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We present results for the τ1 and τ1a 1-jettiness global event shape distributions, for deep inelastic
scattering (DIS), at the N3LLþOðα2sÞ level of accuracy. These event-shape distributions quantify and
characterize the pattern of final state radiation in electron-nucleus collisions. They can be used as a probe of
nuclear structure functions, as nuclear medium effects in jet production, and for a precision extraction of the
QCD strong coupling. The results presented here, along with the corresponding numerical codes, can be
used for analyses with HERA data, in Electron-Ion Collider (EIC) simulation studies, and for eventual
comparison with real EIC data.
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I. INTRODUCTION

The Electron-Ion Collider (EIC) [1–3], to be built at the
site of the Brookhaven National Laboratory, will conduct
detailed studies of quantum chromodynamics (QCD)
and the structure and dynamics of nucleons and nuclei.
Some of the major goals of the EIC will be to study the
origin of the nucleon mass and spin, different types of
nucleon structure functions, the nuclear modification of the
nucleon structure functions, the emergent properties of
high-density gluons at low Bjorken-x, and cold nuclear
medium effects on the propagation color charges and jet
production. To facilitate these studies, the EIC design
requirements include electron-nucleon collisions at high
luminosity L ∼ 1033−34 cm−2 s−1, a 4π hermetic detector,
polarized electron and nucleus beams, collisions with a
wide variety of nuclei, variable center of mass energyffiffiffi
s

p
∼ 20–140 GeV, and correspondingly wide kinematic

coverage in x and Q2, where Q2 is the square of the
electron momentum transfer to the nucleus. Awide range of

electron-nucleus scattering observables will be studied in
order to unravel these questions.
One class of observables that will be studied at the EIC

are deep inelastic scattering (DIS) global event shapes
which characterize the pattern of final state radiation in
electron-nucleus collisions. DIS event shapes were first
studied [4–7] more than two decades ago. The thrust [4]
and broadening [6] event shapes were studied at the next-
to-leading-log (NLL) level of accuracy and matched at
OðαsÞ to fixed-order results. A numerical comparison was
also done [8,9] against Oðα2sÞ results. Thrust distributions
have also been measured at HERA by the H1 [10–12] and
ZEUS [13–15] Collaborations. Recently proposed energy
correlators [16–25] further aggrandize the physics content
of the global event shapes at the EIC.
As a generalization of the thrust observable, new event

shapes were introduced and studied using the framework of
1-jettiness [26,27]. For DIS, a dimension-one 1-jettiness
event shape variable τ1 was introduced in Ref. [28] and
resummation results were presented at the NLL level of
accuracy. These results have been extended to the NNLL
[29,30] level of accuracy, including for electron collisions
with heavier nuclei [29]. These results were further
improved numerically to the NNLLþOðαsÞ [31] level
of accuracy. OðαsÞ analytic results were presented in
Ref. [32] for τ1a in the Breit frame and differential in x
and Q2. In Refs. [30,32] a dimensionless 1-jettiness (τ1a)
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event shape was used which is a variant of the τ1 definition.
In Ref. [30], two other 1-jettiness event shapes were
introduced and denoted as τ1b and τ1c and their corre-
sponding factorization formulas and numerical results at
NNLL were presented. Analytic OðαsÞ results for τ1b were
presented in Ref. [33]. The τ1b event shape is equivalent to
the DIS thrust event shape introduced in Ref. [4].
Numerical results for τ1b have been presented [34] at the
N3LL level of accuracy and it was recently measured using
HERA data [35] and compared to Oðα2sÞ predictions from
the program NNLOJET [36–39]. Most recently in
Ref. [40], the τ1b groomed and ungroomed event shape
distribution was studied and compared to HERA data at the
NLL0 þOðαsÞ level of accuracy and normalized to the total
Oðα2sÞ cross section. Here, NLL0 refers to using OðαsÞ
matrix elements, one order higher than needed for NLL
resummation. Efforts toward higher logarithmic precision
are under investigation recently [41–46] and the power
corrections to the class of the jettiness observables have
also been studied in [47–50].
In this work, for the first time, we present numerical

results for the τ1 and τ1a event shape distributions at the
N3LL+Oðα2sÞ level of accuracy. The Oðα2sÞ fixed-order
calculation, which includes up to three final state col-
ored partons, can be implemented numerically using
programs such as NLOJETþþ [51] where the OðαsÞ
dijet production in DIS is calculated, as well as the
DISTRESS [52] and NNLOJET [36–39] codes where
the Oðα2sÞ DIS single jet production is available. In this
work, we make use of the NLOJETþþ program to
numerically implement the OðαsÞ and Oðα2sÞ fixed-order
contributions. The resummation of large Sudakov loga-
rithms that arise in the limit of small τ1 or τ1a, acting
effectively as a veto on additional jets beyond the leading
jet, is done through a factorization theorem [28–30]
derived using the soft-collinear effective theory (SCET)
[53–58]. The factorization formula involves a convolution
product of hard, jet, soft, and beam functions that describe
the physics of the hard scattering, jet production, ambient
soft radiation, and initial state radiation collinear to the
beam. The beam functions are further matched onto
the parton distribution functions (PDFs), factoring out
the dynamics of the perturbative initial state radiation
from the physics of nucleon structure. The necessary
ingredients needed to carry out the Sudakov resummation
at the N3LL level of accuracy are now available. This
includes the fixed-order OðαsÞ [59] and Oðα2sÞ [60,61]
hard function, the OðαsÞ [62] and Oðα2sÞ [63,64] jet
function, the OðαsÞ [26,65–67] and Oðα2sÞ [68,69] beam
functions and theOðαsÞ [70] andOðα2sÞ [71] soft function.
Finally, the analytic expression for the four-loop cusp
anomalous dimension, needed to solve the renormaliza-
tion group evolution equations at N3LL, was obtained
recently [72,73].

II. KINEMATICS AND 1-JETTINESS EVENT
SHAPE OBSERVABLES

We consider the electron-proton DIS process1:

e−ðkÞ þ pðPÞ → e−ðk0Þ þ J þ X; ð1Þ

where kμ, k0μ, and Pμ denote the four-momenta of the initial
electron, the final electron, and the initial proton, respec-
tively, and J denotes the leading jet. We work in the center
of the mass frame. Correspondingly, definitions of τ1 and
τ1a given below are also in the center of mass frame. For the
center of mass energy

ffiffiffi
s

p
, the initial electron and proton

momenta are given by

Pμ ¼
ffiffiffi
s

p
2

nμ; nμ ¼ ð1; 0; 0; 1Þ;

kμ ¼
ffiffiffi
s

p
2

n̄μ; n̄μ ¼ ð1; 0; 0;−1Þ; ð2Þ

where we have ignored the electron and proton masses.
The relevant and standard DIS kinematic variables are
defined as

s ¼ ðkþ PÞ2;
q ¼ k − k0;

Q2 ¼ −q2;

x ¼ Q2

2P · q
;

y ¼ P · q
P · k

; ð3Þ

where Q2 ¼ xys, when we ignore the proton mass. The
dimension-one DIS global event shape τ1 is defined as

τ1 ¼
X
k

min

�
2qB · pk

QB
;
2qJ · pk

QJ

�
; ð4Þ

where the sum is over all final state particles, except the
final electron. Here qμB and qμJ denote the beam and jet
reference vectors, respectively. The QB and QJ are con-
stants associated with the beam and jet sectors. The choice
of these quantities is part of the definition of τ1. Thus, each
final state particle with momentum pk is grouped either
with the beam or jet sector according to the minimization
condition in Eq. (4) and contributes accordingly to τ1. Note
that the largest contributions to τ1 come from final state
particles with large energies and large angles relative to
both the beam and jet reference vectors. The contribution of
soft particles or energetic particles closely aligned with the

1We use slightly different notation compared to our earlier
works in Refs. [28,29,31] and introduce it here in a self-contained
manner.
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beam or jet axes is suppressed. In this manner, the τ1 event
shape quantifies the pattern of final state radiation in
electron-nucleus collisions.
For the beam sector, we work with the canonical

choice

qB ¼ xP; QB ¼ x
ffiffiffi
s

p
: ð5Þ

The jet reference vector qμJ is determined by employing a
standard jet algorithm [74] such as the anti-kT , kT , or
Cambridge-Aachen (C=A). The jet algorithm is used to
determine the leading jet and its momentum Kμ

J. The
transverse momentum KJT ¼ jK⃗JT j and rapidity yK of
the leading jet is used to construct the null jet reference
vector qμJ. Accordingly, for the jet sector, we work with the
canonical choice

QJ ¼ 2KJT cosh yK;

qJ ¼ ðKJT cosh yK; K⃗JT ; KJT sinh yKÞ: ð6Þ

We also give results for a related event shape τ1a [30],
corresponding to a different choice for the QB and QJ
constants in Eq. (4). It is dimensionless and defined as

τ1a ¼
X
k

min

�
2qB · pk

Q2
;
2qJ · pk

Q2

�
: ð7Þ

In this work, we make predictions for two types of
observables. The first type of observable, studied in
Refs. [28,29,31], is differential in ðτ1; PJT ; yJÞ:

dσ½τ1; PJT ; yJ�≡
d3σðe− þ p → J þ XÞ

dyJdPJTdτ1
; ð8Þ

where PJT ¼ jP⃗JT j and yJ denote the transverse momentum
and rapidity, respectively, of the jet J and they are defined
through a 1-jettiness-based algorithm. Procedurally, after
using a standard jet algorithm to determine the jet reference
vector qJ, as in Eq. (6), the 1-jettiness jet momentum is
defined as2

PJ ¼
X
k

pkθ

�
2qB · pk

QB
−
2qJ · pk

QJ

�
; ð9Þ

corresponding to the sum of the momenta of all final state
particles grouped with the jet sector according to the
minimization condition in Eq. (4). The jet transverse

momentum PJT and rapidity yJ are constructed from this
1-jettiness jet momentum Pμ

J, defined in the center of
mass frame.
The second type of observable requires reconstruction of

the DIS variables ðQ2; xÞ or ðQ2; yÞ. Two examples of such
an observable that we will work within this paper are given
below:

dσ½τ1a; Q2; x�≡ d3σðe− þ p → e− þ J þ XÞ
dxdQ2dτ1a

;

dσ½τ1a; Q2; y�≡ d3σðe− þ p → e− þ J þ XÞ
dydQ2dτ1a

; ð10Þ

where the two are related by a simple Jacobian:

dσ½τ1a; Q2; y� ¼ Q2

y2s
dσ

�
τ1a;Q2; x ¼ Q2

ys

�
;

dσ½τ1a; Q2; x� ¼ Q2

x2s
dσ

�
τ1a;Q2; y ¼ Q2

xs

�
; ð11Þ

where we made use of the kinematic relation Q2 ¼ xys.
In order to establish notation and convention, we give the

explicit expression for the tree-level cross section with
single boson (γ�=Z�) exchange in the parton model. The
relevant electromagnetic and neutral weak currents for the
electron and quarks are

Jμf;γ ¼Qfψ̄fγ
μψf; Jμf;Z ¼ ψ̄fðvfγμþafγμγ5Þψf; ð12Þ

where Qf, vf, and af denote the electric charge, neutral
weak vector charge, and neutral weak axial-vector charge,
respectively, of the fermion f in units of the proton charge
e. At the tree level, ignoring hadronization effects, the final
state is just a single quark or antiquark recoiling against the
final state electron. In this case, the 1-jettiness event shape
vanishes so that the resulting 1-jettiness distribution will be
proportional to δðτ1Þ or δðτ1aÞ. Of course, these distribu-
tions will be smeared once hadronization and nonpertur-
bative soft radiation effects are included. Ignoring final
state nonperturbative effects, the resulting tree-level cross
section for the observable differential in ðτ1a; Q2; xÞ is

dσ0½τ1a; Q2; x�

¼ δðτ1aÞσb0
�X

q

Lqfqðx; μÞ þ
X
q̄

Lq̄fq̄ðx; μÞ
�
; ð13Þ

where fq and fq̄ denote the quark and antiquark PDFs,
respectively, and σb0 is given by

σb0 ¼
2πα2em
Q4

�
1þ

�
1 −

Q2

xs

�
2
�
; ð14Þ

2In practice, one could directly use the leading jet momentum
KJ as the 1-jettiness momentum PJ ¼ KJ. In the resummation
region where τ1 is small, the difference in the definitions is power
suppressed. In this work, we stick to Eq. (9).
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and, following the notation of Ref. [30], Lq and Lq̄ are
each, respectively, given by

Lq;q̄ ¼Q2
q−

2Qqvqve
1þm2

Z=Q
2
þðv2qþa2qÞðv2eþa2eÞ

ð1þm2
Z=Q

2Þ2

∓ 2yð2−yÞ
ð1−yÞ2þ1

aqae½Qqð1þm2
Z=Q

2Þ−2vqve�
ð1þm2

Z=Q
2Þ2 ; ð15Þ

where mZ denotes the Z-boson mass. The tree-level
cross section for the observable differential in ðτ1a; Q2; yÞ
can be obtained from Eq. (11) as dσ0½τ1a; Q2; y� ¼
Q2=ðy2sÞdσ0½τ1a; Q2; x ¼ Q2=ðysÞ�. We also give the
tree-level cross section for the observable differential in
ðτ1; PJT ; yJÞ, where now PJT and yJ become the transverse
momentum and rapidity, respectively, of the final quark or
antiquark. The result is given by

dσ0½τ1; PJT ; yJ�

¼ δðτ1Þσ0
�X

q

Lqfqðx�; μÞ þ
X
q̄

Lq̄fq̄ðx�; μÞ
�
; ð16Þ

where we have defined σ0 and x� as

σ0 ¼ 4πα2em
eyJffiffiffi
s

p
P2
JT

�
1þ

�
1 −

PJTffiffiffi
s

p e−yJ
�

2
�
;

x� ¼
PJTffiffi
s

p eyJ

1 − PJTffiffi
s

p e−yJ
: ð17Þ

We note some complementary differences between the
two types of 1-jettiness observables defined in Eqs. (8) and
(10). The observable in Eq. (8) is differential in terms of the
(PJT ; yJ) variables that are typically used in the study of
jets. The observables in Eq. (10) are differential in terms of

the variables ðQ2; xÞ or ðQ2; yÞ that are typically used in the
study of inclusive DIS.
The hard scale for the DIS scattering process is set by

μH ∼ PJT and μH ∼
ffiffiffiffiffiffi
Q2

p
for the observables defined in

Eqs. (8) and (10), respectively. In fixed-order perturbation
theory in αS, applicable in the region τ1 ∼ PJT or τ1a ≲ 1,
there can be qualitatively different kinematic configurations
that contribute to the two types of observables. For
example, the observables in Eq. (10), where the hard scale
is set by μH ∼

ffiffiffiffiffiffi
Q2

p
, require the scattered electron to

emerge from the primary scattering vertex with a large
Q2. On the other hand, since μH ∼ PJT for the observable in
Eq. (8), it can receive contributions from theQ2 → 0 region
at Oðα2sÞ and corresponds to the leading jet recoiling
against hard initial state QCD radiation.
Since the observable in Eq. (8) does not require the

measurement of ðQ2; x; yÞ, it does not require a
reconstruction of the momentum of the electron emerging
from the primary scattering vertex. In particular, the
variables ðτ1; PJT ; yJÞ are determined by the momenta of
all the final state particles, except the final electron, that hit
the detector. Thus, unlike the observables in Eq. (10), the
observable in Eq. (8) is not affected by the uncertainties
associated with reconstructing the true ðQ2; x; yÞ values
which can differ from the corresponding measured values
due to QED radiation emitted by the electron in initial and
final states [75–78].
Thus, the two types of 1-jettiness observables in Eqs. (8)

and (10) are complementary to each other and we provide
results for both.

III. ONE-JETTINESS SPECTRUM

The 1-jettiness spectrum is characterized by two distinct
regions as shown in Fig. 1. The region corresponding to
τ1 ≪ PJT or τ1a ≪ 1 corresponds to the left panel of Fig. 1
where the event is characterized by energetic radiation

FIG. 1. Schematic figure of the process e− þ p → e− þ J þ X in the limit τ1 ≪ PJT . The restriction τ1 ≪ PJT (left panel) allows only
soft radiation between the beam and jet directions. In the region of large 1-jettiness τ1 ∼ PJT (right panel), additional hard radiation is
allowed at wide angles from the leading jet and beam directions.
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(E ∼ PJT or E ∼
ffiffiffiffiffiffi
Q2

p
) only along the beam or jet direc-

tions and only soft radiation (E ∼ τ1 or E ∼ τ1a
ffiffiffiffiffiffi
Q2

p
) at

wide angles from the beam or jet directions. This can be
understood from the definitions of τ1 and τ1a in Eqs. (4) and
(7), respectively, where it is seen that the largest contribu-
tions come from energetic final state particles at wide
angles from both the beam and jet directions. On the other
hand, the final state particles with momenta closely aligned
with the beam or jet reference vectors qμB or q

μ
J, respectively,

give small contributions.
The region of τ1 ≪ PJT or τ1a ≪ 1 is referred to as the

resummation region due to the presence of large Sudakov
logarithms of the form αns ln2mðτ1=PJT Þ or αns ln2mðτ1aÞ, for
m ≤ n, that arise from the small 1-jettiness restriction on
final state radiation and require resummation for making
accurate predictions. The small 1-jettiness restriction effec-
tively acts as a veto on additional energetic jets at wide
angles from the beam or jet references vectors, qμB or qμJ,
respectively.
On the other hand, the region corresponding to τ1 ∼ PJT

or τ1a ≲ 1 corresponds to the right panel of Fig. 1, where
the event is characterized by additional energetic radiation
at wide angles from both the beam or leading jet directions.
This corresponds to a looser veto on additional jets. In this
region, the fixed-order region, there are no large Sudakov
logarithms so that resummation is not required and accurate
predictions can be made using fixed-order perturbative
QCD calculations.
The resummation region, τ1 ≪ PJT or τ1a ≪ 1, can be

further classified into two subregions. The region ΛQCD ≪
τ1 ≪ PJT or ΛQCD=

ffiffiffiffiffiffi
Q2

p
≪ τ1a ≪ 1 corresponds to the

resummation region with perturbative soft radiation. The
other region, τ1 ∼ ΛQCD or τ1a ∼ ΛQCD=

ffiffiffiffiffiffi
Q2

p
, corresponds

to the resummation region with nonperturbative soft
radiation. In terms of the factorization theorem, the two
regions correspondingly refer to a soft function that either is
perturbatively calculable or is a nonperturbative function
that is typically modeled for the purposes of generating
numerical results. A constraint on the nonperturbative soft
function model is that it smoothly reduces to the perturba-
tive soft function as τ1 or τ1a is increased.
The three regions of the 1-jettiness spectrum discussed

above are summarized in Table I. The complete 1-jettiness
spectrum with a matching of the resummation and fixed-
order regions is given by the standard schematic formula

dσ ¼ ½dσresum − dσFOresum� þ dσFO; ð18Þ

where dσresum denotes the resummed cross section in the
region τ1 ≪ PJT or τ1a ≪ 1, dσFOresum denotes this resummed
cross section expanded to fixed order in perturbation
theory, and dσFO denotes the full cross section at the same
fixed order in perturbation theory. The expanded resummed
cross section dσFOresum differs from the full fixed-order cross

section dσFO by terms that are nonsingular in the τ1 → 0 or
τ1a → 0 limit. The formula in Eq. (18) has the required
properties for generating a smooth and continuous spec-
trum across the resummation and fixed-order regions. In
particular, we see that in the singular limit τ1 → 0 or
τ1a → 0, the cross section is dominated by the resummed
cross section dσresum due to a cancellation between dσFOresum
and dσFO up to suppressed nonsingular terms. On the other
hand, in the fixed-order region τ1 ∼ PJT or τ1a ≲ 1, the
cross section is dominated by the full fixed-order cross
section dσFO due to a cancellation between dσresum and
dσFOresum up to terms suppressed in perturbation theory.
In the rest of the section, we discuss the features of the

resummation and fixed-order regions in more detail before
providing numerical results.

A. Resummation region

The resummation region, characterized by the conditions

τ1 ≪ PJT or τ1a ≪ 1; ð19Þ

allows for writing down a factorization formula that is
systematically improvable, facilitates the resummation of
large Sudakov logarithms, and is independent of the
external jet algorithm used to determine the jet reference
vector qμJ in Eq. (6). For the purposes of discussing and
demonstrating the jet algorithm independence, it is more
convenient and natural to work with the observable
dσ½τ1; PJT ; yJ�, since it is differential in the PJT and yJ
variables that are directly related to the properties of the
leading jet.
We can understand the external jet algorithm independ-

ence in the resummation region, τ1 ≪ PJT , by noting that in
this region the typical event configurations look like the left
panel of Fig. 1. These events are characterized by a single
hard jet that is well separated from the beam region with
only soft radiation between the beam and jet directions. For
such events, the resulting difference between different jet
algorithms just corresponds to the amount of soft radiation
clustered with the jet. Only the jet mass is sensitive to the
amount of soft radiation. In particular, its transverse
momentum KJT and rapidity yK are not affected by the

TABLE I. The three distinct regions in the τ1 and τ1a 1-jettiness
spectra.

Regions τ1 τ1a

Resummation region
(nonperturbative
soft radiation)

τ1 ∼ ΛQCD τ1a ∼ ΛQCD=
ffiffiffiffiffiffi
Q2

p

Resummation region
(perturbative soft
radiation)

ΛQCD≪τ1≪PJT ΛQCD=
ffiffiffiffiffiffi
Q2

p
≪τ1a≪1

Fixed-order region τ1 ∼ PJT τ1a ≲ 1
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soft radiation, up to power corrections in τ1=PJT . Thus, in
the resummation region τ1 ≪ PJT , the reference vector qμJ
in Eq. (6) is independent of the external jet algorithm used
to find the leading jet. Correspondingly, the resulting values
of the 1-jettiness event shape τ1 and the 1-jettiness jet
momentum Pμ

J, according to Eqs. (4) and (9), respectively,
are also independent of the external jet algorithm.
Furthermore, we have PJT ¼ KJT and yJ ¼ yK , up to
power corrections in τ1=PJT . Thus, in the resummation
region, Eq. (6) can be written as

qJjτ1≪PJT
≃ ðPJT cosh yJ; P⃗JT ; PJT sinh yJÞ;

QJ ≃ 2PJT cosh yJ: ð20Þ

Thus, for a priori specified values of PJT and yJ, we can
unambiguously compute dσresum½τ1; PJT ; yJ� using Eq. (20)
in Eq. (4), without any reference to an external jet algorithm.
Furthermore, in this resummation region where the final

jet is initiated by the quark or antiquark emerging from the
hard scattering followed by a parton shower, one can
associate the leading jet momentum as PJ ¼ qþ xP, up
to power corrections from ambient soft radiation clustered
with the jet. In general, there will be some uncertainty in
applying this relationship arising from QED photon emis-
sions by the initial and final electron that affects the
reconstruction [75–78] of qμ, and correspondingly the
ðQ2; xÞ values at the primary electron scattering vertex.
The identification PJ ¼ qþ xP implies a simple relation-
ship between dσresum½τ1; PJT ; yJ� and dσresum½τ1a; Q2; y� or
dσresum½τ1a; Q2; x� to all orders in perturbative QCD. This
relationship, as derived in Appendix A, is given by

dσresum½τ1a; Q2; y�

¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
2y

dσresum

�
τ1 ¼

ffiffiffiffiffiffi
Q2

p
τ1a; PJT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ð1 − yÞ

q
;

yJ ¼
1

2
ln
Q2ð1 − yÞ

y2s

�
: ð21Þ

The factorization formula for dσresum½τ1a; Q2; x� is then
simply obtained from dσresum½τ1a; Q2; y� using the general
relation in Eq. (11). One can easily check these relations for
the tree-level cross sections given in Eqs. (13) and (16).
Thus, in the rest of this section,whendiscussing the resum-

mation region, wewill primarily focus ondσresum½τ1; PJT ; yJ�
with the understanding that dσresum½τ1a;Q2; y� and
dσresum½τ1a; Q2; x� can then be easily obtained from the
relationships in Eq. (21) and the second line in Eq. (11),
respectively.
In Refs. [28,29], it was shown the factorization formula

for dσresum½τ1; PJT ; yJ� has the schematic form

dσresum½τ1; PJT ; yJ� ∼H ⊗ B ⊗ J ⊗ S; ð22Þ

where H is the hard function describing the physics of the
hard scattering, B is the beam function [26] describing the
physics of the perturbative collinear initial state radiation
along the beam direction and the initial state PDF, J is the
quark jet function describing the physics of the collinear
radiation along the jet direction, and S is the soft function
describing the physics of the soft radiation throughout the
event. The beam function can be further factored into a
perturbatively calculable coefficient and initial state PDFs

B ∼ I ⊗ f; ð23Þ
where I describes the perturbative initial state collinear
radiation along the beam direction. Each of these functions
in the factorization formula is sensitive to physics asso-
ciated with a single energy scale so that one can minimize
large logarithms by choosing the corresponding renorm-
alization scales to have the scaling

μH ∼ PJT ; μJ ∼ μB ∼
ffiffiffiffiffiffiffiffiffiffiffi
τ1PJT

p
; μS ∼ τ1: ð24Þ

Correspondingly, for the τ1a observable, the renormaliza-
tion scales chosen to minimize large logarithms have the
scaling

μH∼
ffiffiffiffiffiffi
Q2

p
; μJ∼μB∼

ffiffiffiffiffiffiffiffiffiffiffiffi
τ1aQ2

q
; μS∼ τ1a

ffiffiffiffiffiffi
Q2

p
: ð25Þ

Using the renormalization group equations in SCET, the
hard, beam, jet, and soft functions are evolved to the common
scale μ at which the cross section is evaluated. In the process,
large logarithms of τ1=PJT or τ1a are resummed in the
corresponding resummation region τ1 ≪ PJT or τ1a ≪ 1,
respectively.

B. Momentum space resummation
factorization formula

The detailed form of the factorization formula [28,29] in
the resummation region, τ1 ≪ PJT , is given by

dσresum½τ1; PJT ; yJ�

¼ σ0Hðξ2;μ;μHÞ
Z

dsJ

Z
dtBJðsJ;μ;μJÞ

× S
�
τ1 −

tB
QB

−
sJ
QJ

;μ;μS

�

×

�X
q

LqBqðtB; x�;μ;μBÞ þ
X
q̄

Lq̄Bq̄ðtB; x�;μ;μBÞ
�
;

ð26Þ

where σ0 and x� are given in Eq. (17) and we have defined

ξ2 ≡ x�
ffiffiffi
s

p
PJTe

−yJ ¼ P2
JT

1 − PJTffiffi
s

p e−yJ
; ð27Þ
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and field theoretic definitions of the hard (H), jet (J), beam
(Bq;q̄), and soft (S) functions can be found in Appendix A
in Ref. [29]. The quark or antiquark beam functions (Bq;q̄)
are matched [26] onto the PDFs as

Bq;q̄ðtB; x; μ; μBÞ

¼
X
i

Z
1

x

dz
z
I ðq;q̄Þi

�
tB;

x
z
; μ; μB

�
fi=pðz; μBÞ; ð28Þ

where the Iqi or I q̄i are perturbatively calculable matching
coefficients and the index i runs over the possible initial
parton species in the proton, including the quarks, the
antiquarks, and the gluon. The factorization formula
presented in Refs. [28,29], explicitly included only the
case of single-photon exchange in the hard scattering. The
result in Eq. (26) is extended to also include the contri-
bution from single Z-boson exchange in the hard scattering
through the Lq;q̄ coefficients [30]. Note that the hard, jet,
beam, and soft functions include their renormalization
group evolution from their natural scales μH, μJ, μB, and
μS, respectively, to the common scale μ. The PDF in
Eq. (28) is evaluated at the μB scale using the standard
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. By
charge conjugation and quark flavor symmetry of QCD,
the quark jet function J is the same for all light quark and
antiquark flavors so that JqðsJ; μ; μJÞ ¼ Jq̄ðsJ; μ; μJÞ≡
JðsJ; μ; μJÞ and is thus factored out of the sum over quark
and antiquark flavors. The soft function appearing in
Eq. (26) is defined in terms of the generalized hemisphere
soft function [70,79] as

Sðτ1;μ;μSÞ ¼
Z

dkB

Z
dkJδðτ1− kB− kJÞSðkB;kJ;μ;μSÞ:

ð29Þ

The generalized hemisphere soft function SðkB; kJ; μ; μSÞ,
appearing on the rhs above, is a function of two kinematic
arguments kB and kJ, corresponding to the contribution to
τ1 of soft radiation grouped with the nuclear beam and jet
directions, respectively, as determined by the 1-jettiness
algorithm used to calculate τ1 in Eq. (4).
In the region μS ∼ τ1 ∼ ΛQCD, the soft function becomes

nonperturbative and is modeled as a convolution between
the perturbatively calculable partonic soft function and a
phenomenological model function (Fmod) as

Sðτ1; μSÞ ¼
Z

duSpartðτ1 − u; μSÞFmodðuÞ; ð30Þ

with the normalization condition

Z
duFmodðuÞ ¼ 1: ð31Þ

This convolution structure ensures that the soft function
reduces to the perturbative partonic soft function in the
region τ1 ≫ ΛQCD, up to power corrections inΛQCD=τ1. We
choose a default parametrization for FmodðuÞ as [28,29,31]

FmodðuÞ ¼
Nða; b;ΛÞ

Λ

�
u
Λ

�
a−1

Exp

�
−
ðu − bÞ2

Λ2

�
; ð32Þ

where a, b, and Λ are free parameters and Nða; b;ΛÞ is a
normalization factor that ensures the normalization con-
straint in Eq. (31). One might also consider analysis using
shape function models that are expanded in a set of basis
functions [80,81]. In our analysis, we work with the default
parametrization in Eq. (32). We note that, in general, the
shape function FmodðuÞ can depend on the beam and jet
reference vectors used to define the 1-jettiness observable.
Following the analysis in Ref. [30], in Appendix F we
present an analytic formula in Eq. (F15) that explicitly
shows how the beam and jet reference vector dependence
can be incorporated into the shape function model FmodðuÞ.
However, since the focus of this work is on pushing the
accuracy of the perturbative results, we use the simplified
model in Eq. (32) which ignores the dynamical dependence
on the jet reference vector. We leave a more detailed
phenomenological analysis of shape function models that
include this dependence for future work. We also note that,
in general, the nonperturbative soft function effects will be
different for the τ1 and τ1a distributions. This difference can
arise because of the difference in the measurement function
at the operator level for the nonperturbative soft function,
corresponding to the difference in the definitions of τ1
and τ1a, as seen in Eqs. (4) and (7), respectively. For
simplicity, in this work, we choose to also implement
nonperturbative effects for τ1a by just using the non-
perturbative model parametrization in Eq. (32), but with
appropriately different values for the a, b, and Λ param-
eters, and using Eq. (21).

C. Position space resummation factorization formula

The factorization formula in Eqs. (26) and (28) can be
written in terms of the Fourier transformed position space
objects. The momentum space beam, jet, and soft functions
are related to their position space counterparts by the
Fourier transforms

I ðq;q̄ÞiðtB; x; μBÞ ¼
Z

dyB
2π

eiyBtBI ðq;q̄ÞiðyB; x; μBÞ;

JðsJ; μJÞ ¼
Z

dyJ
2π

eiyJsJJðyJ; μJÞ;

Sðτ1; μSÞ ¼
Z

dyS
2π

eiySτ1SðyS; μSÞ: ð33Þ

In position space, the renormalization group evolution
becomes multiplicative so that the beam, jet, and soft
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functions can be evolved to the common scale μ from their
natural scales at μB, μJ, and μS, respectively, as

I ðq;q̄ÞiðyB; x; μ; μBÞ ¼ UBðyB; μ; μBÞI ðq;q̄ÞiðyB; x; μBÞ;
JðyJ; μ; μJÞ ¼ UJðyJ; μ; μJÞJðyJ; μJÞ;
SðyS; μ; μSÞ ¼ USðyS; μ; μSÞSðyS; μSÞ; ð34Þ

where UBðyB; μ; μBÞ, UJðyJ; μ; μJÞ, and USðyS; μ; μSÞ are
the position space evolution factors for the beam, jet, and
soft functions, respectively. Similarly, the hard function
also has a multiplicative renormalization group evolution

Hðξ2; μ; μHÞ ¼ UHðξ2; μ; μHÞHðξ2; μHÞ; ð35Þ

where UHðξ2; μ; μHÞ is the corresponding hard function
renormalization group evolution factor.
Furthermore, the momentum space convolution between

the partonic soft function and the model function in
Eq. (30) becomes a simple product in position space:

Sðyτ; μSÞ ¼ Spartðyτ; μSÞFmodðyτÞ; ð36Þ

where the position space model function is given by the
Fourier transform

FmodðyτÞ ¼
Z

due−iyτuFmodðuÞ: ð37Þ

In terms of these position space objects, the factorization
formula in Eq. (26) now takes the form

dσresum½τ1;PJT ;yJ�¼σ0UHðξ2;μ;μHÞHðξ2;μHÞ

×
Z

dyτ
2π

eiyττ1UJ

�
yτ
QJ

;μ;μJ

�
USðyτ;μ;μSÞUB

�
yτ
Qa

;μ;μB

�
J

�
yτ
QJ

;μJ

�
Spartðyτ;μSÞFmodðyτÞ

×

�X
q

X
i

Lq

Z
1

x�

dz
z
Iqi

�
yτ
QB

;
x�
z
;μB

�
fi=pðz;μBÞþ

X
q̄

X
i

Lq̄

Z
1

x�

dz
z
I q̄i

�
yτ
QB

;
x�
z
;μB

�
fi=pðz;μBÞ

�
; ð38Þ

where all the hard, beam, jet, and soft functions are
evaluated at their natural scales and the explicit renorm-
alization group evolution factors evolve them to the
common scale μ.
More details of the factorization formula in Eq. (38) can

be found in Appendixes C–E which give explicit expres-
sions for the various RG evolution factors up to N3LL,
explicit expressions for the hard, beam, jet, and soft
functions up to Oðα2sÞ, and a master factorization formula
useful for numerical implementation, respectively.

D. Profile functions

As discussed in Refs. [67,82], one must be careful in
estimating the perturbative uncertainty in the matched
spectrum of Eq. (18). In particular, the fixed-order contri-
butiondσFO, appropriate in the fixed-order regionwhere τ1 ∼
PJT or τ1a ∼ 1, depends on the single common scale, μFO. On
the other hand, the resummed cross section depends on
multiple scales; the hard function scale μH ∼ μFO and the
beam, jet, and soft function scales, μB, μJ, and μS, respec-
tively. These are the scales that correspondingly minimize
large logarithms in the hard, beam, jet, and soft functions.
The matched spectrum should approach the fixed-order
result, dσFO, in the fixed-order region. This requires that
resummation turns off as one approaches the fixed-order
region and the scales μB, μJ, and μS smoothly converge to
μFO ∼ μH. This is done by introducing profile functions [30]
which make the scales μB, μJ, and μS functions of τ1 or τ1a.

We follow the parametrization of profile functions and the
corresponding scale variations given in Eqs. (201)–(204) of
Ref. [30]. The profile functions in Ref. [30] were imple-
mented for the τ1a distribution. We adapt the same para-
metrization for the τ1 distribution as well, but with the
appropriate generalization as described below. The hard,
beam, jet, and soft scales are given by

μH ¼ μFO ≡ μ;

μB;JðxÞ ¼
�
1þ eB;Jθðt3 − xÞ

�
1 −

x
t3

�
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μμrunðx; μÞ
p

;

μSðxÞ ¼
�
1þ eSθðt3 − xÞ

�
1 −

x
t3

�
2
�
μrunðx; μÞ; ð39Þ

where the argument, x, of the beam, jet, and soft scale
profile functions is given by

x ¼ τ1=μ or x ¼ τ1a; ð40Þ

for the τ1 and τ1a distributions, respectively. Similarly, the
hard scale has typical size

μH ∼ PJT or μH ∼
ffiffiffiffiffiffi
Q2

p
; ð41Þ

for the τ1 and τ1a distributions, respectively. The eB;J;S are
parameters that can be varied to estimate the perturbative
uncertainty associated with the variation of the beam, jet,
and soft scales μB;J;S. For x > t3, all scales are set equal to
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the hard scale, μB ¼ μJ ¼ μS ¼ μ. The function μrunðx; μÞ
is given by

μrunðx;μÞ¼

8>>><
>>>:

μ0þax2=t1; x≤ t1
2axþb; t1 ≤ x≤ t2
μ−aðx− t3Þ2=ðt3− t2Þ; t2 ≤ x≤ t3
μ; x> t3

ð42Þ

where the parameters a and b are given by

a ¼ μ0 − μ

t1 − t2 − t3
; b ¼ μt1 − μ0ðt2 þ t3Þ

t1 − t2 − t3
: ð43Þ

We note that the profile function parameters a and b above
are unrelated to those that appear in the soft function model,
FmodðuÞ in Eq. (32). The parameters in the profile functions
are chosen [30] to take on the values

μ0¼ 2GeV; t1¼
3GeV

μ
; t2¼ 0.4; t3¼ 0.6: ð44Þ

The central curves for the τ1 and τ1a distributions correspond
to profile functionswith the choice eB ¼ eJ ¼ eS ¼ 0, along

with μ ¼ μH, where we set μH ¼ PJT and μH ¼
ffiffiffiffiffiffi
Q2

p
,

respectively. The scale variations to estimate the perturbative
uncertainty are employed by varying the parameters μ, eB;J,
and eS in the profile functions, corresponding to varying the
scales μH ¼ μFO, μB;J, and μS, respectively. The variations of
the hard, beam and jet, and soft scales are, respectively,
implemented by varying the parameters as

hardðμHÞ∶ μ¼2�1QH; eB;J¼0; eS¼0;

beam; jetðμB;JÞ∶ μ¼QH; eB;J¼�1

3
;�1

6
; eS¼0;

softðμSÞ∶ μ¼QH; eB;J¼0; eS¼�1

3
;�1

6
; ð45Þ

where we have definedQH ¼ PJT orQH ¼
ffiffiffiffiffiffi
Q2

p
for the τ1

and τ1a distributions, respectively. Note that for the beam/jet
and the soft scales there are two separate trumpet scale
variations eB;J;S ¼ �1=3 and eB;J;S ¼ �1=6. The scale
variations for the different scales are considered one at a
time and the uncertainty band is the result of adding these
scale variations in quadrature. Figure 2 shows the profile
functions for μH, μB;J, and μS, alongwith their corresponding
scale variations as described above, for the τ1 (left panel) and
τ1a (right panel). These profile function curves are for the
choice μH ¼ PJT ¼ 20.0 GeV and μH¼

ffiffiffiffiffiffi
Q2

p
¼ ffiffiffiffiffiffiffiffiffi

60.0
p

GeV
for the τ1 and τ1a distributions, respectively. We see that the
profile functions smoothly connect the resummation and
fixed-order regions; i.e. the μH, μB;J, and μS scales have the
appropriate scalings in the resummation region and smoothly
converge in the fixed-order region.
We note that in the subsequent section on numerical

results, for the τ1 distribution we choose QH ¼
ffiffiffiffiffi
ξ2

p
in

Eq. (45), instead of QH ¼ PJT , corresponding to minimiz-
ing logarithms of the exact argument appearing in the hard
function in the resummation region, as seen in Eqs. (26)

and (27). This choice still has the same scaling
ffiffiffiffiffi
ξ2

p
∼ PJT

as seen in Eqs. (A3) and (A6). We have also checked that
both choices give consistent results.

IV. NUMERICAL RESULTS

In this section, we provide numerical results up to the
N3LL+Oðα2sÞ level of accuracy. For the τ1 spectrum we

FIG. 2. Profile functions for μH, μB;J , and μS, along with their scale variation bands, for the τ1 (left panel) and τ1a (right panel)

observables. The plots correspond to the choices QH ¼ PJT ¼ 20.0 GeV and QH ¼
ffiffiffiffiffiffi
Q2

p
¼ ffiffiffiffiffiffiffiffiffi

60.0
p

GeV for the τ1 and τ1a
distributions, respectively. The scale variation bands are generated using the scale variations in Eq. (45).
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provide numerical results for the following choice of
kinematics:

τ1∶
ffiffiffi
s

p ¼ 90.0GeV; PJT ¼ ½20.0GeV;30.0GeV�;
yJ ¼ ½−2.5;2.5�; ð46Þ

corresponding to typical EIC kinematics. For the τ1a
spectrum we choose

τ1a∶
ffiffiffi
s

p ¼ 319.0 GeV; Q2 ¼ ½60.0 GeV2;80.0 GeV2�;
y¼ ½0.2;0.6�; ð47Þ

corresponding to typical HERA kinematics. For the fixed-
order calculations, we use the anti-kT jet algorithm [74]
with jet radius R ¼ 1.0 and numerically implement them
using the NLOJETþþ [51] program.
First, we provide results at the partonic level, ignoring

final state hadronization effects. In Fig. 3, we show the
dσFOresum (blue) and dσFO (red) contributions to the N2LLþ
OðαsÞ matched cross section in Eq. (18). The left and right

panels correspond to the τ1 and τ1a distributions, respec-
tively. As expected, in the small τ1 (τ1a) region where the
fixed-order result is dominated by the singular terms, dσFO

at OðαsÞ approaches dσFOresum expanded to OðαsÞ. In the
region around τ1 ≳ 5 GeV (τ1a ≳ 0.7), the contribution of
the singular terms to theOðαsÞ result goes negative, and the
nonsingular terms in dσFO at OðαsÞ become important.
Similarly, in Fig. 4 we show the dσFOresum (blue) and dσFO

(red) contributions to the N3LL+Oðα2sÞ matched cross
section in Eq. (18). Once again, as expected, we see that
in the small τ1 (τ1a) region, dσFO at Oðα2sÞ approaches
dσFOresum expanded to Oðα2sÞ. Once again, in the region
around τ1 ≳ 5 GeV (τ1a ≳ 0.7), the contribution of the
nonsingular terms in dσFO at Oðα2sÞ become important.
In Fig. 5, we show dσFO at Oðα2sÞ (red), dσresum at N3LL

(blue), and the matched result, dσ, at N3LLþOðα2sÞ
(black) for the τ1 (left panel) and τ1a (right panel)
distributions. We note that as expected, the matched
distribution approaches the resummation result for small
τ1 or τ1a and the fixed-order result for large τ1 or τ1a.

FIG. 3. Comparison of the resummation expanded singular contribution (blue curve) and the full OðαsÞ prediction from NLOJETþþ
(red curve) for both τ1 (left panel) and τ1a (right panel). Good agreement is observed, validating our computational setup.

FIG. 4. Comparison of the resummation expanded singular contribution (blue curve) and the full prediction from NLOJETþþ up to
Oðα2sÞ (red curve) for both τ1 (left panel) and τ1a (right panel). Good agreement is observed, validating our computational setup.
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In Fig. 6, we show the matched τ1 (left panel) and τ1a
(right panel) distributions, corresponding to Eq. (18), along
with their scale variation bands at the N2LLþOðαsÞ
(green) and N3LLþOðα2sÞ (red) levels of accuracy.
In Fig. 7, we show that the τ1 (left panel) and τ1a (right

panel) distributions in the resummation region, normalized
to the integral of the central curve over the displayed
region; i.e. the curves generated through scale variation are
divided by the same normalization factor used to normalize
the central curve to unity over the displayed range. We see
good convergence in going from the N2LL to N3LL
resummation curves. We also display the corresponding
results of Pythia8 [83] simulations (blue dots) and find
relatively good agreement.
Finally, we perform a preliminary study of hadronization

effects using a soft functionmodel, followingEqs. (30)–(32).
In Fig. 8, we show the τ1 (left panel) and τ1a (right panel)
distributions (red curve), along with their scale variation
bands (tan color), in the resummation region where non-
perturbative effects are important (see Table I). The results
are normalized to the integral of the central curve in the
displayed region. The results are generated through a

convolution of a nonperturbative soft function model with
the perturbative N3LL resummation curve as in Eq. (30). We
also show the results from Pythia8 (blue dots) with hadroniza-
tion turned on. As mentioned earlier below Eq. (32), in
general one expects different nonperturbative effects (soft
function models) for the τ1 and τ1a distributions due to the
correspondingly different measurement functions at the
operator level. For the τ1 distribution, the results where
generated using model parameters with values a ¼ 1.0,
b ¼ 0.45, and Λ ¼ 0.5 GeV in Eq. (32). For the τ1a
distribution, we used a ¼ 1.0, b ¼ 0.75, and Λ¼0.5GeV.
We see that for these choices of the soft function model
parameters there is good agreement between the Pythia8

results and the theory predictions. We note that the scale
variation band for the τ1a distribution (right panel) in Fig. 8 is
relatively large because of the choice of a relatively small
hard scale, μ2H ¼ Q2 ¼ ½60.0; 80� GeV2. The hard scale
variation around this small central value leads to a relatively
large variation in the value of the strong coupling. We have
checked that at largerQ2 the scale variation is much smaller
and similar to what is seen for τ1, which is evaluated and
varied around a larger hard scale μH ∼ PJT ¼ 20.0 GeV.

FIG. 5. As seen in the left (right) panel, for the τ1 (τ1a) distributions of Eq. (18), the N3LLþ α2s (black) matched distribution
approaches the N3LL (blue) and Oðα2sÞ (red) results in the τ1 ≪ PJT (τ1a ≪ 1) and τ1a ∼ PJT (τ1a ∼ 1) regions, respectively.

FIG. 6. Partonic resummed results for τ1 (left panel) and τ1a (right panel) at the N3LLþOðα2sÞ (red) and N2LLþ NLO (green) levels
of accuracy.
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We note that these results in the nonperturbative region
are only meant to demonstrate that one can easily find an
appropriate soft function model to describe the Pythia8

hadronization effects. We leave a more detailed and
rigorous best-fit extraction of the soft function model
parameters for future work. Relatedly, there can also be
important renormalon effects in the soft function [81,84]
that can affect the extraction of the soft function model
parameters, and is also left for future work.
The numerical results given in this section provide a

benchmark for further analyses using simulations for the
proposed EIC and data collected at HERA.

V. CONCLUSION

We have provided results for the 1-jettiness spectrum in
DIS, up to the N3LLþOðα2sÞ level of accuracy. In
particular, we considered two types of 1-jettiness distribu-
tions, dσ½τ1; PJT ; yJ� and dσ½τ1a; Q2; y�, where τ1 and τ1a
denote two different definitions of the 1-jettiness global
event shape. We also discussed the differences and

complementarity between these two types of 1-jettiness
distributions. In the resummation region, corresponding to
energetic final state radiation being closely aligned with
either the beam or leading jet directions, a factorization
framework is used and corresponding analytic formulas are
provided, up to the N3LL level of accuracy. In the region of
very small 1-jettiness, where the distribution becomes
sensitive to the nonperturbative soft radiation throughout
the event, a phenomenological model is employed to
describe nonperturbative effects. In the fixed-order region,
corresponding to energetic final state radiation at wide
angles from the beam or leading jet directions, fixed-order
perturbative QCD is appropriate. Fixed-order results up to
Oðα2sÞ are implemented using NLOJETþþ [51] program
and smoothly matched with the factorization framework in
the resummation region. We also provided a comparison of
the theory predictions with Pythia8 simulation results,
including a preliminary study of hadronization effects.
These results allow for further detailed phenomenological
studies of nuclear structure, nuclear medium effects, and a
precision extraction of the strong coupling. The results

FIG. 7. The τ1 (left panel) and τ1a (right panel) distributions with scale variations normalized to the central curve over the displayed
range, at the N2LL (green) and N3LL (red) level of accuracy.

FIG. 8. The τ1 (left panel) and τ1a (right panel) N3LL+soft function model distributions with scale variations (tan band) normalized to
the central curve (red) over the displayed range, compared to Pythia data (blue dots).

CAO, KANG, LIU, and MANTRY PHYS. REV. D 110, 014045 (2024)

014045-12



presented here can be adapted to analyses with HERA data,
ongoing EIC simulation studies, and eventual real data
from the EIC.
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APPENDIX A: RELATIONSHIP BETWEEN τ1
AND τ1a IN THE RESUMMATION REGION

In this section, we derive the relationship in Eq. (21)
connecting dσresum½τ1a; Q2; y� and dσresum½τ1; PJT ; yJ�. In
the resummation region (τ1 ≪ PJT or τ1a ≪ 1), up to power
suppressed corrections, one can identify the 1-jettiness jet
momentum as

PJ ¼ qþ xP; ðA1Þ

corresponding to the momentum of the quark or antiquark
emerging from the hard parton-level scattering. Thus, the
partonic Mandelstam variables can be expressed as

ŝ ¼ ðkþ xPÞ2; t̂ ¼ ðPJ − xPÞ2 ¼ q2 ¼ −Q2;

û ¼ ðk − PJÞ2; ðA2Þ

which can in turn be expressed in terms of s ¼ ðkþ PÞ2,
PJT , and yJ as

ŝ ¼ xs; t̂ ¼ −Q2 ¼ −x
ffiffiffi
s

p
PJTe

−yJ ;

û ¼ −
ffiffiffi
s

p
PJTe

yJ ; ðA3Þ

where we have ignored terms proportional to the electron or
parton masses. Furthermore, in this limit of massless
electrons and partons, the partonic Mandelstam variables
satisfy the constraint

ŝþ t̂þ û ¼ 0; ðA4Þ

from which we can solve for the momentum fraction of the
struck quark or antiquark to get the result

x ¼ PJTe
yJffiffiffi

s
p

− PJTe
−yJ

: ðA5Þ

Using this result for x in Eq. (A3), we can write Q2 and the
inelasticity parameter y ¼ P · q=P · k ¼ Q2=ðxsÞ as

Q2 ¼ P2
JT

1 − PJTffiffi
s

p e−yJ
; y ¼ PJTffiffiffi

s
p e−yJ : ðA6Þ

Note that ξ2 in Eq. (27) is equivalent toQ2 expressed in terms
of

ffiffiffi
s

p
, PJT , and yJ, as above in Eq. (A6). Inverting these

equations, we can write PJT and yJ in terms of Q2 and y as

PJT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ð1 − yÞ

q
; yJ ¼

1

2
ln
Q2ð1 − yÞ

y2s
; ðA7Þ

from which we obtain the Jacobian for the change of
variables from ðPJT ; yJÞ to ðQ2; yÞ:

dQ2dy ¼ 2y

ffiffiffiffiffiffiffiffiffiffiffi
Q2

1 − y

s
dPJTdyJ: ðA8Þ

From the definitions of τ1 and τ1a in Eqs. (4) and (7),
respectively, one can show that they are related to each
other as

τ1a ¼
1ffiffiffiffiffiffi
Q2

p τ1
	
QB →

ffiffiffiffiffiffi
Q2

p
; QJ →

ffiffiffiffiffiffi
Q2

p 

;

dτ1a ¼
1ffiffiffiffiffiffi
Q2

p dτ1: ðA9Þ

Putting together Eqs. (A8) and (A9), we get

dτ1adQ2dy ¼ 2yffiffiffiffiffiffiffiffiffiffiffi
1 − y

p dτ1dPJTdyJ; ðA10Þ

which along with Eq. (A7) gives the final result of Eq. (21).

APPENDIX B: USEFUL IDENTITIES

The plus distributions LnðzÞ, for n ≥ 0, are defined as

LnðzÞ≡
�
θðzÞlnnz

z

�
þ

¼ lim
β→0

�
θðz − βÞlnnz

z
þ δðz − βÞ ln

nþ1β

nþ 1

�
; ðB1Þ

for any dimensionless variable z. Using this definition, for
α∈R and α > 0, via explicit calculation the Laplace
transform of LnðzÞ is given by

Z
∞

0

dze−αzLnðzÞ¼
1

nþ1

Xnþ1

k¼0

ð−1Þnþ1−k
�
nþ1

k

�

× ðlnαÞnþ1−k
Z

∞

0

due−uðlnuÞk: ðB2Þ

This result can be analytically continued to α → iy, for
y∈R, to get the Fourier transform of the LnðzÞ
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distributions, which are useful for computing the Fourier
transforms of the beam, jet, and soft functions in Eq. (33).
Explicit results for the cases of n ¼ 0, 1, 2, and 3 areZ

∞

0

dze−iyzL0ðzÞ ¼ −L;Z
∞

0

dze−iyzL1ðzÞ ¼
1

2
L2 þ π2

12
;Z

∞

0

dze−iyzL2ðzÞ ¼ −
1

3
L3 −

π2

6
L −

2

3
ζ3;Z

∞

0

dze−iyzL3ðzÞ ¼
1

4
L4 þ π2

4
L2 þ 2ζ3Lþ 3π4

80
; ðB3Þ

where we have defined

L≡ lnðiyeγEÞ; ðB4Þ
Euler’s constant γE can be expressed as the definite integral:

γE ¼ −
Z

∞

0

due−u ln u; ðB5Þ

and ζs is the Riemann zeta function defined by

ζs ¼
X∞
n¼0

1

ns
¼ 1

ΓðsÞ
Z

∞

0

xs−1

ex − 1
dx; ðB6Þ

for ReðsÞ > 1 and by analytic continuation elsewhere.
Numerically, γE ≃ 0.5772 and ζ3 ≃ 1.202. The results in
Eq. (B3) follow from using the identities:

Z
∞

0

due−uln2u ¼ γ2E þ π2

6
;Z

∞

0

due−uln3u ¼ −γ3E − γE
π2

2
− 2ζ3;Z

∞

0

due−uln4u ¼ γ4E þ γ2Eπ
2 þ 8γEζ3 þ

3π4

20
· ðB7Þ

Another useful plus distribution is�
θðxÞ
x1þω

�
þ
¼ lim

β→0

�
θðx − βÞ
x1þω − δðx − βÞ β

−ω

ω

�
; ðB8Þ

which can be used to show

ðiyeγEÞω ¼ eωγE

Γð−ωÞ
Z

dze−izy
�
θðzÞ
z1þω

�
þ
: ðB9Þ

APPENDIX C: FIXED-ORDER RESULTS

In this section, we collect results for the hard, beam, jet,
and soft functions up to the Oðα2sÞ level of accuracy in
perturbation theory. These results are needed to carry out
resummation of the τ1 and τ1a distributions at the N3LL
level of accuracy, using Eqs. (38) and (21), respectively.

1. Hard function

The hard function is given by

HðQ2; μÞ ¼ jCðQ2; μÞj2; ðC1Þ

where CðQ2; μÞ is the Wilson coefficient that arises from
matching the QCD current operators in Eq. (12) onto the
corresponding SCET current operators. The fixed-order
perturbative expansion of the CðQ2; μÞ Wilson coefficient
is expressed as

CðQ2; μÞ ¼
X∞
n¼0

�
αsðμÞ
4π

�
n
CðnÞ: ðC2Þ

The result for the Wilson coefficient is known up to Oðα2sÞ
[60,61]:

Cð0Þ ¼ 1;

Cð1Þ ¼ CF

�
−L2 þ 3L − 8þ π2

6

�
;

Cð2Þ ¼ CFðCFHF þ CAHA þ TFnfHfÞ; ðC3Þ

where L ¼ ln Q2

μ2
and the HF;A;f coefficients are defined as

HF ¼
L4

2
−3L3þ

�
25

2
−
π2

6

�
L2þ

�
−
45

2
−
3π2

2
þ24ζ3

�
L

þ255

8
þ7π2

2
−
83π4

360
−30ζ3;

HA ¼
11

9
L3þ

�
−
233

18
þπ2

3

�
L2þ

�
2545

54
þ11π2

9
−26ζ3

�
L

−
51157

648
−
337π2

108
þ11π4

45
þ313

9
ζ3;

Hf ¼−
4

9
L3þ38

9
L2þ

�
−
418

27
−
4π2

9

�
Lþ4085

162

þ23π2

27
þ4

9
ζ3: ðC4Þ

The hard function can be can be correspondingly
expressed as

HðQ2; μÞ ¼ jCðQ2; μÞj2 ¼
X∞
n¼0

�
αsðμÞ
4π

�
n
HðnÞ; ðC5Þ

where the coefficients HðnÞ, expressed in terms of the CðnÞ

coefficients, up to Oðα2sÞ are given by

Hð0Þ ¼ 1;

Hð1Þ ¼ 2Cð1Þ;

Hð2Þ ¼ 2Cð2Þ þ ðCð1ÞÞ2: ðC6Þ
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2. Soft function

The fixed-order perturbative expansion of the soft function in momentum space can be expressed as

Sðτ1; μSÞ ¼
X∞
n¼0

�
αsðμSÞ
4π

�
n
SðnÞðτ1; μSÞ: ðC7Þ

The results up to Oðα2sÞ [70,71] are given by

Sð0Þ ¼ δðτ1Þ;

Sð1Þ ¼ CF

�
π2

3
δðτ1Þ −

16

μ̃
L1ðτ1=μ̃Þ

�
;

Sð2Þ ¼ 4C2
F

�
−
3π4

40
δðτ1Þ þ 64ζ3

1

μ̃
L0ðτ1=μ̃Þ − 12π2

1

μ̃
L1ðτ1=μ̃Þ þ 32

1

μ̃
L3ðτ1=μ̃Þ

�

þ 4nfCF

�
2ζ3
9

δðτ1Þ−
π2

9

1

μ̃
L0ðτ1=μ̃Þ þ

8

3

1

μ̃
L2ðτ1=μ̃Þ

�

þ 4CACF

��
π4

240
−
11ζ3
9

−
535

81
−
335π2

216
þ 17π4

144
þ 341ζ3

18

�
δðτ1Þ þ

�
11π2

18
þ 16ζ3

3
þ 404

27
−
11π2

6
−
58ζ3
8

�
1

μ̃
L0ðτ1=μ̃Þ

þ
�
16π2

3
−
268

9
− 4π2

�
1

μ̃
L1ðτ1=μ̃Þ þ

�
88

3
−
44

3

�
1

μ̃
L2ðτ1=μ̃Þ

�

þ 4CFnfTR

��
20

81
þ 37π2

54
−
62ζ3
9

�
δðτ1Þ þ

�
2π2

3
−
112

27

�
1

μ̃
L0ðτ1=μ̃Þ þ

80

9

1

μ̃
L1ðτ1=μ̃Þ−

32

3

1

μ̃
L2ðτ1=μ̃Þ

�
; ðC8Þ

where we have defined the scale

μ̃ ¼ μSrS; rS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qB · qJ
QBQJ

s
: ðC9Þ

The fixed-order expansion of the soft function in position
space can be obtained from the momentum space result
in Eq. (C7) by inverting the Fourier transform relation in
Eq. (33). The corresponding perturbative expansion in
position space can be expressed as

Sðyτ; μSÞ ¼
X∞
n¼0

�
αsðμSÞ
4π

�
n
SðnÞðyτ; μSÞ; ðC10Þ

where the SðnÞðyτ; μSÞ coefficients are functions of L̃S ¼
lnðiyτμ̃eγEÞ. This is apparent through the identities in
Eq. (B3) for the Fourier transforms of the 1=μ̃Lnðτ1=μ̃Þ
distributions that appear in Eq. (C8). Using Eq. (C9), we
can write the useful relation

L̃S ¼ LS þ ln rS; ðC11Þ
where we have defined

LS ¼ lnðiyτμSeγEÞ: ðC12Þ

3. Jet function

The fixed-order expansion of jet function in position
space is parametrized as

JðyJ; μJÞ ¼
X∞
n¼0

�
αsðμJÞ
4π

�
n
JðnÞ: ðC13Þ

The results are known up to Oðα2sÞ [60,61,63]:

Jð0Þ ¼ 1;

Jð1Þ ¼ CF

�
2L2

J þ 3LJ þ 7 −
2π2

3

�
;

Jð2Þ ¼ CFðCFJF þ CAJA þ TFnfJfÞ; ðC14Þ

and JF, JA, and Jf coefficients are defined as

JF¼2L4
J−6L3

Jþ
�
37

2
−
4π2

3

�
L2
Jþ

�
−
45

2
þ4π2−24ζ3

�
LJ

þ205

8
−
97π2

12
þ61π4

90
−6ζ3;

JA¼−
22

9
L3
Jþ

�
367

18
−
2π2

3

�
L2
J

þ
�
−
3155

54
þ11π2

9
þ40ζ3

�
LJ

þ53129

648
−
155π2

36
−
37π4

180
−18ζ3;

Jf¼
8

9
L3
J−

58

9
L2
Jþ

�
494

27
−
4π2

9

�
LJ−

4057

162
þ13π2

9
; ðC15Þ
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where the logarithm, LJ, is defined as

LJ ¼ lnðiyJμ2JeγEÞ: ðC16Þ

4. Beam function

The beam function is given by the convolution

Biðt; x; μBÞ ¼
X
j

Z
1

x

dz
z
I ijðt; z; μBÞfj

�
x
z
; μB

�
; ðC17Þ

where the matching coefficients have the perturbative
expansion

I ijðt; x; μBÞ ¼
X∞
n

�
αsðμBÞ
4π

�
n
I ðnÞ
ij ðt; x; μBÞ: ðC18Þ

Up to Oðα2sÞ [65,68], the expressions for the matching
coefficients are given by

I ð0Þ
ij ðt; x; μBÞ ¼ δðtÞδijδð1 − xÞ;

I ð1Þ
ij ðt; x; μBÞ ¼

1

μ2B
L1ðt=μ2BÞΓi

0δijδð1 − xÞ þ 1

μ2B
L0ðt=μ2BÞ

�
−
γiB0
2

δijδð1 − xÞ þ 2Pð0Þ
ij ðxÞ

�
þ δðtÞ2Ið1Þij ðxÞ;

I ð2Þ
ij ðt; x; μBÞ ¼

1

μ2B
L3ðt=μ2BÞ

ðΓi
0Þ2
2

δijδð1 − xÞ þ 1

μ2B
L2ðt=μ2BÞΓi

0

�
−
�
3

4
γiB0 þ

β0
2

�
δijδð1 − xÞ þ 3Pð0Þ

ij ðxÞ
�

þ 1

μ2B
L1ðt=μ2BÞ

��
Γi
1 −

π2

6
þ ðΓi

0Þ2
ðγiB0Þ2
4

þ γiB0β0
2

�
δijδð1 − xÞ þ 2Γi

0I
ð1Þ
ij ðxÞ

− 2ðγiB0 þ β0ÞPð0Þ
ij ðxÞ þ 4

X
k

Z
1

x

dz
z
Pð0Þ
ik ðzÞPð0Þ

kj

�
x
z

��

þ 1

μ2B
L0ðt=μ2BÞ

��
ðΓi

0Þ2ζ3 þ Γi
0γ

i
B0

π2

12
−
γiB1
2

�
δijδð1 − xÞ − Γi

0

π2

3
Pð0Þ
ij ðxÞ

− ðγiB0 þ 2β0ÞIð1Þij ðxÞ þ 4
X
k

Z
1

x

dz
z
Ið1Þik ðzÞPð0Þ

kj

�
x
z

�
þ 4Pð1Þ

ij ðxÞ
�
þ δðtÞ4Ið2Þij ðxÞ: ðC19Þ

The quark flavor diagonal and universal structure of QCD
interactions results in two distinct types of nonzero match-
ing coefficients for each quark flavor q, denoted by
Iqqðt; x; μBÞ and Iqgðt; x; μBÞ. Explicit expressions for

the functions Ið1Þij ðxÞ and Ið2Þij ðxÞ are quite long and can
be found in Ref. [68]. Similarly, one can also find explicit

expressions for the splitting functions Pð0Þ
ij ðxÞ and Pð1Þ

ij ðxÞ
in Ref. [68]. The position space matching coefficients can
be obtained by inverting the Fourier transform relation in
Eq. (33) and making use of the identities Eq. (B3) for the
Fourier transforms of the 1=μBLnðt=μ2BÞ distributions that
appear in Eq. (C19). The corresponding perturbative
expansion in position space can be expressed as

I ijðyB; x; μBÞ ¼
X∞
n¼0

�
αsðμBÞ
4π

�
n
I ðnÞ
ij ðyB; x; μBÞ; ðC20Þ

where the I ðnÞ
ij ðyB; x; μBÞ coefficients will be functions of

LB ¼ lnðiyBμ2BeγEÞ: ðC21Þ

APPENDIX D: RENORMALIZATION
GROUP EVOLUTION

In this section, we collect useful results needed to carry
out resummation of the τ1 and τ1a distributions at the N3LL
level of accuracy, using Eqs. (38) and (21), respectively. In
particular, we collect the results for the RG evolution
factors appearing in Eq. (38).

1. Hard function

The RG evolution equation for the hard function is
given by

μ
d
dμ

HðQ2; μÞ ¼ γHHðQ2; μÞ; ðD1Þ

where the anomalous dimension γH is given by

γH ¼ γc þ γ�c; ðD2Þ

where γc is the anomalous dimension of the Wilson coef-
ficient CðQ2; μÞ which satisfies HðQ2; μÞ ¼ jCðQ2; μÞj2.
The general form [85,86] of the anomalous dimension is
given by
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γc ¼
X
ði;jÞ

Ti · Tj

2
γcuspðαsÞ ln

μ2

−sij
þ
X
i

γiðαsÞ; ðD3Þ

where sij ¼ 2σijpi · pj þ i0 and σij ¼ þ1 if the momenta
pi and pj are both incoming or outgoing and σij ¼ −1
otherwise. The sum over i, j runs over the external partons of
the corresponding SCET operator and ði; jÞ denotes unor-
dered tuples of distinct parton indices. In our case, the SCET
operator is just the photon or Z-boson current operator
involving two quarks or antiquarks as the external partons.
γcusp is related to the cusp anomalous dimension in the

fundamental and adjoint representations ΓF
cuspðαsÞ and

ΓA
cuspðαsÞ, respectively, as

γcuspðαsÞ ¼
ΓF
cuspðαsÞ
CF

¼ ΓA
cuspðαsÞ
CA

: ðD4Þ

For example, ΓF
cuspðαsÞ and ΓA

cuspðαsÞ correspond to the case
with all external lines being quarks or antiquarks and all

external lines being gluons, respectively. The cusp and
noncusp anomalous dimensions and the beta function have
expansions in αs given by

γcusp½αs� ¼
X∞
n¼0

�
αs
4π

�
nþ1

γcuspn ;

γq;g½αs� ¼
X∞
n¼0

�
αs
4π

�
nþ1

γq;gn ;

β½αs� ¼ −2αs
X∞
n¼0

�
αs
4π

�
nþ1

βn: ðD5Þ

ForN3LL resummation of τ1 and τ1aweneed γcusp, γq, and
β to four loops, three loops, and four loops, respectively,
along with Oðα2sÞ PDFs. Here γq denotes the noncusp
anomalous dimension contribution form light quarks or
antiquarks.
The coefficients of γcusp in Eq. (D5), up to four loops

[72,87,88], are given by

γcusp0 ¼ 4;

γcusp1 ¼ 4

��
67

9
−
π2

3

�
CA −

20

9
TFnf

�
;

γcusp2 ¼ 4

�
C2
A

�
245

6
−
134π2

27
þ 11π4

45
þ 22

3
ζ3

�
þCATFnf

�
−
418

27
þ 40π2

27
−
56

3
ζ3

�
þCFTFnf

�
−
55

3
þ 16ζ3

�
−
16

27
T2
Fn

2
f

�
;

γcusp3 ¼ 256

�
C3
A

�
1309ζ3
432

−
11π2ζ3
144

−
ζ23
16

−
451ζ5
288

þ 42139

10368
−
5525π2

7776
þ 451π4

5760
−
313π6

90720

�

þ nfTFC2
A

�
−
361ζ3
54

þ 7π2ζ3
36

þ 131ζ5
72

−
24137

10386
þ 635π2

1944
−
11π4

2160

�

þ nfTFCFCA

�
29ζ3
9

−
π2ζ3
6

þ 5ζ5
4

−
17033

5184
þ 55π2

288
−
11π4

720

�
þ nfTFC2

F

�
37ζ3
24

−
5ζ5
2

þ 143

288

�

þ n2fT
2
FCA

�
35ζ3
27

−
7π4

1080
−
19π2

972
þ 923

5184

�
þ n2fT

2
FCF

�
−
10ζ3
9

þ π4

180
þ 299

648

�
þ n3fT

3
F

�
−

1

81
þ 2ζ3

27

�

þ dabcdF dabcdA

CFNc

�
ζ3
6
−
3ζ23
2

þ 55ζ5
12

−
π2

12
−
31π6

7560

�
þ nf

dabcdF dabcdF

CFNc

�
π2

6
−
ζ3
3
−
5ζ5
3

��
: ðD6Þ

The coefficients of γq in Eq. (D5), up to three loops [61,89], are given by

γq0 ¼ −6CF;

γq1 ¼ C2
Fð−3þ 4π2 − 48ζ3Þ þCFCA

�
−
961

27
−
11π2

3
þ 52ζ3

�
þCFTFnf

�
260

27
þ 4π2

3

�
;

γq2 ¼ C3
F

�
−29− 6π2 −

16π4

5
− 136ζ3 þ

32π2ζ3
3

þ 480ζ5

�
þC2

FCA

�
−
151

2
þ 410π2

9
þ 494π4

135
−
1688ζ3
3.0

−
16π2ζ3

3
− 240ζ5

�

þCFC2
A

�
−
139345

1458
−
7163π2

243
−
83π4

45
þ 7052ζ3

9
−
88π2ζ3

9
− 272ζ5

�
þC2

FTFNF

�
5906

27
−
52π2

9
−
56π4

27
þ 1024ζ3

9

�

þCFCATFNF

�
−
34636

729
þ 5188π2

243
þ 44π4

45
−
3856ζ3
27

�
þCFT2

FN
2
F

�
19336

729
−
80π2

27
−
64ζ3
27

�
: ðD7Þ
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Finally, the coefficients of the β function in Eq. (D5), up to four loops [90–92], are given by

β0 ¼
11

3
CA −

4

3
TFnf;

β1 ¼
34

3
C2
A −

20

3
CATfnf − 4CFTFnf;

β2 ¼
2857
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�
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9
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2
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�
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27
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�
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9

�
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�
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3

�
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ACFTFnf

�
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9

�
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�
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9

�
þ 46C3

FTFnf þ C2
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2
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2
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�
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þ C2
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2
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þ CACFT2
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2
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�
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f þ

1232

243
CFT3

Fn
3
f

þ dabcdA dabcdA

NA

�
−
80

9
þ 704ζ3

3

�
þ nf

dabcdF dabcdA

NA

�
512

9
−
1664ζ3

3

�
þ n2f

dabcdF dabcdF

NA

�
−
704

9
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�
: ðD8Þ

The solution to the RG equations for the hard function in
Eqs. (D1)–(D3) has the form in Eq. (35), where the hard
function evolution factor has the form

UHðQ2; μ; μHÞ ¼ exp½4CFSðμ; μHÞ − 2AHðμ; μHÞ�

×

�
μ2H
Q2

�
2CFAðμ;μHÞ

; ðD9Þ

where the functions S, A, and AH are defined as

Sðμf; μiÞ ¼ −
Z

αsðμfÞ

αsðμiÞ

dα
β½α� γcusp½α�

Z
α

αsðμiÞ

dα0

β½α0� ;

Aðμf; μiÞ ¼ −
Z

αsðμfÞ

αsðμiÞ

dα
β½α� γcusp½α�;

AHðμf; μiÞ ¼ −
Z

αsðμfÞ

αsðμiÞ

dα
β½α� γ

q½α�: ðD10Þ

The perturbative expansion of Sðμf; μiÞ needed for N3LL
resummation is given by

Sðμf; μiÞ ¼
γcusp0

4β20

�
4π

αsðμiÞ
�
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1
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− ln r

�
þ
�
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2β0
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��
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; ðD11Þ

the corresponding perturbative expansion for Aðμf; μiÞ is given by

Aðμf; μiÞ ¼
γcusp0

2β0

�
log rþ αsðμiÞ

4π

�
γcusp1

γcusp0

−
β1
β0

�
þ
�
αsðμiÞ
4π

�
2
�
γcusp2
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−
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β0

−
β1
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�
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3
�
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�
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; ðD12Þ
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and, finally, the corresponding expansion for AHðμf; μiÞ is
given by

AHðμf;μiÞ¼
γq0
2β0

�
logrþαsðμiÞ

4π

�
γq1
γq0

−
β1
β0

�
ðr−1Þ

þ
�
αsðμiÞ
4π

�
2
�
γq2
γq0

−
β2
β0

−
β1
β0

�
γq1
γq0

−
β1
β0

��
r2−1

2

�
:

ðD13Þ

2. Beam, jet, and soft functions

The RG equations for the beam, jet, and soft functions in
momentum are given by

μ
d
dμ

Bqðt; x; μÞ ¼
Z

dt0γBðt − t0; μÞBqðt0; x; μÞ;

μ
d
dμ

Jðs; μÞ ¼
Z

ds0γJðs − s0; μÞJðs0; μÞ;

μ
d
dμ

Sðτ; μÞ ¼
Z

dτ0γSðτ − τ0; μÞSðτ0; μÞ; ðD14Þ

where the anomalous dimensions have the form

γBðt; μÞ ¼ −2CFγcuspðαsÞ
1

μ2
L0ðt=μ2Þ þ γqBðαsÞδðtÞ;

γJðs; μÞ ¼ −2CFγcuspðαsÞ
1

μ2
L0ðs=μ2Þ þ γqJðαsÞδðsÞ;

γSðτ; μÞ ¼ 4CFγcuspðαsÞ
1

μ̃
L0ðτ=μ̃Þ þ 2γqSðαsÞδðτÞ; ðD15Þ

where μ̃ ¼ μrs and rs is defined in Eq. (C9). The corre-
sponding RG equations for the position space for the jet,
beam, and soft functions, related to their corresponding
momentum space definitions as in Eq. (33), take the
multiplicative form

μ
d
dμ

Jðy; μÞ ¼ γJðy; μÞJðy; μÞ;

μ
d
dμ

Bqðy; x; μÞ ¼ γBðy; μÞBqðy; x; μÞ;

μ
d
dμ

Sðy; μÞ ¼ γSðy; μÞSðy; μÞ; ðD16Þ

and the position and momentum space anomalous dimen-
sions are related by

γBðy; μÞ ¼
Z

dte−ityγBðt; μÞ;

γJðy; μÞ ¼
Z

dse−iysγJðs; μÞ;

γSðy; μÞ ¼
Z

dke−iτyγSðτ; μÞ: ðD17Þ

Using Eqs. (D17) and (B3), the position space anomalous
dimensions have the form

γBðy; μÞ ¼ 2CFγcuspðαsÞ lnðiyμ2eγEÞ þ γqBðαsÞ;
γJðy; μÞ ¼ 2CFγcuspðαsÞ lnðiyμ2eγEÞ þ γqJðαsÞ;
γSðy; μÞ ¼ −4CFγcuspðαsÞ lnðiyμeγEÞ þ 2γqSðαsÞ: ðD18Þ

Solving the RG equations in Eq. (D16) gives the beam, jet,
and soft functions evolved to any arbitrary scale μ from
their values at their natural scales μB, μJ, and μS, respec-
tively, where large logarithms in their perturbative expan-
sions are minimized. They have the general form given in
Eq. (34), where the UB, UJ, and US denoting the RG
evolution factors have the form

UBðyB; μf; μiÞ ¼ exp½−4CFSðμf; μiÞ − ABðμf; μiÞ�
× ðiyBμ2i eγEÞ−2CFAðμf;μiÞ;

UJðyJ; μf; μiÞ ¼ exp½−4CFSðμf; μiÞ − AJðμf; μiÞ�
× ðiyJμ2i eγEÞ−2CFAðμf;μiÞ;

USðyS; μf; μiÞ ¼ exp½4CFSðμf; μiÞ − 2ASðμf; μiÞ�
× ½ðiySμirSeγEÞ2�2CFAðμf;μiÞ; ðD19Þ

where the function S is defined in Eq. (D10) and its
perturbative expansion needed for N3LL resummation is
given in Eq. (D11). The functions AB, AJ, and AS are
defined as

ABðμf; μiÞ ¼ −
Z

αsðμfÞ

αsðμiÞ

dα
β½α� γ

q
B½α�;

AJðμf; μiÞ ¼ −
Z

αsðμfÞ

αsðμiÞ

dα
β½α� γ

q
J ½α�;

ASðμ; μSÞ ¼ −
Z

αsðμfÞ

αsðμiÞ

dα
β½α� γ

q
S½α�; ðD20Þ

where γqB, γ
q
J , γ

q
S, and γq satisfy the relations

γqB ¼ γqJ; γqS ¼ −γqJ − γqB − γq; ðD21Þ

where the second relation reflects from the cancellation of
renormalization scale dependence between the hard, beam,
jet, and soft functions in the resummation cross section
formula of Eq. (38). The perturbative expansion of γqJ up to
three loops [61] needed for N3LL resummation is given by
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γqJ0 ¼ 6CF;

γqJ1 ¼ CF
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A
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FTFnf

�
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−
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9
−
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9

�
− 2CFCATFnf

�
−
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45
−
2656ζ3
27

�

− 2CFT2
Fn

2
f

�
13828

729
−
80π2

81
−
256ζ3
27

�
; ðD22Þ

and the corresponding expressions for γqB and γqS can be
obtained from a combination of Eqs. (D21), (D22), and
(D7). The corresponding expressions for the perturbative
expansions of AB, AJ, and AS in Eq. (D20) needed for
N3LL resummation can be obtained by replacing γq0;1;2 →
with γqB0;1;2

, γqJ0;1;2 , and γqS0;1;2 , respectively, in Eq. (D13).

3. Product of RG evolution factors

The factorization and resummation formula in Eq. (38)
contains a product of the position space RG evolution
factors for the hard, beam, jet, and soft functions, given by

Utotal ≡UHðξ2; μ; μHÞUB

�
yτ
Qa

; μ; μB

�
UJ

�
yτ
QJ

; μ; μJ

�
×USðyτ; μ; μSÞ: ðD23Þ

Using the results for the corresponding RG evolution
factors in Eqs. (D9) and (D19), the combined evolution
factor Utotal is given by

Utotal ¼ UHBJSðrSÞ4CFAðμ;μSÞðrBÞ−2CFAðμ;μBÞðrJÞ−2CFAðμ;μJÞ

× ðiyτμSeγEÞω; ðD24Þ
where we have defined UHBJS as

UHBJS≡exp½4CF½Sðμ;μHÞþSðμ;μSÞ−Sðμ;μBÞ−Sðμ;μJÞ��
×exp½−2AHðμ;μHÞ−ABðμ;μBÞ−AJðμ;μJÞ

−2ASðμ;μSÞ�
�
μ2H
ξ2

�
2CFAðμ;μHÞ ðD25Þ

and ω ¼ ωðμ; μB; μJ; μSÞ as

ωðμ; μB; μJ; μSÞ ¼ 2CF½2Aðμ; μSÞ − Aðμ; μBÞ − Aðμ; μJÞ�;
¼ 2CF½AðμB; μSÞ þ AðμJ; μSÞ�: ðD26Þ

APPENDIX E: NUMERICAL IMPLEMENTATION
OF RESUMMATION FACTORIZATION

FORMULA

In order to implement code that can generate numerical
results in the resummation region, it is useful work with the
position space resummation factorization formula in
Eq. (38). Using Eq. (37) to rewrite the model soft function
in momentum space, and using Eq. (D24), the resummation
factorization formula in Eq. (38) can be brought into
the form

dσresum½τ1;PJT ;yJ�¼σ0UHBJSðŝaJÞ2CFAðμ;μSÞðrBÞ−2CFAðμ;μBÞðrJÞ−2CFAðμ;μJÞ

×Hðξ2;μHÞ
Z

du
Z

dyτ
2π

eiyτðτ1−uÞðiyτμSeγEÞωJ
�
yτ
QJ

;μJ

�
Spartðyτ;μS

�
FmodðuÞ;

×

�X
q

X
i

Lq

Z
1

x�

dz
z
Iqi

�
x�
z
;
yτ
Qa

;μB

�
fi=pðz;μBÞþ

X
q̄

X
i

Lq̄

Z
1

x�

dz
z
I q̄i

�
x�
z
;
yτ
Qa

;μB

�
fi=pðz;μBÞ

�
: ðE1Þ
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The hard function has a perturbative expansion expressed
as in Eq. (C5). The perturbative expansions of the soft, jet,
and beam functions in Eqs. (C10), (C13), and (C20) can be
reexpressed in powers of LS ¼ lnðiyτμSeγEÞ, when yJ ¼
yτ=QJ and yB ¼ yτ=QB, as

Sðyτ; μSÞpart ¼
X∞
n¼0

X2n
m¼0

�
αsðμSÞ
4π

�
n
Lm
S S

ðnÞ
m ;

Jiðyτ=QJ; μJÞ ¼
X∞
n¼0

X2n
m¼0

�
αsðμJÞ
4π

�
n
Lm
S J

ðnÞ
m ;

I ðnÞ
ðq;q̄Þiðyτ=QB; x; μBÞ ¼

X2n
m¼0

X∞
k¼−2

�
αsðμBÞ
4π

�
n
Lm
S Lkð1 − xÞ

× I ðnÞ
ðq;q̄Þi;mkðxÞ; ðE2Þ

where, for ease of notation, we have defined L−2ðxÞ≡ δðxÞ
and L−1ðxÞ≡ θðxÞ. Here, SðnÞm and JðnÞm denote the coef-
ficients of ðαsðμSÞ=ð4πÞÞnLm

S in the soft and jet function

perturbative series, respectively. I ðnÞ
ðq;q̄Þi;mkðxÞ denotes the

coefficient of Lkð1 − xÞðαsðμSÞ=ð4πÞÞnLm
S in the perturba-

tive series for the beam function. In arriving at this form of
the perturbative series for the soft, jet, and beam functions,
we defined two new variables

rB ¼ μ2B
QBμS

; rJ ¼
μ2J

QJμS
; ðE3Þ

which along with the definition of rS in Eq. (C9) allowed us
to write the logarithms L̃S, LJ, and LB that appear in the
position space perturbative expansions in Eqs. (C10),
(C13), and (C20), for the soft, jet, and beam functions,
respectively, as

L̃S ¼ LS þ ln rS;

LJ ¼ lnðiyJμ2JeγEÞ ¼ LS þ ln rJ;

LB ¼ lnðiyBμ2BeγEÞ ¼ LS þ ln rB; ðE4Þ

when yJ ¼ yτ=QJ and yB ¼ yτ=QB.
The hard function coefficient functions HðnÞ in Eq. (E2)

are functions of lnðξ2=μ2HÞ and the coefficients up to Oðα2sÞ
[59–61], Hð0;1;2Þ, are given in Eq. (C6). The partonic soft
function [70,71], jet function [62–64], and beam function
[26,65–69] are also known up to Oðα2sÞ. These fixed-order
results are used to extract the coefficient functions SðnÞm ,

JðnÞm , and I ðnÞ
ij;mkðxÞ up to Oðα2sÞ. Using these fixed-order

expansions of the hard, beam, jet, and partonic soft
functions in Eq. (E2), the resummation formula can be
brought into the final form

dσresum½τ1; PJT ; yJ� ¼ σ0UHBJSðrSÞ4CFAðμ;μSÞðrBÞ−2CFAðμ;μBÞðrJÞ−2CFAðμ;μJÞ

×
X
n1 ;n2 ;
n3 ;n4

X
m2 ;m3 ;
m4

�
αsðμHÞ
4π

�
n1
�
αsðμJÞ
4π

�
n2
�
αsðμBÞ
4π

�
n3
�
αsðμSÞ
4π

�
n4

×Hðn1ÞJðn2Þm2
Sðn4Þm4

Kðn3Þ
m3

Z
duFmodðuÞdm2þm3þm4

ðτ1 − u;ω; μSÞ; ðE5Þ

where we have defined the coefficient functions KðnÞ
m as

KðnÞ
m ≡X

q

X
i

Lq

Z
1

x�

dz
z

X
k

I ðnÞ
qi;mkðzÞLkð1 − zÞfi

�
x�
z
; μB

�

þ
X
q̄

X
i

Lq̄

Z
1

x�

dz
z

X
k

I ðnÞ
q̄i;mkðzÞLkð1 − zÞfi

�
x�
z
; μB

�
ðE6Þ

and the dmðτ1;ω; μSÞ functions as

dmðτ1;ω; μSÞ≡
Z

dyτ
2π

eiyττ1ðiyτμSeγEÞωLm
S ¼ ∂

m
ω

�
eωγE

Γð−ωÞ
1

μS

�
μ1þω
S θðτ1Þ
ðτ1Þ1þω

�
þ

�
: ðE7Þ

In arriving at this result we made use of the relation ðiyτμSeγEÞωLn
S ¼ ∂

n
ωðiyτμSeγEÞω and the identity in Eq. (B9). In the

factorization formula, we always have ω ¼ ωðμB; μJ; μSÞ < 0 as seen from Eq. (D26) and the hierarchy of scales
μS < μB; μJ. This allows us to drop the plus prescription in the numerical evaluation of the dmðτ1;ω; μSÞ functions. The
explicit results for d0;1;2;3;4 are
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d0ðω; τ1 − u; μSÞ ¼
eωγE

Γð−ωÞ
1

μS

�
μS

τ1 − u

�
1þω

d1ðω; τ1 − u; μSÞ ¼
eωγE
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1

μS

�
μS

τ1 − u

�
1þω

�
ln

μSeγE

τ1 − u
þ ψ ð0Þð−ωÞ

�
;

d2ðω; τ1 − u; μSÞ ¼
eωγE
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1

μS

�
μS

τ1 − u

�
1þω

��
ln

μSeγE

τ1 − u
þ ψ ð0Þð−ωÞ

�
2

− ψ ð1Þð−ωÞ
�
;

d3ðω; τ1 − u; μSÞ ¼
eωγE

Γð−ωÞ
1

μS

�
μS

τ1 − u

�
1þω

��
ln

μSeγE
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þ ψ0ð−ωÞ

�
3

− 3ψ ð1Þð−ωÞ
�
ln

μSeγE

τ1 − u
þ ψ ð0Þð−ωÞ

�
þ ψ ð2Þð−ωÞ

�
;

d4ðω; τ1 − u; μSÞ ¼
eωγE

Γð−ωÞ
1

μS

�
μS

τ1 − u

�
1þω

�
½ψ ð0Þð−ωÞ�4 þ 3½ψ ð1Þð−ωÞ�2 − ψ ð3Þð−ωÞ

þ ln4
�
μSeγE

τ1 − u

�
þ 4½ψ ð0Þð−ωÞ�3 ln μSeγE
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�
ln2
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μSeγE
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�
− ψ ð1Þð−ωÞ
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− 6ψ ð1Þð−ωÞln2
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μSeγE
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�
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þ 4ψ ð0Þð−ωÞ
�
ln3

�
μSeγE

τ1 − u

�
− 3ψ ð1Þð−ωÞ ln μSeγE
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��
; ðE8Þ

where ψ ðnÞðxÞ is the PolyGamma function of order n:

ψ ðnÞðxÞ ¼ dnþ1

dxnþ1
lnΓðxÞ: ðE9Þ

Equation (E5) serves as the master formula for the
numerical implementation of the resummed factorization
formula.

APPENDIX F: NONPERTURBATIVE
SHAPE FUNCTION

In general, the 1-jettiness shape function FmodðuÞ,
appearing in Eq. (30), can depend on the null beam and
jet reference vectors nμB ¼ ð1; n⃗BÞ and nμJ ¼ ð1; n⃗JÞ, respec-
tively. Here n⃗B and n⃗J are unit three-vectors that point along
the beam and leading jet directions, respectively. Note that
for each event the three-vector n⃗J can point in a different
direction, corresponding to the leading jet. In this section,
we derive an analytic formula that explicitly shows how
one can incorporate the dynamical dependence on the beam
and jet reference vectors into a model for the shape function
FmodðuÞ. We derive this result by following and building on
the analysis in Ref. [30].
The soft function that appears in the factorization

formula has the form

Sðτ1;μÞ¼
Z

dkB

Z
dkJδðτ1−kB−kJÞSðkB;kJ;μÞ; ðF1Þ

as in Eq. (29), where SðkB; kJ; μÞ is the generalized
hemisphere soft function where the arguments kB and kJ
correspond to the contribution to τ1 of soft radiation
grouped with the beam and jet reference vector directions,

respectively. The field theoretic definition of the general-
ized soft function is [29,30]

SðkB; kJ;μÞ ¼
1

Nc
tr
X
Xs

jhXsj½Y†
nJYnB �ð0Þj0ij2

× δ

�
kB −

X
i∈Xs

θ

�
qJ
QJ

· ki −
qB
QB

· ki

�
qB
QB

· ki

�

× δ

�
kJ −

X
i∈Xs

θ

�
qB
QB

· ki −
qJ
QJ

· ki

�
qJ
QJ

· ki

�
:

ðF2Þ

The beam and jet reference vectors that appear in the
definition of τ1, in the resummation region, can be
written as

qμB ¼ ωB
nμB
2
; qμJ ¼ ωJ

nμJ
2
;

QB ¼ ωB; QJ ¼ ωJ: ðF3Þ

In ourwork, for τ1, we haveωB¼x
ffiffiffi
s

p
andωJ¼2PJT coshyJ,

corresponding to Eqs. (5), (6), and (20). In general, the scalar
dot productnB · nJ will dependon the directionof the leading
jet in each event.
As explained in Ref. [30], around their Eq. (133), one

can define new null reference vectors n0B and n0J as

n0B ¼ nB=RB; n0J ¼ nJ=RJ; ðF4Þ

where RB and RJ are defined as
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RB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωJ

QJ

QB

ωB

nB · nJ
2

s
; RJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωB

QB

QJ

ωJ

nB · nJ
2

s
; ðF5Þ

which leads to the result

n0B · n0J ¼ 2 ¼ const; ðF6Þ

for every event. Using Eqs. (F3) and the invariance [93] of
the Wilson lines under the transformations in Eq. (F4),
generalized hemisphere soft function can be written as

SðkB; kJ; μÞ ¼
1

Nc
tr
X
Xs

jhXsj½Y†
n0J
Yn0B

�ð0Þj0ij2

×
1

RB
δ

�
kB
RB

−
X
i∈Xs

θðn0J · ki − n0B · kiÞn0B · ki

�

×
1

RJ
δ

�
kJ
RJ

−
X
i∈Xs

θðn0B · ki − n0J · kiÞn0J · ki
�
;

ðF7Þ

which corresponds to the relation [30]

SðkB; kJ; μÞ ¼
1

RBRJ
Shemi

�
kB
RB

;
kJ
RJ

; μ

�
; ðF8Þ

i.e. the generalized hemisphere soft function SðkB; kJ; μÞ
is related to the standard hemisphere soft function
Shemiðk1; k2; μÞ, evaluated with the reference vectors n1
and n2 such that n1 · n2 ¼ 2, a constant, if one makes
the substitution k1 ¼ kB=RB and k2 ¼ kJ=RJ. Thus, all
the dependence on the reference vectors nB and nJ in the
1-jettiness soft function is accounted for through the factors
RB and RJ as shown above.
Thus, the 1-jettiness soft function in Eq. (F1) can

now be written in terms of the standard hemisphere soft
function as

Sðτ1; μÞ ¼
Z

dkB

Z
dkJδðτ1 − kB − kJÞ

×
1

RBRJ
Shemi

�
kB
RB

;
kJ
RJ

; μ

�
: ðF9Þ

Through a simple change of integration variables, this can
be brought into the equivalent form

Sðτ1; μÞ ¼
Z

dkB

Z
dkJδðτ1 − RBkB − RJkJÞ

× ShemiðkB; kJ; μÞ: ðF10Þ

Thus, a shape function model for Sðτ1; μÞ can now be
incorporated in terms of a shape function model for the
hemisphere soft function through the convolution

ShemiðkB; kJ; μÞ ¼
Z

dk0B

Z
dk0JS

part
hemiðkB − k0B; kJ − k0J; μÞ

× Smod
hemiðk0B; k0JÞ; ðF11Þ

where Spart
hemi is the partonic hemisphere soft function and

Smod
hemi is the model hemisphere shape function, which

satisfies the normalization condition:

Z
dkB

Z
dkJSmod

hemiðkB; kJÞ ¼ 1: ðF12Þ

Using Eq. (F11) in Eq. (F10), following the procedure
outlined in pp. 17–19 of Ref. [29], one can compare the
result to Eq. (30), to extract FmodðuÞ as

FmodðuÞ ¼ 1

2

Z
u

−u
dζSmod

�
uþ ζ

2
;
u − ζ

2

�

¼ 1

RB þ RJ

Z
u=RB

−u=RJ

dζSmod
hemi

�
uþ RJζ

RB þ RJ
;
u − RBζ

RB þ RJ

�
;

ðF13Þ

where we have expressed FmodðuÞ in terms of the gener-
alized hemisphere function, Smod, and the standard hemi-
sphere soft function, Smod, in the first and second equalities,
respectively. In the first equality, the original kB and kJ
variables are related to the transformed variables as
u ¼ kB þ kJ and ζ ¼ kB − kJ. In the second equality, the
original kB and kJ variables are related to the transformed
variables as u ¼ RBkB þ RJkJ and ζ ¼ kB − kJ. This
shows the explicit dependence of the shape function
FmodðuÞ on the reference vectors nB and nJ through RB
and RJ, defined in Eq. (F5) above. For τ1, using Eqs. (F3)
and (F5), we can have

RB ¼ RJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nB · nJ

2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qB · qJ
QBQJ

s
¼ rS; ðF14Þ

where rS is defined in Eq. (C9). Thus, Eq. (F13) can be
written as entirely in terms of rS as

FmodðuÞ ¼ 1

2rS

Z
u=rS

−u=rS
dζSmod

hemi

�
uþ rSζ
2rS

;
u − rSζ
2rS

�
: ðF15Þ

Thus, one can construct a model for the standard hemi-
sphere shape function Smod

hemiðk1; k2Þ and then use it in the
above equation to obtain the corresponding model for the
shape function FmodðuÞ with the full dependence on
the beam and jet reference vectors, encoded in rS. This
result that determines the shape function FmodðuÞ for the τ1
observable in terms of the standard hemisphere function
Smod
hemiðk1; k2Þ corresponds to a degree of universality among

shape functions in DIS event shapes.
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Finally, we note that the first moment of the shape function FmodðuÞ can be expressed in terms of the generalized
hemisphere function and the standard hemisphere function moments asZ

duuFmodðuÞ ¼
Z

dkB

Z
dkJðkB þ kJÞSmodðkB; kJÞ;

¼ rS

Z
dk1

Z
dk2ðk1 þ k2ÞSmod

hemiðk1; k2Þ; ðF16Þ

again showing universality up to the overall factor of rS. This is consistent with the expected universality [30,93,94] of the
leading power correction, determined by the first moment of the shape function, in the tail region of the τ1 distribution.
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