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A new quantum link microstructure was proposed for the lattice quantum chromodynamics (QCD)
Hamiltonian, replacing the Wilson gauge links with a bilinear of fermionic qubits, later generalized to
D-theory. This formalism provides a general framework for building lattice field theory algorithms for
quantum computing. We focus mostly on the simplest case of a quantum rotor for a single compact U(1)
field. We also make some progress for non-Abelian setups, making it clear that the ideas developed in the
U(1) case extend to other groups. These in turn are building blocks for 1þ 0-dimensional (1þ 0-D) matrix
models, 1þ 1-D sigma models and non-Abelian gauge theories in 2þ 1 and 3þ 1 dimensions. By
introducing multiple flavors for the U(1) field, where the flavor symmetry is gauged, we can efficiently
approach the infinite-dimensional Hilbert space of the quantum O(2) rotor with increasing flavors. The
emphasis of the method is on preserving the symplectic algebra exchanging fermionic qubits by sigma
matrices (or hard bosons) and developing a formal strategy capable of generalization to a SUð3Þ field for
lattice QCD and other non-Abelian 1þ 1-D sigma models or 3þ 1-D gauge theories. For U(1), we discuss
briefly the qubit algorithms for the study of the discrete 1þ 1-D sine-Gordon equation.
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I. INTRODUCTION

Lattice field theory, particularly Wilson’s formulation of
quantum chromodynamics [1], now plays a central role in
high-energy physics being capable of ab initio precise
predictions in support of the search for physics beyond the
standard model. This is due to a firm theoretical foundation,
combined with spectacular advances in algorithms on
classical computers soon to approach the exascale. It is
generally accepted that the Wilson Euclidean (imaginary-
time) lattice action lies in the basin of attraction of QCD,
converging to the exact answer in infinite-volume (IR) and
zero-lattice-spacing (UV) limits.
However, the standard Monte Carlo integration is inca-

pable of real-time dynamics. One way to change this
paradigm could be quantum computing. The technology
was proposed more than four decades ago independently by
Benioff [2], Manin [3], and Feynman [4] but is yet to be
fully developed. Quantum simulation of the gauge theory
requires not only the development of quantum computing
technology, but also the transformation of the lattice field

theories to an appropriate Hamiltonian Ĥ expressed in
terms of qubits (sigma matrix operations), as first noted by
Feynman. The first step to convert the lattice action to a
Hamiltonian formulation is straightforward. For example,
for QCD, by taking the time-continuum limit of the transfer
matrix in Wilson’s lattice QCD, one obtains the Kogut-
Susskind (KS) Hamiltonian [5] operator

ĤKS ¼
g2

2

X
hx;yi

Tr½E2ðx; yÞ�

þ 1

2g2
X
x;μ≠ν

Tr½2 −UμνðxÞ −U†
μνðxÞ�

þΨ†D½U�Ψ; ð1Þ

where fhx; yig is the set of all of the pairs of the nearest-
neighbor lattice sites with the specified direction x → y—
i.e., all the directed lattice links. The plaquette operators
UμνðxÞ are defined as

UμνðxÞ≡Uðx; xþ μ̂ÞUðxþ μ̂; xþ μ̂þ ν̂Þ
×U†ðxþ ν̂; xþ μ̂þ ν̂ÞU†ðx; xþ ν̂Þ; ð2Þ

with the Wilson link operators Uðx; yÞ≡ exp½iAðx; yÞ�
determined by the gauge field Aðx; yÞ [6] in the adjoint
of the gauge group. We refer to Eðx; yÞ, which are
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conjugate to the gauge fields Aðx; yÞ, as the electric field
operators. Hence, E2ðx; yÞ is the Casimir of the gauge
group. The quark term isΨ†D½U�Ψ. The symplectic algebra
between Eðx; yÞ and Uðx; yÞ on each link hx; yi preserves
the exact spatial gauge invariance and the Gauss law. It is
then anticipated, based on the Osterwalder-Schrader pos-
itivity, that the unitary evolution operator Uðt; 0Þ ¼
exp½−itĤKS� of the lattice Hilbert space also converges
to the exact quantum dynamics as the UV lattice spacing
and the finite-volume IR cutoff are removed.
The second step, converting the problem into qubit

operators, is more difficult, at least on all proposed hardware
to date. Themain difficulty comes from the fact that the local
variables on a single link, as quantized, act on an infinite-
dimensional Hilbert space. This is the function space L2ðGÞ
on the group manifold of the local gauge groupG. Roughly
speaking, we have a wave function ψðgÞ of the classical
group variable g∈G, which needs to be normalizable. For
example, for QCD, the infinite-dimensional Hilbert space of
the SUð3Þ group manifold at each link must be drastically
reduced. On modern classical computers, this is solved by
the illusion of the continuum with a mild 32- or 64-bit
truncation of floating-point arithmetic approximation. On
the other hand, this Hilbert space must be represented by a
small number of qubits per lattice site on the proposed
quantum hardware with a limited number of qubits at
present. The problem is to invent a new microstructure
for a qubit Hamiltonian operator that falls into the univer-
sality class of the KS Hamiltonian. At least in that sense,
when we take the large-volume and small-lattice-size limit,
we should recover the exact QCD for the low-energy states
near the vacuum.
Various proposals have been recently made to formulate

the effective gauge theory Hamiltonian realized in the
finite-dimensional Hilbert space suitable for quantum
computing. We list some recent works here. The simplest
two-dimensional Abelian gauge theory (the Schwinger
model [7]) has been the active playground as a test bench
of quantum computing for lattice gauge theories, including
some hardware implementations [8–13]. The works [14–16]
incorporate gauge fixing or the Gauss law constraints into
construction ab initio to reduce the required number of
qubits. While the electric flux truncation we consider in our
work is the most naive regularization in the strong coupling
regime, Refs. [17,18] seek a different basis that is applicable
for weak coupling as well. The authors of [19] found
that the orbifold lattice construction of the Yang-Mills theory
expects to have advantages over the KS formulation in some
aspects, including its natural extension to supersymmetric
theories as the original motivation of the invention of the
orbifold lattice. References [20,21] consider the quantum
group deformation of the gauge group as an efficient
regularization of the local Hilbert space. Supported by
hardware-specific motivations, the constructions of quantum

algorithms with spins larger than 1=2, so-called qudits, have
been also investigated [22,23].
A general framework, which is referred to as quantum

links [24–26]—or more properly, its generalization, called
D-theory [27]—has been proposed to achieve the regulari-
zation of the KS Hamiltonian. In D-theory, the E and U
fields are replaced with the quantized Ê and Û operators,
respectively, on each link. These operators are represented
as the bilinears of a small set of fermionic operators. The
fermionic representation is an explicit example of what
Bravyi and Kitaev [28] refer to as local fermionic modes
(LFMs), whose algebra can be represented as products of
hard boson sigma matrices. The basic heuristic to plausibly
reach the correct universality class is (i) to wisely choose
the base lattice to satisfy a maximal set of space sym-
metries, and (ii) to find field operators that still satisfy the
basic symplectic algebra of the link operators and their
conjugate electric operators [29]. It is plausible that by
preserving lattice symmetries and the symplectic structure,
many simple examples can be found in the basin of attraction
of continuum field theory as indeed first conjectured by
Feynman in 1982 [4]. Preserving the fundamental symplec-
tic algebra opens up a range of qubit realizations via
D-theory for efficient quantum computing, as summarized
recently by Wiese in [30] and in an alternative qubit
construction by Liu and Chandrasekharan in [31]. Here,
we restrict our investigation to the simplest example of field
operators on the compact G ¼ Uð1Þ group manifold. The
quantum link model regularization specifically for the two-
dimensional U(1) gauge theory (the Schwinger model) has
been studied in [12,13]. Our work provides the regulariza-
tion of the local U(1) field and its representation as the
composition of the qubit (spin-1=2) operators. This quantum
rotor plays the role of an interesting and nontrivial building
block for the quantum spin and gauge theories.
Of course, establishing the Hamiltonian in the desired

universality class is a difficult problem. It generally
requires both theoretical insight and numerical evidence.
The original D-theory paper argued it for asymptotically
free chiral models in 1þ 1 dimensions and gauge theories
in 3þ 1 dimensions. The universality would be valid with
only a logarithmic-growing layering of a single qubit in an
extra dimension [32]. While this is a modest increase in
the volume, the discovery of other options is anticipated by
the evidence found in [33] of a lattice Hamiltonian for the
1þ 1-D nonlinear O(3) sigma model with only two layers.
The qubit systems exhibit both the UV asymptotic free
fixed point and the IR universality in the continuum. For
our U(1) example, the reader is also referred to the study by
Zhang, Meurice, and Tsai [34]. In their work, it is noticed
that the Berezinskii-Kosterlitz-Thouless (BKT) phase tran-
sition, which is expected for the continuum 2D O(2) (XY)
model, is absent for three-states truncation per site but
appears for five-states truncation or more. The lesson here
is that if the truncation is too drastic, one might be outside
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of the desired universality class. The BKT transition was
also observed on the Euclidean two-dimensional lattice
with the qubit-regularized XY model by translating it to the
dimer model [35].
Here, we consider the limited question of how the use of

M copies of fermionic qubits (referred to as a flavor index
in [32,36]) at each link can converge locally to the KS
Hamiltonian as M → ∞. This sequence provides a qubit
implementation that can be explored with respect to
universality and efficient quantum computing with the
hope that very few qubits per lattice volume suffice.
This paper is also restricted to the simplest example, as
we mentioned: a compact U(1) field manifold formulated in
a way that is capable of generalization to non-Abelian
group manifolds. We would have the finite approximation
of L2ðS1Þ, the Hilbert space of the U(1) theory we study, as
the quantization of the local variable. Even in this Abelian
example, the Lagrangian formalism is mapped to a non-
trivial SUð2Þ quantum rotor as a Hamiltonian, a basic
ingredient of the qubit codes and even their hardware
realization [37,38]. Applications are interesting for a variety
of quantum field theories, not just for gauge theories.
Depending on whether we have certain gauge constraints
or not, what matters is the fact that the fields give an
interesting local Hilbert space structure at a site or link. The
main analysis of local fields can be applied to examples such
as the XY model, the sine-Gordon theory, the Schwinger
model in 1þ 1 dimensions, and gauge theories in 2þ 1 and
3þ 1 dimensions. For example, in the discretized version of
the sine-Gordon model, the local variable can also be taken
to be a periodic variable living on each of the lattice sites
rather than the links. A similar comment would be applied to
nonlinear sigma models on group manifolds, where we
would obtain L2ðGÞ at each site, rather than L2ðGÞ on links
with the Gauss law constraints. In this sense, this paper is
more concerned with the individual manifold for local fields
either on a link or lattice site, rather than the problem of a full
quantum theory. We are asking how to generate local
variables that become bosons (with a nontrivial manifold
and symmetry structure) when the cutoff on the local
variable is removed,while the symmetry structure is realized
exactly.
The paper is organized as follows: In Sec. II, we present

the general algebraic constraint of quantum links for the U
(N) field with multiple flavors. We comment on how the
quantum links with gauged flavor give a description that is
a truncation of the Hilbert space of more general group
manifolds with no additional states. Its geometric inter-
pretation is also discussed specialized to the U(1) case,
followed by a brief comment on the non-Abelian gauge
group case. In Sec. III, we define the truncation of the U(1)
quantum Hamiltonian both for the D-theory flux cutoff and
for the ZN clock rotor fields truncation. In Sec. IV, we
present the translation of the U(1) quantum link operators
with fermionic operators to those with sigma matrices. In

Sec. V, we numerically compare the spectra of the truncated
models in our formalism, as well as that of the ZN clock
rotor fields truncation. Section VI considers briefly the
quantum circuits in order to implement the 1þ 1-D XYand
sine-Gordon models for the lowest triplet truncation, and to
study the phase transition by measuring the entanglement
entropy of the ground states. In Sec. VII, we elaborate
further on our results.

II. SYMPLECTIC ALGEBRA
AND UNIVERSALITY

A Hamiltonian for a classical mechanical system is
defined by the symplectic structure of its P-Q coordinates
expressed as the Poisson brackets. A quantum Hamiltonian,
just as in the classical case, is also defined by the
symplectic structure, promoting the Poisson brackets to
the canonical commutators. Using the KS Hamiltonian as
an example to motivate the D-theory construction, we first
double the phase space by introducing a left-right pair,
ELðx; yÞ, ERðx; yÞ electric fields or gauge generators on
each link, and a pair of forward and backward link
operators Uðx; yÞ and Uðy; xÞ ¼ U†ðx; yÞ:

Ĥ ¼ g2

4

X
hx;yi

Tr½E2
Lðx; yÞ þ E2

Rðx; yÞ�

þ 1

2g2
X
x;μ≠ν

Tr½2 −Uμ;νðxÞ −U†
μ;νðxÞ�: ð3Þ

The fermionic matter term, Ψ†D½U�Ψ, is a straightforward
addition, but not essential for our current discussion. At
first, it might seem strange that one has to double the
variables. This is quite natural when one is studying
motions on a group manifold. This is because we have
two possible group actions on G, by the left and right
multiplications. There is a set of generators for each of
these transformations—i.e., the electric fields.
The full symplectic algebra on each link hx; yi in the

doubled phase space is summarized as

½Eα
L; U� ¼ λαU; ½Eα

L; U
†� ¼ −U†λα;

½Eα
R; U� ¼ −Uλα; ½Eα

R; U
†� ¼ λαU†; ð4Þ

where the λα matrices are the generators of G in the
fundamental representation. EL and ER generate two inde-
pendent copies of G—namely, GL and GR, respectively:

½Eα
L; E

β
L� ¼ ifαβγEγ

L; ½Eα
R; E

β
R� ¼ ifαβγEγ

R;

½Eα
L; E

β
R� ¼ 0: ð5Þ

In other words, the U variables transform in the representa-
tion of ðfund:; fund:Þ ofGL ×GR rather than the adjoint of
G as in the ordinary construction of gauge theories, where
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GL is generated by EL andGR is generated by ER, while the
U† variables are in ðfund:; fund:Þ. The gauge indices ofU
are suppressed in (5).
It is also known that it is convenient to study the left and

right invariant forms, U−1dU and dUU−1, which lead to
velocities vL ¼ U−1U̇ and vR ¼ U̇U−1. Each of these can
serve as a basis for velocities, and they are clearly related to
each other by

vR ¼ UvLU−1: ð6Þ

When one is careful with these velocities, we get canonical
conjugates to the group variables that encode the symmetry.
These are Lie algebra valued, generating group trans-
formations in the Hamiltonian sense, and the left and right
actions on G commute with each other. These are the E
operators themselves.
The original Hamiltonian is then recovered with the

constraint of unitarity and the constraint inherited from the
velocities in Eq. (6) on each link hx; yi:

U†ðx; yÞUðx; yÞ ¼ 1;

ERðx; yÞ ¼ Uðx; yÞELðx; yÞU†ðx; yÞ: ð7Þ

Preserving the symplectic structure would mean that
either we keep Eqs. (4) and (5), or we keep Eq. (7). If we
keep both, we have the full L2ðGÞ, which is infinite-
dimensional. It can be seen in the sense that U operators
change the angular momenta of the wave function for the
compact Lie group G. In the simple case where G ¼ Uð1Þ,
U is charged, and powers ofU increase the charge, which is
in Z. If we impose invertibility of U, the charge must be
unbounded above and below, as acting with U is invertible.
For U to be invertible in the non-Abelian case (for unitarity
of U), the angular momenta similarly cannot have bounds.
A more precise statement is that there is a linear combi-
nation of components of U that can be considered as the
highest weight state ofG ×G. This is a smooth function on
G which does not vanish everywhere; hence, its powers
generate new nontrivial functions of L2ðGÞ. The powers of
this function increase the weight of the function in L2ðGÞ as
viewed from theG ×G Lie action on L2ðGÞ. For the notion
of weight to make sense, we need to preserve the Lie
algebra relations (5), so that there is a clear action by the Lie
algebra on the states. A finite-cutoff Hilbert space cannot
accommodate arbitrarily high weight representations of G.
Basically, acting with U enough times cannot be com-
pletely undone, and this conflicts with the invertiblity of U
as a matrix.

A. Fermionic D-theory algebra

In this section, we specifically pick the gauge group to be
G ¼ UðNÞ. This still demonstrates the more general frame-
work of the D-theory discretization than that for the simpler

Abelian case, U(1), which will be our main focus for the
later sections.
A straightforward discrete representation that exactly

preserves the symplectic algebra in Eqs. (4) and (5)
replaces the single link field on a compact group manifold
with a bilinear of fermion operators as

Ui
j → Ûi

j ¼ a⃗i · b⃗†j ¼
XM
m¼1

ðamb†mÞij;

ðU†Þji → ðÛ†Þji ¼ b⃗j · a⃗†i ¼
XM
m¼1

ðbma†mÞji : ð8Þ

Notice that the matrix elements of the link operators are
no longer complex numbers, but rather operators. We
denote that by putting the “hat” notations on top of the
operators. The scalar product implies a sum over the vector
of M flavors of creation and destruction operators:
a⃗i ¼ ðai1; ai2;…aiMÞ, b⃗j ¼ ðbj1; bj2;…; bjMÞ. The indices i
and j are color indices running from 1 to N. All the 4NM
fermionic operators aimðx; yÞ and bimðx; yÞ per link obey the
standard anticommutator relations of single fermionic
degrees of freedom, as introduced in [32,36]. The sym-
plectic algebra Eq. (4) fixes the representation of the
electric flux:

ðÊLÞij ¼ a⃗†j · a⃗
i ¼

XM
m¼1

ða†mamÞij;

ðÊRÞij ¼ b⃗†j · b⃗
i ¼

XM
m¼1

ðb†mbmÞij; ð9Þ

reproducing the exact gauge algebra in Eq. (5). Although
this seems cumbersome, the a operators carry the left action
and the b operators carry the right action. In this way, EL
and ER have been separated into completely distinct
variables. Each flavor of a carries the same representation
with respect to the left Lie algebra: the fundamental. The
same is true for b, but carrying the antifundamental. The
flavor index m only appears in sums, so the flavor
symmetry UðMÞ can be thought of as a local constraint
on each link. This constraint ties the left and the right
actions to each other eventually.
The resulting fermionic qubit form, referred to in Bravyi

and Kitaev [28] as local fermionic modes, is a small finite
Fock space on each lattice link. The original link variables
Uðx; yÞ commute with each other, resulting from the
unitarity constraint Eq. (7); whereas in the fermionic
representation, this is not maintained. The only nonzero
commutator is local to each link:

½Ûi
jðx;yÞ;ðÛ†Þkl ðx0;y0Þ� ¼ δxx0δyy0

�ðÊLÞilδkj − ðÊRÞkjδil
�

⇒ ½Ûðx;yÞ; Û†ðx0;y0Þ�ij¼ δxx0δyy0N
�ðÊLÞij− ðÊRÞij

�
:

ð10Þ
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Thus, a link matrix is no longer normal, and as a
consequence, it breaks the unitarity constraint. The sym-
plectic algebra at each link treats EL and ER as independent
velocity coordinates, conjugate to noncommuting position
operators Û and Û†.
This breaking should be interpreted in its entirety as an

irrelevant UV cutoff effect. As we go to the continuum
limit, with sums of multiple paths between distant sources,
this noncommutation due to the infrequent intersection at
the cutoff scale should vanish. Moreover, when averaging
over paths for long distances, we would also abandon the
constraintU†U ¼ 1, which is not satisfied when we use the
expectation values for U and U† separately.
It should also be noted that this construction of operators

in the multiflavor fermionic Hilbert space satisfying the
symplectic algebra is not unique. Rather, it provides a
general framework with multiple solutions that can be
adapted to better approximate the infinite-dimensional
Hilbert space with a finite-dimensional space and provide
alternative qubit implementations to optimize quantum
codes. Indeed, this flexibility of the D-theory framework
is what we exploit in the current application for U(1). As we
will show explicitly for the U(1) example, the multiflavor
fermionic space factorizes into superselection sectors,
which can be modified to give a sequence of bosonic
qubit models restoring the zero commutator in the limit of
M → ∞. It is useful to construct a variety of D-theory
candidates to explore our U(1) examples, which will be
carried out in Sec. IV.
It is important to note that the discrete representation of

the link and the electric operators constructed above are the
generators of the Uð2NÞ Lie algebra:"

ÊL Û†

Û ÊR

#
i

j

¼
"
a⃗† · a⃗ a⃗† · b⃗

b⃗† · a⃗ b⃗† · b⃗

#
i

j

: ð11Þ

Hamiltonian evolution remains on this Uð2NÞ group
manifold at each link. It is remarkable for gauge theories
that the quantum link Hamiltonian preserves exactly the
local symmetry rotation at each site. The construction of the
formalism would also apply to a model with a global Lie
group symmetry with a compact manifold. One example of
this are the spin models, such as the 1þ 1-D chiral theory,

Ĥchiral ¼
X
x

Tr½Ê2
LðxÞ� þ Tr½Ê2

RðxÞ�

þ λ
X
hx;yi

Tr½2 − ÛðxÞÛ†ðyÞ − ÛðyÞÛ†ðxÞ�; ð12Þ

with global UðNÞ × UðNÞ symmetries. The term with the
coupling λ is the square of the discretized differentiation
ðÛðxÞ − ÛðyÞÞ†ðÛðxÞ − ÛðyÞÞ. The spin theory will have
global symmetry generators ĴL ¼Px ÊLðxÞ and ĴR ¼P

R ÊRðxÞ, so that ½ĴL; Ĥ� ¼ ½ĴR; Ĥ� ¼ 0, where all fields

transform as ÛðxÞ → gÛðxÞh−1 for common g, h. Precisely
determining whether or not this radical reduction of the
degrees of freedom is still capable of reaching a universal
continuum fixed point is generally a difficult dynamical
question. We will not attempt to solve this problem here.
We also refer the reader to Ref. [27] for other group

manifolds. For example, the algebraic structures for SOðNÞ,
SUðNÞ, and SpðNÞ gauge theories naturally lie in the
SOð2NÞ, SUð2NÞ, and Spð2NÞ algebras, respectively, as
well as the O(N), UðNÞ ⊗ UðNÞ quantum spin models.

B. Restoration of the continuum Hilbert space

Our goal here is to show that when M → ∞, we should
recover the Hilbert space of the original U variables that
would enter in the KS formulation. Although this illumi-
nates our method, the reader may choose to go directly to
the more intuitive geometrical interpretation discussed in
Sec. II C or the concrete construction carried out in Sec. III
on the U(1) example. It is possible to show in general that
the state space is easily projected into a subspace with each
link represented by a few hard bosons degrees of freedom.
This representation is trivial for U(1) and only requires a
local Jordan-Wigner transformation inside the group at
each link. In that formulation, the entries of the matrices U
are scalar functions of the group elements. These also
commute with each other, and their polynomials generate
the space of L2 functions on the group manifold G. The
Hilbert space L2ðGÞ itself is given by the following
definition. We need wave functions from the group mani-
fold to the complex numbers

ψ∶ G → C; ð13Þ

with the inner product implemented as

hψ jφi ¼
Z

dgψ�ðgÞφðgÞ; ð14Þ

where dg is the Haar measure on the group manifold, which
is the unique group-invariant measure. The trivial function
ψðgÞ ¼ 1 is group invariant. All other wave functions can
be obtained from this by polynomials of the U;U−1 matrix
component functions and then taking the L2 completion.
We want to show that our quantum link procedure

approximates this L2ðGÞ Hilbert space. It is convenient
for us to consider a slightly modified realization of the U
variables as bilinear of the fermions. As described in
Eq. (8), the operators Û and Û† leave a total occupation
number unchanged. There is an automorphism of fermion
algebras ajm ↔ c†jm and a†mj ↔ cmj , which makes it possible

to describe Û as made purely from raising operators and Û†

from lowering operators. Namely, they become Û ∝ a ·
b† ≡ c† · b† and Û† ∝ a† · b≡ c · b. As we noted, the
contractions of the flavor indices can be thought of as
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gauging the UðMÞ symmetry. If we also include the left Lie
algebra action of UðNÞ and the right action, the degrees of
freedom on a link are charged under the UðNÞL ×
UðMÞ×UðNÞR symmetry. Under this symmetry, the oper-
ators transform as in Table I. The advantage of this setup is
that the standard vacuum of the b, c fermions is neutral with
respect to all the symmetries; hence, it is gauge invariant.
Let us call this standard vacuum jΩi. We can reach other
gauge-invariant states by acting on jΩi with gauge-invari-
ant operators under UðMÞ—namely, the matrix elements of
Û and Û†. Notice that Û†jΩi ¼ 0, but Û does not
annihilate it. This means that Û and Û† act asymmetrically
on the reference state jΩi. The complete set of states is built
by acting with many Û operators. The Û operators
commute with each other, so their actions are just as
commuting bosonic generators.
The Hilbert space obtained this way can be decomposed

into the irreducible representations of UðNÞL × UðNÞL. A
state ÛnjΩi has n upper indices with respect to UðNÞR, and
n lower indices with respect to the left UðNÞL. Because of
the bosonic statistics, permutations of upper indices can be
undone by a change in the order of the product, so long as
the permutation is turned over to the lower indices.
Projecting into different representations is done by these
permutations, and it corresponds to a Young diagram
(tableau) representation with n boxes. One of the diagrams
for, e.g., n ¼ 10 is

ð15Þ

The diagram for the lower indices is the same, but since the
indices are lowered, they are in the conjugate representa-
tion. In the intermediate flavor index, the fermionic
statistics requires transposing the Young diagram. This
argument appeared in [39] (see also [40] and references
therein). The Hilbert space can be therefore decomposed
into the sum of the tensor products of an irreducible
representation of UðNÞ and its conjugate, where each
representation RY is classified by a Young diagram Y:

Hilb ∼⨁
Y
ðR̄Y ⊗ RYÞ ∼⨁

Y
HilbðYÞ: ð16Þ

Here in the Hilbert space, each summand is represented by
one copy of the Young diagram for, say, the upper indices,
with the understanding that the conjugate representation is
giving the representation of the other UðNÞ in the lower
index structure.
We need to show that when we take M → ∞ for this

Hilbert space [Eq. (16)] in our quantum link formulation,
we can recover the Hilbert space L2ðUðNÞÞ for the KS
formulation. The constant function ψðgÞ ¼ 1∈L2ðUðNÞÞ
plays the role of the vacuum j0i. The excited states are
described by the harmonic functions on UðNÞ. In
L2ðUðNÞÞ, both U and U† act nontrivially on the vacuum,
whose actions are different from the actions we have on the
fermion reference vacuum state jΩi. This demands us to
find the correct vacuum state j0i in the Hilbert space of Û
corresponding to ψðgÞ ¼ 1. For any Lie group G, we can
now appeal to the Peter-Weyl theorem. This theorem states
that when we decompose L2ðGÞ into representations of the
left (GL) and right (GR) symmetries of the group multi-
plication, we find that GL ×GR is decomposed into a direct
sum of the products of their irreducible representations:

L2ðGÞ ¼ ⨁
R
R̄ ⊗ R: ð17Þ

In this sum, all irreducibles of G appear exactly once. If we
compare it to the description above around jΩi, we
obviously have a mismatch: the UðNÞ representations are
classified by pairs of Young diagrams with some con-
straints rather than with a single Young diagram. In the
double Young diagram, one Young tableaux is for boxes
(they count powers ofU), and the other one is for antiboxes
(they count powers of U†) [41]. The constraint is that the
longest column of the box tableau plus the longest column
of the antibox tableau needs to add up to less than or equal
to the rank of the group,N in this case. This is the constraint
that says contractions are trivial: Ua

bðU†Þbc ¼ δab.
Let us look at how one of these pairs of tableaux,

denoting a single representation, can be represented graphi-
cally. For example, for Uð5Þ, we can take

ð18Þ

The second tableau with the filled boxes is the one with
antiboxes. It is turned 180 degrees and put at the bottom of
the diagram. The total vertical size is N (¼ 5 in this case).
The constraint is such that the two tableaux do not overlap
horizontally.

TABLE I. The representations of the fermion operators, as well
as the bilinear Û, under the left and right color gauge symmetries
and the flavor gauge symmetry. The conjugate annihilation
operators are in their conjugate representations.

UðNÞL UðMÞ UðNÞR
c† N M̄ 1
b† 1 M N̄

Û ∝ c† · b† N 1 N̄
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The main idea to show that we can write the Hilbert
space with these pairs of Young diagrams in terms of single
Young diagrams is as follows: We choose as a reference
state a tableau that is filled all the way down to the bottom
N rows, with K boxes on each row. That is, we choose as a
new vacuum a tableau that is actually a singlet of SUðNÞ,
but that carries U(1) charge NK. That is, we choose as a
new vacuum a Young diagram (for, say, N ¼ 5 and K ¼ 6)

ð19Þ

where we have filled the boxes up to the maximum allowed
depth N. These states are unique, because they are one-
dimensional representations of UðNÞ once we fix the
charge. If we want to represent Eq. (18) relative to this
ground state, we add to the reference state the boxes of the
fundamentals in the upper corner, and we subtract the
antiboxes on the bottom corner. For the above example with
N ¼ 5,

ð20Þ

Notice also that the representations of SUðNÞ that appear
on both the L2ðGÞ and the fermion representation have the
same dimension. To get the U(1) charge correctly for
L2ðUðNÞÞ in the fermion formulation, what we have done
in practice is to shift the U(1) charge so that the new
vacuum has a trivial charge. Happily, we see that we can
match the representations of UðNÞ with a few boxes. These
are the representations with small Casimir. The constraint
on M tells us that the maximum width of the fermion
tableaux is M, so that to recover the Hilbert space of
L2ðUðNÞÞ we need to take M → ∞ and shift the charge
enough so that the room on the left to remove boxes is as
large as needed. The most symmetric way to do this is to
choose K ¼ M=2.
This shows that at least around the new ground state j0i,

we recover the representation of the Hilbert space we
want—namely, L2ðUðNÞÞ with a cutoff that depends onM.
The gauge invariance relative to the flavor UðMÞ shows we
have no additional states to worry about. Computing the
matrix elements of U, U† between states is beyond the
scope of the present work and will be treated in more detail
in a future publication.

C. Geometrical interpretation

Here we present the geometrical interpretation of the
above approximation of the L2ðUðNÞÞ space. Let us
consider for the time being the simplest case of U(1).
By means of the above construction with bifermions, we
get the Lie algebra of Uð2Þ. The diagonal Uð1Þ ⊂ Uð2Þ
plays no role, as it commutes with all the generators and
therefore decouples. More precisely, acting with any of the
other elements of the algebra will not change the U(1)
diagonal charge, so it will act as a c-number when we think
of a physical realization. We are left over with the
symplectic structure of the Lie algebra of SUð2Þ.
Is there another way to motivate this? The answer is yes.

The idea is that the classical phase space of the original
problem of the U(1) theory leads to a cylinder: the tangent
bundle of the circle as in Fig. 1. This has an infinite volume,
and therefore the Hilbert space is infinite-dimensional. We
can ask if there is any other two-dimensional manifold with
a finite volume and a U(1) symmetry. The answer is, not
surprisingly, yes; the two-sphere (Fig. 2) satisfies that
condition [42]. The symplectic structure of the topological
two-sphere can also be written in terms of the commutation
relations of the angular momentum operators. They play
the role of x, y, z coordinates, but they are quantized. This
would lead us to recover the formulation above in terms of
SUð2Þ without ever mentioning the fermions. Upon quanti-
zation, we should get a fixed SUð2Þ representation: a fixed
value of the quadraticCasimir, corresponding to x2 þ y2 þ z2

for the classical manifold. Adding more flavors in the earlier
discussion with bifermions corresponds to having a larger

FIG. 1. The phase space of the original U(1) theory, which has
infinite volume.

(a) (b)

FIG. 2. (a) The approximationwith a two-sphere∼SUð2Þ=Uð1Þ.
The equator is where the low-energy physics resides and wants to
bematched with the dynamics on the cylinder. (b) Having a larger-
dimensional representation of SUð2Þ (i.e., adding more flavors)
corresponds to having an elongated shape with a larger volume.
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dimension of the SUð2Þ representation—i.e., a larger value
of the quadratic Casimir leading to a larger volume.
This phase space is the homogeneous space manifold
SUð2Þ=Uð1Þ ≃ CP1, which is the complex projective plane
of dimension 1. To quantize this quotient space, we only need
to choose the magnetic flux through the sphere (we need to
choose a line bundle over the projectivemanifold to define the
allowed wave functions).
What should be remembered is that the metric of the two-

sphere does not mean much as far as the symplectic
structure is concerned. So, we could just as well have an
elongated sphere. This is so because we are studying
Hamiltonian physics on the sphere and not a sigma model.
What matters is how different functions on the geometry
generate dynamical flows. When we elongate the sphere
further, we can produce a cylinder in the limit of infinite
elongation. We can approach the infinite volume of the
cylinder this way as we desire. A classical Hamiltonian
function on the center band of the cylinder and the one on
the center band of the elongated sphere could be very
similar. The former is usually represented by the kinetic
term p2

θ, plus any small perturbation in the angular variable
(the base coordinate) θ. In the latter case, p2

θ is replaced by
L2
z , where Lz is one of the three angular momentum

generators. This band is where the low-energy physics
of the small kinetic term is concentrated. At least semi-
classically, one can argue that if one low-energy band of the
cylinder leads to the correct universality class of some
favored physics, so does a sphere that is enough elongated
to have a big enough volume to capture this band.
The generalization for multiflavor convergence to con-

tinuum non-Abelian group manifolds is more involved. We
outlined the method based on a more group-theoretical
convergence to the continuum Hilbert space by means of
the Peter-Weyl theorem in Sec. II B. One can ask how to
interpret this procedure geometrically as well as the
elongated sphere for the U(1) case: what is the manifold
to be quantized? The structure of coherent states in [32]
seems to have the answer: for UðNÞ, it is the complex
Grassmannian, GðN; 2NÞ ∼ Uð2NÞ=UðNÞ × UðNÞ. This is
also a complex geometry of dimension 2N2 and thus can be
viewed as a phase space. More importantly, it has a group
action by UðNÞ × UðNÞ acting on the left, so it is a
candidate phase space with the correct group action. At
the level of Lie algebras, the Lie algebra of Uð2NÞ provides
the equivalent coordinates to x, y, z above. One can assume
that this type of Grassmannian structure will be important
in all such realizations for different compact groups.

III. U(1) QUANTUM ROTOR
WITH UV CUTOFF

In this section, we demonstrate the UV cutoff that the
D-theory sets for the first step toward having a finite-
dimensional Hilbert space for the Abelian U(1) group

manifold. In order to test the fidelity of our U(1) qubit
representations, we compare it to the full U(1) quantum
rotor

H ¼ g2

2
E2 þ 1

2g2
ð2 −U −U†Þ ð21Þ

with symplectic algebra

½E;U� ¼ U; ½E;U†� ¼ −U†; ð22Þ

with ½U;U†� ¼ 0 given from the unitarity UU† ¼ 1. The
operators with this required algebra can be represented with
a scalar field θ∈ ½0; 2πÞ as E ¼ −i∂θ andU ¼ expðiθÞ. It is
convenient to rescale the Hamiltonian in this representation
by 1=g2 ¼ ffiffiffi

h
p

so that

H ¼ −
1

2
∂
2
θ þ

h
2
ð2 − 2 cos θÞ: ð23Þ

The flux representation is, of course, just the Fourier
transforms, hljθi ¼ expðilθÞ, with the delta-function-
normalized states Ujθi ¼ expðiθÞjθi, or in the flux basis,
Ejli ¼ ljli. Given that θ takes a value in the compact
space of S1, the flux l takes quantized values l∈Z.
Explicitly writing the matrix representation of the
Hamiltonian in this flux basis,

hl0jHjli ¼ l2

2
δl0;l þ

h
2
ð2δl0;l − δl0þ1;l − δl0−1;lÞ: ð24Þ

This can be truncated by a cutoff either in the flux basis jli
or in the field basis jθi. We will subsequently show that the
multiflavor D-theory construction can be reformulated to
exactly reproduce the flux cutoff L of this rotor with M ¼
2L fermion flavors and therefore converge exactly to the
full rotor in the M → ∞ limit. The flux truncation of the
infinite-dimensional Hilbert space is carried out by restrict-
ing the flux to l∈ ½−L; L� [43]. This UV cutoff is the first
step that D-theory takes; we will call this the flux truncation
and the D-theory truncation interchangeably. To illustrate,
let us write down the matrices of the operators for the L ¼ 2
cutoff case:

U → UL¼2 ¼

26666664
0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

37777775; ð25Þ

BERENSTEIN, KAWAI, and BROWER PHYS. REV. D 110, 014506 (2024)

014506-8



E → EL¼2 ¼

26666664
2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2

37777775: ð26Þ

The field truncation is more subtle. One can, in comparison,
think of discretizing the field to the Z2Lþ1 values with
θ ¼ 2πk=ð2Lþ 1Þ with k∈ 0; 1;…2L and choose again to
restrict the flux l∈ ½−L;L�with a cyclic generator E for the
Z2Lþ1 ⊂ Uð1Þ subgroup. This discretization gives the same
dimension of the Hilbert space as the flux truncation with
the same L. Illustrating the 2Lþ 1 ¼ 5 state truncation, the
operators are

U → UZ5
¼

26666664
0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

37777775; ð27Þ

E → EZ5
¼

26666664
2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2

37777775: ð28Þ

We refer to this discretization as the clock model truncation.
Note that the electric fields are identical, but the U
operators are different between these two approaches.
The first flux truncation approach—i.e., the approach
that D-theory takes, preserves the symplectic algebra
½E;U� ¼ U and ½E;U†� ¼ −U† but breaks the unitarity
constraint U†U ¼ 1, whereas the clock model does the
opposite, preserving U†U ¼ 1 but not the symplectic
algebra. Preserving both leads to an infinite-dimensional
Hilbert space, which is exactly what we need to avoid [44].
More specifically, in the flux truncation (i.e., D-theory), the
unitarity is violated with the nonzero commutator

½U;U†�l0;l ¼ δl0;−Lδl;−L − δl0;Lδl;L: ð29Þ

Notice that these are concentrated on the largest l
exclusively, so they can be considered as only living in
the UV region of the model, keeping the infrared physics
roughly the same. On the other hand, the clock model
truncation violates the symplectic algebra as ½E;U�l0;l ¼
−2Lδl0;1δl;2Lþ1. The naive comparison of these two erro-
neous commutators by their matrix norms (k½U;U†�k ¼ 1
for the flux truncation, whereas k½E;U�k ¼ 2L for the
clock model truncation) leads us to expect that the flux

truncation would give a better approximation than the clock
model truncation. We will numerically compare the per-
formance of the two truncation approaches in Sec. V in
detail and confirm this expectation.
In Sec. V, we compare the low spectrum as a function of

h in the strong coupling limit h ¼ 0 and the weak coupling
limit h ¼ ∞. We show that the low spectra are, of course,
exact at h ¼ 0 and remarkably accurate for a large range of
values of h ¼ 1=g4, even for a L ¼ 2 or L ¼ 4 flux cutoff.
This appears to be remarkable or even paradoxical, since
for the flux truncation, the field variables obey the
nilpotency U2Lþ1 ¼ 0 and therefore have exactly degen-
erate zero eigenvalues. This would seem to be a poor
starting point in comparison with the eigenvalues of the
clock model e2πk=ð2Lþ1Þ. In the clock model truncation, U
and U† are normal, so both their real and imaginary parts
are Hermitian matrices that commute and can be diagon-
alized simultaneously. Hence, their eigenvalues can be
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FIG. 3. (a) The seven eigenvalues for the clock model potential
VðθÞ ¼ 1 − cosðθÞ (blue dots) are compared to the eigenvalues of
the D-theory potential V ¼ 1 − ðU þU†Þ=2 (orange dots).
(b) The clock model eigenvalues Vðπm=LÞ (blue dots) are
mapped to θ∈ ½−π; π�, compared with the D-theory spectra
(orange dots) for L ¼ 8 duplicated by reflection: θ → −θ.
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measured simultaneously, and we can use that double
measurement to determine the phases e2πk=ð2Lþ1Þ. For the
flux truncation, on the other hand, the point is that U itself
does not quite have a direct correspondence to the quantum
rotor field U ¼ expðiθÞ. The physical correspondence
becomes legit for the flux truncation once we take the
combinations such as U þ U†, which now becomes
Hermitian, as illustrated in Fig. 3. On Fig. 3(a), we observe
a nearly harmonic oscillator low spectrum (orange) for the
D-theory truncation even for L ¼ 3. Figure 3(b) shows a
remarkable match for D-theory for all angles even at a small
cutoff L ¼ 8.
Note also that the field truncation with only discrete

symmetry surviving has no natural generalization to non-
Abelian groups; there is no infinite sequence of finite
discrete subgroups that uniformly populate their manifolds.
For example, for SUð2Þ, the largest such finite group that is
uniform on SUð2Þ is the 120-element icosahedral group,
and it is known that it fails to be in the universality class of
the two-color gauge theory [45].

IV. COMPLEXITY OF QUBIT REALIZATIONS

We now turn to our multiflavor framework with the
D-theory rotor Hamiltonian [Eq. (21)], replacing the
variables U and U† with the operators Û and Û† given
by a sum over the M-flavor fermions:

Û†¼
XM
m¼1

a†mbm; Û¼
XM
m¼1

b†mam: ð30Þ

There are 2M fermions in total. Remembering that the Fock
space for a single fermion is two-dimensional, either j0i
(unfilled) or j1i (filled), the total Hilbert space on which Û
and Û† are acting has the dimension 4M. We note that the
fermionic operators imply the nilpotency ÛMþ1 ¼ 0, which
coincides with the flux truncation with M ¼ 2L. However,
we will see that it does not represent the same matrices for
this truncation.
The M-flavor fermionic D-theory form starts in a 4M-

dimensional Hilbert space, but if we impose the half-filling
condition for each flavor due to the fermion number
conservation as

a†mam þ b†mbm ¼ 1 ðNo sumÞ; ð31Þ

we are now in the Hilbert space of dimension 2M, allowing
us to represent the operators as M qubits or hard bosons.
The notion of filling for each fixed m commutes with the
Hamiltonian, so this needs to be fixed in the initial
conditions.
The point to be made is that in the sums of Eq. (30), only

terms that preserve every single one of these individual
fermion number combinations of aþ b appear, so they can
be diagonalized ahead of computations. These actually

generate a subgroup of the original UðMÞ flavor sym-
metries which are flavor-diagonal [that is, this is a set of
Uð1ÞM generators that has been fixed]. If we impose the full
SUðMÞ symmetry, the filling must be the same for all m.
This is the most symmetric choice and the one that leads
also to the largest Hilbert space for the gauge link.
In this subspace, for each flavor, we have the isomorphic

mapping

fa†b; b†a; a†a − b†bg → fσþ; σ−; σ3g; ð32Þ

and there are no fermion statistics in the σ on the right. The
sigma matrices are expressed as

σþ ¼
�
0 1

0 0

�
; σ−¼

�
0 0

1 0

�
; σ3¼

�
1 0

0 −1

�
: ð33Þ

We identify the fermionic basis states with the spin states,
denoting the a-fermion-filled state as j↑i and the b-filled
state as j↓i. In this form, the full representation of SUð2Þ
available by theseM flavors is⊗M

m¼1 2. This representation
is reducible, and its irreducible decomposition contains the
irreducible Mþ 1 representation, which we need to match
with the flux truncation Hamiltonian in Eq. (26). For
example, for the M ¼ 4 case, the decomposition of the
full ⊗4

m¼1 2 representation contains the irreducible 5
representation, on which the target Hamiltonian acts, as

⊗
4

m¼1
2 ¼ 1 ⊕ 1 ⊕ 3 ⊕ 3 ⊕ 3 ⊕ 5: ð34Þ

The Young diagram expression of this irreducible
decomposition is in Fig. 4. The simplifications where we
start with 2M fermion qubits and end up with onlyM qubits
encode an M þ 1-dimensional Hilbert space inside a 2M-
dimensional Hilbert space. We have cut the number of
qubits by half with the half-filling condition. Still, the
dimension of the Hilbert space where our physics is
encoded grows exponentially with the number of states.
We will name this property an exponential format.
The Hilbert space on which the Mþ 1 representation

acts is spanned by the states that are fully symmetric on the
flavor symmetry—i.e., the states

jmi ∝ j↑…↑|fflffl{zfflffl}
m

↓…↓|fflffl{zfflffl}
M−m

i þ permutations ð35Þ

FIG. 4. The Young tableau representation of the SUð2Þ irre-
ducible decomposition [Eq. (34)]. We can embed the U(1)
Hamiltonian [Eq. (21)] with the flux cutoff of L ¼ 2 into the
symmetric representation 5 of SUð2Þ, which is represented as the
last term of the right-hand side (the four boxes aligned in
a single row).
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form ¼ 0;…;M [46]. The “þ permutations” terms contain
all the possible permutations of m up spins and M −m
down spins. In this sense, if we gauge the permutation
symmetry of the qubits, we get the unique representation of
dimension 2Lþ 1. This can be justified by the gauging of
the UðMÞ flavor symmetry of the original D-theory
formulation. The combinations in Eq. (32) are invariant
only under a Uð1ÞM subgroup of UðMÞ rather than the full
UðMÞ. The individual σz’s are linear combinations of the
Cartan generators. The commutant of Uð1ÞM inside UðMÞ
also includes the permutations of the U(1), which should
also be gauged. It justifies this prescription for keeping only
the symmetric states.
The ingredients for the construction of the qubit

Hamiltonian are the Cartan-Weyl basis operators
L̂þ ¼ L̂x þ iL̂y, L̂− ¼ L̂x − iL̂y, and L̂z in the Mþ 1
irreducible representation of SUð2Þ—i.e., the spin-M=2
operators. This truncation of the U(1) fields with the spin-
M=2 operators is investigated by Zhang et al. [34] to study
the effect of this spin truncation on the BKT phase
transition of the O(2) model. We can express these
Cartan-Weyl basis operators in the full ⊗M

m¼1 2 represen-
tation—i.e., in the M-qubit representation—as

Û† → L̂þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM=2ÞðM=2þ 1Þp XM
m¼1

σþm; ð36Þ

Û → L̂− ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM=2ÞðM=2þ 1Þp XM
m¼1

σ−m; ð37Þ

Ê → Lz ¼
1

2

XM
m¼1

σ3m: ð38Þ

The normalization factors of L̂� are given so that their
actions on the j0i state match with those of the original U
operators, and hence the low spectra of the qubit
Hamiltonian replicate those of the continuum
Hamiltonian in the small-h region. The actions of the
L̂þ and L̂− operators on the symmetric states [Eq. (35)] are
to raise and lower them, respectively, as

L̂þjmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1ÞðM −mÞ
ðM=2ÞðM=2þ 1Þ

s
jmþ 1i;

L̂−jmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðM −mþ 1Þ

ðM=2ÞðM=2þ 1Þ

s
jm − 1i; ð39Þ

and the L̂z operator acts as the shifted number operator

L̂zjmi ¼
�
m −

M
2

	
jmi; ð40Þ

since the commutation relations of L̂þ and L̂− with L̂z are

½L̂z; L̂þ�¼ L̂þ; ½L̂z; L̂−� ¼−L̂−; ð41Þ

which match with Eq. (22), whereas the commutator of L̂þ
and L̂− is L̂z, which violates the unitarity ½U;U†� ¼ 0. If we
consider the mapping E → L̂z,U → L̂þ, andU† → L̂−, the
Hamiltonian

Ĥqubit ¼
g2

2
L̂2
z −

1

2g2
ðL̂þ þ L̂−Þ ð42Þ

has the same symmetry as the continuum Hamiltonian
Eq. (21) does (more precisely, the different pieces in the
Hamiltonian have the same algebra).

A. Phase-space considerations

One can try to understand this a little bit better from the
point of view of Hamiltonian classical mechanics on the
phase space of the cylinder and the sphere. The reason to do
so is to understand better the relation between the two
dynamical systems.
Basically, after turning to the problem of writing in terms

of qubits and focusing on the correct gauge-invariant states,
the original problem is reduced to the study of a single copy
of the SUð2Þ Lie algebra hiding in the big Hilbert space. It
is the physics of this sub-Hilbert space that we want to
analyze by classical methods to get an intuition.
On the cylinder (the tangent bundle on the circle), we

have variables α (the periodic variable) and pα, with the
Poisson bracket fα; pαg ¼ 1. The cylinder Hamiltonian is

H ¼ 1

2
p2
α − h cosðαÞ: ð43Þ

By contrast, on the sphere, we have a pair of spherical
coordinates θ̃, ϕ̃, with ϕ̃ periodic and with the Poisson
bracket fϕ̃; θ̃g ¼ A= sin θ̃ (this is the inverse of the volume
form in spherical coordinates, up to a rescaling factor, which
we call A). The conjugate variable to ϕ̃ is actually pϕ̃ ¼
cos θ̃=A rather than θ̃. In the Cartesian coordinates, this is the
z coordinate, and that is identifiedwithLz after rescaling.On
the other hand, Lþ ∝ eiϕ̃ sin θ̃, which is identified with
eiϕ̃

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
∼ eiϕ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − L2

z=L2
p

. That is, when we take the
classical identification α≡ ϕ̃, which results from taking the
classical periodicity of the variables into account, and
include the constraint L2

x þ L2
y ¼ L2 − L2

z , where L2 is a
c-number, we find that the Hamiltonian actually takes
the form

H ¼ 1

2
p2
α − h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

p2
α

p2
max

s
cos α: ð44Þ
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For this to work, we need to have pα ¼ Lz, pmax ¼ L, and
A ¼ 1=pmax ¼ 1=L, so that pα ¼ pmax cos θ̃. The normali-
zation of the naive kinetic term has been scaled to match
what we need.
We can now expand it in powers of 1=pmax as

H ¼ 1

2
p2
α − h cosðαÞ þ h

2

p2
α

p2
max

cosðαÞ þ � � � ; ð45Þ

so when we take pmax → ∞, we recover the cylinder
Hamiltonian. At finite pmax, there are what should be
interpreted as higher-derivative corrections in the Hamil-
tonian. These are suppressed by the cutoff pmax. The
quantization of this system leads to the quantum
Hamiltonian Eq. (42), provided that 1=g4 ∝ h=pmax. Here,
we need to remember that Lþ; L−; Lz have roughly the same
normalization. One can say that the quantity 1=pmax is
playing the role of ℏ in a quantum expansion. This is also
related to thevolumeof phase space, which is computed to be
proportional to pmax ≃ ð2Lþ 1Þ in the Planck units.
In a field theory setup, these higher-derivative correc-

tions are expected to be irrelevant perturbations, at least by
naive power counting: they affect the UV dynamics but
should flow to the same universality class in the infrared.
These scale like the electric field squared, times the
magnetic field squared (the naive plaquette). In that vein,
the low-energy spectrum of Eq. (42) should converge to the
low-energy spectrum of the KS Hamiltonian with the
normalization of the equation Eq. (23) when we take
the cutoff to infinity as well.
One can try to understand a similar idea for more general

groups that are not just U(1). As argued earlier, we should
study the quantization of the Grassmannian GðN; 2NÞ
when we are discussing UðNÞ links, which are where
the coherent states of [32] take values. One would then try
to understand how to take the semiclassical double scaling
limit correctly to get a cylinder over UðNÞ—namely, the
tangent space of UðNÞ as a phase space, with a Hamiltonian
and a parameter playing the role of pmax. This type of
analysis is beyond the scope of the present work.

B. Exponential formats

The Hamiltonians in Eqs. (21) and (42) are not exactly the
same, due to the difference between the coefficients of the
actions of the raising and lowering operations. In the flux
truncation, they are always constant (normalized to 1),
whereas those in SUð2Þ are not constant but rather depend
on the target state, aswe saw inEq. (39). This is also true in the
classical limit described by Eq. (45), where there are higher-
derivative corrections to the Hamiltonian. Also, remember
that the Hamiltonian in Eq. (42) acts on a Hilbert space of
large dimension 2M, but that only the states in the Mþ 1
irreducible representation matter and are invariant under all
constraints. We dubbed this property as being an exponential

format, where the dimension of the Hilbert space grows
exponentially in the number of states we need.
We can try to do better at the level of matching the

operators in the subspace of interest in the total Hilbert
space, by adding corrections to the operators getting rid of
the differences below the finite cutoff. This should be
equivalent to adding (or depending on the point of view,
subtracting) irrelevant operators to compensate for the
differences in the formulation.
To construct U and U† with our qubit construction, we

may use one of the two Ansätze:

Û0 ¼
XM=2−1

k¼0

akL̂
k
zL̂−L̂

k
z; Û00 ¼

XM=2−1

k¼0

bkðL̂−L̂þÞkL̂−: ð46Þ

The first one, for what we call Û0, can also be thought of as
having Lz=Lmax corrections to Uþ, as one would expect
from the higher-derivative expansion [Eq. (45)]. As such,
the coefficients should be suppressed by the powers of
1=L2k

max, up to normal ordering ambiguities.
One can compute the coefficients ak or bk so that the

action of Û0 or Û00 is the same as U in Eq. (21). For the first
Û0 for example, the action of each L̂k

zL̂þL̂k
z operator is as

L̂k
zL̂−L̂

k
z jmþ 1i ¼ Amkjmi; ð47Þ

where Amk (m;k¼ 0;1;…;M=2−1) is a ðM=2Þ × ðM=2Þ-
dimensional matrix with the elements of

Amk ¼
��

m −
M
2
þ 1

	�
m −

M
2

	�
k

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1ÞðM −mÞ
ðM=2ÞðM=2þ 1Þ

s
: ð48Þ

The coefficients ak can be computed by solving the linear
equation

XM=2−1

k¼0

Amkak ¼ 1: ð49Þ

A similar procedure can be taken to find the coefficients for
the other case of Û00 as well. Note that the operators Û0 and
Û00 constructed with the appropriate coefficients ak and bk
are identical in the space spanned by the states in Eq. (35),
even though they are not in the full M-qubit space.
Since the values of Amk and Bmk grow exponentially with

k, the values of ak and bk are expected to decay exponen-
tially for higher-k terms. Indeed, [34] numerically demon-
strates that ak shows the behavior of exponential decay with
k. For a small cutoff L ¼ 1, 2, 3, the Û0 operator can be
constructed as
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Û0
L¼1 ¼ L̂−;

Û0
L¼2 ¼ L̂− þ

�
−
1

2
þ

ffiffiffi
6

p

4

	
L̂zL̂−L̂z;

Û0
L¼3 ¼ L̂− þ

�
−
2

3
−

ffiffiffi
2

p

12
þ 3

ffiffiffiffiffi
30

p

20

	
L̂zL̂−L̂z

þ
�
1

12
þ

ffiffiffi
2

p

24
−

ffiffiffiffiffi
30

p

40

	
L̂2
zL̂−L̂

2
z ; ð50Þ

and the Û00 operator can be constructed as

Û00
L¼1 ¼ L̂−;

Û00
L¼2 ¼

 
3

ffiffiffi
3

2

r
− 2

!
L̂þ þ

 
−3

ffiffiffi
3

2

r
þ 3

!
L̂−L̂þL̂−;

Û00
L¼3 ¼

 
5 − 9

ffiffiffi
6

5

r
þ 5

ffiffiffi
2

p !
L̂−

þ
 
−16þ 27

ffiffiffi
6

5

r
− 11

ffiffiffi
2

p !
L̂−L̂þL̂−

þ
 
12 − 18

ffiffiffi
6

5

r
þ 6

ffiffiffi
2

p !bðL−L̂þÞ2L̂−: ð51Þ

For the expressions of Û0, notice that numerically
we have −1=2þ ffiffiffi

6
p

=4 ∼ 0.11, and −2=3 −
ffiffiffi
2

p
=12þ

3
ffiffiffiffiffi
30

p
=20 ∼ 0.049 ∼ ð2=3Þ2 � ð0.11Þ is roughly the sup-

pression one would expect in terms of the 1=p2
max counting.

The point is that if our goal is to produce the flux-
truncated KS Hamiltonian on the nose, it can be done.
Ideally, one would actually use Lþ; L− instead and try to
argue that one is in the same universality class. The main
reason is that the Hamiltonian in Eq. (42) is made of sums
of products of only two sigma matrices. These can be
readily implemented as two-qubit gates, perhaps with some
swaps of qubits. Therefore, it provides a more efficient
implementation on a NISQ device, where reducing the
number of total gate operations per qubit is essential to get
to a result that one can trust before one loses coherence on
the device.

C. Linear formats and sparsity

The formulation we have used to construct the qubit
Hamiltonian with links in Eqs. (50) and (51) requires at
leastM ¼ 2L qubits, discarding all other representations in
the irreducible decomposition of ⊗M

α¼1 2 other than the
Mþ 1 representation. For large L, the Hilbert space
grows exponentially in L, losing the quantum advantage
locally [47]. We now introduce another qubit representation
with which one can store information with only a loga-
rithmic number of qubits, using M qubits to represent the
M þ 1-dimensional Hilbert space.

One needs only nmin ¼ ⌈ log2ðM þ 1Þ⌉ qubits by
keeping the other representations by mapping the
j0i; j1i;…; jMi states to the computational basis (i.e.,
the eigenbasis of σ3) states as

jmi ↦ jbnmin
i ⊗ jbnmin−1i ⊗ � � � ⊗ jb1i ⊗ jb0i; ð52Þ

where bnmin
bnmin−1b1b0 is the binary representation of the

integer m. In this encoding, the dimension of the Hilbert
space in which we embed our problem grows linearly with
the dimension of the Hilbert space we want to encode. We
would call this a linear format. Notice that this setup starts
with the truncation and tries to fit it into a Hilbert space in
an arithmetic way without starting with the symmetry
algebra first. It is more economical in terms of qubits,
but the generalization to non-Abelian fields for even a
polynomial format is not straightforward, and even if
possible, presents a challenging research project in qubit
algebra [48].
We begin by introducing the M-bit quantum adder [49]:

A ¼ σþ0 þ σþ1 σ
−
0 þ σþ2 σ

−
1 σ

−
0

þ � � � þ σþnmin−1σ
−
nmin−1 � � � σ−1 σ−0 ; ð53Þ

which maps the computational basis states as jmi →
jmþ 1; nmini mod 2M. Then, the adder can be modified
to represent the raising operator Ûmin replacing the mod by
annihilation for the highest state as ÛminjMi ¼ 0. To do this
in general, we multiply the projector P from the right to A,
where P is defined to act as the identity for the j0i;…; jM −
1i states and vanish at least the state jMi and possibly also
the higher states. For M ¼ 2 (L ¼ 1), for example, using
the three-dimensional subspace of the two-qubit space with
a mapping given as

j0i ↦ j00i; j1i ↦ j01i; j2i ↦ j10i; ð54Þ

the Ûmin, Û
†
min, and the corresponding Êmin operator are

expressed as

Û†
min ¼ AP ¼ 1

2
σþ0 þ σþ1 σ

−
0 þ 1

2
σ31σ

þ
0 ; ð55Þ

Ûmin ¼ P†A† ¼ 1

2
σ−0 þ σ−1 σ

þ
0 þ 1

2
σ31σ

−
0 ; ð56Þ

Êmin ¼ −
1

2
σ31 −

1

2
σ31σ

3
0; ð57Þ

given that one of the possible choices of the projector
P is

P ¼ I −
ðI − σ31ÞðI − σ30Þ

4
: ð58Þ
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For another example of M ¼ 4 (L ¼ 2), using the five-
dimensional subspace of the three-qubit space with a
mapping given as

j0i ↦ j000i; j1i ↦ j001i; j2i ↦ j010i;
j3i ↦ j011i; j4i ↦ j100i; ð59Þ

the Ûmin, Û
†
min, and the corresponding Êmin operator are

expressed as

Û†
min ¼ AP

¼ 1

2
σþ0 þ 1

2
σþ1 σ

−
0 þ 1

2
σ32σ

þ
0

þ 1

2
σ32σ

þ
1 σ

−
0 þ σþ2 σ

−
1 σ

−
0 ; ð60Þ

Ûmin ¼ P†A†

¼ 1

2
σ−0 þ 1

2
σ−1 σ

þ
0 þ 1

2
σ32σ

−
0

þ 1

2
σ32σ

−
1 σ

þ
0 þ σ−2 σ

þ
1 σ

þ
0 ; ð61Þ

Êmin ¼ −
1

4
σ31 þ

1

4
σ31σ

3
0 −

1

2
σ32 −

1

2
σ32σ

3
0

−
3

4
σ32σ

3
1 −

1

4
σ32σ

3
1σ

3
0; ð62Þ

given that one of the possible choices of P is

P ¼ I − σ32
2

: ð63Þ

These operators also satisfy the commutation relations
Eq. (22), so the Hamiltonian constructed from these
operators,

Ĥmin ¼
g2

2
Ê2
min −

1

2g2
ðÛmin þ Û†

minÞ; ð64Þ

preserves the original symplectic algebra. Drawing on the
extensive literature on efficient and robust quantum arith-
metic [48] should help in designing optimal circuits for this
linear formation.

V. SPECTRAL MATCHING OF
D-THEORY TRUNCATION

In this section, we discuss and numerically compare the
low spectra of the 0þ 1-D quantum rotor Hamiltonian with
the U(1) symmetry defined in Eq. (21) with those with a
small flux cutoff L, a discretization of the group manifold
of U(1) to ZN (clock model), and the spin operators L� as
Û operators (quantum link model) constructed with M
flavor qubits.

First, we compare the spectra with the very small cutoff
giving the five-dimensional Hilbert space and those with a
slightly larger cutoff with the nine-dimensional Hilbert
space (Fig. 5) with the exact spectra. We define a new
coefficient τ parametrizing the inverse coupling h as
h ¼ τ=ð1 − τÞ, allowing us to plot the whole h∈ ½0;∞Þ
with the finite τ∈ ½0; 1Þ, besides rescaling the Hamiltonian
by ×ð1 − τÞ. We can see from the figures that for the strong
coupling region (small h), we do not need a large cutoff L
to reach the precise solution for all of the truncation
approaches, whereas we do need a large L for the weak
coupling. We can also observe that the lower eigenenergies
converge to the exact values faster than the higher energies.
Let us also note that the spectrum of the clock model
deviates from the exact spectrum with smaller h than that
with the flux cutoff does.
It is also worth noting that the quantum rotor can be

locally approximated as the quantum harmonic oscillator
(QHO) around θ ¼ 0. By expanding the cos θ term by θ, we
can decompose the Hamiltonian to the nonperturbed QHO
part H0 ¼ p2=2þ hθ2=2 with the momentum p ¼ −i∂θ
and the perturbation part H1 ¼ hð−θ4=4!þ θ6=6! − θ8=
8!þ � � �Þ, which are the higher-order terms of the cosine. In
the large-h region, the low spectra tend to condensate
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FIG. 5. The lowest five eigenvalues as functions of τ for the
quantum rotor Hamiltonian computed with (a) a small flux cutoff
with (left) L ¼ 2 and (right) L ¼ 4, (b) the clock model
discretization with (left) Z5 and (right) Z9, and (c) the spin
operators L̂� as the Û operators with (left)M ¼ 2L ¼ 4 and with
(right) M ¼ 2L ¼ 8, compared with the spectrum of the exact
Hamiltonian (black dashed curves).
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around θ ¼ 0, which makes the perturbation H1 and the
periodic boundary conditions of θ trivial, so they should
exhibit the even-spaced spectra as well as the well-known
QHO spectra with En ¼

ffiffiffi
h

p ðnþ 1=2Þ for n ¼ 0; 1; 2;….
To see if the two truncations can reproduce this QHO-like
behavior with large h, we compare the spectra of the
Hamiltonians with the truncations with the spectra of
the QHO (Fig. 6). These QHO solutions correspond to

the topologically trivial trajectories with zero winding,
whereas the topologically nontrivial trajectories start to
appear as nonperturbative effects in the small-h region once
we take the path integral for quantization [50]. Sincewe need
to simulate the behavior with large h, we use larger
truncations, giving the Hilbert space with dimension 21.
As seen in the figure, the flux-truncatedHamiltonian and the
clock model will reproduce the QHO spectra in the large-h
regions until they start to experience non-negligible errors
due to the truncations. However, the spectra computed with
the spin truncation are completely off from theQHO spectra,
which can be expected given that the dominating potential
term 2 − Û − Û† ¼ 2 − L̂x in the large-h region has the
even-spaced eigenvalues of 2 − 2m=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM=2ÞðM=2þ 1Þp
with m ¼ −M=2;−M=2þ 1;…;M=2 − 1;M=2, which
grow linearlywithh, instead of its square root. This indicates
that we need the corrections we proposed in Sec. IV B for
very large h. At intermediate h, we cannot neglect the term
with L2

z , and the agreement should be better.
To evaluate the performance of the flux truncation, we

can also look at the breaking of the unitarity constraint in
the eigenbasis for the low spectrum:

hEjj½U;U†�jEki; ð65Þ

which is, without the truncation or with the clock model
discretization, exactly zero. For j and k with the same
parity, the matrix elements are all zero. The nonzero
elements (i.e., j and k with the different parities) for small
j and k of this matrix as functions of h with a small cutoff
(L ¼ 2 and L ¼ 4) are as in Fig. 7, demonstrating that the
effects of the breaking on the low-energy states are small
for smaller j and k, for smaller coupling h, and larger cutoff
L. This behavior of the breaking of the zero commutator
validates that the flux-truncated Hamiltonian describes the
effective theory of the exact U(1) quantum rotor in the
small-h region.

VI. APPLICATIONS TO
1+ 1 FIELD THEORIES

We can think of simple 1þ 1-D models to which our
scheme can be applied for the simulations of their dynam-
ics. An interesting choice is the sine-Gordon model with
the Lagrangian

LSG ¼ 1

2
∂μϕ∂

μϕþm2

β2
ð1 − cosðβϕÞÞ: ð66Þ

This is an intriguing exactly integrable theory with a strong-
weak S-duality to the massive Thirring model as shown
in [51], demonstrating that the fermionic excitations in
the massive Thirring model correspond to the solitons in
the sine-Gordon model. We note that the simulation of the
massive Thirring model on a quantum circuit is studied
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FIG. 6. The lowest five eigenvalues of the quantum rotor
Hamiltonian as functions of h computed with (a) a flux cutoff
with L ¼ 10, (b) the group manifold discretization to the Z21

group, and (c) the spin operators withM ¼ 20, compared with the
spectrum of the QHO (black dashed curves).
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in [52]. Both forms could be formulated for qubits with
complimentary regions to find a common parameter space
exhibiting the duality.
Given that the latticized derivative ∂μϕ ≔ 1

a ðϕðxþ μÞ −
ϕðxÞÞ is small in the low-energy range where a is the lattice
spacing, we can map the conjugate momentum field
as πðxÞ ¼ ∂0ϕðxÞ → Ex and the compactified field
expðiβϕðxÞÞ → Ux leading to the Hamiltonian as

HSG ¼ 1

2

X
x

½E2
x þ hð2 − Ux − U†

xÞ�

þ J
X
hx;yi

ð2 −UxU
†
y −UyU

†
xÞ; ð67Þ

where h ¼ m2=β2 and J ¼ 1=2a2β2. We fix the lattice
spacing to be a ¼ 1 from now on. We note that for h ¼ 0,
this is the classical XY model or the integer-spin XX chain
which has been numerically studied in more detail by
Zhang, Meurice, and Tsai [34] with tensor networks and the
range of truncation of L ¼ 1, 2, 3, 4. Among the interesting

observations, while all preserve the gapless phase, the
model has an infinite-order Gaussian transition for L ¼ 1,
and only for L ≥ 2 has a BKT transition. This is a nice
example of how physics can depend crucially on the size of
truncation. It has been known that the sine-Gordon model
effectively describes the vortices in the XY model with β
corresponding to the inverse temperature, and its BKT
transition is well studied from its renormalization flow on
the sine-Gordon side [53].

A. Real-time evolution

It is plausible that for the small-M qubit formulation, we
can explore the small-h and -J region. This indicates that
the qubit Hamiltonian is expected to be the effective theory
of the exact Hamiltonian in the low-temperature limit.
Here, we give the smallest truncation L ¼ 1 and simulate
the real-time evolution of a state under the Hamiltonian
with quantum circuits defined on six lattice sites. For
L ¼ 1, the HamiltonianHSG can be represented with sigma
matrices on a 1þ 1-D lattice (ignoring the constant) as

HSG ¼ 1

8

X
x

σ3x;1σ
3
x;2 −

h

2
ffiffiffi
2

p
X
x

ðσ1x;1 þ σ1x;2Þ

−
J
2

X
hx;yi

X2
i;j¼1

ðσþx;iσ−y;j þ σ−x;jσ
þ
y;iÞ: ð68Þ

Since the first electric term, the second potential term,
and the third interaction term of HSG do not commute with
each other, we use the Trotter-Suzuki approximation to
simulate the time-evolution operator expð−iHSGtÞ on a
quantum circuit with a small time step Δt≡ t=n with
n ≫ 1:

expð−itHSGÞ≈
�Y

x

exp

�
−iΔt

1

8
σ3x;1σ

3
x;2

	
×
Y
x

exp

�
iΔt

h

2
ffiffiffi
2

p ðσ1x;1þσ1x;2Þ
	

×
Y
hx;yi

Y2
i;j¼1

exp

�
iΔt

J
2
ðσþx;iσ−y;jþσ−x;jσ

þ
y;iÞ
	�

n
:

ð69Þ

We call the product inside the bracket a Trotter step,
and the realization of the single Trotter step is depicted
in Fig. 8. Each unitary rotation component can be realized
with simple one- or two-qubit quantum operations.
Equation (69) means that we can approximate the time
evolution e−itHSG on a quantum circuit by iterating the
Trotter step circuit many times with a small time step of Δt.
To test the reliability of the approximated time-evolution
operator on a quantum circuit, we construct and simulate
the circuit using qiskit with six lattice sites—i.e., twelve
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FIG. 7. The nonzero matrix elements in the eigenbasis as the
functions of h for the low spectrum of Eq. (65) with the flux
cutoffs (a) L ¼ 2 and (b) L ¼ 4.
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qubits. We pick the two-point correlation function in the
spatial dimension (specifically, the leftmost lattice site x
and the middle point y) as the physical quantity to be
measured from the circuit:



cos
�
ϕðxÞ − ϕðyÞ�� ≈ 1

2
hU†

xUy þ UxU
†
yi

¼ 1

4

X2
i;j¼1

hσ1x;iσ1y;j þ σ2x;iσ
2
y;ji: ð70Þ

Since the observable U†
xUy þ UxU

†
y can be expressed as a

sum of the product of two sigma matrices with our
construction, it can be measured by simple two-qubit
measurements on the quantum circuit. We measure each
two-qubit Pauli with 4096 shots of the circuit to approxi-
mate the expectation value. We choose the parameters of

the Hamiltonian to be h ¼ 1 and J ¼ 1, and the state jψi ¼
j00…0i corresponding to the state whose sites all have the
flux of l ¼ −1 as the initial state which can be easily
realized on a quantum circuit. The result of the simulation
is Fig. 9, from which we can see that if the value of the time
intervalΔt is small enough (≈0.1), the quantum circuit well
approximates the exact time evolution.

B. Gapped/gapless phase transition

As we mentioned above, the interesting physical feature
to investigate for these 1þ 1-D U(1) models in the
continuum is the BKT transition. Since the BKT transition
is due to the topological defects in the model, it is regarded
as a topological phase transition. For example, the tran-
sition in the 2D classical XY model can be explained as the
confinement/deconfinement phase transition of the vortex-
antivortex pairs. The topologically ordered phase is gapped
—i.e., it has a finite correlation length ξ. The topological
phase transition closes this mass gap and allows the system
to have massless Nambu-Goldstone excitations, and hence
this other phase is critical and has an infinite correlation
length.
We can observe this gapped/gapless transition by com-

puting the entanglement entropy of the ground state. Here
we consider two entropy measures. The von Neumann
entanglement entropy of the ground state for the subsystem
A is defined as SA ≔ −Tr½ρA log ρA�, where ρA is the
density matrix of the ground state in the subsystem A,
defined as ρA ¼ TrAc ½ρ� with the density matrix of the
ground state ρ in the total system A ∪ Ac. The α-Renyi

entanglement entropy is defined as SðαÞA ¼ 1
1−α log Tr½ραA�,

and it is related to the von Neumann entropy by

limα→1 S
ðnÞ
A ¼ SA (the so-called replica trick). It is proven

by Hastings [54] that the entanglement entropy of the
ground state of 1þ 1-dimensional gapped systems obeys
the area law—i.e., it is bounded from above by a constant

FIG. 8. The quantum circuit of the single Trotter step for the
sine-Gordon model for two lattice sites with the periodic
boundary conditions (top). The index i represents the position
of the link, and α represents the flavor. The circuit components
Z and � represent the operators expð−iΔt 1

8
σ3x;1σ

3
x;2Þ (can be

realized as shown on the bottom left) and expð−iΔt J
2
×

ðσþx;iσ−y;j þ σ−x;iσ
þ
y;jÞÞ (bottom right), respectively.

FIG. 9. The simulated time evolution of the value 1
2
hU†

xUy þ UxU
†
yi with jψðt ¼ 0Þi ¼ j00…000i with different time intervals

(Δt ¼ t=n ¼ 0.1, 0.2, 0.4).
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which is independent of the subsystem size n. On the other
hand, the entanglement SA needs a logarithmic correction
logðnÞ in a gapless phase or a critical point in the
thermodynamic limit—specifically, it is proven for
1þ 1-dimensional systems by Calabrese and Cardy [55]
by means of the two-dimensional conformal symmetry. For
the finite-volume cases, they prove that the Renyi entropy
for the 1þ 1-D quantum system with conformal symmetry
on the finite lattice is (ignoring the constant term)

SðαÞA ¼ −
αþ 1

α

c
6
log

�
N
πa

sin

�
πα

N

		
; ð71Þ

which converges to the von Neumann entropy in α → ∞ as

SA ¼ c
3
log

�
N
πa

sin

�
πn
N

		
: ð72Þ

FIG. 10. The (a) von Neumann and (b) (α ¼ 2)-Renyi entropies for a system with the size ofN ¼ 10 and subsystems with sizes n ¼ 2,
3, 4, 5 of the ground state with the periodic boundary conditions. The insets are the values of SA at β ¼ 0.01 as functions of the
subsystem size n. The value of the central charge c is calculated by fitting the functions in Eq. (72) and Eq. (71) (blue curves),
respectively, giving the estimations of c ≈ 1.019 for the von Neumann entropies and c ≈ 1.032 for the 2-Renyi entropies.
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In the thermodynamic limit N → ∞, it converges to the
logarithmic correction of logðn=aÞ. c is the central charge
of the conformal theory in the same universality class as the
quantum system.
Zhang [56] computes the von Neumann entropy of the

ground state of the Hamiltonian Eq. (67) with h ¼ 0 and
open boundary conditions, and it is confirmed that the
gapped/gapless transition happens with L ¼ 1 and the
system size of N ¼ 32, 64, 96, 128, with the subsystem
size n ¼ N=2 using the density matrix renormalization
group. As we mentioned, the results from [34,56] indicate
that this model with L ¼ 1 has the transition called the
infinite-order Gaussian transition. This transition has a
distinct critical behavior from the BKT transition. This
distinction is due to the existence of the hidden SUð2Þ
symmetry, which can be obviously seen from the spin-1
XXZ chain with negative infinity anisotropy and analyti-
cally continuing it to the small-β region of the model under
consideration. The infinite-order Gaussian transition still
closes/opens the mass gap as well as the BKT transition.
We reproduce this result by computing the von Neumann
and 2-Renyi entropies from the exact diagonalization of the
Hamiltonian with the much smaller system size of N ¼ 10
and the subsystem size of n ¼ 2, 3, 4, 5 as functions of β
with two disjoint boundaries (Fig. 10) with the periodic
boundary conditions. In the small-β region, the entangle-
ment entropies depend on the subsystem size, and the gaps
become smaller as n increases, as we expect for the gapless
phase. On the other hand, in the large-β region, the
entropies become independent of n, so the system must
be in the gapped phase. That we can observe this gapped/
gapless transition with only a small system size of N ¼ 10
means that even with the current or near-future digital
quantum device consisting of less than a hundred qubits,
we may reproduce interesting physical phenomena related
to a continuous field theory. Let us note that many efficient
quantum algorithms for realizing the ground state on qubits
for a given spin Hamiltonian have been proposed such as
the variational quantum eigensolver [57], the adiabatic state
preparation [58], and imaginary time evolution [59,60],
etc., as well as the fact that one can efficiently evaluate the
2-Renyi entropy on a digital quantum device by computing
the expectation value hGSj ⊗ hGSjSWAPAjGSi ⊗ jGSi,
where jGSi ⊗ jGSi are the two copies of the ground state
and SWAPA is the operation that swaps the qubits in the
subsystem A between those two copies [61]. Such expect-
ation values of a unitary operator can be computed using,
for example, the Hadamard test.
We can also find the central charge c of this model by

simply fitting the values of SA and Sð2ÞA in the gapless phase
to the functions Eq. (72) and Eq. (71), respectively. We fit
their values with β ¼ 0.01, and estimate the value of the

central charges as c ≈ 1.019 for SA and c ≈ 1.032 for Sð2ÞA ,
respectively (the insets of Fig. 10). These almost reproduce
c ¼ 1, which is expected for this class of the model [62,63].

VII. DISCUSSION

In this paper, we have discussed a version of the quantum
link model with gauged flavor symmetry [32,36], focusing
especially on the problem of a U(1) quantum link. The main
problem we have focused on in this paper is how to realize
local degrees of freedom that are effectively bosonic and
have a nontrivial symmetry structure realized on them in
terms of (fermionic) qubits. Generically, these are ingre-
dients that can be used in a variety of field theories, not just
for gauge theories. Such a choice depends on whether one
puts the degrees of freedom on a link or a lattice site, and it
would also depend on whether one imposes a local
symmetry constraint or not, which would involve many
links at a time. A single link/lattice variable would not
know these spatial configurations on its own. The main
problem with bosonic systems is that they naturally have an
infinite-dimensional Hilbert space, even locally. This
needs to be truncated if it is to be simulated on a quantum
computer.
The truncation suggested by the fermionic qubits for

U(1) picks a particular quantization of a system that has an
SUð2Þ symmetry on the phase space, but only a U(1)
symmetry in the Hamiltonian. This gives us a quantum
theory on a two-sphere, which is realized by angular
momentum operators with a fixed value of L2. We showed
in the classical theory and the quantum theory how taking
L2 → ∞ results in the KS Hamiltonian after an appropriate
rescaling of the variables. The physics is in a compact phase
space locally with finite volume in the units of the quantum
ℏ. Taking the volume to infinity can provide the phase
space of a tangent bundle on the U(1) manifold if done
appropriately. We also showed how additional corrections
to the Hamiltonian (which can be thought of as higher-
derivative corrections) could be added so that the naive
flux-truncated KS Hamiltonian for a single variable could
be found exactly, rather than approximately at finite cutoff.
This type of argument suggests that the link variables with
gauge flavor symmetry fall in the same universality class as
KS-type Hamiltonians do in the appropriate limit, without
the need to add these higher-order corrections.
Generalizing this construction to other non-Abelian

symmetry groups seems to require studying the quantiza-
tion on a complex Grassmannian (a compact phase space)
and taking a similar large-volume limit in units of ℏ.
Some special features were found in the U(1) theory,

where the original problem with 2M fermionic qubits could
be reduced to M qubits that are effectively hard bosons:
they commute with each other. The physics requires that the
permutation group between these hard bosons be fully
symmetrized between them to faithfully achieve the flavor
gauge symmetry. The qubit realization of the U;U†

operators resulted in the unique representation that appears
from the addition of angular momentum for these variables,
with maximal angular momentum.
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We studied various versions of the truncated
Hamiltonians that differ from each other in the choices
that are made for these higher-derivative corrections and
found good agreement with the quantum rotor (the KS
Hamiltonian with no cutoff). They supposedly approximate
even for moderate values of the coupling. It is interesting to
study this property further for other models with non-
Abelian symmetry.
We also studied other implementations that are not based

on the fermionic bilinears, butwhere the truncation inHilbert
space is done to minimize the number of total qubits, and the
embedding is more ad hoc (there is no natural symmetry
action on the qubit degrees of freedom; it needs to be built by
hand). At least in this sense, one can talk about the efficiency
of the implementation in terms of resources.
We applied these ideas to the models with two such U(1)

degrees of freedom as would appear in a chiral U(1) model
on a one-dimensional lattice. In particular, we showed how
a simple truncation could be implemented in terms of
explicit gates on a collection of 12 qubits (two per site) and
showed how the Trotter expansion could be executed for
studying the real-time evolution of a simply prepared initial
state. Furthermore, in the U(1) case, we used exact
diagonalization to argue that the ground state on a lattice
of only ten sites was already big enough to show nontrivial
critical behavior in the entanglement entropy when varying
the coupling constant. This suggests that interesting phys-
ics at (or near) criticality can be simulated on a modest
quantum computer with roughly ∼100 qubits, rather than
requiring us to take the large-volume limit first.
What is left out in this study is any serious exploration of

how a minimal number of qubits per lattice site might
preserve the universality class. Indeed, this is a central and
very challenging dynamical problem depending on the
existence of a second-order critical surface. While preserv-
ing the symplectic algebra on the local field is clearly an

attractive requirement, it does not address this problem. As
in the classical Ising Hamiltonian with a single qubit per
site with Z2 reflection, the collective dynamics across the
spatial lattice are sufficient to guarantee universality.
There are many potential routes to universality. For

example, we have also left out the original quantum link
conjecture that in an asymptotically free theory (the non-
Abelian 2D sigma model or the 4D gauge theory), flavors
distributed in an extra dimension are sufficient to guarantee
universality. Such models break the flavor symmetry but
would also reduce the number of quantum gates to be
executed to logarithmic growth in the correlation length.
Our previous work [64], for example, provides such an
implementation for a U(1) gauge theory in 2þ 1 dimen-
sions. One needs to worry that the breaking of the flavor
symmetry done in the Hamiltonian does not pollute the
infrared physics with new degrees of freedom that are not
gapped sufficiently. With full gauging of flavor, as we
studied here, there are no additional singlet states beyond
those required to match the Hilbert space of interest, so the
only question is if we approximated the correct
Hamiltonian well enough in the low-energy sector. A full
treatment of such questions needs to be explored in detail.
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