be viewed as linear functions of
the space of absolute differential forms, and in fact every
such linear function may be written as an N chain.
Consider the space CNðCN ;RÞ of N chains on complex

field space, with coefficients in R. Any integration contour
is of course an element of CNðCN ;RÞ, but not all such N
chains correspond to sensible integration contours. The
integration contours, as usually understood, are constructed
only with integer coefficients, and so that space is written
CNðCN ;ZÞ.
Now, this space of N chains with real coefficients is

clearly a linear space. However, most N chains are not
relevant to us, as they lie in a different homology class from
RN . Define CðRÞ to be the subset of CNðCN ;RÞ that is in
the same homology class as the “physical” contour γ0 used
to define the partition function Z ¼ R

γ0
ω. This is also an

affine constraint defining a convex subspace: given two
chains Γ1 and Γ2 in this homology class, any linear
combination c1Γ1 þ c2Γ2 obeying c1 þ c2 ¼ 1 is also in
the physical homology class.
Integration is defined on CðRÞ, not just on its subset with

integer coefficients. Thus, we can define the quenched
Boltzmann factor for each chain Γ∈ CðRÞ in the usual way,
via ZðΓÞ

Q ¼ R
Γ jωj. This is manifestly a convex function on

CNðCN ;RÞ, and therefore on the affine subspace CðRÞ.
We have shown that finding an optimal element of CðRÞ

minimizing the quenched partition function is a convex
optimization task:

minimize
Z
Γ
jωj subject to ½Γ� ¼ ½γ0�: ð25Þ

This is not the same task as optimizing a contour, as the
valid integration contours form a nonconvex subset of

9In typical circumstances, this contour is simply RN ⊂ CN.

10See [18] for the definition of chain groups in singular
homology, which is very similar.

SCOTT LAWRENCE and YUKARI YAMAUCHI PHYS. REV. D 110, 014508 (2024)

014508-6



CðRÞ. We will refer to members of CðRÞ as generalized
contours,11 and (25) as the generalized contour optimiza-
tion problem.

B. Duality

Above we presented two convex optimization problems:
one for optimizing the bound via choice of differential form
α, and one for optimizing the generalized contour. In fact
these problems are related, as we will now see.
To begin let us review convex optimization in the

classical case, following the exposition in [17]. Consider
an optimization task of the form

minimize f0ðxÞ subject to fiðxÞ ≤ 0; ð26Þ

where the inequality must be satisfied for each of several
convex functions fi (not to include f0), and any linear
constraints on x have been implicitly included, for brevity
of the below discussion, into the space over which x is to be
optimized. The function f0 is also presumed to be convex.12

We may construct from such an optimization problem a
Lagrangian function

Lðx; λÞ ¼ f0ðxÞ þ
X
i

λifiðxÞ; ð27Þ

a Lagrange dual function

gðλÞ ¼ inf
x
Lðx; λÞ; ð28Þ

and finally a convex optimization problem termed the
Lagrange dual problem:

maximize gðλÞ subject to λi ≥ 0: ð29Þ

Note that the solution to the Lagrange dual problem (29)
is given by d� ¼ maxλinfxLðx; λÞ. Less trivially, the sol-
ution to the primal problem (26) is given by p� ¼
infxmaxλLðx; λÞ. The first and most important result is
the statement of weak duality:

d� ≤ p�: ð30Þ

The optimum of the dual problem is a lower bound on that
of the primal (original) problem.
In the case of convex optimization, the inequality of

Eq. (30) is often tight. A sufficient condition for this to be
true is that there is a point x which is strictly feasible—that
is, for which fiðxÞ < 0. This is termed the Slater condition.

One additional fact about convex duality provides useful
intuition: the concept of complementary slackness. Each
Lagrange multiplier λi corresponds to a convex constraint
fiðxÞ. It may be shown that, when computing d� ¼
supλinfxLðx; λÞ, it will always be the case that at the
optimal pair ðx; λÞ, we have λifiðxÞ ¼ 0 for each i.
Thus, for each constraint, λi ¼ 0 must hold unless the
constraint is “active” at the optimum.
We will now apply this theory to the optimization of

bounds (23) above, and construct the Lagrange dual
problem.
The problem of optimizing α is a convex maximization

problem. Let us now construct the Lagrange dual problem,
which will be a convex minimization problem. First we
must pass from the classical case to the infinite-dimensional
case. It is convenient to write the optimization problem (23)
in a slightly different form, to mimic (26) as closely as
possible:

minimize −
����
Z
γ0

α

����subject to jαj − jωj ≤ 0: ð31Þ

The sum over Lagrange multiplier terms is now replaced by
an integral over a chain Γ of the constraint functions. It is
important to verify that the chain Γ contains exactly one
real number for each independent constraint, as follows. At
a fixed point, if the constraint function jαj − jωj is known
on a single sequence of N vectors v1;…; vN , then by the
properties of absolute differential forms discussed in
Sec. II A, the value of jαj − jωj is known on all sequences
of vectors in the linear subspace spanned by v1;…; vN.
Thus the only independent constraints are those associated
to different linear subspaces.
The resulting Lagrangian function reads

Lðα;ΓÞ ¼ −
����
Z
γ0

α

����þ
Z
Γ
jαj −

Z
Γ
jωj: ð32Þ

The Lagrange dual function is then the infimum of this
Lagrangian over all closed forms α:

GðΓÞ¼ inf
α
Lðα;ΓÞ¼ inf

α

�Z
Γ
jαj−

����
Z
γ0

α

����
�
−
Z
Γ
jωj: ð33Þ

Finally we define the Lagrange dual problem. In the
classical case, we require a constraint λi ≥ 0. Here this
is not necessary, as the sign (in general, orientation) of Γ
does not affect quenched integrals. Alternatively, one might
“impose” the constraint that for any differential form ν, we
have

R
Γ jνj ≥ 0. Either way, the dual problem simply reads

maximizeGðΓÞ: ð34Þ

To interpret this dual problem, we note that many chains
Γ are “forbidden” by the fact that GðΓÞ ¼ − inf. We are

11The term “fuzzy contour” has also been suggested [19].
12We assume that the functionsf are convex for brevity.Many of

the results below do not require this, while a few do; the interested
reader should consult a source dedicated to convex optimization
rather than attempt to generalize from this discussion.
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therefore restricted to chains Γ such that, for any closed
form α, we have

Z
Γ
jαj ≥

����
Z
γ0

α

����: ð35Þ

Conceptually, this is requiring that Γ be “at least as large” as
the fiducial integration contour γ0. This constraint is
automatically obeyed by any chain in the same homology
class as γ0, as for any such chain we have the usual chain of
inequalities:

Z
Γ
jαj ≥

����
Z
Γ
α

���� ¼
����
Z
γ0

α

����: ð36Þ

However these are not the only chains that satisfy (35). As
an example, for any chain Γ in the same homology class as
γ0, and any real c obeying jcj ≥ 1, cΓ also obeys (35).
Beginning again with a chain Γ in the correct homology
class, we can also add arbitrary disjoint chains without
decreasing the integral of jαj. Therefore, as written, the
optimization problem (34) is over a larger space than
desired.
We can modify (34) to exclude such chains without

changing the optimum. For any Γ written as a disjoint sum
of some chain Γ0 in the physical homology class, and an
additional chain Γ̃, we can remove the contribution of Γ̃
while decreasing the quenched integral of jωj. Therefore no
such chain can be the optimum of (34)—it is always
preferable to simply have Γ0.
Finally we are able to rewrite the optimization problem

(34) in a more desirable form, as an optimization over
chains in the physical homology class:

minimize
Z
Γ
jαj subject to ½Γ� ¼ ½γ0�: ð37Þ

C. Strong duality

It may easily be seen that Slater’s condition does not hold
for (23): for typical ω there is some point such that jωj ¼ 0,
and as a result there can be no strictly feasible form α.
Fortunately, Slater’s condition is merely a sufficient con-
dition for strong duality, and not a necessary one.
As it happens, a small change to the above optimization

problems restores Slater’s condition. At any point x0 where
ω ¼ 0, we remove the constraint jαðx0Þj ≤ jωðx0Þj and
replace it with an explicit equality αðx0Þ ¼ 0. With this
modification αð·Þ ¼ 0 is strictly feasible, and Slater’s
condition holds.
In general such a modification might change the

Lagrangian and therefore the dual problem. In this case,
however, because the set of points at which ω ¼ 0 has
measure 0, the Lagrangian cannot “detect” our modification,

and strong duality between the two problems above is
established.
The strong duality of the two optimization problems

described above may also be proven via Sion’s minimax
theorem [20]. A slightly weakened form of this theorem
(taken from [21]) states
Theorem (Sion’s minimax theorem). Let X be a compact

convex subset of a linear topological space, and Y a convex
subset of a linear topological space. Let f be a real-valued
continuous function on X × Y such that

(i) fðx; ·Þ is concave on Y for all x∈X, and
(ii) fð·; yÞ is convex on X for each y∈Y.

It follows that

min
x∈X

sup
y∈Y

fðx; yÞ ¼ sup
y∈Y

min
x∈X

fðx; yÞ: ð38Þ

The application to the strong duality of generalized
contour optimization and form optimization proceeds as
follows. Recall that Aω is the space of closed differential
forms α obeying jαj ≤ jωj—this is a compact convex
subset of a linear topological space. The space CðRÞ of
N chains is not compact, but is a convex subset of a
(different) linear topological space. The Lagrangian func-
tion Lðα;ΓÞ is manifestly a real-valued continuous function
on Aω × CðRÞ. The concave/convex conditions are easily
verified, and we conclude that

max
α∈Aω

inf
Γ∈ CNðCN ;RÞ

Lðα;ΓÞ ¼ inf
Γ∈ CNðCN ;RÞ

max
α∈Aω

Lðα;ΓÞ: ð39Þ

The left-hand side represents the task of optimizing the
differential form, and the right-hand side that of optimizing
the generalized contour. We conclude that there is no
duality gap.
We have shown that the bound on the best possible

generalized contour [that is, the element of CðRÞ] is tight.
This implies that the method of the previous section
provides a tight bound on the best possible contour [the
element of CðZÞ] as long as, for every generalized contour
Γ, there exists a contour γ such that ZQðγÞ ≤ ZQðΓÞ. This
follows from the fact that ZQðΓÞ is linear in Γ.

V. LEFSCHETZ THIMBLES

The purpose of this section is to explore the relation
between the perfect (and locally perfect) contours that are
the central object of this paper, and the Lefschetz thimbles.
In particular, we will show that in the ℏ → 0 limit the two
coincide.
Let us consider how a locally perfect contour changes as

a function of ℏ. Although factors of ℏ have been implicit up
until this point, the quenched partition function reads

ZðγÞ
Q ðℏÞ ¼

Z
γ
je−SðxÞ=ℏjdNx ð40Þ
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and wewill take γTðℏÞ to be the global minimum of ZQ. Let
us further assume that γTðℏÞ is in fact a globally perfect

contour at all ℏ being considered, so that ZðγÞ
Q ðℏÞ ¼ jZðℏÞj.

This is donewithout loss of generality: the case of a contour
with a global sign problem can be understood by consid-
ering how each individual piece behaves.
First, what happens to γT as ℏ → ∞? When we param-

eterize γT by the real plane, via a function zTðx;ℏÞ, the
effective action reads

Seff;Tðx;ℏÞ ¼ SðzTðx;ℏÞÞ − ℏ log det J: ð41Þ

In the limit of large ℏ, in order for the Boltzmann factor to
be of constant phase, the imaginary part of log det J must be
exactly constant. In the case of one complex dimension,
this implies that the perfect contour is in fact an affine
subspace of C. In more dimensions, this need not be true:
there are nonflat contours on which Im log det J is none-
theless constant.
Next we consider the limiting case of ℏ → 0 (with the

limit taken along ℏ∈Rþ). The trade-off between the
Boltzmann factor and the phase from the integration
measure (dz1 ∧ � � � ∧ dzN) is reversed from what it was
before: the limiting contour must obey ImS ¼ const. In fact
this property is satisfied, albeit not uniquely, by a well
known set of integration contours: the Lefschetz thimbles.13

Each Lefschetz thimble extends from a saddle point of
the action—that is, a field configuration ϕ0 obeying
∂S
∂ϕ jϕ¼ϕ0

¼ 0—and is defined as the union of solutions
ϕðtÞ to the differential equation

dϕ
dt

¼ ∂S
∂ϕ

ð42Þ

such that ϕðtÞ asymptotically approaches the saddle point
at early times:

lim
t→∞−

ϕðtÞ ¼ ϕ0: ð43Þ

Therefore, any Lefschetz thimble can serve as a perfect
contour in the limit of ℏ → 0. It is likely the case, but not to
be proven here, that there exists a family of perfect contours
γðℏÞ such that the thimble is obtained as the limit
limℏ→0þ γðℏÞ. On the other hand, due to the nonuniqueness
of perfect contours (see Appendix A), it is certainly not in
general the case that every family of perfect contours has
the Lefschetz thimble as its classical limit.
The situation is dramatically simplified in the case of one

complex dimension. There the perfect contour is unique (at
any given ℏ, provided it exists), and the Lefschetz thimbles
are also uniquely identified (within the correct homology
class) by obeying ImS ¼ 0. Therefore, in one complex

dimension, the ℏ → 0 limit of perfect contours is always a
Lefschetz thimble, and every Lefschetz thimble may be so
obtained.

VI. TWO TOY SIGN PROBLEMS

A. The cosine model

We begin with a one-site model introduced in [23]:

ω ¼ ðcos θ þ ϵÞdθ: ð44Þ

For real values ϵ ≥ 1, this model has no sign problem. In
general we may take ϵ to be complex (as discussed in [24]);
however in this section we will restrict ourselves to the sign
problem encountered when ϵ∈ ð−1; 1Þ.
A normalizing flow θðxÞ for the cosine model is a one-

dimensional map from the distribution Eq. (44) to the
uniform distribution on the same domain. The inverse of
the normalizing flow xðθÞ can be written analytically by
solving the following equation:

dθðxÞ
dx

cosðθðxÞÞ þ ϵ

ϵ
¼ 1; ð45Þ

and we find

xðθÞ ¼ ðsinðθÞ þ ϵθÞ=ϵ: ð46Þ

The normalizing flows for ϵ ¼ 1.5, 1.0, 0.5 are shown in
Fig. 1. For the cosine model with ϵ < 1, the distribution

vanishes at two values of θ, forcing dxðθÞ
dθ ¼ 0 at those two θs

for Eq. (45) to hold. As a result, the normalizing flows are
multivalued.
Note that when ϵ is real, the integrand on the real line is

also real, having no variations in phase apart from (when
ϵ∈ ð−1; 1Þ) two isolated zeros. As a result, the argument in

FIG. 1. Behavior of the normalizing flow of the cosine model at
ϵ ¼ 1.5, 1.0, and 0.5.13See [22] for a more detailed exposition.
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Sec. II B above indicates that the real line is at least a
locally optimal contour, in the sense that no sufficiently
small deviation from the real line can improve the sign
problem.
In fact, for real ϵ ≥ 0, the real line is a globally optimal

contour as well. This may be seen by examining the
dependence of the form ω on the imaginary part of θ.
Writing θ ¼ ϕþ iη for ϕ; η∈R, the quenched Boltzmann
factor is

jωj ¼ ðcos θ cosh ηþ i sin θ sinh ηþ ϵÞjdθj: ð47Þ

Focusing on the hyperbolic dependence on η, we see that
any deformation from the real line will entail an increase in
the quenched Boltzmann factor at every point, and there-
fore in the quenched partition function.
Following the strategy of Sec. III, we may establish this

fact algebraically. Define a new 1-form

α ¼ 1

2

���� cos
�
θ þ θ̄

2

�
þ ϵ

����ðdθ þ dθ̄Þ: ð48Þ

To see that α is closed, it is sufficient to note that the scalar
piece depends only on Reθ, and the differential piece is
dReθ. Note that α is not exact: if it was, then it would
integrate to 0 and no nontrivial bound could be obtained.
The absolute value of this new form is a lower bound on

that of the original form. This may be seen from the
inequality jdθ þ dθ̄j ≤ 2jdθj and the result of Appendix B
(for ϵ ≤ 1):

���� cos
�
θ þ θ̄

2

�
þ ϵ

���� ≤ j cos θ þ ϵj: ð49Þ

As a result of dα ¼ 0, the integral is independent of the
choice of contour γ (as long as γ is homologous to the real
circle). We can therefore evaluate the integral along the real
circle:

Z0 ¼
Z
γ
α ¼

Z
2π

0

j cos θ þ ϵjdθ: ð50Þ

Finally, we observe that jZ0j provides a lower bound for
the quenched partition function:

jZ0j ¼
����
Z
γ
α

���� ≤
Z
γ
jαj ≤

Z
γ
jωj ¼ ZQðγÞ: ð51Þ

Since Z0 is exactly equal to the quenched partition function
on the real circle, we have established that the real circle is
globally optimal.

B. The one-plaquette model

Our second toy model is the following differential form

ω ¼ eβ cos θdθ; ð52Þ

which is a one-plaquette model of the lattice Abelian gauge
theory. There is no sign problem when β∈R; we will allow
β to be complex. The original field space θ is the real circle,
and we parametrize its complexified space as θ ¼ ϕþ iη
with ϕ∈ S1 and η∈R. Following the procedure introduced
in the previous sections, we establish a lower bound on the
quenched partition of Eq. (52) by constructing a closed
differential form α which satisfies jαj ≤ jωj and computing
the absolute value of its partition function. We start by
introducing a new coordinate ϕ0ðη;ϕÞ and writing the new
form α as

α ¼ cmin
η
ðjeβ cosðϕðϕ0;ηÞþiηÞjÞdϕ0: ð53Þ

Here, minη means that the function is minimized by varying
η while ϕ0 is held fixed. The scalar piece of α depends only
on ϕ0 and the differential piece is dϕ0, so α is a closed form.
Since minηðjeβ cosðη0;ϕ0ÞjÞ ≤ jeβ cos θj for any fixed ϕ0 by
definition, the new differential form α satisfies jαj ≤ jωj
when the constant c is chosen such that jcdϕ0j ≤ jdθj.
The choice of the coordinate ϕ0ðϕ; ηÞ determines the

tightness of the lower bound we obtain. To find a useful ϕ0,
it is helpful to inspect the behavior of the absolute value of
ω at η → ∞ and −∞:

jωj
jdθj ¼ exp ðReβ sinϕ cos ηþ Imβ sinϕ sinh ηÞ: ð54Þ

For example, in cases Reβ > 0; Imβ > 0, the behavior of
the form at η → ∞ is

jωj
jdθj →

�
∞ tan−1 ð−γÞ < ϕ < tan−1 ð−γÞ þ π

−∞ else
; ð55Þ

with γ ¼ Reβ=Imβ. The asymptotic behavior at η → −∞ is

jωj
jdθj →

�
∞ tan−1ðγÞ − π < ϕ < tan−1ðγÞ
−∞ else

: ð56Þ

The inverse tangent function is defined to take a value in the
range ½− π

2
; π
2
�. This asymptotic behavior makes it clear that

defining ϕ0 ¼ ϕ will not give a nontrivial bound—for
example, α ¼ 0 for all ϕ0 when Reβ ¼ 0. A useful change
of coordinate is such that the line of fixed ϕ0 connects the
diverging (jωj → ∞) region at η ¼ �∞ and likewise for
the vanishing (jωj → 0) region. On such a line, the new
differential form α takes a nonzero value when its
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asymptotic behavior is divergent, therefore the bound on
ZQ will be nonzero. Noting that the range of ϕ where jωj
diverges at η → ∞ is shifted by

s ¼ tan−1
�
−
Reβ
Imβ

�
þ π − tan−1

�
Reβ
Imβ

�
ð57Þ

in the positive ϕ direction with respect to such a range at
η → −∞, one such change of coordinates is

ϕ ¼ ϕ0 þ s
π
tanh−1ðηÞ: ð58Þ

Note that the scalar part of α is periodic with ϕ0.
Following the choice of ϕ0 in Eq. (58), the constant c

must be chosen to guarantee jcdϕ0j ≤ jdθj. Parametrizing
dθ ¼ dϕþ idη ¼ cos ξþ i sin ξ with −π ≤ ξ < π such
that jdθj ¼ 1, ϕ0 gives

jdϕ0j ¼
���� cos ξ − s

πð1þ η2Þ sin ξ
���� ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
s
π

�
2

s
: ð59Þ

Therefore

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
s
π



2

r ð60Þ

satisfies jdϕ0j < jdθj for any ξ. Putting all elements
together, the differential form is

α ¼ minηðjeβ cosðϕ0þs
πtanh

−1ðηÞþiηÞjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
s
π



2

r dϕ0: ð61Þ

For β with Reβ < 0; Imβ > 0, the differential form α can be
constructed in the same way. Starting by the shifting
constant

s− ¼ tan−1
�
Reβ
Imβ

�
þ π − tan−1

�
−
Reβ
Imβ

�
ð62Þ

and introducing the new coordinate

ϕ ¼ ϕ0 −
s−
π
tanh−1ðηÞ; ð63Þ

the differential form is

α ¼ minηðjeβ cosðϕ0−s−
π tanh

−1ðηÞþiηÞjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
s−
π



2

r dϕ0: ð64Þ

We do not address the region of β with Reβ < 0 because of
the symmetry of the model, that is ωðβ; θÞ ¼ ωð−β; θ þ πÞ.

The upper bound on the average phase of the one
plaquette model is derived by taking the ratio of the
partition function Z and the integral of α. Using the fact
that ϕ0 ¼ ϕ and dϕ0 ¼ dϕ along the real circle, the integral
can be computed as

Z0 ¼
Z

π

−π

minηðjeβ cosðϕ0þs
πtanh

−1ðηÞþiηÞjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
s
π



2

r dϕ0 ð65Þ

for Reβ; Imβ > 0 and likewise for the cases Reβ < 0;
Imβ > 0. In Fig. 2, we show in red line the values of β
where the bound on the average phase jZ=Z0j is 1. The
partition function vanishes at β ¼ 2.404, 5.520, and the
bounds prove that perfect contours do not exist for
the region closed by the red lines. The figure also shows
the regions where perfect contours exist. We constructed
the perfect contours by optimizing the Fourier series

θ ¼ ϕþ i

�
a0 þ

Xn
j¼0

cj cosðjϕÞ þ sj sinðjϕÞ
�

ð66Þ

with n ¼ 10. For the region outside the blue lines, we could
find contours of integration with the average phase ≥0.999
via the Fourier series above. As a consequence of the strong
duality between our bounds and the contour optimization
problem, we know that the gap between the blue and red
lines is due to some combination of the looseness of the
bounds or the restrictive search of perfect contours via the

FIG. 2. The availability and nonavailability of perfect contours
for the one-plaquette model. Perfect contours provably do not
exist for the regions of β closed by the red lines. For the ranges of
β outside the blue lines, prefect contours with the average phase
≥0.999 were constructed. Zeros of the partition function are
marked in green. Note that because the form optimization is done
over a restricted set of differential forms, the red bounds
are not tight.
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Fourier series. In a larger-scale search for contour defor-
mations, this gap may be taken as a sign that a more
intensive search may be profitable.

VII. ABELIAN YANG-MILLS

We will now use the results of the previous section to
establish exponential best-case scaling for the average sign
in lattice Abelian Yang-Mills, across a wide range of
complex couplings. The lattice model being considered
has action

S ¼ β
X
r

½1 − cosðθr;1 þ θrþx̂;2 − θrþŷ;1 − θr;2Þ�; ð67Þ

where θr;i denotes the value of uð1Þ associated to the gauge
link from site r to site rþ î, and β is the complex coupling.
We will restrict ourselves to two-dimensional lattices

with open boundary conditions (or at least two-dimensional
lattices with trivial top homology group). Such systems
may be exactly solved by performing a gauge transforma-
tion that decouples gauge degrees of freedom. The partition
function can be written (up to irrelevant overall normali-
zation) as a product over the N original plaquettes [25,26]:

Z ¼
�Z

2π

0

dθe−β cos θ
�
N
: ð68Þ

As a result, the properties of two-dimensional Abelian
Yang-Mills are determined by the toy integral of Sec. VI B.
As we will see, this extends to contour deformations.
First, let γ1 be a contour deformation for the single-

plaquette theory. This may be extended naturally to a
contour γ ¼ ðγ1Þ×N for use in the N-plaquette theory.
The quenched partition function of this contour is

ZQðγÞ ¼ Zð1Þ
Q ðγ1ÞN ; as a result the average sign obtained

with this family of contours scales exactly exponentially
with N.
Now let γ�1 be the optimal contour for the one-plaquette

theory. It is not a priori obvious that following the
construction above to obtain γ� ¼ ðγ�1Þ×N yields an optimal
contour for the theory with N plaquettes. It is conceivable,
for example, that although the theory itself is local (in the
sense that correlations decay at large distances), the optimal
contour is not. In fact, we can use the results of the previous
sections to show that this is not the case.
Let α1 be a closed differential form dominated by

ω1 ¼ eβ cos θdθ; in other words, a differential form that
yields a lower bound on the quenched partition function
of the one-plaquette model. Just as a contour for the
N-plaquette model can be constructed as N copies of a
single-plaquette contour, we can construct a differential
form αN by wedge product:

αNðθ1;…; θNÞ ¼ ⋀
n
α1ðθnÞ: ð69Þ

A wedge product of closed differential forms α1 is also
closed, and it is similarly easy to verify that it is dominated
by the integrand of the N-plaquette model. The lower
bound on the quenched partition function obtained in this
fashion again scales exactly exponentially with volume:����

Z
αN

���� ¼
����
Z

α1

����N: ð70Þ

Analysis of the one-plaquette model therefore yields
both lower and upper bounds on the optimal contour of the
N-plaquette model. Moreover, by strong duality, the two
bounds coincide. Therefore we see that the factorized
contour constructed as above is in fact optimal (although
not necessarily unique). This result is general enough to
hold for any theory which exactly factorizes.
We conclude by noting, as mentioned in Sec. II C,

perfect contours can be obtained from the analytic con-
tinuation of normalizing flows. In the case of Yang-Mills in
two dimensions, normalizing flows may be easily con-
structed [27], although it appears that not much is known
about their analytic continuation. For the sake of brevity we
will not discuss this connection further.

VIII. FURTHER DISCUSSION

The central achievement of this work is the construction
in Sec. III of a general method for proving lower bounds on
the quenched partition function, independent of what
integration contour is used. Sufficiently strong bounds of
this form would constitute a no-go theorem for the use of
contour deformations alone to cure a sign problem.
Additionally, as seen in Sec. VII, bounds of this form
are naturally exponential in spacetime volume. There is no
apparent obstacle to applying this method to nontrivial
lattice field theories beyond the solvable models considered
in this paper.
In Sec. IV we established that the optimization is such

bounds is strongly dual to the optimization of (generalized)
contours. That is, we showed that if the best possible bound
that can be obtained by the methods of Sec. III is that
ZQðγÞ ≥ Z�

Q, then there is in fact some contour deformation
γ that obtains a quenched partition function of Z�

Q. This
result has two immediate consequences. First, as a philo-
sophical matter, a failure of the contour deformation
method for a particular theory can always be explained
using closed-form-induced bounds. Second, going forward,
searches for good contours of integration can in principal be
augmented by simultaneous searches for closed differential
forms. The searches can be terminated when the contour
optimization approaches the bound optimization; con-
versely if a search is unable to bring the optimum and
the bound close to each other, that is an indication that a
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larger ansatz may be required. This provides a “stopping
criterion” in the training of a contour which has so far been
unavailable.
Note that although there are two convex optimization

problems discussed—that of optimizing the bounds and
that of optimizing generalized contours—the task of
optimizing contour deformations themselves is not convex,
or at least has not been shown to be.
We discussed briefly in Sec. V the relation between locally

perfect contours and the Lefschetz thimbles. The fact that the
thimbles form the ℏ → 0 limit of perfect contours is
suggestive: it indicates that locally perfect contours may
share other properties in common with thimbles even away
from the classical limit. For example: the thimbles form a
linearly independent basis for homology. We have estab-
lished that locally perfect contours form a basis for homol-
ogy, but establishing that this basis is linearly independent (or
finding a counterexample) remains an open problem. (Some
recent related discussion, regarding quantum corrections to
Lefschetz thimbles, may be found in [28].)
Finally, the behavior of perfect contours in the limit of

large ℏ has not yet been determined, beyond the observa-
tion of Sec. V that the imaginary part of the Jacobian must
be exactly constant.
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APPENDIX A: PERFECT CONTOURS
ARE NOT UNIQUE

In this appendix we show, via a counterexample in the
Gaussian case, that perfect contours (satisfying ZQ ¼ jZj)
are in general not unique. Note that this property is special
to multidimensional integrals.
Consider a lattice action with two degrees of freedom:

S ¼ 1

2
ðz21 þ z22Þ: ðA1Þ

This is a solvable theory, equivalent (up to a change of
variables) to free scalar field theory on a lattice with two

sites. The real plane is a perfect contour, but it is not unique.
Let x∈R2, and parametrize a contour by z ¼ Mx for a
2 × 2 complex matrix M of the form

M ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − μ2
p

iμ

−iμ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p �
; ðA2Þ

where μ lies in the interval ð−1; 1Þ. As detM ¼ 1, the
effective action in terms of the parametrizing variable x is
SeffðxÞ ¼ 1

2
xTMTMx. The mass matrix evaluates to the

identityMTM ¼ I, and so the effective action is real for all
x. Note that the action obeys S → þ∞ as x → ∞ as long
as jμj < 1.
Even this one-parameter family of perfect contours is not

exhaustive. For example, it is easy to find perfect contours
in this case that are not flat; that is, for which the Jacobian is
not constant (although its determinant is). We accomplish
this by allowing the rotation parameter μ to vary as a
function of jxj2. Define a contour by

�
z1
z2

�
¼

�
1 iμðjxj2Þ

−iμðjxj2Þ 1

��
x1
x2

�
: ðA3Þ

The Jacobian of the parametrization is

J ¼
�

1 iμþ 2iμ0x2
iμþ 2iμ0x1 1

�
; ðA4Þ

where both μ and its derivative μ0 are implicitly functions of
jxj2. It is apparent that for any function μðjxj2Þ obeying

ðμþ 2μ0jxjÞ2 < 1; ðA5Þ

we have a perfect contour given by Eq. (A3).

APPENDIX B: DERIVATION OF EQ. (49)

Writing θ ¼ ϕþ iη for real ϕ; η, and assuming ϵ∈ ½0; 1�,
we will show that

0≤ jcosϕcoshη− isinϕsinhηþ ϵj2− jcosϕþ ϵj2; ðB1Þ

which is equivalent to Eq. (49). Expanding all terms
yields

0 ≤ cos2 ϕðcosh2 η − 1Þ þ sin2 ϕ sinh2

þ 2ϵ cosϕðcosh η − 1Þη: ðB2Þ

The first and second terms are combined by noting
that 1 ¼ cosh2 η − sinh2 η. Additionally using the identity
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sinh2 η ¼ 1
2
ðcosh 2η − 1Þ we find that the above inequality

is equivalent to

0 ≤
1

2
ðcosh 2η − 1Þ þ 2ϵ cosϕðcosh η − 1Þ: ðB3Þ

As jϵ cosϕj ≤ 1, the above is implied by

cosh 2η − 1

cosh η − 1
≥ 4; ðB4Þ

which can be readily checked.
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