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QCD bounds on the leading-order (LO) hadronic vacuum polarization (HVP) contribution to the
anomalous magnetic moment of the muon [aHVP;LOμ , aμ ¼ ðg − 2Þμ=2] are determined by imposing Hölder
inequalities and related inequality constraints on systems of finite-energy QCD sum rules. This novel

methodology is complementary to lattice QCD and data-driven approaches to determining aHVP;LOμ . For the
light-quark (u, d, s) contributions up to five-loop order in perturbation theory in the chiral limit, LO in light-
quarkmass corrections, next-to-leading order in dimension-four QCD condensates, and to LO in dimension-

six QCD condensates, we find that ð657.0�34.8Þ×10−10≤aHVP;LOμ ≤ ð788.4�41.8Þ×10−10, bridging the
range between lattice QCD and data-driven values.
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I. INTRODUCTION

In the summer of 2023, the Muon g − 2 experiment at
Fermilab announced an updated result to the measurement
of aμ ≡ ðg − 2Þμ=2, increasing the precision of their pre-
vious measurement by a factor of 2 [1] (see also e.g.,
Ref. [2]). This updated experimental result reinforces the
tension between experimental measurements and predic-
tions from the Standard Model using data-driven and
dispersive methods, pushing the disagreement between
this new experimental observation and the prediction from
theory [3] up to 5.0σ [1]. In addition to this new
experimental evidence, recent precision measurements of
the pion form factor by CMD-3 have been used to calculate
the lowest-order hadronic contributions to aμ [4], and found
agreement with [1] to within 0.9σ. Furthermore, a recent
calculation by the Budapest-Marseille-Wuppertal (BMW)
Collaboration using lattice QCD (LQCD) reached

subpercent levels of precision competitive with data-driven
and dispersive methods [5]. This high-precision LQCD
calculation of aμ is in significantly better agreement with
current experimental measurements. While efforts are
ongoing by the LQCD community to produce new calcu-
lations of subpercent precision [6], the results of the BMW
Collaboration produced a new tension between theoretical
methods.
Currently, contributions to aμ from the hadronic vacuum

polarization (HVP) dominate the uncertainties in the
Standard Model calculation. In the data-driven approach,
the leading-order (LO) dispersion integral for the contri-
butions to aμ from HVP (i.e., aHVP;LOμ ) is given by [3,7,8]

aHVP;LOμ ¼ 1

4π3

Z
∞

4m2
π

σHðtÞKðtÞdt ð1Þ

where σH is the eþe− to hadrons cross section and KðtÞ, the
kernel function, is given by

KðtÞ ¼
Z

1

0

dx
x2ð1 − xÞ

x2 þ ð1 − xÞt=m2
μ
; ð2Þ

where mμ is the muon mass. Using the hadronic R-ratio

RðtÞ ¼ σHðtÞ
σðeþe− → μþμ−Þ ; ð3Þ

with
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σðeþe− → μþμ−Þ ¼ 4πα2

3t2
ðtþ 2m2

μÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
μ

t

s

¼ 4πα2

3t
þO

�
1

t3

�
; ð4Þ

where α is the fine-structure constant, Eq. (1) can be
expressed as

aHVP;LOμ ¼ α2

3π2

Z
∞

4m2
π

1

t
RðtÞKðtÞdt; ð5Þ

where the approximation associated with (4) is negligible.
Since the hadronic R-ratio can be expressed in terms
of the hadronic vacuum polarization spectral function
RðtÞ ¼ 12πImΠHðtÞ [8,9], a QCD expression for Eq. (1)
can be written in terms of the hadronic spectral function
ImΠHðtÞ,

aQCDμ ¼ 4α2

π

Z
∞

4m2
π

1

t
ImΠHðtÞKðtÞdt: ð6Þ

We can relate (5) and (6) to QCD sum-rule methods by
approximating Eq. (2) as

KðtÞ ≈m2
μ

3t
¼ KapproxðtÞ ð7Þ

to obtain

aQCDμ ≈
4m2

μα
2

3π

Z
∞

4m2
π

1

t2
ImΠHðtÞdt; ð8Þ

where the effects of the approximation associated with (7)
will be discussed below. The challenges of a QCD
determination of aHVP;LOμ arise from the 1=t2 behavior in
(8) that emphasizes the low-energy region.
QCD sum rules [10,11] (see e.g., [12–15] for reviews)

implement quark-hadron duality by relating a QCD pre-
diction to an integrated hadronic spectral function, and
hence (8) suggests the possibility of using QCD sum rules
for determining aHVP;LOμ . In particular, the structure of (8) is
such that it can be written in terms of a finite-energy QCD
sum rule (FESR) defined by [16–19]

Fkðs0Þ ¼
Z

s0

t0

1

π
ImΠHðtÞtkdt; ð9Þ

where k is an integer that indicates the weight of the sum
rule and t0 is a physical threshold. In (9), the left-hand side
is obtained from a QCD prediction, and hence the FESRs
relate a QCD prediction to an integrated hadronic spectral
function. Writing (8) in terms of (9) gives

aQCDμ ≈
4m2

μα
2

3
F−2ð∞Þ ≥ 4m2

μα
2

3
F−2ðs0Þ: ð10Þ

In the last step of Eq. (10), positivity of the hadronic
spectral function has been used to obtain a lower bound. As
outlined below, the presence of the parameter s0 allows
optimization of our theoretical prediction. Unfortunately,
determining a field-theoretical expression for F−2ðs0Þ
requires knowledge of low-energy constants, and hence
a direct theoretical prediction is not possible. Various QCD
sum-rule approaches have been used to circumvent
this issue (see e.g., Refs. [8,9,20,21]). In this paper we
examine the fundamental properties of the field theoretical
result (10) through the application of the Hölder, Cauchy-
Schwarz, and related inequalities to obtain QCD lower and
upper bounds on the LO hadronic vacuum polarization
contribution to the anomalous magnetic moment of the
muon aHVP;LOμ .
In Sec. II the fundamental inequalities for lower and

upper bounds are developed. Section III provides the
necessary QCD expressions and input parameters for
light-quark (u, d, s) contributions up to five-loop order
in perturbation theory in the chiral limit, LO in light-quark
mass corrections, next-to-leading order (NLO) in dimen-
sion-four QCD condensates, and to LO in dimension-six
QCD condensates. Analysis methodology and results for
aHVP;LOμ are presented in Sec. IV, and the Appendix updates
the Laplace sum-rule bounds on aHVP;LOμ in Ref. [8] with
current determinations of the necessary QCD input param-
eters, five-loop perturbative corrections, and NLO dimen-
sion-four condensate contributions.

II. QCD FINITE-ENERGY SUM-RULE
BOUNDS ON aQCD

μ

A. Lower bounds

Hölder inequalities have previously been developed for
QCD Laplace [22] and Gaussian sum rules [23], and their
application can be used to constrain the region of sum-rule
parameter space in the study of hadronic systems (see e.g.,
Refs. [22–27]). Extending this Hölder inequality method-
ology to FESRs allows us to establish fundamental bounds
on the theoretically undetermined FESR F−2ðs0Þ, leading
to a constraint on aQCDμ via (10).
The Hölder inequality is expressed generally as [28,29]

����
Z

t2

t1

fðtÞgðtÞdμ
���� ≤

�Z
t2

t1

jfðtÞjpdμ
�1

p
�Z

t2

t1

jgðtÞjqdμ
�1

q

;

1

p
þ 1

q
¼ 1: ð11Þ

With careful choice of functions fðtÞ, gðtÞ, and using
positivity of ImΠHðtÞ to define the measure dμ ¼
1
π ImΠHðtÞdt
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our Hölder inequality becomes����
Z

s0

t0

tαþβ 1

π
ImΠHðtÞdt

���� ≤
�Z

s0

t0

jtαjp 1
π
ImΠHðtÞdt

�1
p

×

�Z
s0

t0

jtβjq 1
π
ImΠHðtÞdt

�1
q

:

ð12Þ
Because the QCD quantityFkðs0Þ in Eq. (9) must inherit the
properties associated with the hadronic spectral function,
Eq. (12) can be expressed in terms of the FESRs,

Fαþβðs0Þ ≤ ½Fαpðs0Þ�
1
p½Fβqðs0Þ�

1
q

→ Fαþβðs0Þ ≤ ½Fαpðs0Þ�
1
p

h
F βp

p−1
ðs0Þ

ip−1
p : ð13Þ

Equation (13) results in a family of inequalities which can be
used to place a lower bound onF−2ðs0Þ. These are restricted
due to the conditions from the Hölder inequality [Eq. (11)],
as well due to the requirement from FESRs Fkðs0Þ that the
weight k be an integer. By restricting our attention to
inequalities that give a lower bound on F−2ðs0Þ through a
combination of positive-weight FESR expressions, we
derive the following inequalities:

F−2 ≥
F2
0

F2

; ð14Þ

F−2 ≥
F3
0

F2
1

; ð15Þ

F−2 ≥
F4
1

F3
2

; ð16Þ

wherewe have suppressed the s0 dependence in each FESR.
These inequalities place a lower bound onF−2ðs0Þ through a
combination of FESRs that have weights low enough
(0 ≤ k ≤ 2) to avoid dependence on unknown higher
dimension QCD condensates as outlined below.
Having determined the lower bounds (14)–(16), we next

determine which is the strongest restriction on F−2. Starting
from Eq. (13), we apply the substitutions α ¼ kþ1

2
and

β ¼ k−1
2
, and consider the Cauchy-Schwarz inequality [i.e.,

the Hölder inequality in Eq. (13) with p ¼ q ¼ 2]. This
gives

Fk ≤ F1=2
kþ1F

1=2
k−1 → F2

k ≤ Fkþ1Fk−1: ð17Þ

Rearranging this gives us a relationship between ratios of
FESRs,

Fk

Fkþ1

≤
Fk−1

Fk
: ð18Þ

Applying this to our constraints (14)–(16), we find the
following hierarchy:

F−2 ≥
F3
0

F2
1

≥
F2
0

F2

≥
F4
1

F3
2

: ð19Þ

The most restrictive lower bound on F−2ðs0Þ is therefore
provided by

F−2 ≥
F3
0

F2
1

: ð20Þ

From this, taking Eqs. (10) and (20), we can relate this
inequality to a bound on aQCDμ ,

aQCDμ ≥
4m2

μα
2

3

F3
0ðs0Þ

F2
1ðs0Þ

: ð21Þ

In obtaining the lower bound (21) on aQCDμ , the approxi-
mation in Eq. (7) has been used. The resulting lower bound
(21) is only valid if this approximation is also a lower
bound on KðtÞ. However, the approximation (7) provides
an upper bound on KðtÞ, and KapproxðtÞ must therefore be
rescaled by a factor ξ to obtain a valid lower bound

KξðtÞ ¼ ξKapproxðtÞ ¼ ξ
m2

μ

3t
: ð22Þ

The crucial energy region for determining ξ is the low-
energy region from threshold to the ρ, ω peak. A naive
Breit-Wigner σBW for the ρ, ω is nonzero at threshold and
provides an overestimate of σHðtÞ in the low-energy region.
Thus ξ can be determined by the constraint

Z
m2

ρ

4m2
π

KðtÞσBWðtÞdt ≥
Z

m2
ρ

4m2
π

KξðtÞσBWðtÞdt: ð23Þ

The inequality (23) is saturated by ξ ¼ 0.83, and as shown
in Fig. 1, this value of ξ also results in a lower bound
KξðtÞ ≤ KðtÞ beyond the ρ, ω peak,

Z
∞

4m2
π

KðtÞσHðtÞdt ≥
Z

∞

4m2
π

KξðtÞσHðtÞdt: ð24Þ

Hence (21) is modified to our final form

aQCDμ ≥ ξ
4m2

μα
2

3

F3
0ðs0Þ

F2
1ðs0Þ

; ξ ¼ 0.83: ð25Þ

It should be noted from Fig. 1 that the approximate form
KξðtÞ clearly underestimates the exact KðtÞ above the ρ, ω
peak, and hence the final bound in Eq. (25) is expected to
be a conservative lower bound. Finally, the utility of the
parameter s0 appearing in (25) is now evident, because it
can be varied to find the strongest possible QCD bound.
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B. Upper bounds

Because the kernel KðtÞ decreases monotonically with
increasing energy and KðtÞ < KapproxðtÞ (see Fig. 1), the
following upper bound can be obtained from (6) and (8):

aQCDμ ≤
4m2

μα
2

3π

Z
∞

t0

1

t2
ImΠHðtÞdt

≤
4m2

μα
2

3π

1

t20

Z
∞

t0

ImΠHðtÞdt; t0 ¼ 4m2
π: ð26Þ

However, this bound can be improved by adapting and
extending the techniques outlined in Ref. [30]. Ultimately,
the goal is to construct an upper bound on F−2ðs0Þ, but we
illustrate the method of Ref. [30] with the necessary step of
an upper bound on F−1ðs0Þ via the following relation based
on positivity of the hadronic spectral function:

Z
s0

t0

1

t
½1þ At�2ImΠHðtÞdt ≥ 0: ð27Þ

By extremizing A to obtain the most stringent relation we
find

F−1 ≤ FðBÞ
−1 ¼ F0

t0
−
ðF1=t0 − F0Þ2
ðF2=t0 − F1Þ

; ð28Þ

F2=t0 − F1 > 0; ð29Þ

where the FESR dependence on s0 has been suppressed and
the subsidiary condition (29) is required for the validity
of (28).
An upper bound on F−2 can then be obtained by

extremizing the relation

Z
s0

t0

1

t2
½1þ At�2ImΠHðtÞdt ≤ 1

t0

Z
s0

t0

1

t
½1þ At�2ImΠHðtÞdt;

ð30Þ

to find

F−2 ≤
FðBÞ
−1
t0

−
ðF0=t0 − FðBÞ

−1 Þ2
ðF1=t0 − F0Þ

; ð31Þ

F1=t0 −F0 > 0; ðF0=t0 −FðBÞ
−1 Þ2 < ðF0=t0 −F2

0=F1Þ2;
ð32Þ

where the inequality F−1 ≥ F2
0=F1 [see (17)] has been used

as part of the subsidiary condition (32) for the validity of
(31). An alternative upper bound on F−2 can be obtained by
extremizingZ

s0

t0

1

t2
½1þ At�2ImΠHðtÞdt ≤ 1

t20

Z
s0

t0

½1þ At�2ImΠHðtÞdt

ð33Þ

to obtain

F−2 ≤ F0=t20 −
ðF1=t20 − FðBÞ

−1 Þ2
ðF2=t20 − F0Þ

; ð34Þ

F2=t20 −F0 > 0; ðF1=t20 −FðBÞ
−1 Þ2 < ðF1=t20 −F2

0=F1Þ2;
ð35Þ

where the inequality F−1 ≥ F2
0=F1 [see (17)] has again

been used as part of the subsidiary condition (35) for the
validity of (34).
Thus the upper QCD bound that is complimentary to the

lower bound (21) is

aQCDμ ≤
4m2

μα
2

3

8<
:

FðBÞ
−1 =t0 −

ðF0=t0−F
ðBÞ
−1 Þ

2

F1=t0−F0

F0=t20 −
ðF1=t20−F

ðBÞ
−1 Þ

2

F2=t20−F0

; ð36Þ

where either (31) or (34) is used for a QCD upper bound on
F−2. Both forms lead to identical numerical values despite
the distinct pathways used to obtain them. Note that similar
to the lower bound on F−2 in (20), the F−2 upper bounds
(31) and (34) all depend on the well-determined QCD
FESRs fF0; F1; F2g, and similarly the parameter s0 can be
varied to find the strongest possible QCD bound.
Combining (25) and (36), our aQCDμ bounds emerging from
fundamental QCD sum-rule inequalities are

ξ
4m2

μα
2

3

F3
0ðs0Þ

F2
1ðs0Þ

≤ aQCDμ ≤
4m2

μα
2

3

8<
:

FðBÞ
−1 =t0 −

ðF0=t0−F
ðBÞ
−1 Þ

2

F1=t0−F0

F0=t20 −
ðF1=t20−F

ðBÞ
−1 Þ

2

F2=t20−F0

;

ξ ¼ 0.83; ð37Þ

FIG. 1. The exactKðtÞ (solid line) compared to the approximate
form KξðtÞ with ξ ¼ 0.83 (lower dashed line) and with ξ ¼ 1

(upper dotted line).
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where the parameter s0 can be varied independently on both
sides of the inequality to find the strongest possible bounds.

III. FINITE-ENERGY SUM RULES: QCD INPUTS

To generate a bound on aQCDμ from the FESRs in
Eq. (37), correlation functions for the light quark vector
current jμðxÞ ¼ q̄ðxÞγμqðxÞ provide the QCD prediction

related to the hadronic spectral function in (9). The original
LO calculation of the QCD correlation function ΠðQ2Þ up
to dimension-six in the operator-product expansion
[10,11,31] (see also Refs. [8,12,13,32]) has been extended
to NLO in the dimension-four QCD condensates [26,33,34]
and MS-scheme perturbative contributions up to five-loop
order in the chiral limit [35–41] (see also Refs. [42,43])

ΠðQ2Þ ¼ 1

4π2
ΠpertðQ2Þ − 3m2

qðνÞ
2π2Q2

þ 2hmqq̄qi
1

Q4

�
1þ 1

3

αsðνÞ
π

�
þ 1

12π
hαsG2i 1

Q4

�
1þ 7

6

αsðνÞ
π

�
−
224

81
παshq̄ q̄ qqi

1

Q6
:

ð38Þ

In addition, ΠðQ2Þ also requires an additional prefactor of the quark charge Q2
q. The perturbative contributions in (38) are

given by

1

π
ImΠpertðt; νÞ ¼ S½xðνÞ; LðνÞ� ¼ 1þ

X∞
n¼1

xn
Xn−1
m¼0

Tn;mLm; ð39Þ

xðνÞ≡ αsðνÞ
π

; LðνÞ≡ log

�
ν2

t

�
; ð40Þ

where the coefficients Tn;m given in Table I are implicitly a function of Nf, the number of active quark flavors. As outlined
below, the energy range in our analysis results in a renormalization scale appropriate to Nf ¼ 3 and Nf ¼ 4. The QCD
parameters necessary for Eqs. (9) and (38) are listed in Table II.
The FESR defined via (9) are now constructed up to five-loop order in perturbation theory in the chiral limit, LO in light-

quark mass corrections, next-to-leading order (NLO) in dimension-four QCD condensates, and to LO in dimension-six
QCD condensates. Using standard FESR methodology [16–19], the resulting FESR Fk for weights k ¼ f0; 1; 2g as needed
for analysis of (19), (31), and (34) are given by

F0ðs0Þ ¼
1

4π2

�
1þ αsðνÞ

π
T1;0 þ

�
αsðνÞ
π

�
2

ðT2;0 þ T2;1Þ þ
�
αsðνÞ
π

�
3

ðT3;0 þ T3;1 þ 2T3;2Þ

þ
�
αsðνÞ
π

�
4

ðT4;0 þ T4;1 þ 2T4;2 þ 6T4;3Þ
�
s0 −

3

2π2
mqðνÞ2; ð41Þ

F1ðs0Þ¼
1

8π2

�
1þαsðνÞ

π
T1;0þ

�
αsðνÞ
π

�
2
�
T2;0þ

1

2
T2;1

�
þ
�
αsðνÞ
π

�
3
�
T3;0þ

1

2
T3;1þ

1

2
T3;2

�

þ
�
αsðνÞ
π

�
4
�
T4;0þ

1

2
T4;1þ

1

2
T4;2þ

3

4
T4;3

��
s20−2hmqq̄qi

�
1þ1

3

αsðνÞ
π

�
−

1

12π
hαsG2i

�
1þ7

6

αsðνÞ
π

�
; ð42Þ

TABLE I. MS-scheme coefficients Tn;m within (39) for the imaginary part of the vector-current correlation function up to five-loop
order for Nf ¼ 4 (left) and Nf ¼ 3 (right). The four-loop results are given in Ref. [42], the five-loop coefficient T4;0 is from [35], and
five-loop logarithmic coefficients T4;1, T4;2, and T4;3 are generated from the renormalization group analysis of Ref. [42] via the four-loop
(Nf ¼ 4 and Nf ¼ 3) MS-scheme β function [44].

Nf ¼ 4 m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3 Nf ¼ 3 m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3

n ¼ 1 1 � � � � � � � � � n ¼ 1 1 � � � � � � � � �
n ¼ 2 1.52453 25=12 � � � � � � n ¼ 2 1.63982 9=4 � � � � � �
n ¼ 3 −11.6856 9.56054 625=144 � � � n ¼ 3 −10.2839 11.3792 81=16 � � �
n ¼ 4 −92.91 −56.90 36.56 15625

1728
n ¼ 4 −106.896 −46.2379 47.4048 729=64
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F2ðs0Þ ¼
1

12π2

�
1þ αsðνÞ

π
T1;0 þ

�
αsðνÞ
π

�
2
�
T2;0 þ

1

3
T2;1

�
þ
�
αsðνÞ
π

�
3
�
T3;0 þ

1

3
T3;1 þ

2

9
T3;2

�

þ
�
αsðνÞ
π

�
4
�
T4;0 þ

1

3
T4;1 þ

2

9
T4;2 þ

2

9
T4;3

��
s30 −

224

81
παshq̄ q̄ qqi: ð43Þ

Implicit in Eqs. (41)–(43) is a renormalization scale of ν ¼ffiffiffiffiffi
s0

p
in both αs and the running quark masses (see e.g.,

Refs. [16–19]). This can be understood as arising from the
renormalization-group equation satisfied by (39)�

−t
∂

∂t
þ βðαsÞ

∂

∂αs

�
ImΠpertðt; νÞ ¼ 0; ð44Þ

where the canonical and anomalousmass dimensions are zero
for the vector current. From (44) it follows that the FESRs
satisfy the following renormalization-group equation:�
−s0

∂

∂s0
þ βðαsÞ

∂

∂αs
þ ðkþ 1Þ

�
Fpert
k ðs0; νÞ ¼ 0; ð45Þ

Fpert
k ðs0; νÞ ¼

Z
s0

0

tk
1

π
ImΠpertðt; νÞdt: ð46Þ

Thus apart from the trivial skþ1
0 canonical dimension pre-

factor, the solution of the renormalization-group equation for
the QCD expressions (41)–(43) is obtained by the standard
replacement ν2 ¼ s0. For renormalization-group behavior of
the dimension-four NLO contributions, it is helpful to recall
that hmqq̄qi and hβG2i þ 4γhmqq̄qi are renormalization-
group invariant (see e.g., Ref. [32]).
In particular, because we are working to Oðα4sÞ in

perturbation theory, we numerically solve the renormaliza-
tion-group equation using the four-loop MS-scheme β

function [44] with Nf appropriate to the active flavors
below s0 and using αsðMτÞ as a boundary condition. For
the running quark mass corrections, only the LO
(MS-scheme) anomalous mass dimension is needed. As
outlined below, this s0 energy region will span the range
covered by Nf ¼ 4 and Nf ¼ 3. We do not implement
flavor threshold matching conditions [49] (see e.g.,
Ref. [50] for an example implementation) because such
effects are insignificant compared to other sources of
theoretical uncertainty. Finally, the generic light-flavor
FESRs (41)–(43) require a prefactor of their quark charge
(i.e., Q2

u ¼ 4=9 and Q2
d ¼ Q2

s ¼ 1=9).

IV. ANALYSIS METHODOLOGY AND RESULTS

With the FESRs now defined in Eqs. (41)–(43), a lower
bound on aQCDμ can be constructed via (25) [see also (37)].
The methodology seeks to optimize s0 such that it
simultaneously maximizes the ratio F3

0=F
2
1 to obtain the

strongest possible bound, while still satisfying the inequal-
ity (17) with k ¼ 1. This ensures that the resulting sopt0 is in
the region of validity for the FESRs because they satisfy the
same inequality properties as an integrated hadronic spec-
tral function. We start scanning s0 from large energy
(beginning near bottom threshold in Nf ¼ 4 regime) and
find that stronger bounds trend toward lower s0. We then
transition to Nf ¼ 3 below the charm threshold [uncer-
tainties associated with the Ref. [45] value for the
mcðmcÞ ¼ 1.27 GeV threshold are negligible].
We use two different implementations of this optimiza-

tion methodology. The flavor-separated approach applies
the methodology to the FESRs (with each charge factor
included) for each flavor separately, and then combines the
individual optimized flavor contributions to obtain the final
bound on aQCDμ . In the flavor-combined approach, the
methodology is applied to a combined FESR with a sum
over flavors (with their charge factors included). The
strongest bound from these two implementations is then
used for our final prediction of the lower bound on aQCDμ .
We find that the flavor-separated approach leads to the

strongest bound, and Table III shows the results for the
central values of the QCD input parameters of Table II.
There are a few key points in the interpretation of Table III.
First, it is important to remember that (25) is truly a bound,
and the optimized sopt0 represents the value which max-
imizes the bound while simultaneously satisfying the k ¼ 1

inequality (17). It is therefore incorrect to interpret sopt0 as a

TABLE II. QCD parameters and uncertainties used in our
analysis. Here, mn ¼ ðmu þmdÞ=2 and hn̄ni ¼ hūui ¼ hd̄di.
Parameter Value Source

α 1=137.036 [45]
αsðMτÞ 0.312� 0.015 [45]
muð2 GeVÞ 2.16þ0.49

−0.26 MeV [45]
mdð2 GeVÞ 4.67þ0.48

−0.17 MeV [45]
msð2 GeVÞ ð0.0934þ0.0086

−0.0034 Þ GeV [45]
fπ ð0.13056� 0.00019Þ= ffiffiffi

2
p

GeV [45]
mnhn̄ni − 1

2
f2πm2

π [46]
mshs̄si rmrcmnhn̄ni [47]
rc ≡ hs̄si=hn̄ni 0.66� 0.10 [47]
ms=mn ¼ rm 27.33þ0.67

−0.77 [45]
hαG2i ð0.0649� 0.0035Þ GeV4 [48]
κ 3.22� 0.5 [48]
αshn̄ni2 κð1.8 × 10−4Þ GeV6 [47]
αshs̄si2 r2cαshn̄ni2 [47]
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cutoff on the QCD contributions. Second, the only field-
theoretical distinction between the u and d contributions
arises from the very small effect of quark masses, and hence
sopt0 is the same in the nonstrange channels and the bounds
on aQCDμ are in the ratio of quark charges Q2

u=Q2
d ¼ 4.

Third, the strange contributions to the aQCDμ bound are
roughly an order of magnitude smaller than nonstrange, a
feature that aligns with the data-driven and LQCD
approaches to aHVP;LOμ [3,51]. Finally, we note that the
entire inequality analysis of Sec. II would also apply to
Laplace sum rules, leading to analogous expressions for
Eq. (25). We have explored this possibility and find that the
Laplace sum-rule bounds are considerably weaker than for
FESRs, presumably because the Laplace sum-rule kernel
expð−tτÞ suppresses higher-energy contributions compared
to the polynomial FESR kernels.
An uncertainty analysis was performed to determine the

sensitivity of the Table III lower aQCDμ bounds arising from
the QCD input parameters in Table II. The uncertainty of the
aQCDμ bound is dominated by changes in the vacuum satura-
tion parameter κ and in the uncertainty of the dimension-four
gluon condensate parameter hαG2i (the poorly known
strange-quark condensate parameter rc is a subdominant
effect because the strange contributions in Table III aremuch
smaller than nonstrange). Taking into account the combined
effect of these uncertainties gives our final QCD prediction
for the light-quark contributions lower bound

aQCDμ ≥ ð657.0� 34.8Þ × 10−10: ð47Þ
A similar methodology is used to analyze the upper

bounds associated with Eq. (36) [see also (37)] using
either (31) or (34) for the upper bound on F−2. We seek the
strongest bound that simultaneously satisfies the k ¼ 1
inequality (17) along with the conditions (29), (32),
and (35). As in the lower bound analysis, the flavor-
separated approach leads to the strongest bound, and the
same sopt0 is obtained because the k ¼ 1 Cauchy-Schwarz
inequality (17) turns out to be a limiting constraint in both
cases. The results shown in Table III along with the
theoretical uncertainty gives our final QCD prediction
for the light-quark contributions upper bound

aQCDμ ≤ ð788.4� 41.8Þ × 10−10: ð48Þ
For purposes of comparison with data-driven

approaches, we first note that although we are calculating
light-quark contributions (and ultimately using Nf ¼ 3
virtual corrections in the final results), our determinations
)47 ) and (48) still incorporate high-energy perturbative

contributions to aQCDμ . We are thus underestimating the
perturbative contributions above the charm threshold, and
so our bounds remain valid. Thus we have to supplement
our bounds with charmonium and bottomonium resonance
contributions of aHVP;LO

μ;c̄c;b̄b
¼ ð7.93� 0.19Þ × 10−10 from

[51] to obtain our total bound for comparison purposes

ð664.9�34.8Þ×10−10≤aHVP;LOμ ≤ ð796.3�41.8Þ×10−10

ð49Þ
which should be compared with the data-driven Ref. [51]
result

aHVP;LOμ ¼ ð692.78� 2.42Þ × 10−10; ð50Þ
the data-driven result reported in the (g − 2) Theory
Initiative Whitepaper [3]

aHVP;LOμ ¼ ð693.1� 4.0Þ × 10−10; ð51Þ
as well as the result from LQCD reported in the (g − 2)
Theory Initiative Whitepaper [3],

aHVP;LOμ ¼ ð711.6� 18.4Þ × 10−10: ð52Þ
These values can been seen compared against our bounds
in Fig. 2.

TABLE III. The optimized sopt0 and corresponding bounds on
aQCDμ are shown for each flavor in the flavor-separated method for
central values of the QCD input parameters of Table II. The total
entry represents the sum of the individual flavor contributions for
the final predicted bounds on aQCDμ .

Flavor sopt0 ðGeV2Þ aQCDμ (lower bound) aQCDμ (upper bound)

u 1.09 ≥ 472.7 × 10−10 ≤ 567.2 × 10−10

d 1.09 ≥ 118.1 × 10−10 ≤ 141.7 × 10−10

s 1.19 ≥ 66.2 × 10−10 ≤ 79.5 × 10−10

Total � � � ≥ 657.0 × 10−10 ≤ 788.4 × 10−10

FIG. 2. The aQCDμ results (49) showing lower bound (long
dashed lines reflecting theoretical uncertainties) and upper bound
(short dashed lines reflecting theoretical uncertainties) in com-
parison to the aHVP;LOμ world theoretical averages given in [3].
The blue indicates a data-driven methodology, while red indicates
a value obtained via LQCD. Both the LQCD world average [3]
and the subpercent precision calculation from the BMW Col-
laboration [5] are shown for comparison. The gray shaded region
illustrates the allowed central-value range of our QCD predictions
in Eq. (49).
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In conclusion, we have constructed bounds on the QCD
contributions to aHVP;LOμ using a family of Hölder inequal-
ities and related inequality constraints forQCD finite-energy
sum rules (FESRs). These fundamental inequalities are
based on the requirement that theQCDFESRs are consistent
with the relation (9) to an integrated hadronic spectral
function, providing a novel methodology complementary
to lattice QCD and data-driven approaches to determining
aHVP;LOμ . Analyzing the light-quark (u, d, s) contributions up
to five-loop order in perturbation theory in the chiral limit,
LO in light-quark mass corrections, NLO in dimension-four
QCD condensates, and to LO in dimension-six QCD
condensates leads to our QCD bounds in Eqs. (47) and
(48), which can be supplemented with the well-known
contributions from charmonium and bottomonium states
to obtain the QCD bounds given in Eq. (49).
As shown in the Appendix, these FESR bounds are more
restrictive than the updated Laplace sum-rule bounds using
the approach of Ref. [8]. As illustrated in Fig. 2, the central
values of our total QCD bounds (49) thus bridge the region
betweenLQCDand data-drivenvalues, indicating a possible
resolution of the tension between LQCD and data-driven
determinations of aHVP;LOμ . Resolving this tension would
provide better guidance to searches for new physics in
measurements of the anomalous magnetic moment of the
muon. In future work we will search for new methods and
new fundamental inequalities to improve bounds on the
QCD contributions to aHVP;LOμ .
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APPENDIX: LAPLACE SUM-RULE APPROACH

QCD Laplace sum rules [10,11] are similar to finite-
energy sum rules as defined in (9); however, they are
constructed using a Borel (inverse Laplace) transform
which introduces an exponential factor:

Lkðτ; s0Þ ¼
Z

s0

t0

1

π
ImΠHðtÞtke−tτdt: ðA1Þ

In [8] it was shown that aHVP;LOμ , as defined in (6), can be
expressed as a linear combination of QCD Laplace sum
rules (A1). First, the exact kernel function (2) can be
approximated near t ¼ t0 as

KðtÞ ≈Kðt; t0Þ

¼ Kðt0Þeζ
�
a1

�
t
t0

�
þ a2

�
t
t0

�
2

þ a3

�
t
t0

�
3
�
e−ζt=t

0
;

ðA2Þ

where a1 þ a2 þ a3 ¼ 1 so that Kðt0Þ ¼ Kðt0; t0Þ. Inserting
(A2) into (6) yields

aQCDμ ≈ 4α2Kðt0Þ e
ζ

t0

Z
∞

t0

1

π
ImΠHðtÞ

×

�
a1 þ a2

�
t
t0

�
þ a3

�
t
t0

�
2
�
e−ζt=t

0
dt; ðA3Þ

where t0 ¼ 4m2
π . Introducing the parameter s0 as in (10)

and defining τ ¼ ζ=t0, (A3) becomes

aQCDμ ≈ 4α2Kðζ=τÞ τ
ζ
eζ

Z
s0

t0

1

π
ImΠHðtÞ

�
a1 þ a2

�
t
t0

�

þ a3

�
t
t0

�
2
�
e−tτdt: ðA4Þ

Comparing (A4) and the definition of the Laplace sum rules
in (A1) shows that we may approximate aHVP;LOμ as a linear
combination of Laplace sum rules:

aQCDμ ≈ 4α2Kðζ=τÞ τ
ζ
eζ
�
a1L0ðτ; s0Þ þ a2

τ

ζ
L1ðτ; s0Þ

þ a3

�
τ

ζ

�
2

L2ðτ; s0Þ
�
: ðA5Þ

The approximation (A2) is used because it makes a
theoretical calculation of aHVP;LOμ (using a QCD expression
for the vacuum polarization function) amenable to a
Laplace sum-rule analysis. In (A2) the expansion is
truncated atOðt3Þ to avoid dependence on unknown higher
dimension QCD condensates (a similar issue is encoun-
tered in the finite-energy sum-rule analysis in Sec. II).
Although the approximation (A2) is designed to be exact

at t ¼ t0 and iswell suited to a Laplace sum-rule analysis, the
approximation of the exact kernel function (2) decreases in
accuracy away from t ¼ t0. In order to gain some control
over the theoretical uncertainty introduced by this approxi-
mation we will follow the approach of Ref. [8], wherein the
approximation (A2) was used to construct underestimates
and overestimates of the exact kernel function (2), respec-
tively denoted as K↓ðt; t0Þ (corresponding to parameters
fa1 ¼ 1.5700; a2 ¼ −1.75658; a3 ¼ 1.1958; ζ ¼ 2.6528g)
and K↑ðt; t0Þ (corresponding to parameters fa1 ¼ 6.0378;
a2 ¼ −10.7006; a3 ¼ 5.6628; ζ ¼ 2.6528g), which are
shown in Fig. 3. Using these underestimates and over-
estimates, a QCD Laplace sum-rule analysis can be per-
formed to generate lower and upper bounds on aHVP;LOμ .
Using the results of Eqs. (38) and (39), the Laplace sum

rules (LSRs) for light-quark (u, d, s) contributions up to
five-loop order in perturbation theory in the chiral limit, LO
in light-quark mass corrections, next-to-leading order
(NLO) in dimension-four QCD condensates, and to LO
in dimension-six QCD condensates are given for a generic
light flavor by
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L0ðτ; s0Þ ¼
1

4π2τ

�
f0;0ðτs0Þ þ

X3
k¼0

f0;kðτs0Þ
X4
j¼kþ1

Tj;k

�
αsðνÞ
π

�
j
�
−

3

2π2
mqðνÞ2

þ2hmqq̄qi
�
1þ 1

3

αsðνÞ
π

�
τ þ 1

12π
hαsG2i

�
1þ 7

6

αsðνÞ
π

�
τ −

112

81
παshq̄ q̄ qqiτ2; ðA6Þ

L1ðτ; s0Þ ¼
1

4π2τ2

�
f1;0ðτs0Þ þ

X3
k¼0

f1;kðτs0Þ
X4
j¼kþ1

Tj;k

�
αsðνÞ
π

�
j
�

−2hmqq̄qi
�
1þ 1

3

αsðνÞ
π

�
−

1

12π
hαsG2i

�
1þ 7

6

αsðνÞ
π

�
þ 224

81
παshq̄ q̄ qqiτ; ðA7Þ

L2ðτ; s0Þ ¼
1

4π2τ3

�
f2;0ðτs0Þ þ

X3
k¼0

f2;kðτs0Þ
X4
j¼kþ1

Tj;k

�
αsðνÞ
π

�
j
�
−
224

81
παshq̄ q̄ qqi; ðA8Þ

where we have defined the quantity

fj;kðτs0Þ ¼
Z

τs0

0

zj
�
log

�
1

z

��
k
e−zdz: ðA9Þ

Implicit in Eqs. (A6)–(A8) is a renormalization scale of
ν ¼ 1=

ffiffiffi
τ

p
in both αs and the running quark masses [52]. As

in the QCD expressions (41)–(43) for the FESRs, the
generic light-flavor LSRs (A6)–(A8) require a prefactor of
their quark charge.
Following the analysis methodology Ref. [8] for deter-

mining the upper and lower bounds on aQCDμ , τ stability
[53–55] is used to determine the right-hand side of (A5) for
a fixed s0, and then s0 is varied until an asymptotic value is

FIG. 3. Left: the exact KðtÞ (solid line) compared to underestimates K↓ðt; t0Þ with t0 ∈ f0.8; 1.2; 1.6; 2.0g GeV2, which are
respectively represented by the dashed dotted, long dashed, short dashed, and dotted lines. Right: the exactKðtÞ (solid line) compared to
overestimates K↑ðt; t0Þ with t0 ∈ f1.8; 2.2; 2.6; 3.0g GeV2, which are respectively represented by dashed dotted, long dashed, short
dashed, and dotted lines. The parameters used in Eq. (A2) for the underestimates K↓ðt; t0Þ (fa1 ¼ 1.5700; a2 ¼ −1.75658;
a3 ¼ 1.1958; ζ ¼ 2.6528g) and overestimates K↑ðt; t0Þ (fa1 ¼ 6.0378; a2 ¼ −10.7006; a3 ¼ 5.6628; ζ ¼ 2.6528g) are identical to
those used in Ref. [8].

FIG. 4. LSR upper bound (top curve) and lower bound (bottom
curve) on light-quark contributions to aQCDμ as a function of s0.
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reached. The τ-stability region naturally tends toward the
Nf ¼ 3 regime. As with the FESRs, this methodology can
be applied to either a flavor-separated or flavor-combined
case, but unlike the FESRs there is negligible difference in
the two cases. Figure 4 shows the results for central
values of the QCD input parameters, and leads to the
bounds

369.5 × 10−10 ≤ aQCDμ ≤ 930.2 × 10−10: ðA10Þ

Comparing Eq. (A10) with the FESR results in Eqs. (47)
and (48) it is evident that the FESR bounds are stronger
than those obtained from updated and extended QCD
inputs in the Ref. [8] LSR methodology.
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