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Following previous work we further explore the possibility that the chirally broken phase of gauge
theories admits an infrared fixed point interpretation. The slope of the β function, β0�, is found to vanish at
the infrared fixed point which has several attractive features such as logarithmic running. We provide a
more in-depth analysis of our previous result that the mass anomalous assumes γ� ¼ 1 at the fixed point.
The results are found to be consistent with N ¼ 1 supersymmetric gauge theories. In a second part the
specific properties of a dilaton, the (pseudo-) Goldstone, due to spontaneous symmetry breaking are
investigated. Dilaton soft theorems indicate that a soft dilaton mass can only originate from an operator of
scaling dimension two. In the gauge theory this role is taken on by the q̄q-operator. The quantum
chromodynamics (QCD) dilaton candidate, the σ ¼ f0ð500Þ meson is investigated and the singlet-octet
mixing is found to be relevant. We briefly discuss the dilaton as a candidate for the Higgs boson, which
relies on the ratio of dilaton to pion decay constant being close to unity. In QCD this is approximately
satisfied but it is remains unclear if this is accidental or whether there is yet to be uncovered principle
behind it.
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I. INTRODUCTION

That the strong interaction could be described by an
infrared (IR) fixed point is an idea [1–6] that predates
quantum chromodynamics (QCD) itself. Applied in our
previous work [7], it was found in three different ways, that
pion physics can be reproduced when the quark mass
anomalous dimension at the IR fixed point assumes γ� ¼ 1.
The methods included the hyperscaling relation for the pion
mass, compatibility of the Feynman-Hellmann theorem
with the trace of the energy momentum tensor (TEMT) and
matching a long distance correlator. The main idea that
underlies the scenario, is that the gauge theory flows into an
IR fixed point and that it is the quark condensate hq̄qi ≠ 0
that breaks both the chiral and the conformal symmetry
spontaneously.1 This leads, besides the pion, to an addi-
tional (pseudo-) Goldstone, the dilaton. The fact that the

conformal symmetry is only emergent and that the dilaton
has vacuum quantum numbers complicates matters. Let us
turn to the assumptions. The minimal implementation of IR
conformality, adopted in [7], is that the TEMT on single
particle IR-states φ, which include the vacuum, the pion
and possibly the dilaton

hφ0ðp0ÞjTρ
ρjφðpÞiq¼0 ¼ 0; ð1:1Þ

vanishes for zero momentum transfer q ¼ p − p0. In a true
CFT (1.1) holds on any physical state and momentum
transfer and can be seen as its definition.2 We make the
reasonable assumption that if (1.1) holds true that there
exists a scheme with vanishing β function in the IR:
β� ≡ βjμ¼0 ¼ 0.3 Additionally, we assume that correlators
obey conformal field theory (CFT) scaling in the deep-IR
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1Throughout this paper we do not distinguish conformal and
scale symmetry. In d ¼ 4 it is believed that these are equivalent
for nontrivial unitary theories (cf. the review [8] or [7] for more
comments and references).

2In the presence of a massless dilaton (1.1) holds for the LO
EFT: Tρ

ρjLO ¼ 0 [9]; and extends to the case of single nucleon
states hNðp0ÞjTρ

ρjNðpÞiq¼0 ¼ 0 despite mN ≠ 0 [9,10].
3Note that βðg�Þ ¼ 0 is invariant under analytic redefinitions of

g [11] but not necessarily when nonanalytic (e.g., canonical
versus holomorphic coupling in N ¼ 1 supersymmetric QCD
[12–14]). In such exotic schemes the physics is hidden away in
the field strength since it is the product Tρ

ρ ¼ βðμÞ
2gðμÞG

2ðμÞwhich is
physical and not the β function itself. The EFT formulation is
valid in schemes where βðg�Þ ¼ 0 only.

PHYSICAL REVIEW D 110, 014048 (2024)

2470-0010=2024=110(1)=014048(29) 014048-1 Published by the American Physical Society

https://ror.org/01nrxwf90
https://ror.org/01ggx4157
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.014048&domain=pdf&date_stamp=2024-07-31
https://doi.org/10.1103/PhysRevD.110.014048
https://doi.org/10.1103/PhysRevD.110.014048
https://doi.org/10.1103/PhysRevD.110.014048
https://doi.org/10.1103/PhysRevD.110.014048
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


hOðxÞOð0Þi ∝ 1

ðx2ÞΔO
þ GB-corrections; ð1:2Þ

corrected by terms due to Goldstone boson (GB). Above
ΔO ¼ dO þ γO is the scaling dimension, defined as the sum
of the engineering and the anomalous dimension. We will
see that (1.2) essentially emerges by combining RG and
EFT reasoning. Following the terminology in [10] we will
refer to this scenario as conformal dilaton (CD) QCD.
It is widely believed that the dilaton retains a chiral mass

(no explicit symmetry breaking)

m̄D ≡mDjmq¼0; ð1:3Þ

in the case of an IR-emergent conformal symmetry.4 To the
best of our knowledge this issue has never been fully
settled.5 We take a pragmatic attitude by studying both
cases separately. (We stress that all other hadrons remain
massive in the chiral limit, primarily since there is no
dynamical reason for them to be massless cf. footnote 2.)
For m̄D ¼ 0 we use dilaton-χPT (dχPT) and for m̄D ≠ 0 we
use standard chiral perturbation theory (χPT) since the
dilaton can be integrated out. Phenomenologically a dilaton
approach might still be of if m̄D ≪ Λhadron ¼ OðmNÞwhich
is what most approaches have in mind. This includes lattice
Monte Carlo investigation of gauge theories [15–29], EFT
descriptions thereof [30–33]; the dilaton as a Higgs boson
within [34–36] and investigations not necessarily linked to
gauge theories [37–41]. Or the dilaton as a driving force of
inflation [42], in dense nuclear interactions [43–45], in
cosmology [46–48] and the σ-meson in QCD [49,50]. The
name dilaton is also used in composite models for a light
0þþ-partner of pseudo-Goldstones [51].
Let us briefly summarize the main findings of our work.

By RGmethods it is inferred that the slope of the β function
vanishes at the fixed point: β0� ¼ 0. A result with many
attractive features, as it is compatible with N ¼ 1 super-
symmetric gauge theories, makes a light dilaton more likely
and implies logarithmic running near the fixed point as one
would expect from the EFT itself. A more thorough
justification for γ� ¼ 1 in the context of matching corre-
lation function is given combining RG and EFT methods.
Applying a double-soft dilaton theorem, it is found that an
operator O giving a mass to the dilaton must be of scaling
dimension ΔO ¼ 2. The second part of the paper is more
qualitative and contains a discussion on whether a dilaton
can be massless, applies dχPT to the σ-meson in QCD, and

concerns the dilaton as a Higgs boson. The main out-
standing questions are: (i) the size of the chiral mass m̄D (as
the distance from the conformal window) and (ii) the ratio
of decay constants rNf

¼ Fπ=FD as a function of the
number of flavors Nf. If r2 ≈ 1 were true, then this would
provide the rationale for coupling the dilaton like a Higgs
and quite possibly make it compatible with large hadron
collider (LHC) constraints.
The paper is organized as follows. In Sec. II the gauge

theory and dχPT are defined including a review of the
conformal window. In Sec. III QCD correlators matched to
the EFTs in the deep-IR and consistency with N ¼ 1
supersymmetric gauge theories is discussed in Sec. IV. In
Sec. V soft and double-soft dilaton theorems are exploited
Sec. V. The remaining part consists of a discussion of mass
or no mass for the dilaton.
Arguments in favor and disfavor of a massless dilaton are

addressed in Sec. VI. The dilaton as the σ-meson in QCD
and as the Higgs boson are discussed in Secs. VII and VIII
respectively. The paper ends with summary and conclu-
sions in Sec. IX. Conventions, more on soft theorems and
details on mixing are deferred to Appendixes A, B and C
respectively.

II. THE GAUGE THEORY AND ITS LOW ENERGY
EFFECTIVE THEORY

The core ingredients to this work are the gauge theory, its
RG quantities and the low energy EFT which corresponds
to χPT and dχPT when a dilaton is added and are
introduced in minimal form below.

A. The gauge theory and its renormalization
group quantities

The gauge theory Lagrangian is given by

LQCD ¼ −
1

4
G2 þ

XNf

q¼1

q̄ði=D −mqÞq; ð2:1Þ

where G2 ¼ Ga
μνGaμν is the field strength tensor with

a denoting the adjoint index of the gauge group, Dμ ¼
ð∂þ igAÞμ is the gauge-covariant derivative and the quarks
are in some unspecified representation of the gauge group.
For the more formal part of the paper the Nf flavors are
assumed to be degenerate. There are two parameters in the
Lagrangian, the gauge coupling g and the quark mass mq

whose RG-behavior we must follow. The gauge coupling is
relevant and irrelevant in the UV and IR respectively
whereas for the quark mass it is the other way around.
Global flavor symmetries are discussed in the next section.
The anomalous dimensions of the parameters and their

conjugate operators are defined from the renormalized
quantities as follows

4Throughout this work we refer to the dilaton as D when
generic matters are discussed and to σð↔ f0ð500ÞÞ when refer-
ring to the dilaton candidate in QCD and to h in the context of
the Higgs boson.

5In the context of gauge theories, it is generally believed that
m̄D becomes larger with respect to the other hadronic scales as
one moves away from the conformal window by lowering the
number of flavors.
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β≡ d
d ln μ

g; γG2 ≡ −
d

d ln μ
lnG2;

γm ≡ −
d

d ln μ
lnmq; γq̄q ≡ −

d
d ln μ

ln q̄q: ð2:2Þ

A central quantity to this work is the TEMT [52–58]

Tρ
ρjphys ¼

β

2g
G2 þ

X
q

mqð1þ γmÞq̄q; ð2:3Þ

since its vanishing on physical states signals conformality.
The subscript “phys” indicates that we have omitted terms
proportional to the equation of motion (and BRST exact
terms which arise upon gauge fixing) which nota bene
vanish on physical states [56–58]. It is very useful to note
that (2.3) consists of two separately RG-invariant terms
Tρ

ρ ¼ O1 þO2

O1 ¼
β

2g
G2 þ

X
q

γmmqq̄q; O2 ¼
X
q

mqq̄q: ð2:4Þ

Imposing d
d ln μO1;2 ¼ 0 results in

γG2 ¼ β0 −
β

g
; γq̄q ¼ −γm; ð2:5Þ

if one considers a quark mass independent scheme for the β
function. Quantities at the IR fixed point are denoted by a
star

ðγG2Þ� ¼ β0�; γ� ≡ ðγmÞ�; ð2:6Þ

where β� ¼ 0 has been assumed as stated earlier. In the
context of conformal field theories (CFT), e.g., [59–64],
the important quantities are the operator scaling dimen-
sions ΔO ≡ dO þ γO (sum of engineering the anomalous
dimension)

ΔG2 ¼ dþ β0� → 4þ β0�;

Δq̄q ¼ ðd − 1Þ − γ� → 3 − γ�: ð2:7Þ

The d-dimensional expressions have been given for
later use.

B. Synopsis of the conformal window

For the reader not acquainted with the basic notation of
the conformal window we briefly summarize its minimal
content (the N ¼ 1 supersymmetric case is described in
Sec. IV). The conformal window is the study of different
phases of gauge theories, cf. Fig. 1, as a function of the
gauge group, e.g., SUðNcÞ and the quark representation of
Nf massless fermions. The conformal window has first
been intensely studied within technicolor model building

(reviewed in [65–67]). The current understanding is in large
based on the N ¼ 1 supersymmetric case and nonsuper-
symmetric lattice studies. The main point is that in the
ðNf; NcÞ-plane, in the domain of asymptotic freedom, there
are two phases: one where the theory flows into an IR fixed
point and the QCD-phase. In the latter there is confinement
and chiral symmetry is spontaneously broken by the quark
condensate hq̄qi ≠ 0 (the global flavor symmetry breaks
from SUðNfÞL ⊗ SUðNfÞR → SUðNfÞI to the diagonal
subgroup accompanied by N2

f − 1 massless pions). If we
fix Nc ¼ 3 then we know that around Nf ≈ 16 the theory
admits a perturbative (Caswell-Banks-Zaks [68,69]) IR
fixed point and that somewhere in between Nf ¼ 16 and
Nf ¼ 3 (QCD) there is the transition into the QCD phase.
For what critical N̄f this happens is a matter of intense
debate, but known exactly in the N ¼ 1 case.

C. Low energy effective theory—dilaton-χPT at LO

In this section the dilaton EFT is discussed, its starting
point is the well-understood χPT [70–73] which is the
EFTofN2

f − 1 pions describing awealth of low-energy data.
Based on this successful framework the dilaton, the
Goldstone due to the scale symmetry breaking, is added.
The Goldstone bosons are parametrized in exponential
form

FIG. 1. Sketch of the conformal window for G ¼ SUðNcÞ with
Nc ¼ 3. For Nf > 16 asymptotic freedom is lost and those
theories are not considered. Below there is the perturbative
Caswell-Banks-Zaks IR fixed point. As Nf is lowered the IR
fixed point coupling becomes stronger until chiral symmetry
breaking sets in (for some unknown critical N̄f). In this paper we
explore the possibility that the theory admits an IR fixed point
interpretation in parts or all of the broken phase as well. The
evolution of the IR fixed point quantities γ� and β0�, to be deduced
in Sec. III, are shown as a function of Nf. We stress that the
evolution between N̄f and 16 is only schematic (the question of
continuity of the transition at N̄f cannot be assessed since Nf is a
discrete number) and most importantly that the evolution below
N̄f is non-standard (not certain) but shown to be consistent with
the IRFP assumption. In Sec. IV arguments are given in favor of
this picture for N ¼ 1 supersymmetric gauge theories.
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U ¼ ei2π
aTa=Fπ ; χ ≡ FDe−D=FD; ð2:8Þ

where the quantitiesFπ;D are fundamental in that they are the
order parameters of the symmetry breaking

hπbðqÞjJa5μðxÞj0i ¼ iFπqμδabeiqx;

hDðqÞjJDμ ðxÞj0i ¼ iFDqμeiqx; ð2:9Þ

defined as the matrix elements of the global symmetry
currents

Ja5μðxÞ ¼ q̄ðxÞTaγμγ5qðxÞ; JDμ ðxÞ ¼ xνTμνðxÞ; ð2:10Þ

between the vacuum and the corresponding Goldstone. It is
noted that the equation for the dilaton in (2.9) is equivalent to

hDðqÞjTμνj0i ¼
FD

d − 1
ðm2

Dημν − qμqνÞ; ð2:11Þ

when taking into account that xν → −i∂qν . From the zeroth
component of the currents one can see heuristically that the
charge of the symmetry does not annihilate the vacuum and
thus signals SSB. The symmetries of the Goldstones are said
to be realized nonlinearly

U → LUR†; χ → χeαðxÞ; ð2:12Þ

where ðL;RÞ∈ SUðNfÞL ⊗ SUðNfÞR and αðxÞ∈R para-
metrize the standard chiral and the Weyl transformation
respectively. The latter can be interpreted as the implemen-
tation of scale transformations on the metric gμν, rather than
the coordinates, and the fields φ

gμν → e−2αðxÞgμν; φ → esφαðxÞφ; ð2:13Þ

where sφ is called the Weyl weight which is not to be
confusedwith the engineering dimensiondφ of the field. The
Weyl weight of the metric is sgμν ¼ −2 since it naturally

contracts two coordinate vectors x2 ¼ gμνxμxν which would
transform as xμ → eαðxÞxμ. Local Weyl invariance,

ffiffiffiffiffiffi
−g

p
L → ðe−αd ffiffiffiffiffiffi

−g
p ÞðeαdLÞ ¼ ffiffiffiffiffiffi

−g
p

L; ð2:14Þ

is the guiding principle for the low energy EFT. The α space-
dependence has and will be suppressed occasionally here-
after. In the case of explicit and anomalous symmetry
breaking the spurion technique is adapted.
The leading order (LO) Lagrangian consists of

LLO ¼ LðπÞ
kin þ LðDÞ

kin þ LR
d þ Lmq

þ Lanom − VðχÞ; ð2:15Þ

two kinetic-, an improvement-, a quark mass-, an anomaly-
and a dilaton potential term. The kinetic terms read

LðπÞ
kin¼

F2
π

4
χ̂d−2Tr½∂μU∂μU†�; LðDÞ

kin ¼1

2
χ̂d−4ð∂χÞ2; ð2:16Þ

where hatted quantities are, hereafter, understood to be
dimensionless divided by the appropriate power of FD, e.g.,
χ̂ ≡ χ=FD. The pion kinetic term is standard and the
prefactor χ2 indicates that the pion has zero Weyl weight
which can be deduced directly from the conformal algebra
[3]. In Ref. [9] the following coupling of the dilaton to the
Ricci tensor was introduced

LR
d ¼ 1

2ðd − 2Þðd − 1ÞRχ
d−2 →

1

12
Rχ2: ð2:17Þ

It renders the dilaton kinetic term locally Weyl-invariant
which has many advantages.6 The quark mass term reads
[M≡ diagðmq1 ;…; mqNf

Þ]

Lmq
¼ B0F2

π

2
Tr½MUþU†M†�χ̂Δq̄q ; B0 ≡−

hq̄qi
F2
π
;

ð2:18Þ

where B0 assures that the Gell-Mann–Oakes–Renner
(GMOR)-relation m2

πF2
π ¼ −2mqhq̄qi [73,75] is repro-

duced. The chiral symmetry is formally restored by
assigning the spurious transformation rule M → L†MR
which in turn dictates the form in (2.18). The quantities B0

and Fπ are the two (independent) low energy constants
of LO χPT. The quark mass corresponds to explicit Weyl
symmetry breaking but the latter can be restored by
assigning the spurious transformation mq → eð1þγmÞαmq

and the extra factor χ̂Δq̄q is then required to renderffiffiffiffiffiffi−gp
Lmq

Weyl invariant. Alternatively, we may regard

mq as the source for q̄q with the factor χ̂Δq̄q capturing
its scaling. The remaining two terms are more delicate and
need more elaboration.
The anomalous term reads Tρ

ρ ¼ β
2g G

2 in the mq → 0
limit. It is not well understood whether a term needs to be
added for the trace anomaly in the EFT in analogy with the
WZW-term for the chiral anomaly in χPT (e.g., [71]).
Clearly, the leading effect would be captured by β0� and is
sometimes parametrized in the EFTas β0� times operators in
the LO TEMT cf. [36,50] (and also [39]). Using RG
methods we will establish β0� ¼ 0 in Sec. III which implies
that δg ¼ g − g� runs logarithmically instead of powerlike
close the fixed point. Wewould therefore think that the EFT
can capture these effects through its own loops and
matching of NLO low energy constants with QCD.
Hence, we will drop Lanom from the LO Lagrangian.

6The term (2.17) is the adaption of the improved EMT [74] to
the Goldstone case for which the presence of the dilaton is needed
to improve the pion. It leads to Tρ

ρjdχPTLO ¼ 0 for mq ¼ 0. It
improves flow theorems [9].
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We turn to the discussion of the potential. It has been
recognized by Zumino a long time ago [76] that, at least in
the absence of anomalous breaking, the only permissible
term in the potential is VZðχÞ ¼ λχd. Such a term on its own
is troublesome, cf. Ref. [36] for detailed discussion, as it
generates a linear as well as a mass term. Hence it
was concluded that λ must be a function of a symmetry
breaking parameter. A simple and frequently used form of a
potential is given by adding another power χΔ which can be
written as7

VΔðχ̂Þ ¼
m2

DF
2
D

Δ − d

�
1

Δ
χ̂Δ −

1

d
χ̂d
�

¼ constþm2
DF

2
D

�
1

2
D̂2 −

dþ Δ
3!

D̂3

þ ðdþ ΔÞ2
4!

D̂4 þOðD5Þ
�
; ð2:19Þ

with awell-definedminimum(V 0ð1Þ ¼ 0 andV 00ð1Þ ¼ m2
D).

The extra term is usually associated with the presence of an
operator of scaling dimension Δ which breaks conformal
invariance. In Sec. V we will see that in our framework the
soft theorem indicate thatΔ ¼ d − 2. Indeed the quarkmass
term inLmq

jπ¼0 (2.18) corresponds to theΔ ¼ Δq̄q ¼ d − 2

term for which the Zumino-term (2.20) assumes the form

VZðχ̂Þ ¼
Δq̄q

d

XNf

q¼1

mqhqqiχ̂d; ð2:20Þ

where λ ∝ mq is a special case of a symmetry-breaking
parameter discussed above. It assures positivity of the
dilaton mass

F2
Dm

2
D ¼ ðd − Δq̄qÞΔq̄q

Nf

2
F2
πm2

πjd¼4;Δq̄q¼2 ¼ 2NfF2
πm2

π;

ð2:21Þ

as it contributes the dΔq̄q-term. In analogy to the pion case
we will refer to (2.21) as the dilaton GMOR-relation. It will
be derived from a double-soft theorem in Sec. V. To this end
let us summarize the LO dχPT Lagrangian considered for
d ¼ 4 (Δq̄q ¼ 2)

LdχPT
LO ¼F2

π

4
χ̂2Tr½∂μU∂μU†�þ1

2
ð∂χÞ2þ 1

12
χ2R

þB0F2
π

2
ðTr½MU†þUM†�χ̂2−Tr½MþM†�χ̂4Þ;

ð2:22Þ

where the anomalous part has been dropped as per above.
We refrain from parametrizing further potential terms at LO,
as they are not required for our work and neither is it clear
what form theywould take. If wewant to derive the insertion
of the q̄q-operator then it is important to realize that its
source sðxÞ is only to be substituted in the term containingU
where it acts as a true spurion, MU† → ðMþ sÞU†, and
not in the Zumino-term. We further note that similar
Lagrangians have frequently appeared in the literature
[30,32,34,50,78]. The novelty in our case is the justification
for the absence of the anomaly term, the Δq̄q ¼ 3 − γ� ¼ 2

requirement and with respect to many references the
inclusion of the Rχ2-term.
As we sometimes consider the χPT Lagrangian on its

own, we quote its LO version

LχPT
LO ¼ F2

π

4
Tr½∂μU∂μU†� þ B0F2

π

2
Tr½MU† þ UM†�;

ð2:23Þ

which follows from (2.22) by setting χ → 1 and dropping
constant terms.

III. SCALAR CORRELATORS WITH
GOLDSTONES IN THE DEEP-IR (mq = 0)

In CFTs correlation functions are determined by a
minimal amount of information. For example, two-point
functions are characterized by a single parameter

hOðxÞO†ð0ÞiCFT ∝
1

ðx2ÞΔO
; ð3:1Þ

the scaling dimension ΔO, e.g., (2.7) (h…i stands for the
vacuum expectation value (VEV) hereafter). For theories
which flow into an IR fixed point (i.e., conformal window
cf. Fig. 1), Eq. (3.1) represents the leading behavior in the
deep-IR, x2 → ∞. The aim of this section is to investigate
how this picture is affected in the presence of Goldstone
bosons (due to scale and chiral symmetry breaking). The
basic reasoning is that since the EFT and QCD describe the
same IR-physics, the following must hold

hOðxÞO†ð0ÞiCDQCD ¼ hOðxÞO†ð0ÞidχPT; for x2 → ∞;

ð3:2Þ

for the correlation functions as they represent physical
observables. We will first analyze the two-point functions
from the RG viewpoint combining it with some knowledge
from the EFT described in Sec. II C. This will provide a
more profound understanding of the analysis in our
previous work [7] and the reason why the scalar adjoint
correlation function was singled out.

7In the literature this potential is often discussed without
specific reference to the q̄q-operator. For Δ → 4 it assumes the
famous logarithmic form used as an ansatz for an EFT of pure
Yang-Mills [77].
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Let us introduce operators O, split into ones

S ¼ q̄q; Pa ¼ q̄iγ5Taq; ð3:3Þ

which couple to single Goldstones and those

Sa ¼ q̄Taq; Tρ
ρ ¼

β

2g
G2; ð3:4Þ

that do not. Their quantum numbers and scaling dimen-
sions are

JPCðSÞ ¼ 0þþ; JPðPaÞ ¼ 0−;

JPðSaÞ ¼ 0þ; JPCðTρ
ρÞ ¼ 0þþ; ð3:5Þ

and

ΔPa ¼ ΔS ¼ ΔSa ¼ 3 − γ�; ΔTρ
ρ
¼ 4þ β0�; ð3:6Þ

respectively. The reason of why (3.6) holds true for the
currents can be found in [7], and for Tρ

ρ it is given in
Appendix A. It is noted that the scaling dimension of G2

and Tρ
ρ are the same,ΔTρ

ρ
¼ ΔG2 , since multiplying by the

β function which is a scalar does not alter the long-distance
behavior of the operator. Two-point functions will some-
times be abbreviated as

ΓOðx2Þ≡ hOðxÞOð0Þi; ð3:7Þ

and refer to Euclidean space unless otherwise stated.

A. Renormalization group analysis of correlators

Since Goldstones are massless it is to be expected that
they will affect the IR-behavior. From the formal RG
viewpoint the main change is the presence of an additional
scale [10]. There are in fact two, the pion and the dilaton
decay constant but as they are of the same order we may
group them into one single quantity F ¼ FD;π. Under these
circumstances the RG equation for the correlators of the
type (3.7) assume the following form, e.g., [79],

ð2∂ln x2 − yF2∂lnF2 þ ΔOÞΓOðx2; F2Þ ¼ 0; ð3:8Þ

where we have neglected the β∂ln g-term since its effect
is subleading as will become clear later on. Note that
yF2 ¼ dF2 þ γF2 ¼ 2 since F has vanishing anomalous
dimension. The solution of this equation reads

ΓOðx2; F2Þ ∝ 1

ðx2ÞΔO
hOðx2F2Þ; ð3:9Þ

where in general hO is arbitrary such that predictiveness is
essentially lost. However, we can improve this situation
by matching to ðdÞχPT, as in (3.2), taking advantage of

the explicit Lagrangian (2.22). We make the following
observations:
(a) We will argue that the EFT cannot produce any

noninteger powers of 1=x2. Whereas the EFT
expansion is in powers of 1=ðx2F2Þ it could be that
ln x2-corrections, related to the neglect of the β
function, resum to noninteger powers (n integer and
η not)

1

ðx2ÞðnþηÞ ¼
1

x2n
e−η lnx

2

¼ 1

x2n

�
1−η lnx2þη2

2
lnx2þ…

�
: ð3:10Þ

The answer is however negative since η itself must be
proportional to inverse powers of F, but then there is
no other scale in the chiral limit to make η dimension-
less. Hence we conclude that ln x2-terms can only
appear in subleading terms which is fairly natural from
an EFT perspective (cf. Sec. III B 6 for a more explicit
discussion of this aspect). Thus we may write

hOðzÞ ¼ akOz
kO þ � � � þ a0 þ a−1

1

z

þOðz−2Þ þ ln -terms; ð3:11Þ

where kO is some positive integer and subleading
terms contain ln x2-corrections which we have not
indicated explicitly.

(b) Having learned that the overall powers are integers,
there is still an ambiguity left and that is the inter-
pretation of the ΔO coefficient (or the actual number
kO). If the operator O shares the quantum numbers
with the Goldstone boson π and hπjOj0i ≠ 0, then
ΓOðx2Þ scales as

ΓOðx2Þ ∝
1

x2
þOðx−4Þ; ð3:12Þ

as a consequence of the spectral representation. Are we
to interpret ΔO with this contribution, that is ΔO ¼ 1?
The analysis in terms of the spectral function, further
below, suggests otherwise since these contributions are
discontinuous with respect to the conformal window
phase. The RG analysis in Sec. III B 7 provides a
further tool. Since the single [two] Goldstone cases
are of OðF2Þ ½OðB0Þ� with ΔF2 ¼ 2 and ΔB0

¼ 0 it is
the latter which agrees with the pure CFT scaling. And
thus one is to discard the single Goldstone case.
Another way to look at it is to the pure CFT case for
which the operator product expansion (OPE) provide a
strong tool. These corrections can then be seen as
emerging due to VEVs which is a more formal way to
see the discontinuity with the conformal window.
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(c) There is a second exception. It could be that in the
leading term ΓOðx2Þ ¼ c=ðx2ÞΔO , c ¼ 0 due to some
symmetry. The identification ofΔO would then proceed
through a next-leading correction which com-
plicates matters as is the case for the Tρ

ρ-correlator
for dχPT.

Finally, we conclude that it is the leading multiparticle state
contribution which is to be identified withΔO (provided the
exceptional case under the last item does not occur).

B. Spectral analysis and matching to ðdilaton-ÞχPT
Here we aim to underlay the previous discussion from

the viewpoint of the spectral representation which provides
a more intuitive insight. Below we give a brief summary
(e.g., [80,81] for further reading). In Minkowski space the
spectral density ρðsÞ8

Γ̄Oðp2Þ≡ i
Z

d4xeipxhTOðxÞO†ð0Þi¼
Z

∞

0

ds
ρOðsÞ

s−p2− i0
;

ð3:13Þ

of the two-point function is proportional to the imaginary
part

ρOðsÞ ¼
1

π
ImΓ̄OðsÞ: ð3:14Þ

The same spectral function enters the Euclidean correlation
functionZ

d4xeipxhOðxÞO†ð0Þi ¼
Z

∞

0

ds
ρOðsÞ
sþ p2

: ð3:15Þ

It is instructive to first consider an example of a QCD and a
CFT spectral function since the CFT-Goldstone case bears
aspects of both of them.

1. Spectral function in QCD with a heavy b-quark

In QCD a typical spectral function consists of a few
(stable) bound states, characterized by δ-functions, and a
continuum, beginning at some branch point s0,

ρQCDO ðsÞ ¼
X
n

jfðnÞO j2δðs −m2
nÞ þ θðs − s0ÞσOðsÞ; ð3:16Þ

including resonances as well as other multiparticle states.

The δ-function prefactor is fðnÞO ≡ h0jOjni, sometimes
referred to as the decay constants since such a quantity
governs the pion decay. We consider pure QCD, QED and

weak interactions turned off, with a heavy b-quark flavor
OðxÞ → b̄iγ5qðxÞ for which: m2

1 → m2
B with no further

stable states and the continuum threshold is given by
s0 ¼ ðmB þ 2mπÞ2. The x-dependence due to σO cannot
be evaluated without knowing the function but the δ-term
part is simply given by the Fourier transform of the
propagator

ρOðsÞ ∝ δðs −m2Þ

⇔ hOðxÞO†ð0Þi ∝
Z

d4xeipx

p2 þm2

����
m2¼0

∝
1

x2
; ð3:17Þ

which exhibits the 1=x2-scaling stated earlier.

2. Spectral function in a CFT without
spontaneous symmetry breaking

It is straightforward to deduce that the following iden-
tification holds

ρCFTO ðsÞ ∝ sΔO−d
2 ⇔ hOðxÞO†ð0Þi ∝ 1

ðx2ÞΔO
; ð3:18Þ

either by direct computation [82] or on grounds of dimen-
sional analysis. This function is to be interpreted as
belonging to the multiparticle threshold σO. It is noted
that the limit ΔO → 1 for d ¼ 4 is pathological (IR-
divergent spectral integral) since the operator really
describes a free field rather than a multiparticle
spectrum.

3. Spectral function in spontaneous
scale symmetry breaking

The case of spontaneous symmetry breaking has elements
of both the QCD- and the CFT-case. The stable particle
becomes themassless Goldstones and the continuum thresh-
old moves to zero assuming a simple power law. The
δ-functions are very singular and have no counterpart in
the unbrokenCFT-case and it is intuitively clear that they are
not to be identified with ΔO. In Sec. III A this has been
arguedmore formally, thatΔO ¼ 1 does strictly imply a free
field and is therefore not associated with s raised to some
power. In conclusion the spectral function, in the case of
SSB, generically reads

ρSSBO ∝ sΔO−d
2ðF2δðsÞ þ cθðsÞÞ þ δρðsÞ; ð3:19Þ

where c is a constant and the δ-term is only present if
theGoldstone couples toO. The quantity δρðsÞ parametrizes
suppressed contributions such as multinucleon thresholds.

4. Multi-Goldstone case: The operator Sa

The case of the operator Sa (3.4) is the simplest as its
quantum numbers do not allow for the propagation of a
single Goldstone. It was chosen for this reason in our earlier

8The representation (3.13) will in general need subtraction
terms which are not important since polynomial ðp2Þn-terms
corresponds to local δðnÞðxÞ-terms which are irrelevant for the
deep-IR.
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work [7] which we recapitulate here in the language of the
spectral function. Dropping the δ-function piece in (3.19)
one gets the standard CFT-scaling

ρSaðsÞ∝ sΔSa−d
2 ⇔ hSaðxÞSað0ÞiCDQCD∝

1

ðx2ÞΔSa
: ð3:20Þ

In dχPT these operators are matched at leading order to

SajLO ¼ −
F2
πB0

2
Tr½TaU† þ UTa�χ̂2

¼ B0

2
dabcπbπc þOð1=FÞ; ð3:21Þ

to two pions using the method of sources [7]. Its evaluation
involves the propagation of two free pions hπaðxÞπbð0Þi ¼
δab

4π2x2 only, as illustrated in Fig. 2, and one gets

hSaðxÞSað0ÞiχPT ∝
1

x4
: ð3:22Þ

Matching to (3.2), hSaðxÞSað0ÞiCDQCD ∝ 1
ðx2ÞΔSa one finds

ΔSa ¼ 3 − γ� ¼ 2 ⇔ γ� ¼ 1; ð3:23Þ

that the mass anomalous dimension at the IR fixed point is
unity [7].

5. Single-Goldstone case: The operators Pa and S

The cases of the operators Pa and S (3.3) differ in that
they couple to a single Goldstone, the pion and the dilaton
respectively, and thus both terms in (3.19) are present.
Omitting the truly subleading terms we have

ρPaðsÞ ∝ sΔPa−d
2ðF2

πδðsÞ þ cÞ; ð3:24Þ

implying

hPaðxÞPað0ÞiCDQCD ∝
F2
π

ðx2ÞΔPa−1
þ c0

ðx2ÞΔPa
; ð3:25Þ

where c and c0 are constants. The case of S is analogouswith
Fπ → FD, cf. Fig. 2. In dχPT the operators are given by

FIG. 2. Two-point functions of operators defined in (3.3), (3.4) evaluated in the deep-IR. Top: scalar adjoint correlator with no
coupling to Goldstones scaling as 1=x4. Center: scalar and adjoint pseudoscalar correlators with a single and a two dilaton intermediate
state. Bottom: Tρ

ρ-correlator in χPT (the one for dχPT is zero at LO).
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S ¼ −
F2
πB0

2
Tr½U† þU�χ̂2

¼ 2B0NfF2
πD̂þ B0

4
ðπaπa − NfF2

πD̂
2Þ þOð1=FÞ;

Pa ¼ −
F2
πB0

2
iTr½TaU† −UTa�χ̂2

¼ −B0Fππ
að1 − 2D̂Þ þOð1=FÞ: ð3:26Þ

From these expressions the following LO correlation func-
tions result

hSðxÞSð0ÞidχPT ¼ cð2ÞS

x2
þ cð4ÞS

x4
;

hPaðxÞPað0ÞidχPT ¼ cð2ÞPa

x2
þ cð4ÞPa

x4
: ð3:27Þ

with

cð2ÞS ¼B2
0F

2
πF̂

2
πN2

f

π2
; cð4ÞS ¼B2

0ððN2
f−1ÞþN2

fF̂
4
πÞ

32π4
;

cð2ÞPa ¼B2
0F

2
π

4π2
; cð4ÞPa ¼B2

0F̂
2
π

4π4
:

Here and thereafter the flavor index is understood to be held
fixed. Matching the two expressions, as in (3.2) but
disregarding the 1=x2-contribution as argued above, one
deduces

ΔS ¼ ΔPa ¼ 3 − γ� ¼ 2 ⇔ γ� ¼ 1; ð3:28Þ

the same result as in the previous section. This should not be
taken for granted but as a sign of the consistency of the
approach.

6. Multi-Goldstone case II: The trace of the energy
momentum tensor Tρ

ρ

The case of the TEMT is interesting as it brings several
new elements. It is tempting to think that the dilaton would
couple to Tρ

ρ ¼ β
2g G

2 but it does in a way (2.11)

hDjTρ
ρj0i ¼ FDm2

D; ð3:29Þ

which vanishes when the dilaton is massless and if it is
massive it would decouple from the IR physics. The next
candidates in question are two pions and two dilatons. It is
instructive to first consider the gluon correlator for which
ΔG2 ¼ 4þ β0� (2.7) is determined by the slope of the β
function at the fixed point

ρG2ðsÞ ∝ sΔG2−
d
2 ⇔ hG2ðxÞG2ð0ÞiCDQCD ∝

1

ðx2Þ4þβ0�
:

ð3:30Þ

Adapting it to Tρ
ρ one multiplies two powers of the β

function which as argued previously, leaves the x-scaling
unaltered

hTρ
ρðxÞTρ

ρð0ÞiCDQCD ∝
β2

ðx2Þ4þβ0�
: ð3:31Þ

In the EFT it makes a difference whether one uses χPT
(2.23) or dχPT in (2.22). From the LO EFTs one obtains
[9], neglecting terms of higher powers in π,

Tρ
ρjLOχPT ¼ −

1

2
∂
2πaπa; Tρ

ρjLOdχPT ¼ 0: ð3:32Þ

Thus at LO χPT is only scale invariant but not conformal
contrary to dχPT. One gets

hTρ
ρðxÞTρ

ρð0ÞiLOχPT ∝
1

x8
; hTρ

ρðxÞTρ
ρð0ÞiLOdχPT ∝ 0:

ð3:33Þ

In χPT the matching with (3.31) implies, in straightforward
manner, that the slope of the β function vanishes at the IR
fixed point: β0� ¼ 0. The case of dχPT is exceptional
and corresponds to the case discussed under item (c) in
Sec. III A in that the LO-term vanishes by conformal
symmetry. In fact one can show that hG2ðxÞG2ð0Þi has
no 1=x8-term as otherwise the β-function ought to vanish
entirely. Thus one cannot argue β0� ¼ 0 by expanding in δg.
We proceed in a different manner using RG arguments.

7. Renormalization group derivation of β0� = 0

We first consider the GMOR-relation and the TEMT to
deduce hπjG2jπi ¼ OðmqÞ and by equating to the RG
version of the matrix element we deduce β0� ¼ 0.
We may decompose the TEMTas Tρ

ρ ¼ O0
1 þ 2O2 with

O0
1 ≡O1 −O2 (2.4). Note that O0

1 inherits the RG invari-
ance of O1;2. Since 2O2 saturates the GMOR-relation
hπjTρ

ρjπi ¼ hπj2O2jπi þOðm2
qÞ, one gets that the O0

1

matrix element must vanish to linear order in mq.
Expanding in δg, assuming γ� ¼ 1 and β� ¼ 0, we get

0¼hπjO0
1jπijmq

¼δg

�
β0�
2g�

hπjG2jπiþ
X
q

γ0�mqhπjq̄qjπi
����

mq

þOððδgÞ2Þ:

ð3:34Þ

Without making any assumptions on β0� and γ0� we deduce
that hπjG2jπi ¼ OðmqÞ since we know that hπjq̄qjπi ¼
Oðm0

qÞ from the GMOR-relation. From general RG
arguments, similar to hyperscaling, e.g., [79,83–85] and
also [10], one infers the mq and the F dependence
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hπjG2jπi ¼ m
Δ
G2

þ2dπ

ym
q hðFm−1=ym

q ; μÞ; ð3:35Þ

where μ is the RG scale, ym ≡ 1þ γ�, dπ ¼ −1 is the
dimension of jπi [84] and h an a priori unknown function.
In principle there is also the parameter B0 ¼ −hq̄qi=F2

π but
it can be omitted since its scaling dimension vanishes
ΔB0

¼ Δq̄q − ΔF2
π
¼ 0. Thus the extra powers of F2 is what

distinguishes the scaling in the QCD IR-phase from the
conformal window phase.
Hence, our task is to find this power in F. We can

do so by using that hπjG2jπi and hπjq̄qjπi are of the same
order in Fπ . From the soft-pion theorem one deduces
hπjq̄qjπi ∝ 1

F2
π
hq̄qi ¼ −B0. Thus we conclude that

hπjG2jπi ∝ F0 and we obtain

hπjG2jπi ∝ m
2þβ0�
ym
q ; ð3:36Þ

and equating to hπjG2jπi ¼ OðmqÞ deduced above, one
infers consistency (using ym ¼ 2) if and only if the slope
vanishes

β0� ¼ 0: ð3:37Þ

Reassuringly, this is the same result obtained previously
for χPT.
To gain further confidence consider hq̄qi ¼ −B0F2

π in
terms of an RG analysis as in (3.35). Interpreting
hq̄qi ∝ F2, thereby ignoring B0, we may write

hq̄qi ¼ m
Δq̄q
ym
q HðFm−1=ym

q ; μÞ ∝ F2m
Δq̄q−2
ym

q ∝ Oð1Þ; ð3:38Þ

which yields the correct result: no quark mass dependence
at LO with Δq̄q ¼ 2.

C. Consequences of β0� = 0

In our view β0� ¼ 0 is an important result.
(a) It is supported by smooth matching to N ¼ 1 super-

symmetry (cf. Sec. IV).
(b) It is the promised justification for dropping the

anomaly term in the LO Lagrangian (2.15). For
example, in Ref. [36] the LO anomaly terms become
degenerate with the kinetic terms in the limit β0� → 0,
and may therefore be dropped. As χPT is an EFT the
EMT needs renormalization [86]. In that case three
new counterterms, parametrized as a function of the
Riemann tensor, have been found at NLO. We expect
the same program to apply in dχPT such that the
breaking of scale invariance emerges naturally at
higher orders.9 We would though expect that the terms

from the Weyl or conformal anomaly [87], which are
the analog of the Wess-Zumino-Witten term in QCD,
would need to be matched at NLO.

(c) The slow logarithmic running (discussed below) may
be interpreted in terms the mass gap among the
hadrons. Once the ρ, a0-meson, depending on the
channel, decouple the theory asymptotes slowly into
the free Goldstone EFT (accompanied by 1=ðx2F2Þ
power correction at NLO in accordance with the
earlier discussion).

(d) It seems to make the existence of a QCD Seiberg dual
in the nonsupersymmetric conformal window
[14,88,89] more likely since the turnaround of the
β0� in the conformal window would go well with a
weakly coupled dual IR fixed point.

Moreover, as emphasized in [90,91], β0� ¼ 0 also impacts
on the nuclear axial current which has been the subject of
scrutiny for many decades. In the light of β0� ¼ 0 it might be
of interest to work out the strange quark mass corrections.

1. Logarithmic running

We may expand the β function around the fixed point
coupling δg≡ g − g�

β ¼ β0�δgþ
1

2
β00�ðδgÞ2 þOððδgÞ3Þ: ð3:39Þ

By the very assumption of an IR fixed point we have β0� ≥ 0
and the value in (3.37) saturates this constraint. Using
β0� ¼ 0 gives an RG equation

d
d ln μ

δg ¼ 1

2
β00�δg2; ð3:40Þ

which solves to a logarithmic

δgðμÞ ¼ 4

jβ00�j ln μ2

λ2QCD

; ð3:41Þ

instead of to a power-like form δg ∝ μβ
0� . Above, the

boundary condition δgð0Þ ¼ 0 was imposed and the
expression is maximally valid for μ < λQCD where it runs
into a Landau pole from below. The scale λQCD is the analog
of ΛQCD in the IR. Note that whereas β0� is scheme
independent under regular coupling redefinitions this is
not the case for β00�. For the sake of concreteness we may
assume it to be nonvanishing, in which case it needs to be
negative to assure negativity of the β function (3.39). In
retrospect the logarithmic running is reassuring as it is
difficult to see how ðdÞχPT could reproduce power-like
scaling as per item (c) above.

9In dχPT the divergent parts of the counterterms have been
computed very recently [33] but not the ones for the EMT.
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2. The vanishing of β0� implies the vanishing of γ0�
In N ¼ 1 supersymmetric gauge theories β0� is propor-

tional to γ0� ¼ 0 due to the Novkikov-Shifman-Vainshtein-
Zakhariv (NSVZ) β function [92]. Hence, the vanishing of
β0� implies the vanishing of γ0� and it is natural to ask
whether this extends to the nonsupersymmetric case. Using
Eq. (3.34) one infers that zero β0� implies zero γ0� by RG
invariance:

β0� ¼ 0 ⇔ γ0� ¼ 0: ð3:42Þ
We note that this result might be more universal since they
both govern the correction to hyperscaling, e.g., [85].

IV. COMPARISON WITH N = 1
SUPERSYMMETRIC GAUGE THEORIES

It is instructive to reflect on the results obtained in the
context of N ¼ 1 supersymmetric gauge theories and its
Seiberg dualities, for which many excellent reviews exist
[93–96]. Our brief summary below, extends on the non-
supersymmetric conformal window in Sec. II B. For
SUðNcÞ gauge theories with Nf fermions, which is referred
to as the electric theory, the conformal window extends
over the following region

conformalwindow∶
3

2
Nc ≤ Nf ≤ 3Nc: ð4:1Þ

In this window there exists a Seiberg dual, referred to as the
magnetic theory, which is also asymptotically free with
gauge group SUðNf − NcÞ and a Yukawa-superpotential
interaction W ¼ λMi

j̄qiq̃
j̄ which couples Nf chiral qi and

Nf antichiral q̃j̄ matter fields to a color neutral chiral meson
superfield Mi

j̄ (where i and j̄ are SUðNfÞL and SUðNfÞR
flavor indices respectively). The duality [97], in part based
on nontrivial matching of anomalies, is the statement that
both of these theories flow to the same CFT in the IR. The
relation of the dilatation and nonanomalous R-current in the
same superconformal multiplet allows to determine the
scaling dimension of the bilinear (s)quark fields in terms of
the known R-charges10

ΔQ̃Q¼2−γ� ¼3−
3Nc

Nf
; Δq̄q¼3−γ� ¼4−

3Nc

Nf
; ð4:2Þ

valid in the conformal window. Alternatively, this formula
can be deduced by requiring the NSVZ β function [98,99]
to vanish in the domain (4.1).
Below the conformal window squark bilinears can take

on VEVs and break the superconformal R-symmetry and

the relations (4.2) cease to be valid. In the range

IR-freemagnetic∶ Nc þ 1 < Nf <
3

2
Nc; ð4:3Þ

the magnetic theory plays the role of the weakly coupled IR
EFT of the strongly coupled electric theory. The magnetic
theory is not asymptotically free anymore and the electric
theory can be seen as its UV completion. We may think of
this magnetic description as a meson EFT of the hybrid
type, as it still contains colored degrees of freedom, and as
such resembles the phenomenologically successful chiral
quark model [100]. There are three further phases below: s-
confinement for Nf ¼ Nc þ 1 (confinement without chiral
symmetry breaking), Nf ¼ Nc anomalies are matched by
mesons and baryons only, Nc > Nf > 1 has a runaway
potential (no stable vacuum). We will not focus on these
phases as they are quite possibly peculiar to supersymmetry
itself. Further note, that for Nf ¼ Nc þ 1 the dual gauge
group in particular ceases to make sense but interestingly
the anomalies can still be matched. We discuss γ� ¼ 1,
β0� ¼ γ0� ¼ 0 under items (a) to (c) below from the super-
symmetric-viewpoint reasoning whether they extend into
the IR-free magnetic phase (4.3).
(a) The squark bilinear Q̃Q is believed to match onto the

free meson field Mj
ī for which hMðxÞMð0Þi ∝ 1=x2

for x2 → ∞ must hold in the IR-free magnetic range
(4.1). This implies ΔM ¼ ΔQ̃Q ¼ 2 − γ� ¼ 1 and thus
γ� ¼ 1 must hold throughout the IR-free magnetic
phase.11

(b) In the conformal window β0� is nonzero. This can be
established close to the electric Caswell-Banks-Zaks
fixed point as its very idea is based on β0� being small.
As the coupling increases so does β0�, e.g., [101]. Since
β0� is also the scaling exponent of the TEMT-correlator
(3.31) [92] this implies the equality of the electric and
magnetic slopes in the conformal window12

β0�jel¼β0�jmag

⇔ hTρ
ρðxÞTρ

ρð0Þiel ↔
IR hTρ

ρðxÞTρ
ρð0Þimag: ð4:4Þ

The value of β0�jmag corresponds to the minimal
eigenvalue of the gradient matrix of the β function
matrix in the gauge-Yukawa coupling space. Since the

10In the supersymmetry literature γQ, the matter-field anoma-
lous dimension, is used rather than γm. They are related by
γm ¼ −γQ through nonrenormalization theorems to all order in
perturbation theory.

11As a side remark, it is curious that in N ¼ 1 the end of the
conformal window coincides with the unitarity bound whereas
for QCD gauge theories the unitarity bound γ� ≤ 2 is not
reached. The interpretation that suggests itself [7] is that
chiral symmetry breaking sets in once the scaling dimension
allow the operator Sa (ΔSa ¼ 2) to produce two free pions as
predicted by ðdÞχPT.

12This result was derived earlier by matching the Konishi
currents via an involved Kutasov construction in [102].
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magnetic theory is weakly coupled at the lower edge of
the conformal window, Nf toward 3

2
Nc, where it

assumes its own perturbative fixed point this means
that

β0�jNf¼3 ¼ β0�jNf¼3
2
¼ 0; β0�j3

2
Nc<Nf<Nc

> 0; ð4:5Þ

β0� is zero at both edges of the conformal window and
positive in between which follows from the very
assumption of an IR fixed point. This is curious as both,
very weak and very strong coupling, seems to makes β0�
vanish. However, since β0� ¼ 0 also implies the logarithmic
running implicit in the EFT cf. Sec. III B 6, this can be seen
as a necessary result and matches the expectation of the
IR-free magnetic phase (4.3). This is also the reason it
should continue to hold in the IR-free magnetic phase
which is though not argument inherent to supersymmetry.
(c) The NSVZ β function [98,99] is expressed in terms of

known quantities and the anomalous dimension γm.
Hence, differentiating, and using β� ¼ 0, give a
relation [92]

β0� ¼
α2�
2π

Nf

1 − α�
2πNc

γ0�; ð4:6Þ

which must hold at least in the conformal window.
(α� ¼ g2�=4π denotes the electric IR fixed point gauge
coupling). Therefore, β0� ¼ 0 at Nf ¼ 3

2
Nc implies the

same for γ0� ¼ 0 at this point. In IR-free magnetic
phase, γ0� ¼ 0 might continue to hold by the same
reasoning as given in Sec. III C 2. This argument is not
specific to supersymmetry.

In summary, we have argued that for N ¼ 1 supersym-
metry γ� ¼ 1 and β0� ¼ γ0� ¼ 0 hold at the boundary of the
conformal window. Using Seiberg duality we provided an
argument of why γ� ¼ 1 and β0� ¼ 0 carry over into the
IR-magnetic phase. For γ0� ¼ 0, its link to β0� which is not
supersymmetric in nature was invoked with regards to the
IR-magnetic phase. It is worthwhile to emphasize that there
have been interesting attempts to understand the magnetic
dual in terms of hidden local symmetry and low energy
Goldstone physics [103,104]. It may well be that the
massless 0þþ flavor-singlet found in these cases is the
dilaton.

V. SOFT DILATON THEOREMS

In this section we apply the double-soft theorem to the
matrix element

2m2
D ¼ hDjTρ

ρjDi; ð5:1Þ

which will provide some surprising model-independent
results and the dilaton GMOR-relation (2.21). Equation (5.1)
is usually considered a first principle formula but in

the presence of a massless dilaton it does not hold for a
standard hadronic state φ. The dilaton pole cancels the
2m2

φ-contribution from the kinetic term such that
hφjTρ

ρjφi ¼ 0 [10]. However, since here mD ≠ 0 is kept,
this situation does not arise (whichwehave explicitly checked
at LO). All the information needed from the potential is the
mass term V ⊃ 1

2
m2

DD
2.

The idea of soft theorems is that one has a pseudo-
Goldstone with a light mass, mpGB ≪ ΛQCD, whose
momenta can be approximated to be soft q → 0 while
keeping mpGB ≠ 0 [71] (which is automatic in an
EFT treatment).13 The procedure assumes that the original
matrix element does not change significantly in the soft
limit. The gain is that the evaluation then proceeds by a
simpler matrix element where the Goldstone emerges in a
computable commutator. For the dilaton and pion they read

hDðqÞβjOð0Þjαi ¼ −
1

FD
hβji½QD;Oð0Þ�jαi þ lim

q→0
iq · R;

hπaðqÞβjOð0Þjαi ¼ −
i
Fπ

hβj½Qa
5;Oð0Þ�jαi þ lim

q→0
iq · Ra;

ð5:2Þ

where the one for pions can be found in the textbook [71].
The R’s are the so-called remainders

Rμ ¼ −
i
FD

Z
ddxeiq·xhβjTJDμ ðxÞOð0Þjαi;

Ra
μ ¼ −

i
Fπ

Z
ddxeiq·xhβjTJa5μðxÞOð0Þjαi; ð5:3Þ

which vanish unless there are intermediate states degener-
ate with either α or β [106].14 Let us focus on an operator
present in the TEMT O ⊂ Tρ

ρ which is responsible for
generating the mass. We will refer to this operator as the
mass operator. Applying the soft theorem (5.1) one gets

2m2
D ¼ hDjOðxÞjDi ¼ −

1

FD
h0ji½QD;OðxÞ�jDi

¼ −
1

FD
ðΔO þ x · ∂Þh0jOðxÞjDi: ð5:4Þ

Above we used the CFT definition of applying QD to a
primary operator which is an assumption similar to (1.1).
Now comes the main technical point. It is crucial to
keep the derivative term since the matrix element,
h0jOðxÞjDðqÞi ¼ FOe−iqx, carries x-dependence. Thus

13That the soft theorem is encoded in the Lagrangian is of no
coincidence as effective Lagrangians are considered a more
transparent way to organize them [105].

14We have checked that they vanish in the cases at hand for
which it is important to keep mD;π ≠ 0. An example of where the
R matters is sketched in the appendix of Ref. [7].
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the question of how to make sense of this term? We may
regard this matrix element as a test function in a distribution
space and are therefore led to integrate over space by

1V ¼ 1

V

Z
V
ddx: ð5:5Þ

This allows for integration by parts such that15

1V ½x · ∂h0jOðxÞjDi� ¼ −d
1

V

Z
V
ddxh0jOðxÞjDi; ð5:6Þ

and assembling we get the single-soft dilaton theorem

m2
DFD ¼ 1

2
ðd − ΔOÞh0jOjDi; ð5:7Þ

where the integral has been removed since the second
dilaton is to be made soft as well. Applying the procedure
once more one gets the double-soft dilaton theorem

m2
DF

2
D ¼ 1

2
ðΔO − dÞΔOhOi; ð5:8Þ

where this time the derivative term can be dropped since
hOðxÞi has no x-dependence by translation invariance. It is
worthwhile to stress that these two relations are model-
independent by which we mean not particular to the gauge
theory.

A. Consequences of the single- and the double-soft
dilaton theorem

There are a number of things that one can learn from
these two relations. Only items (c) and (d) are specific to
the gauge theory; (a) and (b) are general.
(a) One has hOi ≤ 0 necessarily, such that hTρ

ρi is
lowered (O ⊂ Tρ

ρ) with respect to the perturbative
vacuum. Hence, the mass squared (5.8) is indeed
positive thanks to the d-term that originates from the
derivative term. This gives us confidence that this term
is present (cf. item (c) for a further comment).

(b) One can get a very similar relation to (5.7) by
contracting (2.11)

m2
DFD ¼ h0jOjDi; ð5:9Þ

where we have assumed Tρ
ρ → O since O is the

operator that generates the mass. Inspecting (5.9) and
(5.7) one infers that

ΔO ¼ d − 2; ð5:10Þ

must hold which seems important. Hence, the soft
theorem indicates that the dilaton can only get a mass
from an operator of dimension ΔO ¼ 2 (in d ¼ 4).
Alternative derivations of this results are given in
Appendices B 1 and B 2 directly from the Lagrangian
and from scaling arguments.
On another note, it is tempting to read the results

(5.10) backward and interpret it as yet another dem-
onstration that γ� ¼ 1 (Δq̄q ¼ 3 − γ�) has to neces-
sarily hold.

(c) Let us turn to the gauge theory where the operator

Tρ
ρ ⊃ Oq̄q ¼ ð1þ γ�Þ

X
q

mqq̄q; ð5:11Þ

satisfies the criteria (5.10) for γ� ¼ 1 (Δq̄q ¼ 3 − γ�).
It is in fact tempting to read it the other way around.
Namely, as another demonstration that γ� ¼ 1 must
hold. Turning to pragmatic matters, one may use (5.8)
to obtain

F2
Dm

2
D ¼ Δq̄qðΔq̄q − dÞNf

2
ð1þ γ�Þmqhq̄qi

¼ −4Nfmqhq̄qi; ð5:12Þ

where γ� ¼ 1 and d ¼ 4 have been used in the last
equality. Since the effective Lagrangian is rather
standard, this relation has been obtained previously,
e.g., [3,36,78]. What is new is the result γ� ¼ 1
(Δq̄q ¼ 2), that there are no β0�-terms and the deriva-
tion in itself from the double-soft theorem.
The dilaton GMOR-relation quoted in (2.21) can be

obtained by going through the analogous process for
the pion which has been done in [7] but we shall repeat
it here for completeness. Starting with the analog of
(5.1) one gets

2m2
π ¼ hπajTρ

ρjπai ¼ hπajOq̄qjπai ¼
−ð1þ γ�Þmq

Fπ
h0ji½Qa

5; q̄1Nf
q�jπai

¼ 2mqð1þ γ�Þ
Fπ

h0jPajπai ¼ −2mqð1þ γ�Þ
F2
π

hq̄qi; ð5:13Þ

15The proper way to do this would be to form a wave packet within a finite region in x-space. In addition this makes it clear that the
boundary terms that arise upon integration by parts do not contribute.
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upon using hπajPbj0i ¼ − 1
Fπ
hi½Qa

5; P
b�i ¼ − 1

Fπ
hq̄qiδab

with Pb as in (3.3). Rewriting

m2
πF2

π ¼ −ð1þ γ�Þmqhq̄qi ¼ −2mqhq̄qi; ð5:14Þ

the GMOR-relation emerges [73,75] upon using γ� ¼ 1.
Combining (5.12) and (5.14)

F2
Dm

2
D ¼ Δq̄qðd − Δq̄qÞ

Nf

2
F2
πm2

π; ð5:15Þ

we get the dilaton GMOR-relation (2.21). There is a further
insight hidden here. Namely the d-term, which originated
from the derivative term in (5.4), in fact corresponds to the
Zumino-type term in (2.20) (to see that one needs to expand
to second order in D). This underlines the necessity of the
integration by parts procedure applied once more. It is
satisfactory and important that full consistency with the
EFT is attained.
(d) Under item (b) we learned that the soft theorem

demands ΔO ¼ 2. It is more often than not inferred
from the soft theorem that the field strength tensor
squared Tρ

ρ ¼ β=ð2gÞG2 generates a dilaton mass in
the chiral limit. However, this is not done from
hDjG2jDi but from hDjG2j0i which gives the relation

m2
DF

2
D ¼ −

2β

g
hG2i; ð5:16Þ

upon using ΔG2 ¼ 4, sometimes referred to as the
partially conserved dilatation current (PCDC) relation.
Since ΔG2 ¼ 4 does not meet the condition (5.10) this
raises a question mark over the procedure.
Either results, (5.7) and (5.8), would give zero since
d − ΔG2 → 0. One may wonder whether this indicates
that the gluon condensate is to vanish. A logical
possibility that suggests itself is that the dilaton
could be massless in the chiral limit m̄D → 0 and that
all three matrix elements vanish, hDjG2jDi ¼
hDjG2j0i ¼ hG2i ¼ 0. We consider it worthwhile to
emphasize this possibility without insisting on it
(cf. the discussion in Sec. VI A).

In summary we have learned that the dilaton can only
obtain a soft mass from an operator of scaling dimension
two such as q̄q in the gauge theory. In addition, the soft
theorems reproduce the dilaton GMOR-relation (5.15).
Single soft theorems are equivalent to results found in
more formal considerations, e.g., [107]. It could be inter-
esting to extend the techniques of both approaches to
each other.

VI. MASSIVE OR MASSLESS DILATON?

It is commonly believed that there are CFTs for which
conformal symmetry is spontaneously broken, leading to a
massless dilaton and massive states, e.g., [87]. The situation

of when there is an RG flow into an IR fixed point cannot
be regarded as settled. The problem is that the symmetry is
only emergent and we are not aware of a systematic
treatment of this case. Investigations in holographic
approaches argue for a light but not a parametrically light
dilaton [41,108–110]. However, since the answer to the
question might be model-dependent we focus on our
framework.16 Parametrically, the leading effect is expected
to come from the slope of the β function, which is however
zero in our framework (3.37) and thus the parametric
expectation moves to

m2
D ∝ Oðβ00�Þ: ð6:1Þ

This finding can be taken as an indication that the dilaton
mass could at least be small. We are going to reflect on the
question from three different points of view: the soft
theorems, the large-Nc limit and the EFT-perspective.
Whereas not conclusive, we hope that the reader finds
the discussion instructive.

A. Soft-theorem perspective

The form of the TEMT (2.3) is correct to all orders in
perturbation theory and believed to hold beyond. If we set
mq ¼ 0 then there is only Tρ

ρ ¼ β
2g G

2 and thus we have

2m2
D ¼ hDj β

2g G
2jDi in line with (5.1). However, the dou-

ble-soft dilaton theorem indicates that the dilaton mass
ought to originate from an operator O ⊂ Tρ

ρ of scaling
dimension ΔO ¼ 2 a result underlined by an alternative
derivation from scaling in Appendix B 2. Hence, this role
cannot be taken by G2 since ΔTρ

ρ
¼ ΔG2 ¼ 4þ β0� ¼ 4.17

As there is no other operator thanG2 present in the EMT (for
mq ¼ 0) this would then seem to imply that the dilaton is

16There are examples of massless dilatons in lower dimen-
sions, e.g., d ¼ 2 [111] at finite temperature and d ¼ 3 [112]
(cf. also [113,114]) but they do not involve an RG flow. An
example with a flow is given by a Gross-Neveu-Yukawa theory in
d ¼ 3 where spontaneous scale symmetry, emerges for certain
initial conditions [114,115] (cf. also [116,117] for related work),
accompanied with a massless scalar and massive fermions.
Explicit studies with fundamental scalars indicate that they
cannot take on the role of a dilaton [118–120] although
they share some of these features. In [36] it was stressed
that scalars, called scalons in [118], are not to be regarded as
dilatons.

17As stated earlier this puts into question the use of the PCDC-
type relation m2

DF
2
D ¼ −2β=ghG2i (5.16). To the best of our

knowledge the relationship of hG2i in (5.16) to the gluon
condensate introduced in phenomenology [121,122] has never
been clarified. The latter has been determined empirically
[123,124] and its existence is underlined by an elegant renorma-
lon analysis within perturbation theory [125]. A similar quantity
has been studied for pure SU(3) Yang Mills on the lattice
[126–128] and is found to be nonzero by eleven standard
deviation in the lattice scheme. The analysis is consistent with
the renormalon picture.
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massless.18Wewould notwant to go as far as stating that this
proves that the dilaton is massless, as for example there are
assumptions involved such as the use of the soft dilaton
formula (5.2). The near conformal scaling dimension of
large charge operators (on a cylinder) is dependent on both
γ� andΔ andmight give rise to additional information [130].

B. Large-Nc consideration

The large-Nc limit [71,131,132] is a useful tool for QCD
as it leads to simplifications [71,133]. The following
relations between two-point functions, with notation as
in Eqs. (3.3) and (3.4),

hSðxÞSð0Þic ¼
2

Nf
hSaðxÞSað0Þið1þOð1=NcÞÞ ∝ OðNcÞ;

hPðxÞPð0Þi ¼ 2

Nf
hPaðxÞPað0Þið1þOð1=NcÞÞ ∝ OðNcÞ;

ð6:2Þ
must hold since they are distinguished by large-Nc sup-
pressed quark-disconnected diagrams (i.e., connected by
gluons only). The factor 2=Nf takes into account the
normalization Tr½TaTb� ¼ δab=2 and the subscript c stands
for the connected part (and serves to remove hSðxÞSð0Þi ⊃
hq̄qi2 ∝ OðN2

cÞ which is peculiar to the vacuum quantum
numbers of S).
The leading graphs in (6.2) are the connected planar ones

of OðNcÞ as nonplanar ones are Oðg4Þ ∝ Oð1=N2
cÞ sup-

pressed since g2Nc is held fixed. We point out that quark-
disconnected graphs arising from S and P are ofOðN0

cÞ and
falls in between the Nc-counting above.
Famously, one can deduce in this way that the η0 mass

must go to zero in the large-Nc limit. In the deep-IR the
Pa-correlator is dominated by the pion

hPaðxÞPað0Þi ∝ jh0jPajπaij2
x2

∝ OðNcÞ; ð6:3Þ
and the scaling is deduced from the soft pion theorem
jh0jPajπaij2 ∝ hq̄qi=Fπ ∝ OðN1=2

c Þ with hq̄qi ∝ OðNcÞ
and F2

π ∝ OðNcÞ [73,86]. Since it is part of the leading
contribution its behavior must be mirrored by the P-
correlator and one concludes that mη0 → mπ ¼ 0 and
Fπ → Fη0 for Nc → ∞.
Does the same thing happen in the scalar channel? If the

answer is yes, then a massless dilaton would imply that the
corresponding flavored states would approach zero in the
large-Nc limit. This is however in contradiction with a
lattice SUðNcÞ-study where the a0-meson, the 0þþ-cousin

of the pion, shows no sign of becoming massless for
increasing Nc (cf. [134] Sec. III. 5 and also Fig. 14 in
[133]). The only caveat is that these studies are performed
in the quenched approximation but one cannot expect these
qualitative features to be overturned by unquenching. We
therefore conclude that either the dilaton cannot be mass-
less or that the dilaton must be subleading in the connected
S-correlator. We will argue for the latter.
In clarifying at what order the dilaton appears in the

large-Nc counting we consider the analog of (6.3) in the
deep-IR. Using the soft theorem (B10),

hSðxÞSð0Þi ∝ jh0jSjDij2
x2

∝
hq̄qi2
F2
D

1

x2
: ð6:4Þ

we learn that the scaling is hidden in FD and as the latter is
defined from the coupling to the EMT (2.11), we are lead to
consider the EMT-correlator

hTμνðxÞTρλð0Þi ¼ tð0ÞμνρλΓ
ð0Þ
TTðx2Þ þ tð2ÞμνρλΓ

ð2Þ
TTðx2Þ: ð6:5Þ

The tensor structures tð0;2Þμνρλ correspond to spin 0 and 2
respectively and are dependent on xα and ηαβ. Since the
dilaton is of spin 0 we have

Γð0Þ
TTðx2Þ ∝

F2
D

x2
; ð6:6Þ

and the large-Nc behavior of FD follows from correspond-
ing behavior of the correlator. To infer this we must have a
look at the EMT of a non-Abelian gauge theory which
assumes the form

Tμν¼
�
1

4
gμνG2−GμλGλ

ν

�
þ i
4
q̄ðγfμD⃗νg−γfμD⃖νgÞqþ…;

ð6:7Þ

where D⃗ν ¼ ð∂⃗þ igAÞν, D⃖ν ¼ ð∂⃖ − igAÞν and the dots
stand for terms which vanish on physical states. The main
point is that the gluonic part is in the adjoint and the quark
part in the fundamental representation of the SUðNcÞ gauge
group. Hence, one expects

ΓTT ¼ AN2
c þ BNc þOðN0

cÞ; ð6:8Þ

and matching with (6.6) one infers that generically

F2
D ¼ aN2

c þ bNc þOðN0
cÞ; ð6:9Þ

is expected, implying FD ∝ OðNcÞ.19 With (6.4) it follows
that thedilatoncontribution is subleading in the large-Nc limit

18It is in principle conceivable that another operator becomes
relevant and it its scaling dimension was Δ ¼ 2 then this could
give rise to a mass. We consider this possibility rather unlikely as
lattice studies of four fermi operators for example do not indicate
large anomalous dimensions [129].

19This scaling is identified with glueballs as opposed to F ∝ffiffiffiffiffiffi
Nc

p
which are referred to as q̄q-states. In the literature one can

find FD ∝ Nc [30] and FD ∝
ffiffiffiffiffiffi
Nc

p
[49]. We agree with the former

reference who use the same argument without making it explicit.
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hSðxÞSð0Þi ∝ OðN0
cÞ

x2
: ð6:10Þ

We therefore conclude that a finite value in ma0 at large Nc

does not exclude a massless dilaton.

C. Is dilaton-χPT consistent with a massless dilaton?

Another way to assess whether a dilaton could be
massless is to seek for contradictions with the EFT.
Are quantum fluctuations going to induce a mass term?
In the chiral limit of χPT it is simply impossible to write
down a potential for the pion respecting the symmetries
within the coset construction U (2.8) (due to the shift
symmetry of the Goldstone). Hence the zero pion mass is
built into χPT naturally since chiral symmetry is present at
all scales. Returning to the dilaton we may observe that
since there is no scale in the LO Lagrangian, in the chiral
limit, no dilaton mass can be generated either. This
conclusion is however too quick since scales enter through
hadron masses. The dilaton couples to the nucleon mass
term, e.g., [10],

δLmN
¼ −χ̂mNN̄N: ð6:11Þ

Generically such a term will induce a dilaton mass term
(e.g., a single nucleon loop). There are several loopholes in
this argument. First of all nucleon chiral perturbation
theory [73,135,136] is designed to compute nucleon
properties due to a light pion cloud and not the other
way around. Whereas the nucleon is the only other stable
hadron made out of light quarks there are of course many
other resonances such as the ρ;ω;… with light quark
content. That opens the door to potential cancellations.
This does in fact happen since bosons and fermions
contribute with opposite sign as exploited in supersym-
metry and the Veltman condition for the Higgs mass [137].
Moreover, in the case where a CFT is spontaneously
broken, e.g., [87], the same problems would be apparent,
but only apparent, as the dilaton is believed to be a true
massless Goldstone in that case. Hence, one has to
conclude that the EFT is not capable of making a definite
statement about the dilaton mass due to (potential) hidden
cancellations.

VII. THE DILATON CANDIDATE
IN QCD: σ ≡ f 0ð500Þ

Let us turn to the dilaton candidate in QCD, the σ-meson
or f0ð500Þ by official PDG-terminology [138]. We replace
D → σ honouring the name used by many particle phys-
icists. The σ-meson has captured the interest and imagi-
nation of particle physicists for long as testified by its
history and properties in a dedicated physics reports [139]:
it is very broad, it does not fit well into a nonet structure, it
defies Regge trajectories as well as qualitative aspects of

the large-Nc limit [139].20 The goal of this section is to
apply dχPT at LO and try to see whether one can under-
stand its mass and width semiquantitatively.
The meaning of the mass and the width are given by its

pole
ffiffiffiffiffi
sσ

p ¼ mσ − i
2
Γσ, on the second Riemann sheet, in

ππ-scattering. Its current PDG value [138] is

ffiffiffiffiffi
sσ

p ¼ ð400 − 550Þ − ið200 − 350Þ MeV: ð7:1Þ

This range is noticeably larger than the specific determination
from Roy equations

ffiffiffiffiffi
sσ

p ¼ð441þ16
−8 − i272þ9

−12.5ÞMeV [140],
which is considered to have settled the issue of its existence.
Earlier determinations were compatible within larger uncer-
tainties, e.g., [141]. It is often notedwith regard to the σ being
a pseudo-Goldstone that its mass is notably heavier than that
of the pion.However, this is not the right comparison since the
σ, just like the η, is an SUð3ÞF-singlet for degenerate quark
masses and thus retains sensitivity to the strange quark mass.
This can be seen in the dilaton GMOR-relation (2.21).
As singlet-octet mixing will be relevant for the width, it

is instructive to discuss the nonet structure and comparing it
with the ρ-meson family (cf. Tab. I). The qualitative
differences are apparent: (i) the ud̄-mesons (I ¼ 1) are
lighter than the us̄-mesons (I ¼ 1=2) for the vectors but
heavier for the scalars, (ii) the ratio of the I ¼ 1 octet to
I ¼ 0 singlet is roughly one for the vectors but a factor of
two for the scalars. These aspects challenge the quark
model picture and can be seen as one the motivations for
introducing the phenomenologically successful tetraquark
model [142]. The widths also follow interesting patterns.
The decays a0ð968Þ; f0ð980Þ → ππ are suppressed by G-
parity and being mostly an s̄s-state respectively. This is
analogous to the ωð780Þ and the ϕð1200Þ-meson in the
vector channel. The κ is the K�ð895Þ-analog and indeed
rather broad Γκ ≈ 600ð80Þ MeV, an aspect which we will
understand better when considering the mixing in the next
section.
We now turn to the decay constant Fσ . For the unstable

σ-meson, the matrix element (2.11) is not well defined.
However, the residue at the complex pole, which is
generally complex, is well defined and accessible via
proper analytic continuation. It has been extracted in
QCD through hπjq̄qjπi and hπjTρ

ρjπi form factor input
up to Oðq2Þ [143]. It is not straightforward to interpret this
result in the context of this paper as it requires us to
understand the meaning of an unstable pseudo-Goldstone
and how this affects its representation. The same remark
applies to the gσNN-residue extracted from ππ → NN
scattering [144]. The clarification thereof seems important
and we hope to return to this question in a future
publication. We may get an indirect estimate from relation

20By nonet one means the union of the SUð3ÞF-octet and -
singlet which mix when SUð3ÞF is broken by nondegenerate
quark masses.
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gσNN ¼ mN
Fσ
, e.g., [10] (akin to the Goldberger-Treiman

relation gπNN ¼ mN
Fπ
). In nuclear physics there are

approaches using gσNN in their LO Lagrangian such as
the one-boson exchange model describing nucleon-nucleon
scattering [145]. The σ-meson, among π, ρ and ω, describe
the scattering phase shifts reasonably well. From the range
in Tab. III [145] one infers gσNN ¼ 10ð2Þ (cf. [146] for
compatible results and also the fact that the real part in
[144] is in agreement as well) as a reasonable estimate.
Remarkably, using mN ¼ 0.93 GeV,

Fσ ¼
mN

gσNN
≈ 93ð19Þ MeV; ð7:2Þ

a value close to Fπ ¼ 93 MeV emerges. However, one
ought to be cautious as this is a very difficult subject where
systematics are difficult to estimate.

A. The width of the σ-meson

The width of the σ-meson has been one of the early
qualitative successes of the dilaton approach. It is well
approximated by Γσ ≈ Γσ→ππ since the photon channel
Γσ→γγ ¼ 1.7ð4Þ keV [147] is highly suppressed as one
would expect. Its interest lays more in the possibility to
learn about the σ-meson substructure [139]. The amplitude
into two pions is described the effective coupling,
Leff ¼ 1

2
gσππσπaπa, which we can read off from the

Lagrangian (2.22)21

gσππ ¼
1

Fσ
ðm2

σ þ ð1 − γ�Þm2
π þOðβ00�; m2

qÞÞ

→
m2

σ

Fσ
ð1þOðβ00�; m2

qÞÞ; ð7:3Þ

and resembles earlier expressions [3,50,76]. Differences are
that γ� ¼ 1 is an open parameter and that β0�-correctionswith
unknown coefficients are parametrized, e.g., [50]. The rate

Γσ→ππjSUð2Þ ¼
3jgσππj2
32πmσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m̂2

π

q
; ð7:4Þ

follows from the 1 → 2 decay dΓ ¼ P
ππ

jAσ→ππ j2
32π2

jp⃗j
m2

σ
dΩ

[138] where jp⃗j
mσ

¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m̂2

π

p
is the velocity in the frame

of the σ-meson,
R
dΩ → 2π as the pions are identical

particles and the factor of 3 results from the three pion
channels. The case with and without mixing are denoted by
SUð3ÞF and SUð2ÞF respectively.
No mixing: using mσ ¼ 440 MeV and Fσ ¼ 93 MeV

one gets

Γσ→ππjSUð2Þ ¼ 227 MeV ð7:5Þ

where uncertainties are not given since the mixing is
neglected. The rate is a factor of ≈2.5 lower compared
to (7.1), which corresponds to a factor ≈1.5 in the
amplitude and not a bad results in view of the crudeness
of the approach. The question is whether the singlet-octet
refinement will improve or worsen it.
Singlet-octet mixing: the effect of singlet-octet mixing is

driven by the breaking of SUð3ÞF, i.e., ms ≫ mu;d. It is
known that this effect is not negligible from the η − η0
system. In the same way the σ − f0ð980Þ system may be
parametrized by a single angle θ

jσi ¼ cos θjS1i þ sin θjS8i;
jf0ð980Þi ¼ − sin θjS1i þ cos θjS8i; ð7:6Þ

in terms of the SUð3ÞF eigenstates. The isospin breaking
mixing with the a0, the analog of π0 in the η − η0 system, is
neglected. We follow the approach by Oller [148] based on
a Wigner-Eckart decomposition with two reduced matrix
element g1 and g8 for which one has

Aσ→ðππÞ0 ¼ −
ffiffiffi
3

p

4
cos θg1 −

ffiffiffiffiffi
3

10

r
sin θg8; ð7:7Þ

and similarly for f0ð980Þ including all open channels. The
zero subscript stands for I ¼ 0. The three unknowns g1;8 and
θ when fitted to experiment are (Eq. (2.30) [148])22,23

TABLE I. Nonet of SUð3ÞF which illustrates the special
character of the JPC ¼ 0þþ mesons versus the more familiar
and understood JPC ¼ 1−− vector mesons, given in PDG-
notation [138]. The double bar separates the singlet from the
octet states in the SUð3ÞF limit. It seems relevant to mention
that higher f0-resonances all have considerably smaller widths
than the σ-meson: Γf0ð1370Þ ¼ 350ð150Þ MeV, Γf0ð1500Þ ¼
108ð33Þ MeV, Γf0ð1710Þ ¼ 150ð12Þ MeV and Γf0ð2020Þ ¼
180ð60Þ MeV [138].

JPCnI 0 0 1=2 1

0þþ σ ≡ f0ð500Þ f0ð980Þ κ≡ K�
0ð700Þ a0ð980Þ

Γ0þþ 550(150) MeV 55(15) MeV 600(80) MeV 90(50) MeV

1−− ωð780Þ ϕð1020Þ K�ð895Þ ρð770Þ
Γ1−− 6.86(13) MeV 0.016 MeV 52(12) MeV 145(3) MeV

21In an EFT framework (for off-shell σ, e.g., [9]) m2
σ → q2

where q2 is the momentum entering the σ-field.

22There is a second determination θ ≈ 21° in an Uð3Þ × Uð3Þ
σ-model [149]. Whereas no error is given in this determination,
presumably due to model-dependence, the agreement with (7.8)
is encouraging.

23We have used the singlet-octet to s̄s − ns̄s basis conversion
θ ¼ ϕþ 35.264° for ϕ ≈ −14°. I am grateful to Oller in assisting
in the conversion which incidentally is not the same as in the
standard η0 − η mixing.
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g1 ¼ 3.9ð8Þ GeV; g8 ¼ 8.2ð8Þ GeV; θ ¼ 19ð5Þ°:
ð7:8Þ

We note the remarkable enhancement of the octet
component g8=g1 ≈ 2. Its effect may be estimated by the
ratio of mixing versus no mixing

r18 ¼
����A

θ
σ→ðππÞ0

Aθ¼0
σ→ðππÞ0

���� ¼ 1.81−0.18þ0.20: ð7:9Þ

Using this value we get

Γσ→ππjSUð3Þ ¼r218ΓσππjSUð2Þ ¼744−108þ146�40%MeV; ð7:10Þ

where uncertainties were obtained by adding the ones due
to g1 and θ in quadrature plus 40% for Fσ. Whereas the
estimate is crude that is errors are large, it is fair to state that
its central value is considerably improved due to the mixing
and compares favorable with Γσ→ππ ≈ 544þ18

−25 MeV from
the Roy equation [140]. The enhanced octet versus singlet
matrix element explains the large κ rate (Table I). It is
enhanced by ðg8=g1Þ2 and its natural value when compared
with the σ-meson is therefore 140 MeV rather than
600 MeV. It would be interesting to understand the octet
enhancement qualitatively.

B. The mass of the σ-meson

In QCD the GMOR-type mass relation, which are the
χPT LO expressions [71,73],

m2
π ¼ ðmu þmdÞB0; m2

Kþ ¼ ðmu þmsÞB0;

m2
K0 ¼ ðmd þmsÞB0; ð7:11Þ

work rather well for pions and kaons (recall
B0 ¼ −hq̄qi=F2

π). This raises hopes that the dilaton
GMOR-relation (5.12) will give a good for value of the
σ-mass. We shall see and understand that this is not
necessarily the case. Let us first adapt (5.12) to non-
degenerate quark flavors, using (7.11), and deduce

F2
σm2

σ ¼ ð1þ γ�Þð3 − γ�ÞF2
π

X
q¼u;d;s

mqB0

���
γ�¼1

¼ 2F2
πðm2

K0 þm2
Kþ þm2

πÞ: ð7:12Þ
With mπ ¼ 140 MeV, mK ¼ 495 MeV, Fπ ¼ 93 MeV
and Fσ ¼ 93 MeV as input on gets,

mσjLO ≈ 1 GeV

�
93 MeV

Fσ

�
; ð7:13Þ

a value which is about a factor of two larger than the
in the real world. There is some irony here as often the
σ-meson is regarded as being too heavy to be considered a

pseudo-Goldstone. Formula (7.12) has been obtained in
[150] but the difference is that γ� and β0�-corrections were
undetermined and thus the large value has not come to
attention.
One might wonder whether dχPT would be convergent

with such a large LO value since it is well-known that
SUð3Þ − χPT is not as efficient as SUð2Þ − χPT because of
the proximity of mK to mρ ≈ 770 MeV. The separation
of the Goldstone sector is not strong in actual numbers. To
get an idea we might want to use the NLO formula for
SUð2Þ − χPT [73,151]

m2
πjNLO ¼ m2

π

�
1 −

1

32π2
m2

π

F2
π
l3

�
; ð7:14Þ

with l3 ≡ lnΛ2
3=m

2
π ¼ 3.53ð26Þ [152] is sizeable due

to a chiral logarithm. One infers NLO-corrections factors
of (0.025,0.21,0.25,1.4), using LO masses ðmπ; mK;
mσ; 1 GeVÞ.24 The large correction factor 1.4 for mσjLO
is telling us that convergence cannot be expected. The
situation is unsatisfactory but deserves some more
contemplation.
The large value obtained is driven by mK which is

comparatively large due the ms ≫ mu;d. The GMOR-type
formulas are expansions mq (or Goldstone masses) and not
in 1=mq. That is, there is no built-in decoupling limit but
rather one decouples by hand in excluding a quark from the
sum in (7.12). Can we assess this in another way? Yes,
through the mixing if we are willing to commit to a quark
mass picture. In Appendix C it was argued that the mixing
angle supports the q̄q-state interpretation. Equation (C2)
indicates suppression of the s̄s versus the ūu,d̄d-contribu-
tion. The strange quark decoupling angle θdec ≈ 35.7°
is close but not too close to θ ¼ 19°.25 Indeed if we were
to completely decouple the strange quark we would expect
to replace 2m2

K þm2
π → 2m2

π in (7.12) which does yield
mσ ≈ 2mπ ¼ 280 MeV an underestimate.
In summary the situation remains inconclusive but we

pointed out why we cannot expect formula (7.12) to give us
a good number. First from the convergence in the EFT and
second the formula overestimates the role of the strange
quark since it has no decoupling built in.

VIII. OUTLOOK

There are a few directions in which the work begun in
this paper can be extended, which is to investigate the mq

24This procedure only gives realistic numbers for the pions
since the kaon requires SUð3Þ − χPT [153] and for the σ dχPT is
required which has not been fully developed at NLO yet. We
believe however that the numbers give a reasonable estimate of
the size of the NLO corrections.

25There is indirect evidence for strangeness in the σ-meson.
The hs̄sðxÞūuð0Þi-correlator is nonzero suggesting a light state
which could correspond to the σ-meson [154].
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dependence of the σ-mass, extending the LO Lagrangian
(2.22) to include m̄D-mass and investigate whether the
Higgs boson could be a dilaton. Below we give a brief
outlook on some of these matters.

A. Quark mass dependence of the σ-meson(s)
on the lattice and beyond

Investigating themq-dependence of the σ-meson in QCD
and other gauge theories with chiral symmetry breaking is
interesting and still largely open. There are several avenues
and it is to be hoped for efforts to continue and for new ones
to start.
Before the advent of the LHC investigations in lattice

gauge theory started in order to obtain reliable information
for walking technicolor [65,66,155] and composite
Higgs models [156]. In recent years light scalars with σ
quantum numbers were reported for decreasing quark
masses [16–29]. There are also studies of the QCD σ-
meson on the lattice [157–160] which is challenging
because of its large width. As far as we know all
simulations are performed at physical strange quark mass
but larger mu;d masses. Concretely, in [157,158] a pion
mass mπ ¼ 391 MeV leads to mσ ¼ 745ð5Þ MeV and
mf0ð980Þ ¼ 1166ð45Þ MeV. Another interesting avenue is
to measure the matrix element h0jq̄qjDi, from which the
σ-mass is extracted. If the dilaton chiral mass is zero then
there is a simple relation with Fσ of this matrix element
cf. Appendix B 3. In fact, the SUð3Þ and Nf ¼ 8 lattice
results is compatible with a very light or possibly massless
dilaton.
Among the analytic methods the Roy equations

[140,161], which give the most precise determination of
the σ-pole, would seem the most promising method. They
do rely though, as many dispersive methods, on a mixture
of experimental and theoretical hadronic input. Hence the
success would depend on how well one could control the
input as a function of the quark masses. The lattice could
play an indirect but important role in providing input for the
Roy equations. For example, recently the data from
[157,158] has been used in Roy equations [162] and the
mσ ¼ 745ð5Þ MeV consistent with [157,158] has been
found. Another possible avenue is the analytic S-matrix
bootstrap [163,164] which would equally depend on input.
Analytic methods such as Dyson-Schwinger equation
[165,166] and functional renormalization group methods
based on elastic unitarity, ππ-scattering s < 4m2

π , have been
applied (reviewed in [139]). Concrete studies include the
inverse amplitude method with NLO χPT input for fixedms
and varying pion mass [167], unitarized chiral perturbation
theory [168] with varying ms-dependence and the
N=D-method with LO χPT -input [148].
The numbers from lattice [157,158,169] and analytic

methods indicate that σ could decrease byOð100 MeVÞ for
in mu;d → 0. Hence, the role of the strange quark mass
might be important for which information is sparse.

The above mentioned N=D method [148] gives most
concrete information where the nonet, in mass and widths,
are continuously deformed to become SUð3ÞF-symmetric
at mπ;K ¼ 350 MeV (corresponding to a degenerate quark
mass ≈23 MeV, an increase in mu;d and a decrease in ms).
At this point mσ ≈ 300 MeV as can be inferred from the
plot in Fig. 2 in [148]. This is a significant reduction in view
of the expected increase due to mu;d.

26 This is somewhat at
variation with [168] where (small) ms-changes in mass and
width were found to be very small. Hence the situation is
not entirely conclusive but rather motivates to further
investigate mσ as a function of the light quark masses.

B. The Higgs as a dilaton?

It has been appreciated for a long time that in the absence
of the Higgs VEV the SM is conformal up to the
logarithmic running of the couplings. The dilaton therefore
fits the role of the Higgs naturally as it couples to mass and
is associated with a VEV. There are several realizations of
this scenario but they all have in common that the SM
Higgs sector is replaced by a (strongly coupled) sector
which undergoes spontaneous scale and electroweak sym-
metry breaking at a scale FD (not necessarily equal to the
Higgs VEV v ≈ 250 GeV). The most relevant change is
that in the LO-SM Lagrangian the dilaton replaces the
Higgs as follows

1þ h
v
→ e−

D
FD → 1þ h

FD
; ð8:1Þ

where in the second arrow the freedom of field redefinition
has been made use of.27 This particle behaves like a SM
Higgs with all couplings rescaled by the ratio of the two
scales: rv ¼ v

FD
. Post LHC we know that this ratio has to be

close to one within approximately ten percent which would
equally tame tensions with electroweak precision observ-
ables (e.g., [170] where rv ¼ 1 implies κW ¼ 1). This raises
the question: is rv ≈ 1 natural? Other important low energy
parameters are the dilaton mass and more generally its
potential. The answer to all of these questions is model-
dependent and we thus restrict attention to our framework.
We consider a gauge theory with a gauge groupG0 which

undergoes chiral symmetry breaking close to the electro-
weak scale. This means that theW- and Z-boson masses are
generated in the same way as in technicolor [65,66,155].
The Higgs VEV and the pion decay constant of the new
sector are related by v2 ¼ ndF2

π, where nd is the number of
techniquark electroweak doublets. Since the Higgs width

26Note that for small deformation it is the width rather than the
mass that decreases. This also explains why the σ-mass shows
little variation for small ms in the in Ref. [168].

27This is legitimate as long as we are interested in on-shell
matrix elements and for small fluctuations (h < −FD would
violate the positivity of the exponential).
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has been measured to be narrow Γh ¼ 3.2þ2.8
−2.2 MeV [138]

there can only be one doublet, which takes on the role of the
longitudinal degrees of freedom of the gauge bosons.
Otherwise the Higgs/dilaton would disintegrate fast into
the additional π0π0-pairs giving rise to a width
Γh ¼ Oð100 GeVÞ. Hence, v ¼ Fπ and therefore the
difference of the dilaton versus SM-Higgs coupling are
parametrized by the ratio

rNf
¼ Fπ

FD
; ð8:2Þ

of pion to dilaton decay constants. Besides the indicated
Nf-dependence there is also an implicit G0-dependence
which is less important but has to be kept in mind. Whereas
it is likely that rNf

¼ Oð1Þ there is no known reason why it
should be numerically close to one. The quantity we are
interested in is r2 and we resort to actual QCD for guidance.
With FD as in (7.2) and Fπ ¼ 93 MeV one finds a number
r2−3jQCD ¼ 1.0ð2Þ which is compatible with one within
uncertainties. Cautionary remarks apply. First it is difficult
to estimate the systematics of (7.2). Second whereas we are
interested in Nf ¼ 2massless quarks, in QCD we have two
light quarks and a light but sizeable strange quark.28 The
most pragmatic interpretation is that this motivates trying to
find a reason for r2 being close to one.
So far we have not addressed how the coupling (8.1)

arises.29 The starting point is the Higgsless SM developed
as an EFT for a heavy Higgs [173–175]. This is analogous
to decoupling the σ-particle in the linear σ-model which
gives a for of χPT. The would-be Goldstone bosons
U ¼ expði2Taπa=FπÞ transform as U → VLUVY under
the SM gauge group SUð2ÞL ×Uð1ÞY with VY ¼ eiyT3

such that the condition detU ¼ 1 is preserved (since
detVL ¼ detVY ¼ 1). The effective Lagrangian contains
terms of the form

L ⊃
1

4
v2Tr½DμUDμU†� − vq̄LYdUDR þ…; ð8:3Þ

where D̄R ≡ ð0; d̄RÞ and the covariant derivatives assure
SUð2ÞL ×Uð1ÞY gauge invariance. The dots correspond to
similar fermionic and gauge kinetic terms. Equation (8.3)
resembles the corresponding dχPT term in (2.16) but lacks

the dilaton nota bene. It seems to us that one cannot resort
to the compensator argument in coupling the dilaton since it
is only the scale symmetry ofG0 which is broken. However,
the same rationale that would imply r2 ≈ 1 ought to group
the pions and the dilaton under one and the same symmetry.
Assuming this to be true then gives

L⊃
1

4
v2e−2D=FDTr½DμUDμU†�−ve−D=FDq̄LYdUDRþ…;

ð8:4Þ

an effective Lagrangian equivalent to the SM at LO modulo
the Higgs potential. Hence, finding an (approximate) sym-
metry assuring r2 ≈ 1 would therefore help in both ways,
explaining the required closeness to the SM and justifying
the Lagrangian in (8.4). Our reasoning is the same as in [36],
except that we give provide a reason for dilaton interactions.
Let us turn to the dilaton potential which consists of the

pure G0-part and the one induced by the mixed Lagrangian
(8.4). For the former the situation is similar to CDQCD,
we do not know anything for certain other than how to
incorporate q0 mass terms. Now, since mq0 ≠ 0 breaks
SUð2ÞL, these terms are absent in the most straightforward
setting. If the dilaton were to acquire a chiral mass m̄D ≠ 0
then VΔ (2.19) is a simple potential describing it. However,
since the dilaton soft theorems (in Sec. V) indicate that
Δ ¼ 2 (which corresponds to the SM Higgs potential), it
remains unclear which operator would take on this role in
the G0 gauge theory. Let us turn to the potential induced by
the mixed Lagrangian (8.3). As is the case in composite
Higgs models [156] the coupling to theW, Z-boson and the
top quark would induce sizeable corrections to the
Higgs mass which are quadratically sensitive to the cut-
off Λ0 ¼ 4πFD of the G0-confinement scale. It is difficult to
say anything concrete other than parametrically these
contribution are of order Oðv2Þ subject to further sizeable
NLO corrections. In view of the generally large and
negative contribution of the top mass a sizeable chiral
mass m̄D could potentially be required. A more thorough
assessment might necessitate to find a UV completion at
some scale M2, explaining the origin of the coupling (8.4)
through terms of the type Leff ⊃

Oð1Þ
M2 q̄0q0 t̄t.

There are further phenomenological aspects that needs
attention. In the standard dilaton scenarios the β function
contributions to the SM radiative processes gg → h and
h → γγ give rise to severe constraints, e.g., [172]. In our
scenario the q0-fermions are not charged under SUð3Þc,
implying that gg → h is truly loop-suppressed (with respect
to the SM) and therefore we do not expect tensions with the
LHC. The process h → γγ is more subtle as the q0-fermions
are generally electrically charged (since q0L is charged
under SUð2ÞL). Its calculation is a formidable task as
nonperturbative. Early assessments within QCD go back
to the discovery of the trace anomaly [52–54]. This LO
evaluation gives the correct order of magnitude, e.g., [49],

28The Nf-dependence comes from the σ-meson being a singlet
SUðNfÞ as manifested in (2.21). Hence on expects
rNf

∝ 1=
ffiffiffiffiffiffi
Nf

p
. In a lattice fit [171] r8 ≈ 0.33 found for which

the scaling gives r2 ¼ 2r8 ¼ 0.66 a value slightly lower than 1.
There could be many reasons, one of which is that the (2.21) is
only a LO relation and the analysis in Sec. VI B indicates that the
counting is not that straightforward.

29In the most commonly used dilaton scenarios this follows
from the conformality of the total SM and extended sector. This is
not the route we have in mind as this scenario has sizeable
contributions in gg → h for example, in tension with the findings
at the LHC [172].
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but its precise value is extracted indirectly from scattering
data (e.g., [147,176]). Since there is no precise method
of direct computation and the rate might well be mσ=mN-
dependent, it seems that one cannot easily borrow an
estimate from QCD. The QCD-value Γσ→γγ ¼ 1.7ð4Þ keV
indicates however that it could be sizeable and therefore
deserves attention. There is another challenge and that is
the nondiscovery of hadronic G0-resonances. Whereas the
dilaton itself might be light, the basic scale is set by the
Higgs VEV v ¼ Fπ ≈ 250 GeV. A 2 TeV-benchmark gives
a ratio 2 TeV=FπjG0 ¼ 8 which is comparable to the one in
QCD: mρ=FπjQCD ≈ 8.3. Without a phenomenological
analysis and a more precise assessment of the ratio it
seems difficult to make a statement other than that these
resonances may be within the future LHC-reach.
In summary the by far most important task is to

investigate whether there is a reason for r2 ≈ 1 in (8.2).
If this were true then our rough assessment indicates that
the model might pass current constraints. We hope to return
to these topics in future work.

IX. CONCLUSIONS AND SUMMARY

In this paper we further explored the possibility that
gauge theories in the chirally broken phase admit an IR
fixed point interpretation (cf. Fig. 1). In Sec. IV it was
argued that this idea makes sense in N ¼ 1 supersym-
metric based on the free meson and the squark-bilinear
duality in the infrared-free magnetic and electric phase.
Scaling dimensions were deduced by matching the gauge

theory fixed-point behavior with the effective (dilaton)-χPT
(Sec. III). Themass anomalous dimension at the fixed point is
found to be γ� ¼ 1, providing amore in-depth analysis of our
earlier findings [7]. The vanishing of the β- and γm-slopes at
the fixed point: β0� ¼ γ0� ¼ 0, cf. (3.37) and (3.42), are new
results. In particular, β0� ¼ 0 hasmany attractive features: (i) it
suits amass-gap interpretation, (ii) it is consistentwithN ¼ 1
supersymmetry (Sec. IV)30 and, (iii) it implies logarithmic
running of the fixed-point coupling δg≡ g − g� (3.41). The
latter makes it plausible that the trace anomaly is reproduced
by the generalization of the energy-momentum tensor for
chiral theories (to include a dilaton).
In the second part of the paper we focus on the dilatonD,

the (pseudo) Goldstone boson due to spontaneous scale
symmetry breaking. From soft dilaton theorems in Sec. V
it was deduced that a dilaton mass generating operator
O ⊂ Tρ

ρ is necessarily of scaling dimension ΔO ¼ 2. An
important role is played by the partial derivative x · ∂-term
in the dilatation commutator (5.4): (i) it renders the mass
positive and (ii) it is the counterpart of the Zumino-term
(2.20) in dχPT. These results are model-independent.

For mq ¼ 0 there is no operator of scaling dimension
two and this sets a question mark on the PCDC-type
relations (5.16) based in ΔG2 ¼ 4. For mq ≠ 0 the O ¼
mqq̄q takes on the role of ΔO ¼ 3 − γ� ¼ 2 and might be
seen as another reasoning for γ� ¼ 1. In Sec. VI we
contemplate whether the dilaton could be massless or
not. We found that combining lattice data and FD ∝ Nc
does in principle still allow for a massless dilaton.
Reasoning in terms of spontaneously broken CFT suggests
that the EFT entails subtle cancellations.
In the third part applications of the dilaton are explored. In

Sec. VII we consider whether the σ-meson in QCD could be
a dilaton. Singlet-octet mixing is found to be important as it
considerably improves the prediction of the width (7.10).
The leading order σ-mass, which follows from the dilaton
GMOR-relation (7.12), is rather large and indicates con-
vergence issues in the EFT (due to the large strange quark
mass). The dilaton as the low energy part of a new gauge
sector, can take on the role of the Higgs boson provided that
the ratio of pion to dilaton decay constants rNf

≡ Fπ=FD is
unity for two flavors (cf. Sec. VIII). Whereas in QCD
indications are that r2 ≈ 1 there is no underlying principle
known why this ought to happen. An assessment beyond
leading orderwould give rise to a potential and corrections to
radiative processes such as gg → h and h → γγ whichmight
pass current LHC-constraints.
There are many directions to explore but among the

unresolved questions the most outstanding ones are: (i) what
is the chiral dilaton (or σ-meson) mass? Is it zero or at least
considerably smaller than the nucleon mass and how does it
dependon thedistance to the lower boundaryof theconformal
window? (ii) is there a principle that would imply r2 ≈ 1?
(iii) amore systematic investigationgauge theories away from
the near-conformal regime (cf. Appendix B 3 for motivation
and one route) These questions might well be very difficult to
answer by pure reasoning. Hopefully lattice Monte Carlo
simulations and methods using analyticity and unitarity can
be of some guidance.
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APPENDIX A: CONVENTIONS

The Minkowski metric ημν reads diagð1;−1;−1;−1Þ,
g ¼ detðgμνÞ is the determinant. Weyl transformations are
defined by

gμν → e−2αgμν; D̂ → D̂ − α; ðA1Þ

where the normalized dilaton field is D̂≡D=FD. Kinetic
terms are shortened as ð∂φÞ2 ≡ ∂μφ∂

μφ. The β function is
defined in (2.2) and is given by

β

g
¼−

�
β0

g2

ð4πÞ2þOðg4Þ
�
; β0¼

�
11

3
CA−

4

3
NFTF

�
;

ðA2Þ
where for QCD with Nf ¼ 3 and G ¼ SUð3Þ we have
β0 ¼ 9 since TF ¼ 1

2
and CA ¼ Nc. Further to that we

derive γG2 in (2.5). It departs from the observation that
Tρ

ρ ¼ β
2g G

2 (for mq ¼ 0) is an RG invariant

0 ¼ d
d ln μ

Tρ
ρ ¼

d
d ln μ

�
β

2g
G2

�
¼

�
β

2g

�0
βG2 þ β2

2g
ðG2Þ0;

ðA3Þ
where the prime denotes differentiation with respect to g
and from (2.2) one then gets

γG2 ¼ 2g

�
β

2g

�0
¼ β0 −

β

g
; ðA4Þ

in accordance with (2.5).

APPENDIX B: MORE ON SOFT THEOREMS

In this Appendix we take a look at the results in Sec. V
from a slightly different angle. First in deriving for-
mula (5.8) directly from dχPT and second by considering
the soft theorem for a single dilaton. The common theme is
the matching of

Oq̄q ≡ ð1þ γ�Þ
X
q

mqq̄q; ðB1Þ

which we can write as Oq̄q ¼ ð1þ γ�Þ∂lnmq
LQCD in QCD

to dχPT (2.22)

Oq̄q → ð1þ γ�Þ∂lnmq
LdχPT
LO ¼ ð1þ γ�Þ

X
q

mqhq̄qiχ̂Δq̄q

¼ −
1

2
m2

DF
2
Dχ̂

Δq̄q ; ðB2Þ

where the pions are neglected as they play no role in this
Appendix. In the last equality (5.14) was used and we note
that since hχ̂Δq̄qi ¼ 1 the VEV hOq̄qi ¼ − 1

2
m2

DF
2
D is

correctly reproduced. A peculiar aspect is that this operator
contains tadpoles

Oq̄q¼−
1

2
m2

DF
2
D

�
1−Δq̄qD̂þ1

2
Δ2

q̄qD̂
2þOðD̂3Þ

�
: ðB3Þ

We note that whereas in a Lagrangian tadpoles are not
acceptable as they signal a false vacuum, there is nothing
that prevent tadpoles in operator matching. There is another
way to look at this since we state Tρ

ρ ¼ Oq̄q the same must
result from dχPT (2.22). Using Tρ

ρ ¼ 4V − ∂ln χV [9] we
get Tρ

ρ ¼ − 1
Δq̄q

m2
DF

2
Dχ̂

Δq̄q which indeed matches provided

Δq̄q ¼ 2 (or γ� ¼ 1). In this matching we have used d ¼ 4

for simplicity.

1. The double-soft theorem from dilaton-χPT

We consider it important to make contact with the result
(5.8) directly from the Lagrangian. Whereas in a general
CFT setup (5.8) holds for anyΔO this is not the case here as
it was already concluded that ΔO ¼ d − 2. We aim to
reproduce this result.
Using (B3) and dχPT (2.22) for the tadpoles we find

hDjOq̄qjDi ¼
�
hDj 1

2
D̂2ðΔ2

q̄q − Δq̄qðdþ Δq̄qÞÞ −
1

2

ð∂D̂Þ2
m2

D
Δq̄qðd − 2ÞjDi

�
hOq̄qi

¼ 1

F2
D
ðΔ2

q̄q − Δq̄qðdþ Δq̄qÞ þ Δq̄qðd − 2ÞÞhOq̄qi ¼ −
1

F2
D
2Δq̄qhOq̄qi; ðB4Þ

for Oq̄q defined in (B1) and subtleties due to tadpoles are comment further below. Using Δq̄q ¼ d − 2 one finds indeed
consistency with Eqs. (5.1) and (5.8) and our goal is achieved. Namely, we have shown that the soft theorem manipulations
follow from the EFT provided that Δq̄q ¼ d − 2.

We consider it worthwhile to comment on the origin of the terms in (B4). TheΔ2
q̄q-term is straightforward as it corresponds

to the D2-term in (B3). The remaining two originate from tadpole diagrams due to the linear D̂-term in (B3). For those the
dilaton propagator assumes the formΔFðq2 ¼ 0Þ → −i=m2

D and themass term gets canceled against a corresponding term in

the Lagrangian. Specifically, the cD2Δðdþ ΔqqÞ- and ð∂D̂Þ2Δq̄qðd − 2Þ-terms are due to the two interaction terms
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LdχPT
LO ⊃ ðdþ Δq̄qÞm2

DF
2
D
D̂3

3!
− ðd − 2ÞF2

DD̂
ð∂D̂Þ2
2

: ðB5Þ

2. The mass operator in the deep infrared

We aim to derive the result (5.10) using the intuitive idea
that the free field mass operator L ⊃ 1

2
m2ϕ2 is of scaling

dimension two. This is done by matching correlators in the
full and in the effective theory in the deep-IR. We assume
that the mass is generated by an operator λO ⊂ Tρ

ρ where
λ serves as a bookkeeping parameter. (If λ ¼ mq then
O ¼ q̄q for example).

(i) EFT: the TEMT at LO assumes the form

Tρ
ρjLOdχPT¼m2

ππ
2þFDm2

DD−
1

2
ΔOm2

DD
2…; ðB6Þ

where the dots stand for terms which give sup-
pressed contributions in the deep-IR. Assembling all
the information one gets

hTρ
ρðxÞTρ

ρð0ÞiLOdχPT
∝

F2
D

ðx2Þd=2−1e
−mDxþ 1

ðx2Þd−2 ðc
0
2πe

−2mπxþc02De
−2mDxÞ;

ðB7Þ

where the exponential behavior follows from the
asymptotic limit of the Euclidean scalar propaga-
tor ΔEðx;mÞ ∝ e−mxðx2Þ1−d=2.

(ii) RG analysis: with arguments similar to the ones in
Sec. III B 7, the TEMT correlator assumes the form

hTρ
ρðxÞTρ

ρð0ÞiCDQCD
¼ μ80

ðx̂2Þd gðF̂λ̂
−1=yλF̂m̂−1=ym

q ; F̂x̂d=2−1; μÞ; ðB8Þ

with yλ ¼ d − ΔO, ym ¼ d − 3þ γ�, g a dimension-
less function and μ0 some arbitrary reference scale
used such that all hatted quantities are dimension-
less. Above we used that FD is of mass dimension
d=2 − 1 and ΔTρ

ρ
¼ d (3.6) since β0� ¼ 0. In order to

regain predictiveness we must know the λ- and the
F-behavior. First, since the TEMT is proportional to
m2

π;D ¼ OðλÞ it follows that hTρ
ρðxÞTρ

ρð0Þi ¼
Oðλ2Þ and thus the scaling exponent effectively
changes from d → d − yλ ¼ ΔO as one would ex-
pect. We may then drop the first argument in g and
focus on the F-dependence. For the F-dependence
we need to think in terms of the EFT. For the two
Goldstone case there is no F-dependence (B6) and
thus no further change in the scaling. The single
dilaton intermediate state is OðF2

DÞ which can be

formed as the ratio of the first and the second entry in
g to yield x2F2 and thus d → d − yλ − ðd=2 − 1Þ ¼
ΔO − ðd=2 − 1Þ in that case. Finally, one gets

hTρ
ρðxÞTρ

ρð0ÞiCDQCD
∝

cDe−mDx

ðx2ÞΔO−ðd=2−1Þ þ
1

ðx2ÞΔO
ðc2πe−2mDxþc2De−2mDxÞ;

ðB9Þ

where cD ¼ OðF2
DÞ and c2π;D are Fπ;D-independent

as of above. The exponential behavior follows from
dominance of the lowest state in the specific channel
and is well known from the study of Euclidean
correlation functions in lattice applications.

Equating (B7) with (B9) one gets the result ΔO ¼ d − 2 in
accordance with (5.10), serving as another consis-
tency check.

3. The single soft theorem, h0jq̄qjDi
and the dilaton decay constant

We may apply the single dilaton soft theorem (5.2) to
Oq̄q (B1) which yields

h0jOq̄qjDi ¼ −
1

FD
h½QD;Oq̄q�i ¼ −

Δq̄q

FD
hOq̄qi; ðB10Þ

as the remainder vanishes and we notice that the same result
would follow from expanding (B2) to linear order in the
dilaton field. We may now make contact with [15,171]
where the following matrix element was defined

h0j
X
q

mqq̄qjDi ¼ m2
DFS; ðB11Þ

such that FS is RG invariant. Combining this equation
together with (5.14) and (B10) one gets

FS ¼ Nf
Δq̄q

ð1þ γ�Þ
�
m2

πF2
π

m2
DF

2
D

�
FD: ðB12Þ

It has previously been obtained in Eq. 5 of [177] from a
soft-theorem and from the EFT cf. Eq. (9) in [171]
(y ¼ Δq̄q in their notation).31 We may use this formula
to assess the zero chiral mass hypothesis (m̄D ¼ 0) as then
the dilaton mass ought to be well approximated by the

31A distinctive feature is that in [171] a generic potential (2.19)
is assumed on top of mq ≠ 0 with Δq̄q ¼ y and this leads to fπ;D
and Fπ;D where the lower case quantities are the one in the chiral
limit. Using that Fπ=FD ¼ fπ=fD [171] we can escape these
difficulties in principle and if we use the values in [15] we of get
an agreement of the right- and left-hand within 7% which is well
within the errors. This is of no surprise as according to our
understanding FS went into the fit in [171]. This is just a
confirmation of their numbers.
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dilaton GMOR-relation (2.21). Using the latter in (B12)
we get a remarkably simple relation between FD and FS
(with γ� ¼ 1)32

FDjm̄D¼0 ¼ 2FS; ðB13Þ

that is the coupling of the dlaton to the EMT- and the
q̄q-operator respectively. We may then define the quantity

RS;Nf
¼

ffiffiffiffiffiffi
Nf

2

r
mπFπ

mDFS
; RS;Nf

jLOm̄D¼0 ¼ 1; ðB14Þ

which is unity in the m̄D → 0 limit at LO. Using the
LSD-data [15] one finds

RS;8jLSD ≈ 1.18� 5%; ðB15Þ

where we have added the lattice uncertainties in quadrature.
Note that since mπ=Fπ ≈ 4 is a similar to the ratio
to the kaon mass to the pion decay constant in QCD
NLO-corrections could easily amount to 30% (e.g.,
m2

D=m
2
ρ ≈ 0.4). Hence, the 20%-proximity to unity in

(B15) is thus remarkable. Notice that for QCD with
mπ=Fπ ≈ 4 the dilaton (or σ-meson) is a stable bound
state [169], suggesting that the same is the case in these
simulations. Moreover, m̄D ≠ 0 would lead to

RS;Nf
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p ≤ 1; x≡ m̄D

ðmDÞGMOR
; ðB16Þ

where ðmDÞGMOR is the mass from the dilaton GMOR-
relation (2.21). We conclude that forNf ¼ 8 the data do not
exclude a massless dilaton in the chiral limit.33 It would be
interesting to extend this analysis to the other simulations
such as the SUð3Þ-case with Nf ¼ 4 [24,25] or the SUð3Þ
sextet-representation [178–180]. One might be hopeful that
this will happen in the foreseeable future.

APPENDIX C: ON SINGLET-OCTET MIXING

The aim of this Appendix is to give some more
interpretation with regards to the quark content of the
σ-meson. Unlike for flavored mesons this is not a well-
defined question. There are many ways to think about it as
summarized in the excellent review [139].
An instructive starting point is the following ratio of

rates [138]

rf0→KK=ππ ¼
Γðf0ð980Þ → KþK−Þ
Γðf0ð980Þ → πþπ−Þ ¼ 0.69ð32Þ: ðC1Þ

If the f0ð980Þ roughly equal parts of u, d, s-quarks then
phase space would dictate rf0→KK=ππ ≪ 1. The surprisingly
large rate to kaons could be explained by the f0 having a
large mount of s̄s-quarks versus q̄q-quarks (q ¼ u, d). It is
indeed the commonly accepted view that f0ð980Þ has a
high strange quark content.
It is helpful to consider the octet and singlet in a q̄q- and

a tetraquark-basis

jSI¼0
1 iq̄q ¼

1ffiffiffi
6

p ðūuþ d̄dþ s̄sÞ; jSI¼0
1 iq̄qq̄q ¼

1ffiffiffi
6

p ðs̄sūuþ s̄sd̄dþ ūud̄dÞ;

jSI¼0
8 iq̄q ¼

1ffiffiffi
6

p ðūuþ d̄d − 2s̄sÞ; jSI¼0
8 iq̄qq̄q ¼

1ffiffiffi
6

p ðs̄sūuþ s̄sd̄d − 2ūud̄dÞ: ðC2Þ

The difference in role of the strange quark in the two bases is apparent. With the central value from the SUð3ÞF-analysis
(7.8), one finds the following quark compositions

jσiq̄q ≈ 0.67ðūuþ d̄dÞ þ 0.28s̄s; jσiq̄qq̄q ≈ 0.67ðs̄sūuþ s̄sd̄dÞ þ 0.28ūud̄d;

jf0iq̄q ≈ 0.20ðūuþ d̄dÞ − 0.95s̄s; jf0iq̄qq̄q ≈ 0.20ðs̄sūuþ s̄sd̄dÞ − 0.95ūud̄d: ðC3Þ

We see that the strange quark content in the f0ð980Þ is enhanced in the q̄q-states and suppressed for the tetraquarks.
Hence the q̄q-state interpretation harmonizes with the commonly accepted picture that the f0ð980Þ has a large strange
quark content.34 Other analyses finding support for the q̄q-interpretation, which is not the common view, are for
example [143,181,182].

32The relation (B13) is consistent with the large-Nc considerations in Sec. VI B. If FD ¼ OðNcÞ then the same holds for FS ¼ OðNcÞ
since the dilaton does not couple to the closed q̄q-correlator at leading order in Nc.

33If we take F2
π=F2

D ¼ 0.1089ð41Þ [171] and Fπ ¼ 0.021677ð40Þ [15] and get FS ≈ 0.033 from (B13) which is 30% off from
FS ¼ 0.0254ð17Þ [15]. In our view the analysis above is preferable since it is independent of the potential.

34In fact the angle where this is picture is extremized is θ ≈ 35.7°, also known as ideal mixing. The angle, in the original proposal of
Jaffe, is θ ≈ −54.7°, where jσiq̄qq̄q ¼ ūud̄d.
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[36] O. Catà, R. J. Crewther, and L. C. Tunstall, Crawling
technicolor, Phys. Rev. D 100, 095007 (2019).

[37] W. D. Goldberger, B. Grinstein, andW. Skiba, Distinguish-
ing the Higgs boson from the dilaton at the Large Hadron
Collider, Phys. Rev. Lett. 100, 111802 (2008).

[38] T. Appelquist and Y. Bai, A light dilaton in walking gauge
theories, Phys. Rev. D 82, 071701 (2010).

[39] B. Bellazzini, C. Csaki, J. Hubisz, J. Serra, and J. Terning,
A Higgslike dilaton, Eur. Phys. J. C 73, 2333 (2013).

[40] Z. Chacko, R. Franceschini, and R. K. Mishra, Resonance
at 125 GeV: Higgs or dilaton/radion?, J. High Energy Phys.
04 (2013) 015.

[41] F. Coradeschi, P. Lodone, D. Pappadopulo, R. Rattazzi,
and L. Vitale, A naturally light dilaton, J. High Energy
Phys. 11 (2013) 057.

[42] C. Csaki, N. Kaloper, J. Serra, and J. Terning, Inflation
from broken scale invariance, Phys. Rev. Lett. 113, 161302
(2014).

QCD WITH AN INFRARED FIXED POINT AND A DILATON PHYS. REV. D 110, 014048 (2024)

014048-25

https://doi.org/10.1103/PhysRevD.2.685
https://doi.org/10.1016/0370-2693(70)90177-2
https://doi.org/10.1016/0370-2693(70)90177-2
https://doi.org/10.1016/0550-3213(70)90422-0
https://doi.org/10.1016/0550-3213(71)90439-1
https://doi.org/10.1016/0550-3213(71)90193-3
https://doi.org/10.1016/0370-2693(70)90277-7
https://doi.org/10.1103/PhysRevD.3.3152
https://doi.org/10.1103/PhysRevD.4.3814
https://doi.org/10.1103/PhysRevD.4.3814
https://doi.org/10.1103/PhysRevD.109.034009
https://doi.org/10.1016/j.physrep.2014.12.003
https://arXiv.org/abs/2306.12914
https://arXiv.org/abs/2306.12914
https://doi.org/10.1007/JHEP08(2022)007
https://doi.org/10.1007/JHEP08(2022)007
https://doi.org/10.1016/0550-3213(86)90451-7
https://doi.org/10.1088/1126-6708/2000/06/030
https://doi.org/10.1103/PhysRevLett.80.2517
https://doi.org/10.1103/PhysRevLett.80.2517
https://arXiv.org/abs/2306.06095
https://arXiv.org/abs/2306.06095
https://doi.org/10.1103/PhysRevD.101.114508
https://arXiv.org/abs/2203.15847
https://arXiv.org/abs/1912.07653
https://doi.org/10.1016/j.physletb.2018.02.008
https://arXiv.org/abs/1811.05024
https://arXiv.org/abs/1901.06324
https://arXiv.org/abs/2002.05163
https://doi.org/10.1103/PhysRevD.99.014507
https://doi.org/10.1103/PhysRevD.99.014509
https://doi.org/10.1103/PhysRevD.99.014509
https://doi.org/10.1103/PhysRevD.96.014508
https://doi.org/10.1103/PhysRevD.93.054505
https://doi.org/10.1103/PhysRevD.93.075028
https://doi.org/10.1103/PhysRevD.90.114502
https://doi.org/10.1103/PhysRevD.89.111502
https://doi.org/10.1103/PhysRevD.89.111502
https://doi.org/10.1103/PhysRevD.94.054502
https://doi.org/10.1103/PhysRevD.94.054502
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.3390/universe9010010
https://doi.org/10.1103/PhysRevD.108.074506
https://doi.org/10.1103/PhysRevD.108.074506
https://doi.org/10.1103/PhysRevD.86.115004
https://doi.org/10.1103/PhysRevD.72.055001
https://doi.org/10.1103/PhysRevD.100.095007
https://doi.org/10.1103/PhysRevLett.100.111802
https://doi.org/10.1103/PhysRevD.82.071701
https://doi.org/10.1140/epjc/s10052-013-2333-x
https://doi.org/10.1007/JHEP04(2013)015
https://doi.org/10.1007/JHEP04(2013)015
https://doi.org/10.1007/JHEP11(2013)057
https://doi.org/10.1007/JHEP11(2013)057
https://doi.org/10.1103/PhysRevLett.113.161302
https://doi.org/10.1103/PhysRevLett.113.161302


[43] Y.-L. Ma and M. Rho, Towards the hadron–quark con-
tinuity via a topology change in compact stars, Prog. Part.
Nucl. Phys. 113, 103791 (2020).

[44] M. Rho and Y.-L. Ma, Manifestation of hidden symmetries
in baryonic matter: From finite nuclei to neutron stars,
Mod. Phys. Lett. A 36, 2130012 (2021).

[45] G. E. Brown and M. Rho, Scaling effective Lagrangians in
a dense medium, Phys. Rev. Lett. 66, 2720 (1991).

[46] C. Wetterich, Cosmology and the fate of dilatation sym-
metry, Nucl. Phys. B302, 668 (1988).

[47] M. Shaposhnikov and D. Zenhausern, Scale invariance,
unimodular gravity and dark energy, Phys. Lett. B 671, 187
(2009).

[48] M. Shaposhnikov and D. Zenhausern, Quantum scale
invariance, cosmological constant and hierarchy problem,
Phys. Lett. B 671, 162 (2009).

[49] R. J. Crewther and L. C. Tunstall, Origin of ΔI ¼ 1=2 rule
for kaon decays: QCD infrared fixed point, arXiv:1203.
1321.

[50] R. J. Crewther and L. C. Tunstall, Status of chiral-scale
perturbation theory, Proc. Sci., CD15 (2015) 132 [arXiv:
1510.01322].

[51] S. Bruggisser, B. von Harling, O. Matsedonskyi, and G.
Servant, Status of electroweak baryogenesis in minimal
composite Higgs, J. High Energy Phys. 08 (2023) 012.

[52] R. J. Crewther, Nonperturbative evaluation of the anomalies
in low-energy theorems, Phys. Rev. Lett. 28, 1421 (1972).

[53] M. S. Chanowitz and J. R. Ellis, Canonical anomalies and
broken scale invariance, Phys. Lett. 40B, 397 (1972).

[54] M. S. Chanowitz and J. R. Ellis, Canonical trace anoma-
lies, Phys. Rev. D 7, 2490 (1973).

[55] P. Minkowski, On the anomalous divergence of the
dilatation current in gauge theories, Report No. PRINT-
76-0813 (BERN), 1976.

[56] S. L. Adler, J. C. Collins, and A. Duncan, Energy-momen-
tum-tensor trace anomaly in spin 1=2 quantum electrody-
namics, Phys. Rev. D 15, 1712 (1977).

[57] N. K. Nielsen, The energy momentum tensor in a
nonAbelian quark gluon theory, Nucl. Phys. B120, 212
(1977).

[58] J. C. Collins, A. Duncan, and S. D. Joglekar, Trace and
dilatation anomalies in gauge theories, Phys. Rev. D 16,
438 (1977).

[59] G. Mack, Introduction to conformal invariant quantum
field theory in two-dimensions and more dimensions, in
NATO Advanced Summer Institute on Nonperturbative
Quantum Field Theory (Cargese Summer Institute) (1988),
Report No. DESY-88-120.

[60] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal
Field Theory, Graduate Texts in Contemporary Physics
(Springer-Verlag, New York, 1997).

[61] V. M. Braun, G. P. Korchemsky, and D. Müller, The uses of
conformal symmetry in QCD, Prog. Part. Nucl. Phys. 51,
311 (2003).

[62] H. Osborn, Lectures on conformal field theories in more
than two dimensions, https://www.damtp.cam.ac.uk/user/
ho/CFTNotes.pdf.

[63] S. Rychkov, EPFL Lectures on Conformal Field Theory in
D ≥ 3 Dimensions, SpringerBriefs in Physics (Springer,
Cham, 2016), 10.1007/978-3-319-43626-5.

[64] D. Poland, S. Rychkov, and A. Vichi, The conformal
bootstrap: Theory, numerical techniques, and applications,
Rev. Mod. Phys. 91, 015002 (2019).

[65] C. T. Hill and E. H. Simmons, Strong dynamics and
electroweak symmetry breaking, Phys. Rep. 381, 235
(2003); 390, 553(E) (2004).

[66] F. Sannino, Conformal dynamics for TeV physics and
cosmology, Acta Phys. Pol. B 40, 3533 (2009).

[67] G. Cacciapaglia, C. Pica, and F. Sannino, Fundamental
composite dynamics: A review, Phys. Rep. 877, 1
(2020).

[68] W. E. Caswell, Asymptotic behavior of nonabelian gauge
theories to two loop order, Phys. Rev. Lett. 33, 244 (1974).

[69] T. Banks and A. Zaks, On the phase structure of vector-like
gauge theories with massless fermions, Nucl. Phys. B196,
189 (1982).

[70] J. Gasser and H. Leutwyler, Chiral perturbation theory to
one loop, Ann. Phys. (N.Y.) 158, 142 (1984).

[71] J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynam-
ics of the Standard Model (Cambridge University Press,
Cambridge, England, 2014), Vol. 2, 10.1017/CBO978051
1524370.

[72] H. Leutwyler, On the foundations of chiral perturbation
theory, Ann. Phys. (N.Y.) 235, 165 (1994).

[73] S. Scherer and M. R. Schindler, A Primer for Chiral
Perturbation Theory (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012), Vol. 830.

[74] C. G. Callan, Jr., S. R. Coleman, and R. Jackiw, A new
improved energy—momentum tensor, Ann. Phys. (N.Y.)
59, 42 (1970).

[75] M. Gell-Mann, R. J. Oakes, and B. Renner, Behavior of
current divergences under SUð3Þ × SUð3Þ, Phys. Rev. 175,
2195 (1968).

[76] B. Zumino, Effective Lagrangians and Broken Sym-
metries, Vol. 2 of 1970 Brandeis University Summer
Institute in Theoretical Physics (MIT Press, Cambridge,
MA; Providence, RI, 1970).

[77] A. A. Migdal and M. A. Shifman, Dilaton effective La-
grangian in gluodynamics, Phys. Lett. 114B, 445 (1982).

[78] C. N. Leung, S. T. Love, and W. A. Bardeen, Aspects of
dynamical symmetry breaking in gauge field theories,
Nucl. Phys. B323, 493 (1989).

[79] J. L. Cardy, Scaling and Renormalization in Statistical
Physics (Cambridge University Press, Cambridge,
England, 1996).

[80] S. Weinberg, The Quantum Theory of Fields. Vol. 1:
Foundations (Cambridge University Press, Cambridge,
England, 2005).

[81] R. Zwicky, A brief introduction to dispersion relations and
analyticity, in Quantum Field Theory at the Limits:
From Strong Fields to Heavy Quarks (2016); arXiv:1610.
06090.

[82] I. M. Gelfand, G. E. Shilov, M. I. Graev, N. Y. Vilenkin,
and I. I. Pyatetskii-Shapiro, Generalized Functions (AMS
Chelsea Publishing. Academic Press, New York, NY,
1964), https://cds.cern.ch/record/105396, Trans. from the
Russian, Moscow, 1958.

[83] L. Del Debbio and R. Zwicky, Hyperscaling relations in
mass-deformed conformal gauge theories, Phys. Rev. D
82, 014502 (2010).

ROMAN ZWICKY PHYS. REV. D 110, 014048 (2024)

014048-26

https://doi.org/10.1016/j.ppnp.2020.103791
https://doi.org/10.1016/j.ppnp.2020.103791
https://doi.org/10.1142/S0217732321300123
https://doi.org/10.1103/PhysRevLett.66.2720
https://doi.org/10.1016/0550-3213(88)90193-9
https://doi.org/10.1016/j.physletb.2008.11.054
https://doi.org/10.1016/j.physletb.2008.11.054
https://doi.org/10.1016/j.physletb.2008.11.041
https://arXiv.org/abs/1203.1321
https://arXiv.org/abs/1203.1321
https://arXiv.org/abs/1510.01322
https://arXiv.org/abs/1510.01322
https://doi.org/10.1007/JHEP08(2023)012
https://doi.org/10.1103/PhysRevLett.28.1421
https://doi.org/10.1016/0370-2693(72)90829-5
https://doi.org/10.1103/PhysRevD.7.2490
https://doi.org/10.1103/PhysRevD.15.1712
https://doi.org/10.1016/0550-3213(77)90040-2
https://doi.org/10.1016/0550-3213(77)90040-2
https://doi.org/10.1103/PhysRevD.16.438
https://doi.org/10.1103/PhysRevD.16.438
https://doi.org/10.1016/S0146-6410(03)90004-4
https://doi.org/10.1016/S0146-6410(03)90004-4
https://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf
https://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf
https://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf
https://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf
https://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf
https://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf
https://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf
https://doi.org/10.1007/978-3-319-43626-5
https://doi.org/10.1103/RevModPhys.91.015002
https://doi.org/10.1016/S0370-1573(03)00140-6
https://doi.org/10.1016/S0370-1573(03)00140-6
https://doi.org/10.1016/j.physrep.2003.10.002
https://doi.org/10.1016/j.physrep.2020.07.002
https://doi.org/10.1016/j.physrep.2020.07.002
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1017/CBO9780511524370
https://doi.org/10.1017/CBO9780511524370
https://doi.org/10.1006/aphy.1994.1094
https://doi.org/10.1016/0003-4916(70)90394-5
https://doi.org/10.1016/0003-4916(70)90394-5
https://doi.org/10.1103/PhysRev.175.2195
https://doi.org/10.1103/PhysRev.175.2195
https://doi.org/10.1016/0370-2693(82)90089-2
https://doi.org/10.1016/0550-3213(89)90121-1
https://arXiv.org/abs/1610.06090
https://arXiv.org/abs/1610.06090
https://cds.cern.ch/record/105396
https://cds.cern.ch/record/105396
https://cds.cern.ch/record/105396
https://doi.org/10.1103/PhysRevD.82.014502
https://doi.org/10.1103/PhysRevD.82.014502


[84] L. Del Debbio and R. Zwicky, Scaling relations for the
entire spectrum in mass-deformed conformal gauge theo-
ries, Phys. Lett. B 700, 217 (2011).

[85] L. Del Debbio and R. Zwicky, Conformal scaling
and the size of m-hadrons, Phys. Rev. D 89, 014503
(2014).

[86] J. F. Donoghue and H. Leutwyler, Energy and momentum
in chiral theories, Z. Phys. C 52, 343 (1991).

[87] A. Schwimmer and S. Theisen, Spontaneous breaking of
conformal invariance and trace anomaly matching, Nucl.
Phys. B847, 590 (2011).

[88] F. Sannino, QCD dual, Phys. Rev. D 80, 065011 (2009).
[89] M. Mojaza, M. Nardecchia, C. Pica, and F. Sannino, Dual

of QCD with one adjoint fermion, Phys. Rev. D 83, 065022
(2011).

[90] M. Rho, Anomaly-induced quenching of gA in nuclear
matter and impact on search for neutrinoless ββ decay,
Symmetry 15, 1648 (2023).

[91] L.-Q. Shao and M. Rho, An IR fixed point in QCD with a
dilaton in nuclear dynamics, arXiv:2405.07339.

[92] M. Shifman and R. Zwicky, Relating β0� and γ0Q� in the
N ¼ 1 SQCD conformal window, Phys. Rev. D 108,
114013 (2023).

[93] K. A. Intriligator and N. Seiberg, Lectures on supersym-
metric gauge theories and electric-magnetic duality, Nucl.
Phys. B, Proc. Suppl. 45, 1 (1996).

[94] M. A. Shifman, ITEP Lectures on Particle Physics and
Field Theory. Vol. 1, 2 (World Scientific, Singapore,
1999), Vol. 62.

[95] J. Terning,Modern Supersymmetry: Dynamics and Duality
(OUP, Oxford, 2006).

[96] Y. Tachikawa, Lectures on 4d N ¼ 1 dynamics and related
topics, arXiv:1812.08946.

[97] N. Seiberg, Electric—magnetic duality in supersymmetric
nonAbelian gauge theories, Nucl. Phys. B435, 129
(1995).

[98] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I.
Zakharov, Exact Gell-Mann-Low function of supersym-
metric Yang-Mills theories from instanton calculus, Nucl.
Phys. B229, 381 (1983).

[99] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I.
Zakharov, The beta function in supersymmetric gauge
theories. Instantons versus traditional approach, Phys. Lett.
166B, 329 (1986).

[100] A. Manohar and H. Georgi, Chiral quarks and the non-
relativistic quark model, Nucl. Phys. B234, 189 (1984).

[101] T. A. Ryttov and R. Shrock, Higher-order scheme-
independent series expansions of γψ̄ψ ;IR and β0IR in con-
formal field theories, Phys. Rev. D 95, 105004 (2017).

[102] D. Anselmi, M. T. Grisaru, and A. Johansen, A critical
behavior of anomalous currents, electric-magnetic univer-
sality and CFT in four-dimensions, Nucl. Phys. B491, 221
(1997).

[103] Z. Komargodski, Vector mesons and an interpretation of
Seiberg duality, J. High Energy Phys. 02 (2011) 019.

[104] S. Abel and J. Barnard, Seiberg duality versus hidden local
symmetry, J. High Energy Phys. 05 (2012) 044.

[105] S. Weinberg, Effective field theory, past and future, Proc.
Sci., CD09 (2009) 001 [arXiv:0908.1964].

[106] R. E. Marshak, Riazuddin, and C. P. Ryan, Theory of Weak
Interactions in Particle Physics (Wiley-Interscience,
New York, 1969).

[107] G. K. Karananas and M. Shaposhnikov, CFT data and
spontaneously broken conformal invariance, Phys. Rev. D
97, 045009 (2018).

[108] A. Belyaev, K. Bitaghsir Fadafan, N. Evans, and M.
Gholamzadeh, Any room left for technicolor? Holographic
studies of NJL assisted technicolor, Phys. Rev. D 101,
086013 (2020).

[109] A. Pomarol, O. Pujolas, and L. Salas, Holographic
conformal transition and light scalars, J. High Energy
Phys. 10 (2019) 202.

[110] A. Pomarol and L. Salas, Exploring the conformal tran-
sition from above and below, arXiv:2312.08332.

[111] G. W. Semenoff, Dilaton in a cold Fermi gas, in Proceed-
ings of the 7th International Conference on New Frontiers
in Physics (2018); arXiv:1808.03861.

[112] W. A. Bardeen, M. Moshe, and M. Bander, Spontaneous
breaking of scale invariance and the ultraviolet fixed point
in OðNÞ symmetric (ϕ̄6

3 in three-dimensions) theory, Phys.
Rev. Lett. 52, 1188 (1984).

[113] D. F. Litim, E. Marchais, and P. Mati, Fixed points and the
spontaneous breaking of scale invariance, Phys. Rev. D 95,
125006 (2017).

[114] G. W. Semenoff and R. A. Stewart, Dilaton in a multi-
critical 3+epsilon-D parity violating field theory, Phys.
Lett. B 853, 138691 (2024).

[115] C. Cresswell-Hogg and D. F. Litim, Scale symmetry
breaking and generation of mass at quantum critical points,
arXiv:2311.16246.

[116] C. Cresswell-Hogg and D. F. Litim, Line of fixed points in
Gross-Neveu theories, Phys. Rev. Lett. 130, 201602 (2023).

[117] C. Cresswell-Hogg and D. F. Litim, Critical fermions with
spontaneously broken scale symmetry, Phys. Rev. D 107,
L101701 (2023).

[118] E. Gildener and S. Weinberg, Symmetry breaking and
scalar bosons, Phys. Rev. D 13, 3333 (1976).

[119] O. Antipin, M. Mojaza, and F. Sannino, Light dilaton at
fixed points and ultra light scale super Yang Mills, Phys.
Lett. B 712, 119 (2012).

[120] D. Nogradi and B. Ozsvath, Dilaton in scalar QFT: A no-
go theorem in 4-epsilon and 3-epsilon dimensions, SciPost
Phys. 12, 169 (2022).

[121] V. A. Novikov, L. B. Okun, M. A. Shifman, A. I.
Vainshtein, M. B. Voloshin, and V. I. Zakharov, Charmo-
nium and gluons: Basic experimental facts and theoretical
introduction, Phys. Rep. 41, 1 (1978).

[122] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD
and resonance physics. Theoretical foundations, Nucl.
Phys. B147, 385 (1979).

[123] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD
and resonance physics: applications, Nucl. Phys. B147,
448 (1979).

[124] B. L. Ioffe, Condensates in quantum chromodynamics,
Phys. At. Nucl. 66, 30 (2003).

[125] A. H. Mueller, The QCD perturbation series, in Proceed-
ings of the Workshop on QCD: 20 Years Later (World
Scientific, Singapore, 1992), pp. 162–171, 10.1142/1755.

QCD WITH AN INFRARED FIXED POINT AND A DILATON PHYS. REV. D 110, 014048 (2024)

014048-27

https://doi.org/10.1016/j.physletb.2011.04.059
https://doi.org/10.1103/PhysRevD.89.014503
https://doi.org/10.1103/PhysRevD.89.014503
https://doi.org/10.1007/BF01560453
https://doi.org/10.1016/j.nuclphysb.2011.02.003
https://doi.org/10.1016/j.nuclphysb.2011.02.003
https://doi.org/10.1103/PhysRevD.80.065011
https://doi.org/10.1103/PhysRevD.83.065022
https://doi.org/10.1103/PhysRevD.83.065022
https://doi.org/10.3390/sym15091648
https://arXiv.org/abs/2405.07339
https://doi.org/10.1103/PhysRevD.108.114013
https://doi.org/10.1103/PhysRevD.108.114013
https://doi.org/10.1016/0920-5632(95)00626-5
https://doi.org/10.1016/0920-5632(95)00626-5
https://arXiv.org/abs/1812.08946
https://doi.org/10.1016/0550-3213(94)00023-8
https://doi.org/10.1016/0550-3213(94)00023-8
https://doi.org/10.1016/0550-3213(83)90338-3
https://doi.org/10.1016/0550-3213(83)90338-3
https://doi.org/10.1016/0370-2693(86)90810-5
https://doi.org/10.1016/0370-2693(86)90810-5
https://doi.org/10.1016/0550-3213(84)90231-1
https://doi.org/10.1103/PhysRevD.95.105004
https://doi.org/10.1016/S0550-3213(97)00108-9
https://doi.org/10.1016/S0550-3213(97)00108-9
https://doi.org/10.1007/JHEP02(2011)019
https://doi.org/10.1007/JHEP05(2012)044
https://arXiv.org/abs/0908.1964
https://doi.org/10.1103/PhysRevD.97.045009
https://doi.org/10.1103/PhysRevD.97.045009
https://doi.org/10.1103/PhysRevD.101.086013
https://doi.org/10.1103/PhysRevD.101.086013
https://doi.org/10.1007/JHEP10(2019)202
https://doi.org/10.1007/JHEP10(2019)202
https://arXiv.org/abs/2312.08332
https://arXiv.org/abs/1808.03861
https://doi.org/10.1103/PhysRevLett.52.1188
https://doi.org/10.1103/PhysRevLett.52.1188
https://doi.org/10.1103/PhysRevD.95.125006
https://doi.org/10.1103/PhysRevD.95.125006
https://doi.org/10.1016/j.physletb.2024.138691
https://doi.org/10.1016/j.physletb.2024.138691
https://arXiv.org/abs/2311.16246
https://doi.org/10.1103/PhysRevLett.130.201602
https://doi.org/10.1103/PhysRevD.107.L101701
https://doi.org/10.1103/PhysRevD.107.L101701
https://doi.org/10.1103/PhysRevD.13.3333
https://doi.org/10.1016/j.physletb.2012.04.050
https://doi.org/10.1016/j.physletb.2012.04.050
https://doi.org/10.21468/SciPostPhys.12.5.169
https://doi.org/10.21468/SciPostPhys.12.5.169
https://doi.org/10.1016/0370-1573(78)90120-5
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90023-3
https://doi.org/10.1016/0550-3213(79)90023-3
https://doi.org/10.1134/1.1540654
https://doi.org/10.1142/1755


[126] G. S. Bali, C. Bauer, and A. Pineda, Perturbative expansion
of the plaquette to Oðα35Þ in four-dimensional SU(3)
gauge theory, Phys. Rev. D 89, 054505 (2014).

[127] G. S. Bali, C. Bauer, and A. Pineda, Model-independent
determination of the gluon condensate in four-dimensional
SU(3) gauge theory, Phys. Rev. Lett. 113, 092001 (2014).

[128] G. S. Bali and A. Pineda, Phenomenology of renormalons
and the OPE from lattice regularization: The gluon con-
densate and the heavy quark pole mass, AIP Conf. Proc.
1701, 030010 (2016).

[129] L. Del Debbio, L. Keegan, and C. Pena, Anomalous
dimensions of four-fermion operators from conformal
EWSB dynamics, Proc. Sci., LATTICE2013 (2014) 086
[arXiv:1311.4458].

[130] J. Bersini, A. D’Alise, C. Gambardella, and F. Sannino,
Scaling results for charged sectors of near conformal QCD,
arXiv:2401.08457.

[131] G. ’t Hooft, A Planar diagram theory for strong inter-
actions, Nucl. Phys. B72, 461 (1974).

[132] E. Witten, Baryons in the 1/n expansion, Nucl. Phys. B160,
57 (1979).

[133] B. Lucini and M. Panero, SU(N) gauge theories at large N,
Phys. Rep. 526, 93 (2013).

[134] G. S. Bali, F. Bursa, L. Castagnini, S. Collins, L. Del
Debbio, B. Lucini, and M. Panero, Mesons in large-N
QCD, J. High Energy Phys. 06 (2013) 071.

[135] J. Gasser, M. E. Sainio, and A. Svarc, Nucleons with chiral
loops, Nucl. Phys. B307, 779 (1988).

[136] T. Becher and H. Leutwyler, Baryon chiral perturbation
theory in manifestly Lorentz invariant form, Eur. Phys. J. C
9, 643 (1999).

[137] M. J. G. Veltman, The infrared-ultraviolet connection, Acta
Phys. Pol. B 12, 437 (1981).

[138] R. L. Workman et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2022, 083C01
(2022).

[139] J. R. Pelaez, From controversy to precision on the sigma
meson: A review on the status of the non-ordinary f0ð500Þ
resonance, Phys. Rep. 658, 1 (2016).

[140] I. Caprini, G. Colangelo, and H. Leutwyler, Mass and
width of the lowest resonance in QCD, Phys. Rev. Lett. 96,
132001 (2006).

[141] J. A. Oller, E. Oset, and J. R. Pelaez, Meson meson
interaction in a nonperturbative chiral approach, Phys.
Rev. D 59, 074001 (1999); 60, 099906(E) (1999); 75,
099903(E) (2007).

[142] R. L. Jaffe, Multi-quark hadrons. 1. The phenomenology
of (2 quark 2 anti-quark) mesons, Phys. Rev. D 15, 267
(1977).

[143] B. Moussallam, Couplings of light I ¼ 0 scalar mesons to
simple operators in the complex plane, Eur. Phys. J. C 71,
1814 (2011).

[144] M. Hoferichter, J. R. de Elvira, B. Kubis, and U.-G.
Meißner, Nucleon resonance parameters from Roy-Steiner
equations, Phys. Lett. B 853, 138698 (2024).

[145] A. Calle Cordon and E. Ruiz Arriola, Renormalization vs
strong form factors for one boson exchange potentials,
Phys. Rev. C 81, 044002 (2010).

[146] B. Wu, X.-H. Cao, X.-K. Dong, and F.-K. Guo, σ exchange
in the one-boson exchange model involving the

ground state octet baryons, Phys. Rev. D 109, 034026
(2024).

[147] M. Hoferichter, D. R. Phillips, and C. Schat, Roy-Steiner
equations for γγ → ππ, Eur. Phys. J. C 71, 1743
(2011).

[148] J. A. Oller, The mixing angle of the lightest scalar nonet,
Nucl. Phys. A727, 353 (2003).

[149] M. Napsuciale, Scalar meson masses and mixing angle in a
Uð3Þ × Uð3Þ linear sigma model, arXiv:hep-ph/9803396.

[150] R. J. Crewther and L. C. Tunstall, ΔI ¼ 1=2 rule for kaon
decays derived from QCD infrared fixed point, Phys. Rev.
D 91, 034016 (2015).

[151] H. Leutwyler, Chiral perturbation theory, Scholarpedia 7,
8708 (2012).

[152] Y. Aoki et al. (Flavour Lattice Averaging Group (FLAG)
Collaboration), FLAG review 2021, Eur. Phys. J. C 82, 869
(2022).

[153] J. Gasser and H. Leutwyler, Chiral perturbation theory:
Expansions in the mass of the strange quark, Nucl. Phys.
B250, 465 (1985).

[154] S. Descotes-Genon, L. Girlanda, and J. Stern, Paramag-
netic effect of light quark loops on chiral symmetry
breaking, J. High Energy Phys. 01 (2000) 041.

[155] M. Piai, Lectures on walking technicolor, holography and
gauge/gravity dualities, Adv. High Energy Phys. 2010,
464302 (2010).

[156] G. Panico and A. Wulzer, The Composite Nambu-Gold-
stone Higgs (Springer, New York, 2016), Vol. 913,
10.1007/978-3-319-22617-0.

[157] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J.
Wilson, Isoscalar ππ scattering and the σ meson resonance
from QCD, Phys. Rev. Lett. 118, 022002 (2017).

[158] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J.
Wilson, Isoscalar ππ; KK̄; ηη scattering and the σ; f0; f2
mesons from QCD, Phys. Rev. D 97, 054513 (2018).

[159] B. Hu, R. Molina, M. Döring, and A. Alexandru, Two-
flavor simulations of the ρð770Þ and the role of the KK̄
channel, Phys. Rev. Lett. 117, 122001 (2016).

[160] D. Guo, A. Alexandru, R. Molina, M. Mai, and M. Döring,
Extraction of isoscalar ππ phase-shifts from lattice QCD,
Phys. Rev. D 98, 014507 (2018).

[161] B. Ananthanarayan, G. Colangelo, J. Gasser, and H.
Leutwyler, Roy equation analysis of ππ scattering, Phys.
Rep. 353, 207 (2001).

[162] X.-H. Cao, Q.-Z. Li, Z.-H. Guo, and H.-Q. Zheng, Roy
equation analyses of ππ scatterings at unphysical pion
masses, Phys. Rev. D 108, 034009 (2023).

[163] M. Kruczenski, J. Penedones, and B. C. van Rees, Snow-
mass white paper: S-matrix bootstrap, arXiv:2203.02421.

[164] A. L. Guerrieri, J. Penedones, and P. Vieira, S-matrix
bootstrap for effective field theories: Massless pions, J.
High Energy Phys. 06 (2021) 088.

[165] N. Santowsky, G. Eichmann, C. S. Fischer, P. C. Wallbott,
and R. Williams, σ-meson: Four-quark versus two-quark
components and decay width in a Bethe-Salpeter approach,
Phys. Rev. D 102, 056014 (2020).

[166] N. Santowsky and C. S. Fischer, Light scalars: Four-quark
versus two-quark states in the complex energy plane from
Bethe-Salpeter equations, Phys. Rev. D 105, 034025
(2022).

ROMAN ZWICKY PHYS. REV. D 110, 014048 (2024)

014048-28

https://doi.org/10.1103/PhysRevD.89.054505
https://doi.org/10.1103/PhysRevLett.113.092001
https://doi.org/10.1063/1.4938616
https://doi.org/10.1063/1.4938616
https://arXiv.org/abs/1311.4458
https://arXiv.org/abs/2401.08457
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1016/0550-3213(79)90232-3
https://doi.org/10.1016/0550-3213(79)90232-3
https://doi.org/10.1016/j.physrep.2013.01.001
https://doi.org/10.1007/JHEP06(2013)071
https://doi.org/10.1016/0550-3213(88)90108-3
https://doi.org/10.1007/PL00021673
https://doi.org/10.1007/PL00021673
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1016/j.physrep.2016.09.001
https://doi.org/10.1103/PhysRevLett.96.132001
https://doi.org/10.1103/PhysRevLett.96.132001
https://doi.org/10.1103/PhysRevD.59.074001
https://doi.org/10.1103/PhysRevD.59.074001
https://doi.org/10.1103/PhysRevD.60.099906
https://doi.org/10.1103/PhysRevD.75.099903
https://doi.org/10.1103/PhysRevD.75.099903
https://doi.org/10.1103/PhysRevD.15.267
https://doi.org/10.1103/PhysRevD.15.267
https://doi.org/10.1140/epjc/s10052-011-1814-z
https://doi.org/10.1140/epjc/s10052-011-1814-z
https://doi.org/10.1016/j.physletb.2024.138698
https://doi.org/10.1103/PhysRevC.81.044002
https://doi.org/10.1103/PhysRevD.109.034026
https://doi.org/10.1103/PhysRevD.109.034026
https://doi.org/10.1140/epjc/s10052-011-1743-x
https://doi.org/10.1140/epjc/s10052-011-1743-x
https://doi.org/10.1016/j.nuclphysa.2003.08.002
https://arXiv.org/abs/hep-ph/9803396
https://doi.org/10.1103/PhysRevD.91.034016
https://doi.org/10.1103/PhysRevD.91.034016
https://doi.org/10.4249/scholarpedia.8708
https://doi.org/10.4249/scholarpedia.8708
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1016/0550-3213(85)90492-4
https://doi.org/10.1016/0550-3213(85)90492-4
https://doi.org/10.1088/1126-6708/2000/01/041
https://doi.org/10.1155/2010/464302
https://doi.org/10.1155/2010/464302
https://doi.org/10.1007/978-3-319-22617-0
https://doi.org/10.1103/PhysRevLett.118.022002
https://doi.org/10.1103/PhysRevD.97.054513
https://doi.org/10.1103/PhysRevLett.117.122001
https://doi.org/10.1103/PhysRevD.98.014507
https://doi.org/10.1016/S0370-1573(01)00009-6
https://doi.org/10.1016/S0370-1573(01)00009-6
https://doi.org/10.1103/PhysRevD.108.034009
https://arXiv.org/abs/2203.02421
https://doi.org/10.1007/JHEP06(2021)088
https://doi.org/10.1007/JHEP06(2021)088
https://doi.org/10.1103/PhysRevD.102.056014
https://doi.org/10.1103/PhysRevD.105.034025
https://doi.org/10.1103/PhysRevD.105.034025


[167] C. Hanhart, J. R. Pelaez, and G. Rios, Quark mass depend-
ence of the ρ and σ from dispersion relations and chiral
perturbation theory, Phys. Rev. Lett. 100, 152001 (2008).

[168] J. Nebreda and J. R. Pelaez, Strange and non-strange quark
mass dependence of elastic light resonances from SU(3)
unitarized chiral perturbation theory to one loop, Phys.
Rev. D 81, 054035 (2010).

[169] A. Rodas, J. J. Dudek, and R. G. Edwards, Constraining
the quark mass dependence of the lightest resonance in
QCD, Phys. Rev. D 109, 034513 (2024).

[170] A. Pich, I. Rosell, and J. J. Sanz-Cillero, Oblique S and T
constraints on electroweak strongly-coupled models with a
light Higgs, J. High Energy Phys. 01 (2014) 157.

[171] T. Appelquist et al. (LSD Collaboration), Hidden con-
formal symmetry from the lattice, Phys. Rev. D 108,
L091505 (2023).

[172] J. Serra, A Higgs-like dilaton: Viability and implications,
EPJ Web Conf. 60, 17005 (2013).

[173] T. Appelquist and C.W. Bernard, Strongly interacting
Higgs bosons, Phys. Rev. D 22, 200 (1980).

[174] A. C. Longhitano, Heavy Higgs bosons in the Weinberg-
Salam model, Phys. Rev. D 22, 1166 (1980).

[175] G. Buchalla and O. Cata, Effective theory of a dynamically
broken electroweak standard model at NLO, J. High
Energy Phys. 07 (2012) 101.

[176] L.-Y. Dai and M. R. Pennington, Comprehensive ampli-
tude analysis of γγ → πþπ−; π0π0 and K̄K below 1.5 GeV,
Phys. Rev. D 90, 036004 (2014).

[177] Y. Aoki et al. (LatKmi Collaboration), Lattice study of the
scalar and baryon spectra in many-flavor QCD, Int. J. Mod.
Phys. A 32, 1747010 (2017).

[178] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder,
and C. H. Wong, Can the nearly conformal sextet gauge
model hide the Higgs impostor?, Phys. Lett. B 718, 657
(2012).

[179] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi, and
C. H. Wong, Toward the minimal realization of a light
composite Higgs, Proc. Sci., LATTICE2014 (2015) 244
[arXiv:1502.00028].

[180] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi, and
C. H. Wong, Status of a minimal composite Higgs theory,
Proc. Sci., LATTICE2015 (2016) 219 [arXiv:1605.
08750].

[181] K. Maltman, The a0ð980Þ, a0ð1450Þ and K0
�ð1430Þ scalar

decay constants and the isovector scalar spectrum, Phys.
Lett. B 462, 14 (1999).

[182] S. N. Cherry and M. R. Pennington, QCD finite energy
sum rules and the isoscalar scalar mesons, arXiv:hep-ph/
0111158.

QCD WITH AN INFRARED FIXED POINT AND A DILATON PHYS. REV. D 110, 014048 (2024)

014048-29

https://doi.org/10.1103/PhysRevLett.100.152001
https://doi.org/10.1103/PhysRevD.81.054035
https://doi.org/10.1103/PhysRevD.81.054035
https://doi.org/10.1103/PhysRevD.109.034513
https://doi.org/10.1007/JHEP01(2014)157
https://doi.org/10.1103/PhysRevD.108.L091505
https://doi.org/10.1103/PhysRevD.108.L091505
https://doi.org/10.1051/epjconf/201360
https://doi.org/10.1103/PhysRevD.22.200
https://doi.org/10.1103/PhysRevD.22.1166
https://doi.org/10.1007/JHEP07(2012)101
https://doi.org/10.1007/JHEP07(2012)101
https://doi.org/10.1103/PhysRevD.90.036004
https://doi.org/10.1142/S0217751X17470108
https://doi.org/10.1142/S0217751X17470108
https://doi.org/10.1016/j.physletb.2012.10.079
https://doi.org/10.1016/j.physletb.2012.10.079
https://arXiv.org/abs/1502.00028
https://arXiv.org/abs/1605.08750
https://arXiv.org/abs/1605.08750
https://doi.org/10.1016/S0370-2693(99)00913-2
https://doi.org/10.1016/S0370-2693(99)00913-2
https://arXiv.org/abs/hep-ph/0111158
https://arXiv.org/abs/hep-ph/0111158

