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The maximal center gauge aims to detect center vortices by maximizing a gauge functional and then
projecting onto the center elements of the respectivegroup. The requirement for unrestrictedmaximization of
the gauge functional has proven to be untenable because itwas shown that it leads to an underestimation of the
string tension. To counter this problem, the ensemble of local gauge maxima is investigated and it is found
that the unrestricted maximization can be replaced by a maximization restricted to the Gaussian distributed
part of the ensemble. Such restrictedmaximizationweakens the problem of an underestimated string tension.
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I. INTRODUCTION

Important nonperturbative properties of the QCD vac-
uum are confinement [1] and dynamical breaking of chiral
symmetry [2]. They show that the QCD vacuum is highly
nontrivial and filled with quantum fluctuations. The
amount and type of these quantum fluctuations depend
on the temperature. The most interesting quantum fluctua-
tions that determine the properties in the hadronic phase are
Abelian monopoles [3–5] and center vortices [6,7]. Abelian
monopoles are defined by a charge in a U(1) subgroup of
SUðNÞ. They move along paths that percolate through the
four-dimensional space-time. Center vortices are closed
color-magnetic flux tubes, quantized to center elements of
the gauge group and form two-dimensional surfaces per-
colating the vacuum. Projecting the color of the flux tubes
into a U(1) subgroup results in trajectories for Abelian

monopoles [8,9]. The density of these topological excita-
tions determines the strength of the force between color
charges, the QCD string tension [10,11]. Successful meth-
ods for identifying these topological objects are special
gauges, which are determined by maximizing correspond-
ing gauge functionals. The maximal Abelian gauge for
magnetic monopoles and the maximal center gauge (MCG)
for vortices have proven to be particularly successful. We
examine maximal center gauge for the SU(2) gauge theory
formulated with the Wilson action (1).
Local maxima of a gauge functional can only be

searched for numerically. In the maximal Abelian gauge,
the highest gauge functionals provide the best description
of the QCD vacuum and justify the maximization pre-
scription. Local maxima with high values of the gauge
functional could also be found for MCG, which predict the
correct string tension. However, a more precise search led
to maxima [12,13] that provide a string tension that is much
too low. Furthermore, it was shown in [14] that with a series
of random gauge copies with broken local Z(2) gauge
symmetry due to restricting to links with a positive trace,
gauge configurations with a high value of the gauge
functional and a low string tension can easily be generated.
These observations strongly questioned the maximal center
gauge and thus the vortex mechanism as an explanation of
confinement. The aim of this work is to show that the error
lies in the requirement of unrestricted maximization of the
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gauge functional and that it is not the vortex mechanism
itself that is in question. References [15–17] also point in
this direction, in which nontrivial center regions are
determined using a complex computational procedure in
order to guide the gauge fixing.
In this article we explore ensembles of gauge copies for

maximal center gauge to see whether statistical analysis
allows for a less resource intensive extraction of the correct
string tension as in [15–17].
After describing the formalism of the maximal center

gauge in the second section, we explain in the third section
the problem of the global maximization prescription of the
gauge functional of themaximal center gauge.On theway to
the modification of this prescription we examine in the forth
section the distribution of local maxima of the gauge
functional. We observe that in a wide range of the coupling
parameter β their densities come very close to Gaussian
distributions. In the upper tip of these distributions we find
agreement of the center projected string tensions with the
string tensions extracted from unprojected fields. At the
upper boundary of the β-window, we find that strong
deviations from Gaussians are first indications for a failing
absolutemaximization of the gauge functional. In the further
part of the work we try to extend the β window to higher
values. First, we remove these deviations by symmetrization
of the distribution. Another indication is given by the
behavior of the slope of the quark-antiquark potentials of
center projected fields. These potentials are almost linear, as
we find in Sec.V. This is an observation that has already been
made in the determination of string tensions from Creutz
ratios [18]. In general, the slope of the potential increases
slightly with the size of Wilson loops. For increasing
asymmetry of the gauge functional distributions, this behav-
ior may invert to its opposite, especially for gauge configu-
rations with particularly high values of the gauge functional.
We find then a decrease in string tension with the size of the
Wilson loops. This may indicate that the detectedP-vortices
break apart and do no longer percolate, as was already
assumed in [19]. By removing thesevortex detection failures
in Sec. VI and symmetrization of the distributions, we can
successfully increase the region where the right tip of the
Gaussian distributions reproduces the asymptotic string
tension. In Sec. VII we draw from these results the con-
clusion, which is how to modify the prescription for the
maximization procedure of MCG.

II. DIRECT MAXIMAL CENTER GAUGE

We work on a 244 lattice with periodic boundary con-
ditions and investigate field configurations at the inverse
coupling constants β ¼ 4=g2 ∈ f2.3; 2.4; 2.5; 2.6; 2.7g of
the Wilson action for an SU(2) gauge theory

Sgluons ¼ β
X

x;μ<ν

�
1 −

1

2
ReTr

�
UμνðxÞ

��
: ð1Þ

The path ordered product of links UμðxÞ delimiting a
plaquette in the μν plane defines the plaque variableUμνðxÞ.
In direct maximal center gauge (DMCG), the link

variables are transformed by a SU(2) gauge transformation
gðxÞ shifting them as close as possible to center elements by
maximizing the gauge functional

RMCG ¼
X

x

X

μ

jTr½gUμðxÞ�j2; ð2Þ

where the transformed link variables are gUμðxÞ ¼
gðxþ μ̂ÞUμðxÞg†ðxÞ. These are then projected onto the
nearest center element

gUμðxÞ → ZμðxÞ≡ signTr½gUμðxÞ�: ð3Þ
A single negative link variable ZμðxÞ ¼ −1 in a field of
trivial link variables Zμ ¼ þ1 forces the values of the six
attached plaquettes to ZμνðxÞ ¼ −1. On the dual lattice
these six so-called P-plaquettes form the surface of a cube.
It turns out that in the confinement phase, a large number of
negative links are arranged in such a way that the dual P-
plaquettes form extended closed surfaces: vortices perco-
lating through the whole space-time lattice. The success of
the vortex model of confinement is founded on the fact that
the Abelian Stoke’s law applies to Abelian and therefore
also to center vortices. The sign of Wilson loops is flipped
by the piercing of thin projected and also of thick vortices.
A high density of random vortices leads to a fast decrease
of the expectation values of Wilson loops with the size of
the loops and thus to large string tensions.
In the unprojected field configurations, vortices are thick

magnetic flux tubes. MCG assumes that despite the strong
limitation of the field degrees of freedom in the projection
procedure from SU(2) to Z(2), MCG is able to detect the
shape of thick vortices and therefore to preserve the impor-
tant long-range properties of the vacuum configurations.

III. THE PROBLEM WITH THE
MAXIMIZATION

The gauge functional (2) has a huge number of local
maxima. Determining the global maximum of the gauge
functional (2) is a NP problem which cannot be solved by
polynomial-time algorithms. Therefore, only local maxima
can be approached by the conjugate gradient method and
the global maximum can be approximated step by step
only. As Engelhardt and Reinhardt [20] have concluded
from analytical considerations, a trivial maximization
prescription cannot be expected to reproduce the correct
physics. A reduction of the string tension with increased
values of the gauge functional was numerically confirmed
by Kovacs and Tomboulis [12] and Bornyakov, Komarov,
and Polikarpov [13]: the largest maxima of the functional
underestimate the density of vortices and therefore also the
string tension. A possible reason for this is that in the large
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volume of thick smooth vortices the center charge is spread
over multiple links causing them to be projected onto the
trivial center. The more parts of the thick vortices that the
P-vortices miss, the higher the values of the gauge func-
tional. With rising beta values, the field configurations
generated by the Monte Carlo method and the Metropolis
algorithm become too smooth and it is increasingly difficult
to describe the shape of thick vortices by sudden changes in
the link variables with values of �1.
However, the investigations so far show that the gauge

functional (2) of MCG is, in principle, able to predict the
string tension. Here we would like to mention, (i) the
successful predictions by DMCG [21,22] where only a few
local maxima were examined, (ii) the preselection of gauge
copies with the help of the eigenfunctions of the Laplace
operator [23,24] which lead to good results, and (iii) aver-
ages over the ensemble of local maxima of the gauge
functional [14] which did not suffer from extreme values
of RMCG.
The previous prescription for MCG striving for maxi-

mization was based on the assumption that the global
maximum corresponds to the most physical gauge. This
objective has clearly been missed due to the nearly linear
decrease of the string tension [14] with increasing value of
the gauge functional.
The above enumerated indications encourage us to

examine how the information about the value of string
tension is encoded in the properties of the ensembles of
the local maxima. To accomplish this, we determine the
distribution of the ensemble of local maxima and the
relation between the values of the gauge functional and
the string tension. Throughout these investigations, we
hope to find hints for which cases the maximization of the
gauge functional leads to incorrect predictions of string
tension. Finally, this should lead us to a modification of the
MCG prescription for the vortex detection.

IV. DISTRIBUTIONS OF LOCAL MAXIMA

The distribution of the gauge functional values (2) at the
local maxima resembles a Gaussian; see Fig. 1. We have
investigated these distributions for β∈ f2.3; 2.4; 2.5;
2.6; 2.7g by Monte-Carlo runs with 20 random starts,
3000 initial sweeps, and 10 configurations with a distance
of 1000 sweeps. For each of these 200 configurations we
performed 100 unbiased random gauge copies leading to
20 000 values of the gauge functional for each β. In Fig. 1
we depict logarithmic plots of these distributions for
β ¼ 2.5, 2.6, and 2.7 and bin widths of one-third of the
standard deviation. A continuous replacement for histo-
grams, a smooth kernel distribution, is shown by the full
blue lines. Their differences to Gaussian fits are filled by
red areas. Below the distributions we display the values of
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FIG. 1. The distributions of the ensembles of 20 000 local
gauge maxima are depicted for β ¼ 2.5 (a), β ¼ 2.6 (b), and β ¼
2.7 (c) in logarithmic plots. A smooth kernel is shown as a blue
solid line with the histogram of the data placed in the background.
Deviations from the normal distribution are colored red. Results
of distribution tests are shown below each distribution. One can
clearly see increasing deviations from Gaussians and with β
increasing skewness.
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the Cramér-von Mises criteria for judging the goodness of
the fit to the normal distributions. p values below 0.05
indicate statistically significant deviations from normal
distributions. Until a specific value of β, the ensemble of
gauge copies is well described by a normal distribution. A
measure for the deviations from symmetric distributions is
the skewness, the ratio of the third central moment to the
3=2 power of the second central moment. With increasing
β, the skewness of the distribution increases as can be seen
in Fig. 2. This lets us suspect that a partial trivialization of
the lattice may occur during gauge fixing and projection.
This effect increases with β and thus an increasing
proportion of gauge copies of the ensemble is shifted to
larger values of RMCG as is hinted in Fig. 1(b) and can be
nicely seen in Fig. 1(c). As we will show in the next
sections, this corresponds to a decrease in the string tension
extracted from the expectation values of Wilson loops.
Figure 1 shows that deviations from the normal distri-

bution increase with increasing value of β. We know
already that for the local maxima with the highest values
of the gauge functional (2), the vortex detection fails due to
the above mentioned smoothness of the lattice. This
suggests removing these misguided detections by sym-
metrizing the distributions.
The distributions for β ¼ 2.3, 2.4, and 2.5 are not

affected by asymmetries and should remain unchanged,
while β ¼ 2.6 should only be slightly modified and β ¼ 2.7
should be strongly changed. The cumulative distribution
function (CDF) of local maxima lends itself well to
symmetrization. This makes it possible to thin out the
high ranges of RMCG values and leave the remaining ranges
unchanged. Figure 3 shows the CDFs before and after
symmetrization for β ¼ 2.7.

V. STRING TENSIONS EXTRACTED FROM
CENTER PROJECTED WILSON LOOPS

From expectation values of center projected Wilson
loops WcpðR; TÞ we extract the potential

VcpðRÞ ¼ lim
T→∞

1

T
lnWcpðR; TÞ ð4Þ

and a slope σcp. A characteristic R dependence of Vcp is
shown in Fig. 4. The same nearly linear behavior was also
observed for Creutz ratios; see Ref. [18]. It is explained by
center vortices randomly piercing the minimal areas of
Wilson loops. We expect this behavior for vortices perco-
lating the lattice. Short-range fluctuations of vortex surfa-
ces [25] lead to correlated pairs of piercings for large loops
and do not influence their expectation values, but they
increase the number of single piercings for small loops and
decrease therefore the slope of the potential at short
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β0.0
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FIG. 2. The skewness of the distributions of the local gauge
maxima is depicted for different values of β.
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FIG. 3. CDF of local maxima of gauge functional (2) for
β ¼ 2.7 before and after symmetrization of the distribution.
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FIG. 4. Potential VcpðRÞ of center projected Wilson loops as
functions of their spatial extent R extracted at β ¼ 2.5 from 200
configurations symmetrically arranged around RMCG ¼ 0.89053.
The linear approximations for small and large R demonstrate a
slight increase in slope due to short range fluctuations which do
not influence the long range behavior.
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distances. This explains the slight increase of the slope with
R for the characteristic example in Fig. 4 from σcp ¼
0.0336� 3 to σcp ¼ 0.0350� 3.
For Creutz ratios, we found [14] that the σcp values are

approximately linear functions of the local maxima of
RMCG. A corresponding correlation for the slope σcp of the
potential VcpðRÞ is shown in Fig. 5 at small R values in blue
and large R in red color. The string tensions extracted from
unprojected configurations [26] are shown by a horizontal
black line. The slope of the potential is generally greater for
large distances than for short distances as explained in the
discussion of Fig. 4. We used 200 configurations around
the indicated value of RMCG for the determination of the
potential. Because of the fluctuations of the vortex shapes a
sample of 200 fields out of the 20 000 is obviously still not
enough to get a smooth curve. The larger variations in the
slope of the potential for “large R” compared to those for
“small R” are due to the statistical errors that increase with
the size of the Wilson loops. On average, an almost linear
relationship between the gauge functional and the string
tension is observed. In order to be able to classify the RMCG
values, we show their normalized density distribution for
comparison. With this diagram, we want to focus on the
important region of the distribution of RMCG values. We can
clearly see that it is the right tip of the distribution around
RMCG ¼ 0.8905 where the slopes of the potentials at large
distances approach the literature value [26] of the string

tension. There the density of local maxima of the gauge
functional has already decreased by a factor of about 10.
For the lowest β values, VcpðRÞ can only be studied for

smaller spatial extents of Wilson loops, so only the
asymptotic string tension can be determined. In the 2.4 ≤
β ≤ 2.6 range, we find similar behavior as for β ¼ 2.5.
Of particular interest is β ¼ 2.7, where we found strong

deviations from the Gaussian distribution of RMCG values in
Fig. 1(c). The corresponding string tensions are shown in
Fig. 6. Note that σcp for large R exceeds σcp for small R at
lower values of RMCG while the opposite is the case for
large values of RMCG. A potential with such an inverted,
wrong behavior of the slope is shown in Fig. 7 at
RMCG ¼ 0.907. Around RMCG ¼ 0.908, we even observe
a collapse of the linear behavior and a transition to a
screening potential, indicating P-vortices of finite extent.
The unusual, inverted behavior of Fig. 7 is particularly
relevant within the subset of the ensemble that we sug-
gested to discard in the discussion of Fig. 3. This hints at a
possibility to resolve some failures of vortex detection for
β ¼ 2.7 where the vortex detection by center vortices
became more complicated.

VI. REMOVAL OF VORTEX
DETECTION FAILURES

For sufficiently largeβ, lattices of size244 are usually large
enough to extract potentials from single field configuration
by evaluating theirWilson loop data. This observation allows
for β ¼ 2.7 to identify local maxima where vortex identi-
fication fails.We assume that this failing is caused byvortices
being partly overlooked which in turn resembles a broken
vortex percolation. From the 20 000 configurations we have
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FIG. 5. Comparison of the slopes σcp of the potential VcpðRÞ
with the literature value [26] of the string tension. The expectation
values of the center projected Wilson loops were averaged over
200 local maxima around the indicated RMCG values. For
comparison the nearly Gaussian distribution of the functional
is shown as a dash-dotted line. The most interesting region is the
intersection of the red data with the literature value. In the right tip
of the distribution, we observe the best agreement of σcp with the
asymptotic string tension.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.903  0.904  0.905  0.906  0.907  0.908  0.909  0.91

0

250

500

� c
p

pr
ev

al
en

ce

RMCG

�=2.7

RMCG distribution
small R
large R

literature
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removed those whose string tension decrease with R, i.e.,
with a behavior as shown in Fig. 7. This results in amodified,
more symmetric distribution of the remaining 16 000 local
maxima of RMCG; see Fig. 8. The string tensions extracted
from averages over 200 center projected Wilson loops are
shown in Fig. 8. The intersection of σcp with the horizontal
line has changed only slightly from RMCG ¼ 0.9064 to
0.9066 due to the modification of the ensemble. The agree-
ment between the literaturevalue and extracted string tension

corresponds to the right tip of the distribution, suggesting that
the largestmaximawithin the symmetrized ensemble of local
maxima predict the physical string tension. Hence, we
assume that even for β ¼ 2.7, the ensemble of local maxima
of the gauge functional contains the information about the
density of thick vortices when obvious failures of the vortex
identification are discarded from the ensemble.

VII. TOWARDS A MODIFIED
DEFINITION OF MCG

In the previous sections and in Fig. 1, we have found that
the distributions of local maxima are symmetric for
β∈ f2.3; 2.4; 2.5g, and have a tiny asymmetry for β ¼
2.6 and a strong asymmetry for β ¼ 2.7. Further, for the 20
000 fields at β ¼ 2.7, there are several thousands with a
slope of VcpðRÞ decreasing with R. We remove these fields
with the wrong behavior of the slope. Then we symmetrize
the ensembles for β ¼ 2.6 and 2.7.
The success of DMCG [21,22] with the request of global

maximization of the gauge functional, done for a few gauge
copies only, leads to the conjecture that the fields with the
highest RMCG values within the remaining symmetrized
ensembles allows us to predict the string tensions of the full
quark-antiquark potentials. We are now going to check this
hypothesis for our ensembles which are symmetrized for
β ¼ 2.6 and corrected and symmetrized for β ¼ 2.7. We
determine σcp from the asymptotic slopes of the center
projected quark-antiquark potential. For the 200 physically
different fields we select the N gauge copies with the
highest values of RMCG within the remaining ensembles.
Since the averages of the ensembles lead generally to an
overestimate of the string tension [14], we can expect that
the extracted string tension approaches the literature value
for decreasing N from above. The asymptotic slopes for
various values of N are compared in Fig. 9 with the
literature values of the string tension.
We observe that already a few gauge copies, with the

highest values of RMCG, are sufficient to approach the
literature values of string tensions extracted from unpro-
jected field configurations. At β ¼ 2.3 the strong coupling
is largest. This manifests itself in the highest value of the
string tension. The expected values of the Wilson loops
therefore disappear most quickly in statistical noise before
the asymptotic value of σcp is possibly reached. This could
be the reason why the string tension for β ¼ 2.3 is already
overestimated for N ¼ 1. Also for β ¼ 2.4 and 2.5 no
special action is necessary. For two or three gauge copies
we get already agreement between σcp for large Wilson
loops and the accepted values of the string tension. At β ¼
2.6 a few gauge copies with extreme values of RMCG had to
be removed by symmetrization of the ensemble, as dis-
cussed in Sec. IV. At β ¼ 2.7 failures of the vortex
detection can be identified by the missing percolation of
vortices leading to a decrease of the string tension with the
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improved.
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indicates a failure of the vortex detection.
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size of center projected Wilson loops. The remaining
symmetrized ensemble allows for the same accuracy in
the determination of the asymptotic string tension as for
lower β values. The last diagram of Fig. 9 depicts the
distribution of RMCG values for various choices of the
number N of gauge copies for β ¼ 2.5. These distributions
are again nearly Gaussian. With increasing N their average
moves towards lower RMCG values. Because of the almost
linear relation between RMCG and σcp (see Fig. 5), increas-
ing N results in an increased string tension.

VIII. CONCLUSION

In this article it was shown that the ensemble of local
maxima of the MCG gauge functional RMCG contains the
information about the long range behavior of the quark-
antiquark potential. To counter an underestimation of the
string tension, the request for global maximization of the
gauge functional was substituted by the request of maxi-
mization within the symmetric Gaussian ensemble of local
maxima. We have shown that there is a window of β values

where the asymptotic string tension of center projected
Wilson loops can be easily determined since the ensemble
of RMCG values is well Gaussian distributed. By restricting
the maximization to this Gaussian subset of the ensemble
extreme values of the gauge functional do not play any role
due to their small weights. The tip of maximal RMCG values
within these Gaussian distributions determines the gauge
copies for which the center projected string tensions σcp
agree well with the expected values of the asymptotic string
tension for unprojected fields.
The β window can be enlarged towards higher values by

symmetrization of the ensembles and diminishing the
weight of large RMCG values. A further increase of the
window is possible by excluding gauge copies experienc-
ing an inverted behavior of the slope of the potential with
respect to the loop sizes. Because of finite separation and
thickness of vortices on the lattice, one can only expect
limited increase of the β window. Within this window the
analysis of the ensemble shows that the center vortex model
is capable to reproduce the correct string tension by center
projection.
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FIG. 9. For β∈ f2.3; 2.4; 2.5; 2.6; 2.7g on a 244 lattice, string tensions are extracted from center projected Wilson loops of 200
different physical fields from the N gauge copies with the highest values of RMCG. For β ¼ 2.6 a symmetrization of the distribution
removes some of the highest extreme RMCG values. At β ¼ 2.7 configurations with P-vortices which did not percolate had to be
removed. The horizontal black lines indicate string tensions extracted from unprojected configurations in Refs. [26–29], σ ¼
0.131ð4Þ; 0.0708ð11Þ; 0.0350ð12Þ; 0.0185ð11Þ; 0.0112ð2Þ for β ¼ 2.3 to 2.7, respectively. The last figure compares the normalized
distribution of local maxima of RMCG at β ¼ 2.5 for several N. We observe that the average of these RMCG distributions moves with
increasing N to lower values and reaches for N ¼ 100 the average of the whole ensemble of gauge copies.
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The solution of the problem with the functional of
maximal center gauge was better done in the simplest
possible yet sufficient realistic environment of SU(2)
without dynamical fermions. In Ref. [30] Langfeld has
shown that the connection between confinement and vortex
matter is much weaker for the highly relevant gauge group
SU(3). This raises the interesting question whether the

present findings can be applied also to SU(3) and for
descriptions including dynamical fermions [31,32].
Although our findings are an improvement for the vortex

picture, it is still a heuristically defined gauge. An attempt
to systematically address the issue of a heuristically defined
gauge has been presented in the context of Coulomb
gauge [33].
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