
Detecting phase transitions in lattice gauge theories:
Production and dissolution of topological defects in 4D compact electrodynamics

Loris Di Cairano ,* Matteo Gori, Matthieu Sarkis, and Alexandre Tkatchenko
Department of Physics and Materials Science, University of Luxembourg,

L-1511 Luxembourg City, Luxembourg

(Received 8 March 2023; revised 6 May 2024; accepted 16 May 2024; published 9 July 2024)

We present the application of microcanonical inflection point analysis (MIPA)—a novel and powerful
method for the systematic identification and classification of phase transitions (PTs)—to the micro-
canonical formulation of lattice gauge theories. Specifically, we explore how this approach sheds light on
collective phenomena such as the emergence of topological order in quantum field theories. As a case
study, we show how to systematically characterize PTs in 4D Uð1Þ lattice electrodynamics. Beyond
identifying the well-established deconfinement PT (DPT) associated with pair dissolution, classified as a
first-order PT, we uncover two higher-order PTs not observed before. Thanks to the application of the
MIPA, we identify an independent third-order PT in the confined phase and indications of a dependent
third-order PT in the deconfined (Coulomb) phase. To gain physical insights into these PTs, we numerically
compute the average number density of monopolar and pair defects as a function of energy. Notably, our
findings reveal that the pair dissolution mechanism extends beyond a singular transitional phenomenon
coinciding with the DPT. Instead, it encompasses a spectrum of transitional phenomena, as indicated by the
rates of acceleration and deceleration in the dissolution of pairs as a function of energy. Finally, we briefly
discuss how such a method can be extended to more complex quantum field theories on a lattice.
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Phase transitions (PTs) are physical phenomena which
involve abrupt and drastic changes in the phase of the
system. They are usually accompanied by the emergence of
collective phenomena, namely, by peculiar behaviors that
emerge from the interactions of individual system’s con-
stituents, where the whole exhibits properties and dynamics
not present in the individual components. PTs are omni-
present in nature, from protein folding in biology to the
formation of stars in astrophysics, or from the super-
conducting PT in solid state physics to the generation of
masses for the weak gauge bosons and fermions known as
the Anderson-Higgs-Kibble mechanism [1–3] in quantum
field theory. In the investigation of transitional phenomena,
two questions are fundamental: (a) how to identify and
characterize PTs in a given statistical ensemble based on a
precise mathematical definition and (b) how to understand
the deep physical origin, i.e., the mechanism for which the
microscopic degrees of freedom interact giving rise to the
macroscopic collective behavior. Focusing on the first
question, the commonly accepted characterization of PTs

is based on the (grand)canonical ensemble exploiting the
Lee-Yang theorem [4,5] which states that PTs necessarily
correspond to nonanalyticities of thermodynamic observ-
ables and they can only appear in the thermodynamic limit.
The Lee-Yang theorem has then established a paradigm,
PT ¼ nonanalyticity ¼ thermodynamic limit, that is impli-
citly assumed to hold for any other statistical ensemble. The
presumed universal character of the Lee-Yang paradigm is
strongly based on the necessity of invoking the thermo-
dynamic limit since, in this limit, one expects the equiv-
alence of ensembles [6], i.e., that all the ensembles provide
the same physical information, no matter about the nature
of microscopic interactions and of the undergoing PTs.
Therefore, the choice of the ensemble is usually considered
arbitrary, and any transitional phenomenon observed
before taking the thermodynamic limit—which cannot
manifest any discontinuity according with the Lee-Yang
theorem–has been regarded as the signal of a (fictitious)
finite-size effect rather than an eventual physical process.
The first results that have questioned the alleged univer-
sality of the Lee-Yang paradigm have been provided by
Ellis, Touchette et al. They have shown that (i) the
equivalence of the ensembles is lost when a first-order
PT occurs [7–10] and, as a consequence of that, (ii) the
microcanonical ensemble is more fundamental than
the canonical one, since, if we are in the presence of the
nonequivalence of ensembles, the microcanonical observ-
ables can be always defined while the canonical ones may
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suffer some mathematical pathologies [9]. See Appendix H
for a brief discussion. On the other hand, substantial efforts
have been made to understand how PTs manifest in the
microcanonical ensemble. Gross proposed the microca-
nonical analysis [11,12] that has then been extended by
Bachmann et al., who developed a novel classification of
PTs in the microcanonical ensemble called microcanonical
inflection point analysis (MIPA) [13–22]. The application
of MIPA to the 2D Ising model has provided remarkable
results: new higher than second-order PTs have been
discovered. These PTs appear at finite size, but survive
in the thermodynamic limit and, in such a limit, do not
manifest any catastrophic behavior [16,23]. Moreover,
MIPA has also proven to be a powerful method for
the classical lattice field theories [24–26] and for
polymers [15,20,27]. Thus, the choice of the statistical
ensemble is not always arbitrary for the purpose of
identifying and classifying PTs. Moreover, in contrast to
the Lee-Yang paradigm, PTs do not necessarily imply the
presence of nonanalytic behaviors of the thermodynamic
potentials, and they can already emerge at finite size. Phase
transitions identified and classified through MIPA in finite-
size systems are not guaranteed to persist in the thermo-
dynamic limit whenever such a limit is relevant and well
defined. However, MIPA is not limited to finite-size
systems but can be applied to systems of any size, even
including infinite size systems, as its effectiveness in
detecting PTs is independent of the system size. For
numerically investigated systems, the persistence of micro-
canonical PTs in the thermodynamic limit can be inferred
through extrapolation from large but finite system sizes.
Within the MIPA conceptual framework, this is achieved by
verifying the persistence of inflection points in the deriv-
atives of entropy as the system size increases. Therefore
MIPA not only accommodates the concept of phase
transition in finite-size systems, but also provides a
classification scheme of PTs in the thermodynamic limit
that is able to detect both the already known PTs and new
PTs that have not been identified using the standard
classification of PTs based on the appearance of nonanalytic
behaviors in the thermodynamic potentials. Furthermore, it
is crucial to emphasize that the PTs identified by MIPA
effectively reflect qualitative and relevant changes in the
collective behavior of microscopic degrees of freedom in
response to slight variations in the control parameter, as
shown in the 2D Ising model [23] and in the current work.
Regarding the second original question, severalmechanisms
have been proposed for explaining the deep origin of PTs;
however, a complete and unified theory of the origin of PTs
has not been reached yet. In this respect, Landau suggested
that the occurrence of PTs is triggered by a spontaneous
symmetry breaking (SSB) mechanism [28,29] which is at
the core of many PTs since it manifests not only in case of
continuous symmetries such as the above-mentioned Higgs
mechanism or the condensation mechanism of the Nambu-
Goldstone bosons in condensed matter [30,31] but even for
discrete symmetries such as for instance, the ZN center

symmetry in pure SUðNÞ Yang-Mills theories [32,33]. In
spite of its success, Landau’s mechanism is not all encom-
passing since PTs can emerge also in the absence of a SSB as
rigorously proved by Mermin and Wagner [34,35] and by
Elitzur [36]. The Berezinskii-Kosterlitz-Thouless (BKT) PT
provides the most emblematic example [37–39] observed in
the 2D XY model where the transition is triggered by the
emergence of topological defects, the vortices, that combine
forming pairs of opposite “charge” called vortex-antivortex
pairs whose dissociation causes the BKT PT. Another pair-
dissolution mechanism that involves topological defects
known as magnetic monopoles [40–46] is observed in
Abelian lattice gauge theories (LGTs) as shown by
Banks et al. [40–45,47] and gives rise to the so-called
deconfinement PT (DPT). Of course, the emergence of
topological defects, not being a peculiarity of systems
with a nonbroken symmetry, can also be observed in those
systems where the symmetry is broken [48,49]. Moreover,
other classes of topological defects can be found in nature,
such as skyrmions [50,51], cosmic domain and string in
cosmology [52], wall domains in spin systems [53], and in
liquid crystals [54].
In this paper, motivated by the considerations mentioned

above, we investigate the transitional phenomena occurring
in (compact) electrodynamics 4D Uð1Þ on a lattice com-
bining the microcanonical formalism developed by
Callaway [55–61] with MIPA. Besides the identification
of the DPT, classified by MIPA as a first-order PT in
agreement with the literature [43,44,62–66], our analysis
reveals the presence of a novel (independent) third-order
PT in the confined phase whereas, in the deconfined
(Coulomb) phase, we have indications of the emergence
of a (dependent) third-order PT. We then try to shed light on
the deep origin/mechanism leading to these transitions
studying the behaviors of topological defects, namely,
the density of isolated monopoles and monopole-antimono-
pole pairs as functions of energy.
Let us consider an Abelian gauge field AμðxÞ discretized

over a d ¼ 4 dimensional Euclidean lattice with N sites per
side and a lattice spacing a, so that the configuration degrees
of freedom areϕn;μ ≔ ag0An;μ ∈ ½−π; π�where g0 is the bare
coupling constant. Each field variable ϕn;μ is related to the
link connecting the lattice point n∈ ½1; N�4 to its nearest
neighbor in the space-time direction μ, i.e., nþ μ. We
employ the gauge-invariant EuclideanWilson’s action [67],

SWðϕÞ ≔ g−20
X
□

�
1 − cos

�
ΘμνðnÞ

��
; ð1Þ

where ℏ ¼ 1, the sum is over the lattice plaquettes,
□ ¼ fn; μ; νg, uniquely identified by a site and two
independent directions on the lattice. Then, ΘμνðnÞ ≔
ϕn;μ þ ϕnþμ;ν − ϕnþν;μ − ϕn;ν is the plaquette angle (see
Appendix A). The microcanonical formulation of an
Abelian LGT proposed by Callaway [55–57] consists of
adding a kinetic term KðπÞ ¼ P

n;μ π
2
n;μ=2 to the Wilson’s
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action (1) after the introduction of the fictitious momenta,
πn;μ, conjugated to ϕn;μ. This manipulation does not alter
the expectation value of quantum observables, but allows
one to associate a dynamical system to any LGT whose
Hamiltonian function is given by Hðπ;ϕÞ ≔ KðπÞ þ
g20SWðϕÞ. Therefore, being the energy, E, fixed and
conserved, we can naturally define the microcanonical
ensemble introducing the microcanonical probability mea-
sure dρ ≔ Ω−1

Nind
ðEÞδðH½π;ϕ� − EÞδðCðπÞÞDπDϕ, where,

ΩNind
ðEÞ ≔ R

δðH½π;ϕ� − EÞδðCðπÞÞDπDϕ, is the micro-
canonical partition function. Note thatNind is the number of
independent degrees of freedom [55,56] arising from the
gauge-fixing constraint CðπÞ ¼ 0 (See Appendix A 2 for
further details). Thus, the expectation value of any LGT
observable, O½π;ϕ�, can be computed as the statistical
integral of O½π;ϕ� with respect to the microcanonical
measure, i.e., hOiμc ¼

R
O½π;ϕ�dρ½ϕ;π�. In this work, we

compute expectation values exploiting the Hamiltonian
structure given byCallaway’s formalism, that is, we numeri-
cally obtain the solution ðπSn;μ;ϕS

n;μÞ of the Hamilton
equations of motion dϕn;μ=dτ ¼ πn;μ, dπn;μ=dτ ¼
−g20∂SW½ϕ�=∂ϕn;μ; then, ensuring that the system is ergodic
(see Appendix B 1), we are allowed to recast the above-
mentioned statistical integral into a time average:

hOiμc ≡ lim
T→∞

1

T

Z
T

0

O½πSn;μðτÞ;ϕS
n;μðτÞ�dτ: ð2Þ

It should be stressed that the equality (2) holds only if the
system is ergodic. In Appendix B 1, we performed an
ergodicity check for the Uð1Þ LGT. In general, for non-
ergodic systems, the exploration of the phase space can be
enhanced by employing hybrid algorithms [32,68]. The
thermodynamics of compact electrodynamics in the micro-
canonical ensemble can be investigated by introducing
the entropy function which is the fundamental microcanon-
ical thermodynamic potential that generates all the observ-
ables, and it is defined by SNind

ðEÞ≔ log
R
δðH½π;ϕ�−

EÞδðCðπÞÞDπDϕ with kB ¼ 1. Within this framework, we
can investigate the thermodynamic properties of the Uð1Þ
LGT adopting the MIPA [13,15,16]. According to MIPA,
PTs are split into two classes: independent and dependent.
Independent PTs represent the major change in the system’s
phase, whereas a dependent PT can only occur if an
independent one already manifested; therefore, they are
considered the precursors of a major transition. An inde-
pendent PT of even (odd) order 2n (2n − 1) occurs at Ec if
∂
2n−1
E SN (∂2n−2E SN) admits an inflection point atEc and ∂2nE SN
(∂2n−1E SN) combined with a negative-valued maximum
(positive-valued minimum) at Ec. A dependent PT of even
(odd) order 2n (2nþ 1) is detected at Ec, if ∂2n−1E S (∂2nE S)
admits a least-sensitive inflection point atEc combined with
positive-valued minimum (negative-valued maximum) at
∂
2n
E S (∂2nþ1

E S) [16].We present here the application ofMIPA

for the Uð1Þ LGTwith lattice N ¼ 124. In Appendix F, we
show a comparison of the thermodynamic observables for
different systems’ sizes: N ¼ 64; 84; 104 and 164 together
with an analysis about the stability of the PTas a function of
N. The computation of entropy derivatives, necessary for
employing MIPA, has been performed numerically, by
adopting the method in Ref. [69] which allows one to
estimate any n-order derivative of the microcanonical
entropy through the time average defined in Eq. (A4) of
polynomials of the kinetic energy. For instance, ∂ESðEÞ ¼
ðNind=2 − 1ÞhK−1iμc (see Appendix C 1 a for higher-order
derivatives). In the top panel of Fig. 1, we present the first-
order derivative of (specific) entropy ∂εs as a function of
energy density, ε ¼ E=Nind (see Appendix C 1 a for
deeper details). Note that it coincides with the inverse of
microcanonical temperature βμc. We can easily identify a
back-bending region (S shape) in ∂εSð¼ βμcÞ entailing a
positive-valued minimum at εind1 ≈ 1.2019 identified by
the vertical dot-dashed red line. Such a minimum corre-
sponds to a positive-valued maximum in ∂

2
εS (see Fig. 1),

thus to an independent first-order PT, according to
MIPA. Such a transition corresponds to the DPT.
Indeed, the value of βμc at the transition point εind1

corresponds to ∂εSðεind1 Þ≡βðεind1 Þ¼ 1=T1≈1.0086 which
coincides with the transition value of β predicted by
Monte Carlo simulations [55,56,62,65,70,71]. It should
be stressed that the DPT has sometimes been classified as
a second-order PT [57,70–75], but many observations,
such as the emergence of metastable states, are led to
conclude that the DPT is of first order [43,44,62–66].
To confirm the identification of such a first-order PT with
the DPT, we provide the microcanonical computation of
the average plaquette per (independent) degree of free-
dom, hV̄□iμc ¼ g20hSWðϕÞiμc=Nind as a function of the
microcanonical temperature, as suggested in Ref. [55]. As
shown in the plot on the right in Fig. 8 in Appendix C, the
average plaquette becomes a multivalued function that
admits an S shape around β1 ≈ 1.0086 (see the inset); this
is a typical signature of a first-order PT. It should be noted
that such an S shape is a direct consequence of the
inflection point in ∂εS. In particular, the local minimum
associated with the DPT (∂εSjε1 ¼ 0) is the deep origin of
the vertical tangent point indicated by the vertical red line
on the right panel of Fig. 8 in Appendix C. Following
MIPA, we can identify a further third-order independent
PT, associated with an inflection point in ∂

2
εS (see the

vertical blue line in Fig. 1) together with a positive-valued
minimum in ∂

3
εS around εind3 ≈ 1.028 (see Fig. 2).

Furthermore, we have evidence that supports the identi-
fication of an additional third-order dependent PT occur-
ring at εdep3 ≈ 1.2645 (see the green line in the panel on
the right of Fig. 1). A deeper analysis of such a PT is
presented in the Appendix F. Interestingly, we do not find
this transition for a small system’s size but it appears at
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larger sizes (N ≥ 12). To understand the physical meaning
of these new PTs identified by MIPA and never observed
so far, we analyze and compare the third-order derivative
of the microcanonical entropy with the average number
density of topological defects. The current knowledge of

the role of topological defects during the DPT is sum-
marized in Ref. [47]: at T < T1, there are few monopole
loops, and they will be small in the spatial extent.
Increasing T increases the density and size of the loops.
At T1, the monopole-antimonopole pairs dissolve, and the
theory’s vacuum becomes a gas of monopoles and
antimonopoles without strong correlations. In light of
our results, we numerically demonstrate that the spectrum
of transitional/collective phenomena occurring in Uð1Þ
LGT is richer than the expected one. Indeed, the paradigm
associated with the pair dissolution should be revisited. In
other words, the DPT is not a “sharp” process where pairs
completely disappear crossing the critical temperature/
energy threshold. Conversely, this process manifests
through a sequence of phenomena, and at high energies
(or temperatures) the monopole pairs do not completely
disappear. To see that, we analyze the energy behavior of
the density of topological defects, i.e., we consider the 3D
monopoles of the gauge field as defined in Refs. [41,76]
(see Appendix G for more details). In particular, we
compute the average densities of monopole-antimonopole
pairs at the nearest-neighbor distance, hρpairi, of isolated
monopoles, hρisoi, and of the average density of the total
number of monopoles and antimonopoles, hρtoti. These
behaviors are reported in Fig. 2 by the yellow and violet
curves, respectively. The phenomenology behind this
process can be summarized as follows. For energies
ε ≤ 0.56, monopoles are not detected, and hρisoi ¼
hρpairsi ¼ 0 and their first appearance, i.e., nonvanishing

FIG. 1. First- and second-order derivative of entropy for the 4D
Uð1Þ LGT with lattice size N ¼ 124. In the top panel, the first-
order derivative of entropy is plotted as a function of the specific
energy. In the inset, an enlargement of the same observable
around the DPT is reported so as to visualize the positive-valued
minimum. In the bottom panel, the first-order derivative of
entropy is plotted as a function of the specific energy. In the
inset, an enlargement of the same observable around the DPT is
reported. All of the PTs discussed in the main text are represented
in the plot by vertical lines: an independent third-order PT εind3

(blue dashed line), an independent first-order PT εind1 (red dashed
line), and a dependent third-order PT εdep3 (green dashed line).

FIG. 2. Comparison between third-order derivative and density
of monopoles for the 4D Uð1Þ LGT with lattice size N ¼ 124.
The black curve represents ∂3εS obtained by analytical derivation
of the rational fitting function of the second-order derivative of
entropy. The orange and violet curves represent the number
density of monopole-antimonopole pairs and isolated monopoles,
respectively. The vertical colored lines indicate the energy value
of each PT as defined in Fig. 1.
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values for hρisoi and hρpairsi, occurs around εfirst ≈ 0.56
(see the inset in Fig. 2). For energies slightly larger than
εfirst, only a small number of monopoles is found to form
pairs; the largest amount of monopoles is in the isolated
configuration, i.e., the free states. Increasing the energy,
hρisoi reaches a local maximum around εpeak ≈ 0.68. Thus,
in the interval εfirst ≤ ε ≤ εpeak, the production of isolated
monopoles is favored over that of pairs up to εpeak where
such a production ends. For εpeak ≤ ε, the process
reverses: the isolated monopoles begin to interact leaving
the isolated configuration to form pairs as one deduces
from the subsequent drop of hρisoi. At this stage, the
production of pairs increases, reaching a peak at ε ≃ 0.76,
and this process corresponds to the saturation of the pair-
production process; pairs mostly populate the vacuum
state of the theory. From that moment on, we observe the
pair-dissolution process where the number density of
pairs hρpairsi decreases in energy. During this process,
three PTs are involved, and they manifest at energy values
where the functions hρpairsi and hρisoi change their
concavities as shown in Fig. 3. By going over εind3 ,
hρpairsi passes from having positive to negative concavity
so as ∂εhρpairsi manifests a maximum. Analogously, hρisoi
passes from having negative to positive concavity so as
∂εhρisoi manifests a minimum. Then, the concavity
changes again crossing the threshold εind1 and, above
the (alleged) dependent third-order PT, the monopole
densities become flat. The physical meaning of the two
concavity changes can be associated, respectively, to a
slowdown and an acceleration of the pair-dissolution
process which, in turn, terminates with a plateau indicating
the end of such a process. The slowing-down phase

culminates with the third-order independent PT associated
with the positive-valued minimum in ∂

3
εS (blue vertical

line). After that point, the number density of pairs
decreases, accelerating up to the deconfinement PT where
hρpairsi decreases decelerating. We conclude noting that our
analysis provides a qualitative agreement between the
maxima/minima of the pairs/monopole density derivative
that brings out the role of topological defects in transitional
phenomena. In the next work, we aim to reach also the
quantitative agreement reducing the mismatch observed in
Fig. 3 between the energy corresponding to the maximum
(minimum) in ∂εhρpairsi (∂εhρisoi) and εind3 .
In summary, we have shown that the application of

MIPA to a microcanonical formulation of the Uð1Þ LGT
allowed us to identify, besides the DPT, two further PTs:
an independent (major) third-order PT and a dependent
(minor) third-order PT. We found a direct connection
between the emergence of these transitional phenomena
and the energy dynamics of the topological defects.
Interestingly, we could interpret the presence of the
dependent PT occurring in the Coulomb phase as the
evidence of a further phase separation within the Coulomb
phase, distinguishing a “weak” and a “strong” Coulomb
phase. The latter can be interpreted as a pure deconfined
phase occurring in the range ε > εdep3 and signaled by the
beginning of the plateau of the pair number density (and
of the isolated monopole density as well). What we
interpreted as a “weak” deconfined phase, instead, occurs
in the range εind1 < ε < εdep3 , and it is characterized by an
increasing of the production rate of the number of pairs as
suggested by Fig. 3. Such a result stimulates future
investigations for confirming a new phase separation in
the deconfined phase in correspondence of the third-order
dependent PT at εdep3 .
We conclude by stressing that the analysis presented in

this paper is not restricted to pure LGTs; we propose to
extend the new paradigm for the investigation of PTs
provided by the microcanonical analysis to non-Abelian
LGTs interacting with fermions. For this purpose, one can
adopt the microcanonical algorithms of Kogut [61,77] and
Duane [78], so as to compute microcanonical observables
(the derivatives of entropy) and thus apply MIPA to
search for new PTs. Moreover, the similarity between the
Abelian gauge theory and the Heisenberg model [40,79]
encourages the application of MIPA to many condensed-
matter systems. In this respect, MIPA and the analysis of
the topological defects can be used for better under-
standing the topological origin of glass transition [80,81],
transitions in spin liquids [82,83], and the transition
observed experimentally [84–86] in exotic magnets called
spin ices [87,88] due to the emergence of magnetic
monopoles. Finally, MIPA can provide further insights
into the recent investigation of the interplay between the
Casimir effect, the deconfinement PT, and the emergence
of monopoles [89–92].

FIG. 3. Monopole densities and their derivatives around the
deconfinement transition for LGT U(1) for N ¼ 12. In the left
panel, the density of monopoles hρtoti (black line), the density of
isolated monopoles hρisoi (purple line), and the density of
monopole pairs hρpairsi (orange line) as obtained by fitting the
numerical data with a rational function are reported. In the right
panel, the derivatives of the respective quantities are reported.
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APPENDIX A: HAMILTONIAN MODEL FOR THE
U(1) COMPACT MODEL ON 4D EUCLIDEAN

LATTICE: NUMERICAL ALGORITHM

The investigation of the thermodynamic properties of the
Uð1Þ LGT is based on the molecular dynamics simulation
of the Hamiltonian system defined by

Hðπ;ϕÞ ≔
X
μ;n

π2n;μ
2

þ
X
□μ;n

½1 − cosðϕn;μ þ ϕnþμ;ν − ϕnþν;μ − ϕn;νÞ�;

ðA1Þ
where □μ;ν;n is a representative plaquette. We then numeri-
cally solved the Hamilton equations of motion,

dϕμ;n

dτ
¼ πμ;n;

dπμ;n
dτ

ðτÞ¼−
∂H
∂ϕμ;n

; ðA2Þ

adopting a second-order bilateral symplectic algorithm [95]
since it conserves the symplectic structure of the
Hamiltonian flow.

1. Integration scheme

The implemented algorithm reads as (τn=2≔τ0þnΔτ=2):

ϕμ;nðτ1=2Þ ¼ ϕμ;nðτ0Þ;
πμ;nðτ1=2Þ ¼ πμ;nðτ0Þ − Fμ;n½ϕðτ1=2Þ�Δτ=2;
ϕμ;nðτ1Þ ¼ ϕμ;nðτ1=2Þ þ πμ;nðτ1=2ÞΔτ;
πμ;nðτ1Þ ¼ πμ;nðτ1=2Þ − Fμ;n½ϕ1�Δτ=2;

πμ;nðτ3=2Þ ¼ πμ;nðτ1Þ;
ϕμ;nðτ3=2Þ ¼ ϕμ;nðτ1Þ þ πμ;nðτ3=2ÞΔτ=2;
πμ;nðτ2Þ ¼ πμ;nðτ3=2Þ − Fμ;n½ϕðτ3=2Þ�Δτ;
ϕμ;nðτ2Þ ¼ ϕμ;nðτ3=2Þ þ πμ;nðτ3=2ÞΔτ; ðA3Þ

where Fμ;nðτÞ ≔ ∂ϕμ;n
V½ϕðτÞ�. The time step has been

chosen to beΔτ ¼ 0.001 according to the analysis presented

in Appendix B 2. With this choice, the energy is conserved
with a precision of 10−8–10−9.

2. Initial conditions and
energy selection

The initial conditions for the system have been chosen
following a specific procedure that we are going to explain.
Initially, we associate random values for ϕμ;n, and we set
πμ;n ¼ 0 for every n and μ. The choice of zero values for the
momenta has been proposed by Callaway in Refs. [55,56]
and must be interpreted as a method aimed at eliminating
the extra degrees of freedom coming from the gauge
invariance. This procedure is indeed equivalent to imposing
a gauge such as, for instance, the Lorentz gauge, the axial
one, the Landau gauge, and so on and so forth. Thus, owing
to this constraint, the number of independent degrees of
freedom used in our calculation is Nind ¼ 3 · N4 where N is
the number of sites of the lattice.
In this way, we obtain an energy value, Erand, that we do

not control a priori due to the random initialization of ϕμ;n.
Before reaching the desired energy, we allowed the system
to evolve for 104 steps so as to equilibrate the trajectory.
Then, starting from Erand, we reach the desired energy, say
Edes, searching for a suitable constant α such that, multi-
plying each momentum πμ;n by α, the system is heated for
α > 1 or cooled for α < 1. In practice, we make a guess
αguess and measure Eguess ¼ H½απμ;n;ϕμ;n�. This procedure
is repeated as long as jEguess − Edesj is smaller than the
chosen precision (we have set 10−12).

3. Production run and averages

Once the desired energy has been reached, the system
is equilibrated again for 106 iterations before saving
the trajectory used for computing averages. For each
energy value, we have produced Ntrj ¼ 8 trajectories
using the procedure illustrated in Initial conditions and
energy selection with different random values. This
process has been repeated for each specific energy value
ε ¼ E=Nind within the range [0.50, 2] with a sampling
Δε ¼ 0.02.
Each thermodynamic observable has been evaluated on

Nsamp ¼ 106 measurements sampled every Nstep ¼ 800

steps. The definition of the microcanonical average is
based on the ergodic assumption that, adapted to simu-
lations, reads as

hfiε ¼
1

Nsamp · Nind

XNtrj

i¼1

XNsamp

n¼1

fiðτnÞ; ðA4Þ

where fiðτnÞ is the observable associated to the ith
trajectory at the (fictitious) time τn. We note that the
ergodic property for this system has been checked and
discussed in the upcoming section.
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APPENDIX B: CONTROL ANALYSIS

1. Ergodicity

In order to checkwhether theHamiltonian system defined
by (A1) is ergodic, we analyze the thermodynamic observ-
ables extrapolated from simulation data, that is, the first- and
second-order derivative of entropy (see Appendix C 1), at
three different energies: 0.50, 1.20, 2.00, for a lattice with
size 34.We notice that the choice of the values of the specific
energy has been done depending on the location of the
deconfinement PT which is found around εind1 ≈ 1.2. Thus,
we have chosen two other values of the specific energy far
from the main PT. Moreover, it should be stressed that the
choice of a small lattice size is based on the fact that the
ergodicity is a property of the system that is present (or not)
independently by the number of degrees of freedom. In
particular, if the system is not ergodic for low values ofNind,
then, it will not be ergodic for large ofNind. For each value of
the specific energy, we produced 100 realizations, that is,
Ntrj ¼ 100 trajectories with different initial conditions. We
first evolved the trajectories for a number of 106 MD steps
before saving the configurations so as to better “forget” the

initial conditions. Then, we have computed the micro-
canonical observables of interest, that is, for j∈ ½1; Ntrj�,
we denote with fε1ðjÞ ≔ ∂εSj and fε2ðiÞ ≔ ∂

2
εSj the sequen-

ces of numbers obtained from simulations.
At this stage, given a certain value of the specific energy,

we interpret each number of the sequences ffε1ðjÞgj and
ffε2ðjÞgj as an independent realization of an underlying
stochastic process, andweconstruct the associated histogram
centered around the mean values of the sequences. For this
scope, we use the function HistogramDistribution imple-
mented in the Mathematica software. The histograms have
been thus used for extrapolating the probability distribution
function (PDF) of the process. This step has been accom-
plished using the function FindDistribution inMathematica
which returned a normal distribution with mean μ ¼ 0 (the
histogram is centered around the mean) and standard
deviation σ for each histogram. The values for the standard
deviation and the comparison between the histograms and
the associated normal distributions are reported in Figs. 4
and 5.

FIG. 4. Histograms associated to the values of the first-order
derivative of entropy for three values of the specific energy
ε ¼ 0.5, 1.20, 2.00. The mean value for each histogram and
probability distribution function is zero whereas the standard
deviation is σε¼0.5 ¼ 5.90 × 10−4, σε¼1.2 ¼ 1.89 × 10−4 and
σε¼2.0 ¼ 5.38 × 10−5.

FIG. 5. Histograms associated to the values of the second-order
derivative of entropy for three values of the specific energy
ε ¼ 0.5, 1.20, 2.00. The mean value for each histogram and
probability distribution function is zero whereas the standard
deviation is σε¼0.5 ¼ 8.47 × 10−2, σε¼1.2 ¼ 3.50 × 10−3 and
σε¼2.0 ¼ 8.19 × 10−4.
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2. Choice of the time step

In order to find the most appropriate value of the time
step, we have produced some trajectories for a lattice of size
34 starting from the same initial conditions at two different
values of the specific energy: 0.50 and 1.20. More
precisely, after the equilibration process performed as
explained in Appendix A, we have produced Ntrj ¼ 30

trajectories for each time step: 0.1, 0.08, 0.02, 0.01, 0.008,
0.005, 0.002, 0.001, 0.0008, 0.0005 adapting the sampling
in order to have the same number of points Nsamp ¼ 106 for
doing statistics. On these sets of points, we have computed
the statistical average for ∂εS and ∂

2
εS according to

Eq. (A4). In Figs. 6 and 7, we report the results of this
analysis. Focusing on the plots for ε ¼ 0.50, we can see that
for Δt ≤ 0.005, the thermodynamic observables reach a
certain stability, and their values oscillate with an error of
order 10−6. Around the transition energy, i.e., ε1.20,
instead, the stability in the time step is reached for smaller
values. In this case, a time step equal to Δt ≤ 0.001 is
necessary in order to have a good estimation of the
thermodynamic observables.

In light of this analysis, all the simulations have been
performed with a time step of Δt ¼ 0.001.

APPENDIX C: MICROCANONICAL
INFLECTION POINT ANALYSIS FOR

A FIXED NUMBER OF DEGREES OF FREEDOM

The MIPA requires a calculation of the derivatives of the
specific microcanonical entropy defined as

SNind
ðEÞ ¼ log

Z
δ
�
Hðπ;ϕÞ − E

�
δ
�
CðπÞ�DπDϕ; ðC1Þ

where the condition CðπÞ ¼ 0 is equivalent to a gauge-
fixing condition (see the previous section) and Nind ¼ 3N4

is the number of independent degrees of freedom [55,56].
The specific microcanonical entropy has been introduced
so as to extract extensive quantities and compare systems of
different sizes, i.e.,

sNind
ðεÞ ¼ 1

Nind
SNind

ðNindεÞ:

FIG. 6. Plot of first-order derivative of entropy (∂εs) vs inverse of the time step (1=Δt) for specific energy ε ¼ 0.50. A plateau is
reached for Δt−1 ≥ 200.

FIG. 7. Plot of second-order derivative of entropy (∂2εs) vs inverse of the time step (1=Δt) for specific energy ε ¼ 1.20. A plateau is
reached for Δt−1 ≥ 1000.
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For simplicity, the subscripts are dropped in what follows if
not necessary.

1. Estimation of first- and second-order
derivative of microcanonical entropy

from microcanonical sampling

The MIPA method requires the estimation of the higher-
order derivative of the microcanonical entropy from a
microcanonical sampling of the phase space, in order to
characterize the presence of inflection points with a
sufficient level of accuracy. For this purpose, we have
adopted two possible methods: the direct calculation of the
higher-order derivatives of the microcanonical entropy
from higher moments in the distribution of the inverse
(specific) kinetic energy, or the analytical derivation of a

rational fit of lower-order derivatives of the microcanonical
entropy. In the following subsection, we will present the
two methods and a comparison of the results.

a. Higher-order derivatives of the microcanonical
entropy from momenta of the inverse

kinetic energy distribution

As shown in Ref. [69], in the microcanonical ensemble,
given any fixed value of the specific energy, the derivatives
of specific entropy can be expressed in terms of themoments
of the distribution of the inverse specific kinetic energy
k ¼ KðπÞ=Nind. In this framework, the first- and second-
order derivatives of specific microcanonical entropy can be
written as

ð∂εsÞPHðεÞ ¼
�
1

2
−

1

Nind

�
hk−1iε;

ð∂2εsÞPHðεÞ ¼ Nind

��
1

2
−

1

Nind

��
1

2
−

2

Nind

�
hk−2iε −

�
1

2
−

1

Nind

�
2

hk−1i2ε
	
;

ð∂3εsÞPHðεÞ ¼ N2
ind

��
1

2
−

1

Nind

��
1

2
−

2

Nind

��
1

2
−

3

Nind

�
hk−3iε − 3

�
1

2
−

1

Nind

�
2
�
1

2
−

2

Nind

�
hk−2iεhk−1iε

þ 2

�
1

2
−

1

Nind

�
3

hk−1i3ε
	
; ðC2Þ

where the microcanonical averages have been estimated by
Eq. (A4) for each realization of a trajectory. It isworth noting
that the standard thermodynamic observables as the micro-
canonical temperature, TðεÞ, and the microcanonical spe-
cific heat, CvðεÞ, given by

TμcðεÞ ¼ β−1μc ¼ ð∂s=∂εÞ−1;
CμcðεÞ ¼ ð∂TðεÞ=∂εÞ−1 ≡ −ð∂s=∂εÞ2ð∂2s=∂ε2Þ−1; ðC3Þ

are connected to the derivatives of microcanonical entropy
and, therefore, they can be computed using Eqs. (C2). In
Fig. 8 the microcanonical temperature Tμc and the micro-
canonical specific heat Cμc have been reported for the U(1)
LGT for different lattice sizes. Consistently with the MIPA,
the deconfinement transition is signaled by a maximum in
themicrocanonical temperature. It is worth noticing that this
translates into a singularlike behavior of the microcanonical
specific heat Cμc at DPT even at finite sizes. This is a
straightforward consequence of the inequivalence of micro-
canonical and canonical ensembles for a system exhibiting
around first-order PTs (see Appendix H for a more detailed
discussion).

b. Interpolation of lower-order derivatives of the
microcanonical entropy

Although the method presented above allows one to
compute in principle the derivatives of the microcanonical
entropy at any order, an accurate estimation of the higher-
order derivatives (k > 3) required by MIPA is practically
very hard to achieve due to the very slow convergence of
higher moment distribution of the inverse kinetic energy.
However, some information on the higher-order derivatives
of the microcanonical entropy can be extracted from the
analytic (or numerical) derivation of the lower-order
derivatives. To find the best fit for the first derivative of
the microcanonical entropy, we optimize for the parameters
appearing in the following class of functions:

f∂εs ¼ fðε; n; a; bÞ ¼
P

n
i¼0 aix

i

1þP
n
j¼1 bjx

j : ðC4Þ

Consistently, the second-order derivative of the micro-
canonical entropy has been fitted using a function of the
form

f
∂
2
εsðε; n; a; bÞ ¼ ∂εfðε; n; a; bÞ: ðC5Þ
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APPENDIX D: MIPA FOR N = 12

In the following section, we present a detailed analysis
exploiting MIPA for compact electrodynamics with
N ¼ 12. To fit the first-order derivative of entropy, we
used a fitting function as in Eq. (C4) with the choice of the
hyperparameter n ¼ 11. The second-order derivative of
the entropy has been fitted using the ansatz in Eq. (C5) with

the same choice of parameters M2 and n2 to perform a
direct comparison between the two fits.
From the analysis of the reduced chi-squared, χ2red, it

becomes evident that the rational fit, derived from both the

FIG. 9. Analysis of the first-order derivative of the micro-
canonical entropy for U(1) LGT for lattice size N ¼ 12. In top
panel, the first-order derivative of the microcanonical entropy as a
function of the specific energy as obtained from the Pearson-
Halicioglu method ð∂εsÞPH (blue squares) and as obtained from
rational interpolation (dashed purple line) is reported. The vertical
line is in correspondence with the specific energies of the
deconfinement transition (red dashed line), the third-order inde-
pendent transition (blue dashed), and the third-order dependent
transition (green dot-dashed line) as obtained from the best fit of
the second-order derivative of microcanonical entropy. In the
bottom panel, a zoom of the first-order derivative of the micro-
canonical entropy as a function of the specific energy is reported
on a narrow interval of energies.

FIG. 8. Thermodynamic observables for U(1) LGT model. In
the top panel, the microcanonical temperature Tμc is reported as a
function of the specific energy ε for different lattice sizes. In the
bottom panel, the microcanonical specific heat Cμc as a function
of the specific energy ε for different lattice sizes. Distinct symbols
represent different datasets: N ¼ 6 (red circles), N ¼ 8 (orange
triangles), N ¼ 10 (green diamonds), N ¼ 12 (blue squares), and
N ¼ 16 (black reversed triangles).

DI CAIRANO, GORI, SARKIS, and TKATCHENKO PHYS. REV. D 110, 014503 (2024)

014503-10



FIG. 10. Analysis of the second-order derivative of the
microcanonical entropy for U(1) LGT for lattice size
N ¼ 12. In the top panel, the second-order microcanonical
entropy as a function of the specific energy as obtained from the
Pearson-Halicioglu method ð∂2εSÞPH (blue squares) and as
obtained from the analytical derivative of the rational inter-
polation of first-order microcanonical derivative (dashed purple
line), and as obtained from rational interpolation of the ð∂2εSÞPH
(continuous purple line) is reported. The vertical lines are in
correspondence with the specific energies of the deconfinement
transition (red dashed line), the third-order independent tran-
sition (blue dashed), and the third-order dependent transition
(green dot-dashed line). In the bottom panel, a zoom of the
second-order derivative of the microcanonical entropy as a
function of the specific energy is reported on a narrow interval
of energies.

FIG. 11. Analysis of the third-order derivative of the micrcoca-
noical entropy for U(1) LGT for lattice size N ¼ 12. In the top
panel, the third-order microcanonical entropy as a function of the
specific energy as obtained from the Pearson-Halicioglu method
ð∂3εSÞPH (blue squares) and as obtained from the second-order
analytical derivative of the rational interpolation of first-order
microcanonical derivative ∂

2
εðf∂εSÞ (dashed purple line), and as

obtained from first-order derivative of the rational function inter-
polating function of the second-order derivative of microcanonical

entropy ∂εðf∂2εSÞ (continuous purple line) is reported. The vertical
lines are in correspondenceof the specific energies of the deconfine-
ment transition (red dashed line), the third-order independent
transition (blue dashed), and the third-order dependent transition
(green dot-dashed line). In the bottom panel, a zoom of the third-
order derivative of the microcanonical entropy as a function of the
specific energy is reported on a narrow interval of energies.
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first- and second-order derivatives of the entropy, shows an
underfitting trend (χ2red ≫ 1). This is due to the small error
bars obtained from numerical simulations. The derivatives

of the rational functions f∂εs and f
∂
2
εs fit the data obtained

numerically of the third-order derivative of the entropy
ð∂3εSÞPH with a level of accuracy in agreement with the
experimental uncertainties (χ2red ∼ 1). This establishes the
self-consistency between the fits of the lower-order of
the microcanonical entropy and the numerical results
obtained for higher-order derivatives.
The first-order derivative of entropy has a local positive-

valued minimum in correspondence with the DPT.
According to the MIPA scheme, this corresponds to a
first-order independent PT (see Fig. 9). This is confirmed
by the presence of a zero in the second-order derivative
of entropy (see Fig. 10). From the two interpolating

functions f∂εs and f
∂
2
εs, we observe a critical value for the

deconfinement phase transition at εind1 ¼ 1.2019� 0.0006.
Analogously, a third-order independent PT is associated
with the positive-valued minimum of the third-order deriva-
tive of entropy (see Fig. 11) in the energy range ε < εind1 . We
estimated the critical energy for this PT at εind3 ¼ 1.028�
0.007 by looking at the zeros of the fourth-order derivative of
entropy obtained from the rational fitting.
A third-order dependent PT occurring at εdep3 ¼

1.2645� 0.0011, is detected through the presence of a
negative-valued maximum of the third-order derivative of

entropy obtained deriving f
∂
2
εs and f∂εs. However, only weak

evidence of such a transition can be inferred from our data,
as the large errors in the value of ∂3εs as directly estimated

from the microcanonical sampling do not allow one to
confirm the presence of a negative maximum.

APPENDIX E: ON THE ORIGIN OF THE
S SHAPE IN THE PLAQUETTE POTENTIAL

VS MICROCANONICAL ENTROPY

In this section, we investigate the behavior of the plaquette
potential hV□iμc and its numerical derivative with respect to
energy ∂εhV□iμc regarded as functions of specific energy
(see Fig. 12 below). Observing such behaviors, we can
conclude that in a neighborhood of the deconfinement phase
transition, the energy derivative of the average plaquette
potential is bounded. This can be better appreciated comput-
ing the beta derivative of the average plaquette potential, i.e.,

lim
βμc→βþ

1

∂hV̄□iμc
∂βμc

¼ lim
βμc→βþ

1

∂hV̄□iμc
∂ε

∂ε

∂βμc

¼ lim
βμc→βþ

1

∂hV̄□iμc
∂ε

�
∂S
∂ε

�
−1

→ −∞: ðE1Þ

Now, ∂εhV̄□i is positive and bounded on the considered
range of energies (see again Fig. 12 below)
whereas limβμc→βþ

1
∂βμcε ¼ −∞.

APPENDIX F: COMPARISON OF THE
THERMODYNAMIC OBSERVABLES
FOR DIFFERENT SYSTEM SIZE

The MIPA analysis has been repeated on different lattice
sizes to provide insight into how the deconfinement phase

FIG. 12. Microcanonical plaquette potential vs specific energy and its derivative. On the left panel, the microcanonical average of the
plaquette potential (black line) and its derivative (blue line) are plotted as functions of the specific energy. The dashed-dotted red line
indicates the critical energy, εind1 , for the deconfinement transitions. On the right panel, the first-order derivative of the plaquette potential
with respect to the specific energy is reported.
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transition and the other higher-order phase transitions
identified in the microcanonical ensemble evolve for
increasing lattice sizes. Although a detailed analysis of
the convergence of the microcanonical entropy is beyond
the scope of our current work, we extend the MIPA for
different lattice sizes.

FIG. 13. Comparison of the first- and second-order deriva-
tives of microcanonical entropy as derived from Perason-
Halicioglu method. On the top panel, the first-order derivative
of the microcanonical with respect to the specific energy
of the system for different lattice sizes is reported: N ¼ 6
(red circle), N ¼ 8 (orange triangle), N ¼ 10 (green dia-
monds), N ¼ 12 (blue square), N ¼ 16 (black reversed tri-
angle). The region around the deconfinement transition
εind1 ∼ 1.20 is reported in the inset. A positive minimum of
the first-order derivative of the microcanonical entropy corre-
sponding to a first-order order transition is observed for all the
lattice sizes. In the bottom panel, the second-order derivative of
the microcanonical entropy is reported for the same lattice
sizes. In the inset, an enlargement of the region around the
deconfinement transition is plotted. A zero of the second-order
derivative of the microcanonical entropy can be observed in
correspondence with the deconfinement transition for all the
investigated lattice sizes.

FIG. 14. Third- and fourth-order derivatives of microcanonical
entropy for 4D U(1) LGT. In the top panel, the third-order
microcanonical entropy, as estimated from the Pearson-Halicho-
glu method (open markers) and the differentiation of the fitting of
the second-order derivative of second-order specific microca-
nonical entropy (continous line). In the bottom panel, the fourth-
order derivative of the microcanonical specific entropy is plotted
as a function of specific energy. The different colors refer to
different lattice sizes: N ¼ 6 (red), N ¼ 8 (orange), N ¼ 10
(green), N ¼ 12 (blue), N ¼ 16 (black).
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In Fig. 13, we present the comparison of the first- and
second-order derivatives of the microcanonical entropy for
different lattices sizes. For lattice sizes in the range of
6 ≤ N ≤ 16, we note the existence of aminimum in the first-
order microcanonical entropy around the deconfinement
phase transition occurring at ε ∼ 1.20. This observation
alignswith the behavior of the second-order derivative of the
microcanonical entropy, which exhibits a sign change at this

point. This change signifies a shift in the concavity of the
microcanonical entropy, indicating a first-order (indepen-
dent) microcanonical phase transition. The scaling of the
critical energy εind1 , defined as the zero of the analytical
estimation of the second-order derivative of the micro-
canonical entropy, as a function of the lattice size is reported
in the top panel of Fig. 16. Moreover, the results seems to
indicate a decreasing value of the positive maximum of the
second-order derivative of the microcanonical entropy for
increasing lattice sizes. This suggests that for larger lattice

FIG. 15. Characterization of the third-order phase transition in
microcanonical U(1) 4D LGT for different lattice sizes. In the top
panel, the zero of the fourth-order derivative of the microcanonical
entropy corresponding to the third-order independent microca-
nonical phase transition for different lattice sizes is reported. In the
bottom panel, the behavior of the fourth-order derivative of the
microcanonical entropy is reported in detail for the region ε > εind1 .
The appearance of the third zero around ε ≈ 1.25 coincides with
the presence of a dependent third-order PT.Note that this transition
occurs for larger system’s size, i.e., N ≥ 12. The different colors
refer to different lattice sizes: N ¼ 6 (red), N ¼ 8 (orange),
N ¼ 10 (green), N ¼ 12 (blue), N ¼ 16 (black).

FIG. 16. Critical energies for the first- and third-order inde-
pendent phase transitions in U(1) 4D LGT for different lattice
sizes. In the top panel, the critical energy εind1 of the deconfine-
ment transition is plotted as a function of the lattice size. In the
bottom panel, the critical energy εind3 of the third-order indepen-
dent phase transition in the confined phase is plotted as a function
of the lattice size.
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sizes there could be a change from a first- to a second-order
phase transition for very large lattice sizes.
In Fig. 14 the third- and fourth-order derivatives of the

microcanonical entropy are reported for different lattice
sizes, in order to investigate higher-order phase transitions.
The estimation of the third-order derivative of the

microcanonical entropy from the microcanonical averages
of the inverse specific kinetic energy is too noisy for
inferring with precision the existence of higher-order phase
transitions. For this reason, as in the MIPA analysis for
N ¼ 12, the third-order derivative of the microcanonical
entropy has been estimated from the analytical derivative of
the rational function fitting the second-order derivative of
the microcanonical entropy. The fourth-order derivative
of the microcanonical entropy has been estimated by
second-order differentiation of the rational function fitting
the second-order derivative of the microcanonical entropy.
The analysis of the third-order derivatives of the micro-
canonical entropy reveals two main features:
(1) A positive minimum of the third-order derivative of

microcanonical entropy around ε ∼ 1.04 for all the
investigated lattice sizes. According to MIPA, this
would correspond to the signature of a third-order
independent microcanonical phase transition;

(2) The appearance of a negative maximum of the third-
order derivative of the microcanonical entropy
ε ∼ 1.26 for lattice sizes N ≥ 12, corresponding to
a third-order dependent phase transition according to
MIPA classification.

These characteristics are confirmed through an examination
of the zeros of the fourth-order derivative of the micro-
canonical entropy, as illustrated in Fig. 15. The conver-
gence of the critical energy pertaining to the third-order
independent phase transition has been observed within the
considered range of lattice sizes.
The signature of the third-order dependent phase tran-

sition is evident only in the analytical derivatives of the
rational interpolating function of the second-order deriva-
tive of the microcanonical entropy, while the dataset
obtained from the microcanonical sampling for the third-
order derivative microcanonical entropy is not conclusive
in this sense. It is remarkable that in this case, the transition
seems to appear only for large lattice sizes.

APPENDIX G: COMPUTATION
OF MONOPOLES

The computation of the topological defects used in
our work is based on Ref. [41] and reported in Fig. 17.
In particular, we studied 3D monopoles redefining
the 3D plaquette angle as Θ̄ij ¼ Θij − 2πKij where
Kij ≔ mod ðΘij; 2πÞ. Then, using Gauss’s law, we get

NðnÞ ¼
X3
i;j;k¼1

εijk
�
Kjkðnþ eiÞ − KjkðnÞ

�
: ðG1Þ

Here, εijk is the Levi-Civita antisymmetric tensor. By
definition, ϕn;μ ∈ ½−π; π� and Θij ∈ ½−4π; 4π�; then,
N ¼ 0;�1;�2. If N ¼ 0 no topological defects are present
in the plaquette defined by the site n and the three directions
ex, ey and ezwhereas if (N < 0)N > 0weare in the presence
of (anti)monopoles with charge 1 or 2.We study the average
density of isolated monopoles hρisoi the average density of
monopole-antimonopole pairs, and the average density of
the total number ofmonopole and antimonopoles, hρtoti. The
calculation of the former is summarized in the following
procedure. At any lattice site, n, we identify NisoðnÞ ¼ 1 if

FIG. 17. Analysis of monopole densities for lattice size
N ¼ 12. In the left panel, the comparison between the monopole
density (black circle), the density of isolated monopoles (purple
triangle), the density of couples of monopoles (orange diamonds)
for different energy values is reported. In the right panel, the
density of monopoles that are not isolated nor in a couple as a
function of energy is reported.
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NðnÞ ≠ 0, (ii) Nðn� exÞ ¼ Nðn� eyÞ ¼ Nðn� eyÞ ¼ 0.
Proceeding in this manner for each lattice site, we define

hρisoi ¼
1

V

X
n

NisoðnÞ; ðG2Þ

where V ¼ N4 is the volume of the lattice. In our case,
N ¼ 12. For what concerns the number density of pairs,
we proceed similarly as before, but we identifyNpairðnÞ ¼ 1

if (i) NðnÞ ≠ 0, (ii) Nðnþ eiÞ ¼ −NðnÞ only for a single
i ¼ x, y, z. Thus, the associated observable is

hρpairsi ¼
1

V

X
n

NpairsðnÞ: ðG3Þ

Finally, the average density of the total number of monop-
oles and antimonopoles is defined by introducingNtotðnÞ ¼
1 if NðnÞ ≠ 0 and it is defined by

FIG. 18. Analysis of total density of monopoles for lattice size
N ¼ 12 and for its derivative as a function of the energy. In the
left panel, the detail of the total density of monopoles (black
circles) around the deconfinement phase transition is reported.
The red line is the rational fitting function of the data series. In the
right panel, the numerical derivative of the total density of
monopoles obtained from finite differentiation (black circle),
and the analytic derivative of the interpolating function of the
total density of monopoles (red line) are reported. Dashed vertical
lines correspond to the phase transition found from MIPA.

FIG. 19. Analysis of isolated monopole density for lattice size
N ¼ 12 and for its derivative as a function of the energy. In the
left panel, the detail of the density of isolated monopoles (black
circles) around the deconfinement phase transition is reported.
The red line is the rational fitting function of the data series. In the
right panel, the numerical derivative of the density of isolated
monopoles as obtained from finite differentiation (black circle)
and from the analytic derivative of the interpolating function of
the density of isolated monopoles (red line) is reported. Dashed
vertical lines correspond to phase transition found from MIPA.
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hρtoti ¼
1

V

X
n

NtotðnÞ. ðG4Þ

1. Analysis of monopoles densities for N = 12 and
comparison with different lattice sizes

In what follows, the analysis of the density of monopoles
as a function of the total energy is reported. In the top panel
of Figs. 18, 19, and 20, the density of total density of
monopoles, isolated monopoles and pairs are respectively

reported for N ¼ 12. The energy range for these plots is
restricted to those energy where PTs are observed. In the
top panel of Figs. 21, 22, and 23, the same densities are
respectively reported on the entire range of energies
adopted in simulations for different system’s size as

FIG. 20. Analysis of density of couples of monopoles for lattice
sizeN ¼ 12 and for its derivative as a function of the energy. In the
left panel, the detail of the density of couples of monopoles (black
circles) around the deconfinement phase transition is reported. The
red line is the rational fitting function of the data series. In the right
panel, the numerical derivative of the density of couples of
monopoles obtained from finite differentiation (black circle)
and the analytic derivative of the interpolating function of the
density of couples of monopoles (red line) are reported. Dashed
vertical lines correspond to the phase transition found fromMIPA.

FIG. 21. Density of isolated monopoles vs specific energy for
different lattice sizes in 4D U(1) LGT. In the left panel, the
monopole density is plotted vs the specific energy of the system for
different lattice sizes. The dashed line indicates the specific energy
corresponding to monopoles’ first appearance (εfirst ∼ 0.56) and
the energy corresponding to maximum monopole density
(εpeak ∼ 0.78). In the inset a detail of the region where micro-
canonical phase transition has been identified through MIPA is
reported. Both the data derived from numerical simulation (open
markers) and the rational fitting function have been reported. In the
right panel, the analytical derivative of the fitting function for the
density of monopoles has been reported. For both plots, different
colors correspond to different lattice sizes: N ¼ 6 (red), N ¼ 8
(orange), N ¼ 10 (green), N ¼ 12 (blue).
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specified in the captions. It can be noticed that a consistent
part of the monopoles is not isolated nor coupled with other
monopoles.
The data on the monopole densities obtained from the

numerical simulations are fitted with a rational function of

the same form as in Eq. (C4) on the interval ε∈ ½0.86; 2.5�
to investigate the correlation between the PT identified with
MIPAand the dynamics ofmonopole creation/destruction as
a function of the specific energy. In this case, the hyper-
parameter has been chosen such that it minimizes the χ2red.

FIG. 22. Density of isolated monopoles vs specific energy for
different lattice sizes in 4D U(1) LGT. In the left panel, the density
of isolatedmonopoles is plotted vs the specific energy of the system
for different lattice sizes. The dashed line indicates the specific
energy corresponding tomonopoles’ first appearance (εfirst ∼ 0.56)
and the energy corresponding to a local maximum of isolated
monopole density (εpeak ∼ 0.78). In the inset, a detail of the region
where microcanonical phase transition has been identified through
MIPA is reported. The data derived from numerical simulation
(openmarkers) and the rational fitting function have been reported.
In the right panel, the analytical derivative of the fitting function for
the density of monopoles has been reported. For both plots,
different colors correspond to different lattice sizes: N ¼ 6
(red), N ¼ 8 (orange), N ¼ 10 (green), N ¼ 12 (blue).

FIG. 23. Density of pairs of monopoles vs specific energy for
different lattice sizes in 4D U(1) LGT. In the left panel, the
density of pairs of monopoles is plotted vs the specific energy of
the system for different lattice sizes. The dashed line indicates the
specific energy corresponding to monopoles’ first appearance
(εfirst ∼ 0.56) and the energy corresponding to a maximum
density of monopoles pairs (εpeak ∼ 0.78). In the inset, a detail
of the region where microcanonical phase transition has been
identified through MIPA is reported. The data derived from
numerical simulation (open markers) and the rational fitting
function have been reported. In the right panel, the analytical
derivative of the fitting function for the density of monopole pairs
has been reported. For both plots, different colors correspond to
different lattice sizes: N ¼ 6 (red), N ¼ 8 (orange), N ¼ 10
(green), N ¼ 12 (blue).
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To validate the fitting procedure, we also calculate the
numerical derivatives of monopole densities estimated with
finite-difference method from the data estimated from
numerical simulation. The energy first-order derivative of
the density of total density of monopoles, isolated monop-
oles and pairs are reported in the bottom panels of Figs. 18,
19, and 20, respectively, for system’s size N ¼ 12. See the
corresponding captions for further details.
Reveals that the first-order derivatives of the isolated

monopole density and the density of pairs exhibit a
negative-valued minimum (positive-valued maximum)
around the critical energy associated to the DPT (see
bottom panels in both Figs. 20 and 21). Such an inflection
point in monopole density dynamics is located at
εminDMon ¼ 1.202� 0.003. The value of the energy,
εmaxDMon ¼ 1.083� 0.007 where a negative-valued maxi-
mum (positive-valued minimum) in ∂εhρtoti and ∂εhρpairsi
(∂εhρisoi) has been observed, is in qualitative agreement
with the critical energy corresponding to third-order inde-
pendent PT.
We will address in future works the problem of reaching

a quantitative agreement between the energy values men-
tioned above. Our experience suggests that a huge compu-
tational effort, focused on drastically increasing the
statistics in the energy sampling, can help in appreciating
the energy behavior of these observables in a quite
narrow range.
Finally, the energy, εmaxD2Mon ¼ 1.265� 0.007, where

an inflection point is detected in all the considered
monopole densities, corresponds to the critical energy of
third-order dependent PT.

APPENDIX H: (NON)EQUIVALENCE
OF STATISTICAL ENSEMBLES

In this section, we briefly report and discuss the rigorous
results provided by Ellis, Touchette, et al. [96] about the
(non)equivalence of the ensembles. The underlying idea of

their derivation lies in the possibility of defining a math-
ematical criterion for determining whether the equivalence
of the ensembles exists, and it can be summarized as
follows. Let us consider the (infinite-size) free energy
F∞ðβÞ ¼ − limN→∞ lnZðβ; NÞ where Z is the canonical
partition function and the (infinite-size) microcanonical
entropy, s∞ðεÞ ¼ limN→∞ SNðεÞ=N. The free energy
F∞ðβÞ can be mathematically defined as the Legendre-
Fenchel transform of the microcanonical entropy, and it is
denoted with s�. Thus, we have [7,97]�

s∞ðεÞ
�� ≡ F∞ðβÞ ≔ inf

ε∈R
½βε − s∞ðεÞ�; ðH1Þ

whereas the inverse Legendre-Fenchel transform is given by�
F∞ðβÞ

�� ≡ s∞ðεÞ ≔ inf
β∈R

½βε − F∞ðβÞ�; ðH2Þ

where εð¼ E=NÞ is the specific total energy and β the
inverse temperature. The equivalence of ensembles is
mathematically defined by the condition [7]

F�� ¼ s or s�� ¼ F: ðH3Þ

Roughly speaking, we can distinguish two cases for which
the condition F�� ¼ s is satisfied: (i) F∞ is everywhere
differentiable, (ii) s∞ is everywhere a convex function (in the
sense of the supporting line: see the illustration given in
Fig. 1 of Ref. [7]). However, in the presence of a first-order
PT, at finite-size, sðεÞ admits a nonconvex region (see, for
instance, Fig. 1 in Ref. [98]) whereas, in the thermodynamic
limit, s∞ðεÞ admits a degenerate supporting line (limit case
of nonconvexity), so it results that F∞ðβÞ is not differ-
entiable everywhere which is equivalent to saying that
s∞ðεÞ, is no longer convex everywhere. In this case, which
manifests in the presence of a first-order PT, the equivalence
of the canonical and microcanonical ensembles is lost (at
least locally).
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