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We present results for the z; and z;, 1-jettiness global event shape distributions, for deep inelastic
scattering (DIS), at the N3LL + O(a?) level of accuracy. These event-shape distributions quantify and
characterize the pattern of final state radiation in electron-nucleus collisions. They can be used as a probe of
nuclear structure functions, as nuclear medium effects in jet production, and for a precision extraction of the
QCD strong coupling. The results presented here, along with the corresponding numerical codes, can be
used for analyses with HERA data, in Electron-Ion Collider (EIC) simulation studies, and for eventual

comparison with real EIC data.
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I. INTRODUCTION

The Electron-Ion Collider (EIC) [1-3], to be built at the
site of the Brookhaven National Laboratory, will conduct
detailed studies of quantum chromodynamics (QCD)
and the structure and dynamics of nucleons and nuclei.
Some of the major goals of the EIC will be to study the
origin of the nucleon mass and spin, different types of
nucleon structure functions, the nuclear modification of the
nucleon structure functions, the emergent properties of
high-density gluons at low Bjorken-x, and cold nuclear
medium effects on the propagation color charges and jet
production. To facilitate these studies, the EIC design
requirements include electron-nucleon collisions at high
luminosity £ ~ 10373* cm™2s~!, a 47 hermetic detector,
polarized electron and nucleus beams, collisions with a
wide variety of nuclei, variable center of mass energy
\/s ~20-140 GeV, and correspondingly wide kinematic
coverage in x and Q?, where Q? is the square of the
electron momentum transfer to the nucleus. A wide range of
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electron-nucleus scattering observables will be studied in
order to unravel these questions.

One class of observables that will be studied at the EIC
are deep inelastic scattering (DIS) global event shapes
which characterize the pattern of final state radiation in
electron-nucleus collisions. DIS event shapes were first
studied [4—7] more than two decades ago. The thrust [4]
and broadening [6] event shapes were studied at the next-
to-leading-log (NLL) level of accuracy and matched at
O(ay) to fixed-order results. A numerical comparison was
also done [8,9] against O(a?) results. Thrust distributions
have also been measured at HERA by the H1 [10-12] and
ZEUS [13-15] Collaborations. Recently proposed energy
correlators [16-25] further aggrandize the physics content
of the global event shapes at the EIC.

As a generalization of the thrust observable, new event
shapes were introduced and studied using the framework of
1-jettiness [26,27]. For DIS, a dimension-one 1-jettiness
event shape variable 7; was introduced in Ref. [28] and
resummation results were presented at the NLL level of
accuracy. These results have been extended to the NNLL
[29,30] level of accuracy, including for electron collisions
with heavier nuclei [29]. These results were further
improved numerically to the NNLL + O(a,) [31] level
of accuracy. O(a,) analytic results were presented in
Ref. [32] for 7,, in the Breit frame and differential in x
and Q2. In Refs. [30,32] a dimensionless 1-jettiness (z,,)
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event shape was used which is a variant of the 7, definition.
In Ref. [30], two other 1-jettiness event shapes were
introduced and denoted as 7y, and 7, and their corre-
sponding factorization formulas and numerical results at
NNLL were presented. Analytic O(a;) results for 7,;, were
presented in Ref. [33]. The 7, event shape is equivalent to
the DIS thrust event shape introduced in Ref. [4].
Numerical results for z;;, have been presented [34] at the
N3LL level of accuracy and it was recently measured using
HERA data [35] and compared to O(a?) predictions from
the program NNLOJET [36-39]. Most recently in
Ref. [40], the 7,;, groomed and ungroomed event shape
distribution was studied and compared to HERA data at the
NLL' + O(ay) level of accuracy and normalized to the total
O(a?) cross section. Here, NLL' refers to using O(ay)
matrix elements, one order higher than needed for NLL
resummation. Efforts toward higher logarithmic precision
are under investigation recently [41-46] and the power
corrections to the class of the jettiness observables have
also been studied in [47-50].

In this work, for the first time, we present numerical
results for the 7; and 7;, event shape distributions at the
N3LL+O(a?) level of accuracy. The O(a?) fixed-order
calculation, which includes up to three final state col-
ored partons, can be implemented numerically using
programs such as NLOJET++ [51] where the O(ay)
dijet production in DIS is calculated, as well as the
DISTRESS [52] and NNLOIJET [36-39] codes where
the O(a?) DIS single jet production is available. In this
work, we make use of the NLOJET++ program to
numerically implement the O(a,) and O(a?) fixed-order
contributions. The resummation of large Sudakov loga-
rithms that arise in the limit of small 7; or 7;,, acting
effectively as a veto on additional jets beyond the leading
jet, is done through a factorization theorem [28-30]
derived using the soft-collinear effective theory (SCET)
[53-58]. The factorization formula involves a convolution
product of hard, jet, soft, and beam functions that describe
the physics of the hard scattering, jet production, ambient
soft radiation, and initial state radiation collinear to the
beam. The beam functions are further matched onto
the parton distribution functions (PDFs), factoring out
the dynamics of the perturbative initial state radiation
from the physics of nucleon structure. The necessary
ingredients needed to carry out the Sudakov resummation
at the N3LL level of accuracy are now available. This
includes the fixed-order O(a;) [59] and O(a?) [60,61]
hard function, the O(a,) [62] and O(a?) [63,64] jet
function, the O(a;) [26,65-67] and O(a?) [68,69] beam
functions and the O(a;) [70] and O(a?) [71] soft function.
Finally, the analytic expression for the four-loop cusp
anomalous dimension, needed to solve the renormaliza-
tion group evolution equations at N’LL, was obtained
recently [72,73].

II. KINEMATICS AND 1-JETTINESS EVENT
SHAPE OBSERVABLES

We consider the electron-proton DIS processlz
e (k) + p(P) > e (K)+J+ X, (1)

where k*, k', and P* denote the four-momenta of the initial
electron, the final electron, and the initial proton, respec-
tively, and J denotes the leading jet. We work in the center
of the mass frame. Correspondingly, definitions of z; and
71, given below are also in the center of mass frame. For the
center of mass energy /s, the initial electron and proton
momenta are given by

nt = (1,0,0, 1),
it = (1,0,0,—1), (2)

where we have ignored the electron and proton masses.
The relevant and standard DIS kinematic variables are
defined as

s = (k+ P)?,
qg=k-K,
02 = -,
Q2
2P-q’
y=21, 6)

where Q% = xys, when we ignore the proton mass. The
dimension-one DIS global event shape 7, is defined as

. [2qp - pk 2qj-pk}
T:Emln , , 4
L4 {QB Q, “)

where the sum is over all final state particles, except the
final electron. Here ¢ and ¢/, denote the beam and jet
reference vectors, respectively. The Qp and Q; are con-
stants associated with the beam and jet sectors. The choice
of these quantities is part of the definition of z,. Thus, each
final state particle with momentum p; is grouped either
with the beam or jet sector according to the minimization
condition in Eq. (4) and contributes accordingly to z;. Note
that the largest contributions to 7; come from final state
particles with large energies and large angles relative to
both the beam and jet reference vectors. The contribution of
soft particles or energetic particles closely aligned with the

'We use slightly different notation compared to our earlier
works in Refs. [28,29,31] and introduce it here in a self-contained
manner.
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beam or jet axes is suppressed. In this manner, the 7; event
shape quantifies the pattern of final state radiation in
electron-nucleus collisions.
For the beam sector, we work with the canonical
choice
qp=xP,  Qp=2xV/s. (5)
The jet reference vector ¢, is determined by employing a
standard jet algorithm [74] such as the anti-ky, kp, or

Cambridge-Aachen (C/A). The jet algorithm is used to
determine the leading jet and its momentum K. The

transverse momentum K, = |I_f J,| and rapidity yg of
the leading jet is used to construct the null jet reference
vector ¢/ Accordingly, for the jet sector, we work with the
canonical choice

Q; = 2K, coshyg,
q; = (K, coshyg, K, . K;, sinhyg). (6)

We also give results for a related event shape 7z, [30],
corresponding to a different choice for the Qp and Q;
constants in Eq. (4). It is dimensionless and defined as

Z min {2q3 pk,2qz~) 2pk} 7

In this work, we make predictions for two types of
observables. The first type of observable, studied in
Refs. [28,29,31], is differential in (zy, P, .y;):

dole=+p—>J+X)

8
ddePJTdTl ’ ( )

dolzy, P,y =

where P; = |I3 7, and y, denote the transverse momentum
and rapidity, respectively, of the jet J and they are defined
through a 1-jettiness-based algorithm. Procedurally, after
using a standard jet algorithm to determine the jet reference
vector ¢, as in Eq. (6), the 1-jettiness jet momentum is
defined as’

2qp - Pk 2q1-pk)
P, = 0 - , 9
) }jpk( 2 b 21 9)

k

corresponding to the sum of the momenta of all final state
particles grouped with the jet sector according to the
minimization condition in Eq. (4). The jet transverse

In practice, one could directly use the leading jet momentum
K; as the 1-jettiness momentum P; = K. In the resummation
region where 7 is small, the difference in the definitions is power
suppressed. In this work, we stick to Eq. (9).

momentum P, and rapidity y, are constructed from this
1-jettiness jet momentum P, defined in the center of
mass frame.

The second type of observable requires reconstruction of
the DIS variables (Q?, x) or (Q?,y). Two examples of such
an observable that we will work within this paper are given
below:

dPole”+p—e +J+X)

d ’ 21 = ’
o710, O] dxdQ%dr,,
dPole+p—e +J+X)
d ’ 25 = ’ 10
G[Tla Q y] ddezdfla ( )

where the two are related by a simple Jacobian:

2 2
dolty,, Q%,y] = Q = do |:Tla, 0% x= 0 },
y ys
2
dG[le QZJC} = XQ—dG |:Tlav Q2 y= Q :|v (11)

where we made use of the kinematic relation Q% = xys.
In order to establish notation and convention, we give the
explicit expression for the tree-level cross section with
single boson (y*/Z*) exchange in the parton model. The
relevant electromagnetic and neutral weak currents for the
electron and quarks are
Tt =OQpWsr'wy, J?‘,z =y(ver' +apfys)yy,  (12)
where Q, vy, and ay denote the electric charge, neutral
weak vector charge, and neutral weak axial-vector charge,
respectively, of the fermion f in units of the proton charge
e. At the tree level, ignoring hadronization effects, the final
state is just a single quark or antiquark recoiling against the
final state electron. In this case, the 1-jettiness event shape
vanishes so that the resulting 1-jettiness distribution will be
proportional to §(z;) or &(zy,). Of course, these distribu-
tions will be smeared once hadronization and nonpertur-
bative soft radiation effects are included. Ignoring final
state nonperturbative effects, the resulting tree-level cross
section for the observable differential in (z,,, Q%,x) is

do [Tla’ QZ’ x]

— et | Sty + S Lafsle)]. (13

where f, and f; denote the quark and antiquark PDFs,
respectively, and o} is given by

2 2
oh = 2’;’:’" {1 + (1 —%ﬂ, (14)
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and, following the notation of Ref. [30], L, and L; are
each, respectively, given by

L,.—Q2— 20,040, (”3‘*’“3)(”3‘1"13)
Ty mE )0 (1+mb)Q%)?
T 2)’(2—)7) aqae{Qq(l"i_m%/Qz)_zyqve] (15)
(I-y)y+1 (1+m%/Q?)? ’

where m, denotes the Z-boson mass. The tree-level
cross section for the observable differential in (z,,, 02, )
can be obtained from Eq. (11) as doy[ry,, O, Y] =
Q?/(y*s)doy[t14, Q% x = Q%/(vs)]. We also give the
tree-level cross section for the observable differential in
(z1.Py,.y;), where now P, and y, become the transverse
momentum and rapidity, respectively, of the final quark or
antiquark. The result is given by

dGO[Tl’PJTvyJ]

- 6(71)00 |:2quq(x*v/’l) + Zquq(x*’/")] ’ (16)

where we have defined o, and x, as

) e PJT 1\ 2
0y = 47TaemW I+ {1- \/E e ’
Jr

X, =— (17)

We note some complementary differences between the
two types of 1-jettiness observables defined in Egs. (8) and
(10). The observable in Eq. (8) is differential in terms of the
(Py,,yy) variables that are typically used in the study of
jets. The observables in Eq. (10) are differential in terms of

< P

Beam
remnants

Soft Radiation

T1<<PJT

FIG. 1.

Schematic figure of the process e~ + p — e~ + J + X in the limit 7; < P,

the variables (Q?, x) or (Q?,
study of inclusive DIS.
The hard scale for the DIS scattering process is set by

pg~ Py and py ~ \/@ for the observables defined in
Eqgs. (8) and (10), respectively. In fixed-order perturbation
theory in ag, applicable in the region 7, ~ P, or 7y, <1,
there can be qualitatively different kinematic configurations
that contribute to the two types of observables. For
example, the observables in Eq. (10), where the hard scale

is set by uy~ \/@ require the scattered electron to
emerge from the primary scattering vertex with a large
Q2. On the other hand, since i ~ P ;, for the observable in
Eq. (8), it can receive contributions from the Q> — 0 region
at O(a?) and corresponds to the leading jet recoiling
against hard initial state QCD radiation.

Since the observable in Eq. (8) does not require the
measurement of (Q% x,y), it does not require a
reconstruction of the momentum of the electron emerging
from the primary scattering vertex. In particular, the
variables (z;, P, ,y,) are determined by the momenta of
all the final state particles, except the final electron, that hit
the detector. Thus, unlike the observables in Eq. (10), the
observable in Eq. (8) is not affected by the uncertainties
associated with reconstructing the true (Q?, x,y) values
which can differ from the corresponding measured values
due to QED radiation emitted by the electron in initial and
final states [75-78].

Thus, the two types of 1-jettiness observables in Egs. (8)
and (10) are complementary to each other and we provide
results for both.

) that are typically used in the

III. ONE-JETTINESS SPECTRUM

The 1-jettiness spectrum is characterized by two distinct
regions as shown in Fig. 1. The region corresponding to
7] < Pj, or7;, < 1 corresponds to the left panel of Fig. 1
where the event is characterized by energetic radiation

Soft Radiation

Beam
remnants

TlN.PJT

. The restriction 7; < P, (left panel) allows only

soft radiation between the beam and jet directions. In the region of large 1-jettiness 7, ~ P, (right panel), additional hard radiation is

allowed at wide angles from the leading jet and beam directions.
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(E~ Py, or E~~/ 0?) only along the beam or jet direc-

tions and only soft radiation (E ~ 7; or E ~ 7y, \/@) at
wide angles from the beam or jet directions. This can be
understood from the definitions of 7; and 7, in Egs. (4) and
(7), respectively, where it is seen that the largest contribu-
tions come from energetic final state particles at wide
angles from both the beam and jet directions. On the other
hand, the final state particles with momenta closely aligned
with the beam or jet reference vectors ¢ or ¢, respectively,
give small contributions.

The region of 7; < P, or 71, < 1 is referred to as the
resummation region due to the presence of large Sudakov
logarithms of the form af In*"(z,/P; ) or a? In*" (), for
m < n, that arise from the small 1-jettiness restriction on
final state radiation and require resummation for making
accurate predictions. The small 1-jettiness restriction effec-
tively acts as a veto on additional energetic jets at wide
angles from the beam or jet references vectors, ¢/ or ¢/,
respectively.

On the other hand, the region corresponding to 7; ~ P,
or 7;, < 1 corresponds to the right panel of Fig. 1, where
the event is characterized by additional energetic radiation
at wide angles from both the beam or leading jet directions.
This corresponds to a looser veto on additional jets. In this
region, the fixed-order region, there are no large Sudakov
logarithms so that resummation is not required and accurate
predictions can be made using fixed-order perturbative
QCD calculations.

The resummation region, 7; < P;, or 71, < 1, can be
further classified into two subregions. The region Agcp <

7 < P;. or Agep/V/ Q? < 1y, < 1 corresponds to the
resummation region with perturbative soft radiation. The

other region, 7; ~ Agep or 7y, ~ Agep/ \/@ corresponds
to the resummation region with nonperturbative soft
radiation. In terms of the factorization theorem, the two
regions correspondingly refer to a soft function that either is
perturbatively calculable or is a nonperturbative function
that is typically modeled for the purposes of generating
numerical results. A constraint on the nonperturbative soft
function model is that it smoothly reduces to the perturba-
tive soft function as 7, or 7, is increased.

The three regions of the 1-jettiness spectrum discussed
above are summarized in Table I. The complete 1-jettiness
spectrum with a matching of the resummation and fixed-
order regions is given by the standard schematic formula

do = [d6esum — dokoum] + do™©, (18)

where do,.q, denotes the resummed cross section in the
regiont; < P, orry, <1, detQ .. denotes this resummed
cross section expanded to fixed order in perturbation
theory, and do™™© denotes the full cross section at the same
fixed order in perturbation theory. The expanded resummed

cross section dokQ,,,, differs from the full fixed-order cross

TABLE L. The three distinct regions in the 7, and z;, 1-jettiness
spectra.
Regions T Tiq

Resummation region
(nonperturbative
soft radiation)

Resummation region Agcp <7 <Py, AQCD/\/E<<Tla <1
(perturbative soft
radiation)

Fixed-order region

71 ~ Aqep

T1a ~ Aoen/ v O

<1

~

7~ Py, Tla

section do™© by terms that are nonsingular in the 7, — 0 or
71, = 0 limit. The formula in Eq. (18) has the required
properties for generating a smooth and continuous spec-
trum across the resummation and fixed-order regions. In
particular, we see that in the singular limit z; - 0 or
71, — 0, the cross section is dominated by the resummed
cross section do,.q,, due to a cancellation between dofQ,
and do™© up to suppressed nonsingular terms. On the other
hand, in the fixed-order region 7; ~ P, or 7, <1, the
cross section is dominated by the full fixed-order cross
section do™© due to a cancellation between do,cq,, and
detQ,, up to terms suppressed in perturbation theory.

In the rest of the section, we discuss the features of the
resummation and fixed-order regions in more detail before
providing numerical results.

A. Resummation region

The resummation region, characterized by the conditions

<Py or 1,1, (19)
allows for writing down a factorization formula that is
systematically improvable, facilitates the resummation of
large Sudakov logarithms, and is independent of the
external jet algorithm used to determine the jet reference
vector ¢; in Eq. (6). For the purposes of discussing and
demonstrating the jet algorithm independence, it is more
convenient and natural to work with the observable
do[ty,P;,.y,], since it is differential in the P, and y,
variables that are directly related to the properties of the
leading jet.

We can understand the external jet algorithm independ-
ence in the resummation region, 7; < P, by noting that in
this region the typical event configurations look like the left
panel of Fig. 1. These events are characterized by a single
hard jet that is well separated from the beam region with
only soft radiation between the beam and jet directions. For
such events, the resulting difference between different jet
algorithms just corresponds to the amount of soft radiation
clustered with the jet. Only the jet mass is sensitive to the
amount of soft radiation. In particular, its transverse
momentum K, and rapidity yx are not affected by the
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soft radiation, up to power corrections in 7, /P, . Thus, in
the resummation region 7; < P, , the reference vector 4,
in Eq. (6) is independent of the external jet algorithm used
to find the leading jet. Correspondingly, the resulting values
of the 1-jettiness event shape z; and the 1-jettiness jet
momentum P, according to Egs. (4) and (9), respectively,
are also independent of the external jet algorithm.
Furthermore, we have P; =K, and y; =yg, up to
power corrections in 7;/P;, . Thus, in the resummation
region, Eq. (6) can be written as

q1‘71<<PJT = (PJT coshy,, Py, Py, sinhy,),

Q;~2P, coshy,. (20)

Thus, for a priori specified values of P; and y;, we can
unambiguously compute d6,eqm |71, P, . y,] using Eq. (20)
in Eq. (4), without any reference to an external jet algorithm.
Furthermore, in this resummation region where the final
jet is initiated by the quark or antiquark emerging from the
hard scattering followed by a parton shower, one can
associate the leading jet momentum as P; = g + xP, up
to power corrections from ambient soft radiation clustered
with the jet. In general, there will be some uncertainty in
applying this relationship arising from QED photon emis-
sions by the initial and final electron that affects the
reconstruction [75-78] of ¢*, and correspondingly the
(Q?, x) values at the primary electron scattering vertex.
The identification P; = g + xP implies a simple relation-
ship between do eqm[71. Py, y;] and doeqm[t14. Q% ] or
A6 requm|T14, O%, ] to all orders in perturbative QCD. This
relationship, as derived in Appendix A, is given by

dgresum [Tla’ sz y}

/1 —
= Tydaresum |:Tl =V QZTla’PJT =\ Qz(l _y)v

10X (l1-y)

The factorization formula for do,eqm|7ie, Q% x] is then
simply obtained from do,eqm[714, O%,y] using the general
relation in Eq. (11). One can easily check these relations for
the tree-level cross sections given in Egs. (13) and (16).

Thus, in the rest of this section, when discussing the resum-
mation region, we will primarily focus on do,esum[1, Py, ]
with the understanding that doeqm(714, Q% y] and
d6requm|T14» ©%. x] can then be easily obtained from the
relationships in Eq. (21) and the second line in Eq. (11),
respectively.

In Refs. [28,29], it was shown the factorization formula
for do,equml71, Py, y,] has the schematic form

do-resum[rl’PJTv yj] ~H®BQRJQ® S, (22)

where H is the hard function describing the physics of the
hard scattering, B is the beam function [26] describing the
physics of the perturbative collinear initial state radiation
along the beam direction and the initial state PDF, J is the
quark jet function describing the physics of the collinear
radiation along the jet direction, and S is the soft function
describing the physics of the soft radiation throughout the
event. The beam function can be further factored into a
perturbatively calculable coefficient and initial state PDFs

B~7TQf, (23)

where 7 describes the perturbative initial state collinear
radiation along the beam direction. Each of these functions
in the factorization formula is sensitive to physics asso-
ciated with a single energy scale so that one can minimize
large logarithms by choosing the corresponding renorm-
alization scales to have the scaling

Hy~H ™~/ 71PJT7

Correspondingly, for the 7;, observable, the renormaliza-
tion scales chosen to minimize large logarithms have the
scaling

p~N O pyopg e~ 71,00 us~Ti VO (25)

Using the renormalization group equations in SCET, the
hard, beam, jet, and soft functions are evolved to the common
scale u at which the cross section is evaluated. In the process,
large logarithms of 7,/P, or 7;, are resummed in the
corresponding resummation region 7; < P, or 71, < 1,
respectively.

MHNPJT’ ”SNTI' (24)

B. Momentum space resummation
factorization formula

The detailed form of the factorization formula [28,29] in
the resummation region, 7; < P;_, is given by

dUresum[Tl ’ PJTvyJ]

:UOH(§29/4§/4H)/dSJ/dlBJ(an“;,“J)

tB Sy
XS<71 ———Q—Jl;ﬂs)
J

x {ZLqu(tB,x*,ﬂ;ﬂB>+ZLqu(tB7x*7ﬂ;ﬂB) :
q q
(26)

where 6, and x, are given in Eq. (17) and we have defined

2

P
fZEX*\/EP] e_)’]:#’ (27)
r 1 =P g
7
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and field theoretic definitions of the hard (H), jet (J), beam
(B,5)> and soft (S) functions can be found in Appendix A
in Ref. [29]. The quark or antiquark beam functions (B, ;)
are matched [26] onto the PDFs as

Bq,(}(tB, xv ,Ll,,uB)

ldz X
:Z/ _I<q,<‘z)i(tB,EvﬂéﬂB>fi/p(Z’/‘B)’ (28)

i Jx L

where the Z ; or Z; are perturbatively calculable matching
coefficients and the index i runs over the possible initial
parton species in the proton, including the quarks, the
antiquarks, and the gluon. The factorization formula
presented in Refs. [28,29], explicitly included only the
case of single-photon exchange in the hard scattering. The
result in Eq. (26) is extended to also include the contri-
bution from single Z-boson exchange in the hard scattering
through the L, ; coefficients [30]. Note that the hard, jet,
beam, and soft functions include their renormalization
group evolution from their natural scales pg, uy, ug, and
us, respectively, to the common scale u. The PDF in
Eq. (28) is evaluated at the up scale using the standard
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. By
charge conjugation and quark flavor symmetry of QCD,
the quark jet function J is the same for all light quark and
antiquark flavors so that J,(s;, uspy) = J5(55, s py) =
J(sy, p; uy) and is thus factored out of the sum over quark
and antiquark flavors. The soft function appearing in
Eq. (26) is defined in terms of the generalized hemisphere
soft function [70,79] as

S(Tl’/";/”S):/dkB/koé(Tl_kB_kJ)S(kakJ’,“;MS)'

(29)

The generalized hemisphere soft function S(kg, k;, u; pis),
appearing on the rhs above, is a function of two kinematic
arguments kp and k;, corresponding to the contribution to
7; of soft radiation grouped with the nuclear beam and jet
directions, respectively, as determined by the 1-jettiness
algorithm used to calculate 7, in Eq. (4).

In the region pg ~ 71 ~ Agcp, the soft function becomes
nonperturbative and is modeled as a convolution between
the perturbatively calculable partonic soft function and a
phenomenological model function (F,.q) as

S(e1.ps) = / S (71 — 1t i5) (1), (30)

with the normalization condition

/duFmod(u) =1 (31)

This convolution structure ensures that the soft function
reduces to the perturbative partonic soft function in the
region 7; >> Aqcp, Up to power corrections in Agcp /7. We
choose a default parametrization for F,oq(u) as [28,29,31]

Fryoa(u) = Na.b.A) <E> “Exp {— s X b)z] . (32)

A A 2

where a, b, and A are free parameters and N(a, b, A) is a
normalization factor that ensures the normalization con-
straint in Eq. (31). One might also consider analysis using
shape function models that are expanded in a set of basis
functions [80,81]. In our analysis, we work with the default
parametrization in Eq. (32). We note that, in general, the
shape function F™4(u) can depend on the beam and jet
reference vectors used to define the 1-jettiness observable.
Following the analysis in Ref. [30], in Appendix F we
present an analytic formula in Eq. (F15) that explicitly
shows how the beam and jet reference vector dependence
can be incorporated into the shape function model F™4(u).
However, since the focus of this work is on pushing the
accuracy of the perturbative results, we use the simplified
model in Eq. (32) which ignores the dynamical dependence
on the jet reference vector. We leave a more detailed
phenomenological analysis of shape function models that
include this dependence for future work. We also note that,
in general, the nonperturbative soft function effects will be
different for the 7, and 7, distributions. This difference can
arise because of the difference in the measurement function
at the operator level for the nonperturbative soft function,
corresponding to the difference in the definitions of 7,
and 7y,, as seen in Egs. (4) and (7), respectively. For
simplicity, in this work, we choose to also implement
nonperturbative effects for 7;, by just using the non-
perturbative model parametrization in Eq. (32), but with
appropriately different values for the a, b, and A param-
eters, and using Eq. (21).

C. Position space resummation factorization formula

The factorization formula in Egs. (26) and (28) can be
written in terms of the Fourier transformed position space
objects. The momentum space beam, jet, and soft functions
are related to their position space counterparts by the
Fourier transforms

dyg .
I(‘I,(_J)i(thx»/"B) :/Z—;elthBI(q-é)i()’Bvx»ﬂB)v

dy; .
J(sy 1) = 2—7;61””1()’11#1),
dyg .
Sterons) = [ G2 e S(vsons). (33)

In position space, the renormalization group evolution
becomes multiplicative so that the beam, jet, and soft
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functions can be evolved to the common scale y from their
natural scales at ug, p;, and ug, respectively, as

I(q.q)i(J’B,X»ﬂWB) = UB(anu’ﬂB)I(q,(‘])i(yBsxy/lB)’
Jypspy) = Uy(yys s )T (g 1),
S(ys. i ps) = Ug(ys. s pis)S(ys. hs)- (34)

where Up(yp. u.pp), U;s(ys.p.py), and Us(ys, p. us) are
the position space evolution factors for the beam, jet, and

soft functions, respectively. Similarly, the hard function
also has a multiplicative renormalization group evolution

H(E wsppy) = Uy (& p, py)H(E g, (35)
|

Ao esum [Tl ’PJT’yJ] :GOUH(gzaﬂ’ﬂH)H(gzaﬂH)

where Uy (&, u, uy) is the corresponding hard function
renormalization group evolution factor.

Furthermore, the momentum space convolution between
the partonic soft function and the model function in
Eq. (30) becomes a simple product in position space:

S(yr’ /45) = Spart(yrv/’lS)Fmod(yr)’ (36)

where the position space model function is given by the
Fourier transform

Fanoaly:) = / due™ " F g (). (37)

In terms of these position space objects, the factorization
formula in Eq. (26) now takes the form

AL y y y
X/Z_ﬂ:e e lUJ (Q_T’/’lnul) US(yrnu’/’lS)UB <_Tv/"aMB J _fnul Span(yrvMS)Fmod(yr)
J

Qu QJ

ldz Ve Xy ldz Ve X.
S {;ZL‘]/X* ?Iqi <Q_Bv?7ﬂ3)fi/p(zvﬂ3>+;ZLZ]L* ?Iqi <Q_B’?vﬂ3)fi/p(zwuli’>:|’ (38)

where all the hard, beam, jet, and soft functions are
evaluated at their natural scales and the explicit renorm-
alization group evolution factors evolve them to the
common scale p.

More details of the factorization formula in Eq. (38) can
be found in Appendixes C-E which give explicit expres-
sions for the various RG evolution factors up to N3LL,
explicit expressions for the hard, beam, jet, and soft
functions up to O(a?), and a master factorization formula
useful for numerical implementation, respectively.

D. Profile functions

As discussed in Refs. [67,82], one must be careful in
estimating the perturbative uncertainty in the matched
spectrum of Eq. (18). In particular, the fixed-order contri-
bution de™©, appropriate in the fixed-order region where 7, ~
P, orty, ~ 1,depends on the single common scale, yrp. On
the other hand, the resummed cross section depends on
multiple scales; the hard function scale py ~ ppg and the
beam, jet, and soft function scales, ug, 4y, and ug, respec-
tively. These are the scales that correspondingly minimize
large logarithms in the hard, beam, jet, and soft functions.
The matched spectrum should approach the fixed-order
result, do'©, in the fixed-order region. This requires that
resummation turns off as one approaches the fixed-order
region and the scales yup, p;, and pg smoothly converge to
Uro ~ g This is done by introducing profile functions [30]
which make the scales pp, iy, and pug functions of z; or 7y,,.

We follow the parametrization of profile functions and the
corresponding scale variations given in Eqgs. (201)-(204) of
Ref. [30]. The profile functions in Ref. [30] were imple-
mented for the 7, distribution. We adapt the same para-
metrization for the 7; distribution as well, but with the
appropriate generalization as described below. The hard,
beam, jet, and soft scales are given by

Hu = Hro = H,

ﬂB,J(x) = |:1 + 63‘19(@ - x) <1 - %)2] V /"ﬂrun(x’/u)’
2
s(x) = [1 T esb(ty ) (1 —t> }umnu,m, (39)

where the argument, x, of the beam, jet, and soft scale
profile functions is given by
X=1/p or x=1,, (40)

for the 7, and 7, distributions, respectively. Similarly, the
hard scale has typical size

py ~ Py or uy~+ Q% (41)

for the 7, and 7y, distributions, respectively. The ep ; 5 are
parameters that can be varied to estimate the perturbative
uncertainty associated with the variation of the beam, jet,
and soft scales yp ; 5. For x > 13, all scales are set equal to
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the hard scale, ug = p; = pg = u. The function gy, (x, u)
is given by

U+ ax* /1, X<t
2ax+b, H<x<t
ﬂrun(x’”) - 2 (42)
p—a(x—13)°/(ts—1;), h<x<t3
H, X > t3
where the parameters a and b are given by
- = t t
__Ho—H ’ p = M Ho(tr + 3)' (43)
hh—thh—13 h—thh—13

We note that the profile function parameters a and b above
are unrelated to those that appear in the soft function model,
Fmod () in Eq. (32). The parameters in the profile functions
are chosen [30] to take on the values

3GeV
tl = N
H

1o =2 GeV, =04, t;=06. (44)

The central curves for the 7, and 7, distributions correspond
to profile functions with the choice ey = e; = eg = 0, along
with y = uy, where we set uy = Py and py = @
respectively. The scale variations to estimate the perturbative
uncertainty are employed by varying the parameters y, e ;,
and ey in the profile functions, corresponding to varying the
scales puy = pipo, Up.y, and pg, respectively. The variations of
the hard, beam and jet, and soft scales are, respectively,

hard(ﬂH) by :ZilQH’ €B.J :0’ €s :07
. 1 1
beam,_]et(ﬂBJ):M:QH, EB’J:ig,ig, 6520,
1 1
SOft(HS) : H= QH7 eB,J :0’ €s= :tgv:tga (45)

where we have defined Oy = P, or Qy = \/@ for the 7,
and 7, distributions, respectively. Note that for the beam/jet
and the soft scales there are two separate trumpet scale
variations ep ;g = +1/3 and ep ;5= +1/6. The scale
variations for the different scales are considered one at a
time and the uncertainty band is the result of adding these
scale variations in quadrature. Figure 2 shows the profile
functions for yy, up s, and pig, along with their corresponding
scale variations as described above, for the 7 (left panel) and
7y, (right panel). These profile function curves are for the

choice iy = P, = 20.0 GeV and pt; = /0% =1/60.0GeV
for the 7; and 7, distributions, respectively. We see that the
profile functions smoothly connect the resummation and
fixed-order regions; i.e. the yuy, pig ;, and pg scales have the
appropriate scalings in the resummation region and smoothly
converge in the fixed-order region.

We note that in the subsequent section on numerical
results, for the 7, distribution we choose Qy = /& in
Eq. (45), instead of Qy = P;_, corresponding to minimiz-
ing logarithms of the exact argument appearing in the hard
function in the resummation region, as seen in Egs. (26)
and (27). This choice still has the same scaling \/éZ ~ Py,
as seen in Egs. (A3) and (A6). We have also checked that
both choices give consistent results.

IV. NUMERICAL RESULTS

In this section, we provide numerical results up to the

implemented by varying the parameters as N3LL+O(a?) level of accuracy. For the 7, spectrum we
x x x x x X X 20 ——————F—————— 17—
40t .
. I ]
HH 15k ]
L 4 b ]
30+ " Uy ] HH
[ ] " Uy
u 8
%‘ Hs % t 1
o o 1or " Hs ]
3 4 X r 1
PR S S TR SN S S S S [ S S S S | 0 L 1 1 1 1 1 1
15 20 25 30 0.0 0.2 0.4 0.6 0.8 1.0

71[GeV]

FIG. 2. Profile functions for yg, pup s, and ug, along with their scale variation bands, for the 7; (left panel) and 7;, (right panel)

observables. The plots correspond to the choices Oy = P;, =20.0 GeV and Qp = V0? =+/60.0 GeV for the 7, and 7,
distributions, respectively. The scale variation bands are generated using the scale variations in Eq. (45).
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provide numerical results for the following choice of
kinematics:

71 v/5=90.0GeV,
yy=[-2.5.2.5],

P, =[20.0 GeV,30.0 GeV],
(46)

corresponding to typical EIC kinematics. For the 7y,
spectrum we choose

71,0 /5 =319.0 GeV,
y=[0.2.0.6].

02 = [60.0 GeVZ,80.0 GeV?],
(47)

corresponding to typical HERA kinematics. For the fixed-
order calculations, we use the anti-k7 jet algorithm [74]
with jet radius R = 1.0 and numerically implement them
using the NLOJET++ [51] program.

First, we provide results at the partonic level, ignoring
final state hadronization effects. In Fig. 3, we show the
dot,., (blue) and do™ (red) contributions to the N’LL +
O(ay) matched cross section in Eq. (18). The left and right

1x105:"' AL B R A B L AL L AL AL B L AL B R AL B
i Partonic t4-Distribution
® O(ag) Fixed Order
= N2LL Expanded to O(as)

Vs =90.0 GeV

P,,=[20.0, 30.0] GeV
V) = [-2.5, 2.5]

5x10%[

1x10* F
5000 f

do/dt fb/GeV

1000 £
500 F

T

FIG. 3.

do/dt, b

panels correspond to the 7; and 7;, distributions, respec-
tively. As expected, in the small 7, (z;,) region where the
fixed-order result is dominated by the singular terms, do™©
at O(a,) approaches doto,, expanded to O(a,). In the
region around 7; = 5 GeV (7, 2 0.7), the contribution of
the singular terms to the O(a) result goes negative, and the
nonsingular terms in de"™© at O(a,) become important.

Similarly, in Fig. 4 we show the d6t9,,, (blue) and do™©
(red) contributions to the N3LL+O(a?) matched cross
section in Eq. (18). Once again, as expected, we see that
in the small 7, (r,) region, do™© at O(a?) approaches
dotQ,, expanded to O(a?). Once again, in the region
around 7; 2 5 GeV (71, 2 0.7), the contribution of the
nonsingular terms in do™© at O(a?) become important.

In Fig. 5, we show do'© at O(a?) (red), do,equm at N°LL
(blue), and the matched result, do, at N°LL + O(a?)
(black) for the z; (left panel) and 7, (right panel)
distributions. We note that as expected, the matched
distribution approaches the resummation result for small
7, or 71, and the fixed-order result for large z; or 7y,.

1x10% T T T
5107 Partonic 14 ,—Distribution

r ® O(ag) Fixed Order |
107k = N2LL Expanded to O(as) |
5x 10‘3;

[ /s =319.0 GeV

Q%=1[60.0, 80.0] GeV?
1x10°F y=[0.2,0.6]
5x105F
0.0 ‘ 0i2 ‘ ‘ ‘ 0i4 ‘ ‘ ‘ 0i6 0.8

Ua

Comparison of the resummation expanded singular contribution (blue curve) and the full O(«;) prediction from NLOJET+-+

(red curve) for both z; (left panel) and 7, (right panel). Good agreement is observed, validating our computational setup.

1x105:"" "N""x"."x"":":'x'."'x""
Partonic t4-Distribution

® O(as?) Fixed Order

» N3LL Expanded to O(as?)

5x104F

1x10*F

% ; Vs =90.0 GeV
O  5000F
8 [ P,,=[20.0, 30.0] GeV
5 Ys=1-25,25]
3

1000 |

500 F

]

do/dty , fb

1x108 —
5x107 Partonic 14 ;—Distribution
® O(as?) Fixed Order |
» N3LL Expanded to O(as?) |

1x107 F

5x10F
: /s =319.0 GeV
Q%= [60.0, 80.0] GeV?
110} y=[0.2, 0.6]
5x10%F
0.0 0f2 ‘ ‘ ‘ 0f4 ‘ ‘ ‘ 0f6 0.8
T1a

FIG. 4. Comparison of the resummation expanded singular contribution (blue curve) and the full prediction from NLOJET++ up to
O(a?) (red curve) for both 7, (left panel) and 7;, (right panel). Good agreement is observed, validating our computational setup.
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1x10° Fy L S B R
5«10t \ Partonic t4-Distribution
= O(as?) Fixed Order
= NLL
= NBLL+O(as?)
Vs =90.0 GeV
P,,=[20.0, 30.0] GeV
v, =[-2.5, 2.5]

1x10*
5000 {!

do/dty fb/GeV

1000 -
500 -

P\ S, P I

12
7[GeV]

FIG. 5.

1x 108

Partonic 74 ;—Distribution
u O(aSZ)Fixed Order

5x107

1x107 £ = ACLL
3 2
& ol = N°LL+O(as?)
5 Vs =319.0 GeV
s Q%=1[60.0, 80.0] GeV?
1x10° y =[0.2, 0.6]
5x10°

0.4 0.6 0.8

0.0 0.2

Ua

As seen in the left (right) panel, for the 7, (z;,) distributions of Eq. (18), the N°LL + o2 (black) matched distribution

approaches the N3LL (blue) and O(a?) (red) results in the 7, < P 7, (T1e < 1) and 7y, ~ P;, (11, ~ 1) regions, respectively.

In Fig. 6, we show the matched 7; (left panel) and 7y,
(right panel) distributions, corresponding to Eq. (18), along
with their scale variation bands at the N’LL + O(a;)
(green) and N°LL + O(a?) (red) levels of accuracy.

In Fig. 7, we show that the 7, (left panel) and 7, (right
panel) distributions in the resummation region, normalized
to the integral of the central curve over the displayed
region; i.e. the curves generated through scale variation are
divided by the same normalization factor used to normalize
the central curve to unity over the displayed range. We see
good convergence in going from the N’LL to N’LL
resummation curves. We also display the corresponding
results of Pythia8 [83] simulations (blue dots) and find
relatively good agreement.

Finally, we perform a preliminary study of hadronization
effects using a soft function model, following Eqgs. (30)—(32).
In Fig. 8, we show the 7, (left panel) and 7;, (right panel)
distributions (red curve), along with their scale variation
bands (tan color), in the resummation region where non-
perturbative effects are important (see Table I). The results
are normalized to the integral of the central curve in the
displayed region. The results are generated through a

1x1pr——m——————————————————— 77—
Partonic t4-Distribution
= N3LL+O(as?)
® N2LL+O(as)
v's =90.0 GeV
P, =1[20.0, 30.0] GeV
Yy =1[-25,2.5]

5x10*

1x10*
5000 f

dol/dt, fb/GeV

1000

500 F

convolution of a nonperturbative soft function model with
the perturbative N3LL resummation curve as in Eq. (30). We
also show the results from Pythia8 (blue dots) with hadroniza-
tion turned on. As mentioned earlier below Eq. (32), in
general one expects different nonperturbative effects (soft
function models) for the z; and 7, distributions due to the
correspondingly different measurement functions at the
operator level. For the 7; distribution, the results where
generated using model parameters with values a = 1.0,
b =045, and A =0.5GeV in Eq. (32). For the 7y,
distribution, we used a = 1.0, b = 0.75, and A=0.5GeV.
We see that for these choices of the soft function model
parameters there is good agreement between the Pythia8
results and the theory predictions. We note that the scale
variation band for the 7|, distribution (right panel) in Fig. 8 is
relatively large because of the choice of a relatively small
hard scale, u% = Q% = [60.0,80] GeV>. The hard scale
variation around this small central value leads to a relatively
large variation in the value of the strong coupling. We have
checked that at larger Q7 the scale variation is much smaller
and similar to what is seen for 7;, which is evaluated and
varied around a larger hard scale uy ~ P;, = 20.0 GeV.

108

T ————T T T

Partonic 14 ;—Distribution
= ABLL+O(as?)
= N2LL+O(as) 1
Vs =319.0 GeV

Q%=1[60.0, 80.0] GeV? 1
y =[0.2, 0.6]

do/dr, fb

7[GeV]

0.3 0.4 0.5 0.6 0.7 0.8

Ta

FIG. 6. Partonic resummed results for 7, (left panel) and 7,,, (right panel) at the N’LL + O(a?) (red) and N’LL + NLO (green) levels

of accuracy.
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FIG. 7. The 7; (left panel) and 7, (right panel) distributions with scale variations normalized to the central curve over the displayed
range, at the N’LL (green) and N3LL (red) level of accuracy.
FT T T L B R B L R L R R B R R R I B R g 77— T
o Hadronic t,-Distribution ] [ Hadronic 14 ,—Distribution 1
06f ® Pythia 1 e ® Pythia ]
05; = APLL + NP Model ] I = N3LL + NP Model ]
% ol ¥/5=90.0 GeV 126 /5=319.0 GeV ]
R Puz1200.3001GeV 3 % | Q2= [60.0, 80.0] GeV? |
E 03k ys=[-2.5,2.5] S L y=[0.2, 0.6] ]
5 f 17 1
= 02F ] L
oat’ 1 2r ]
oo i |
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74[GeV] Tya
FIG.8. The 7, (left panel) and 7,, (right panel) N*LL+soft function model distributions with scale variations (tan band) normalized to

the central curve (red) over the displayed range, compared to pythia data (blue dots).

We note that these results in the nonperturbative region
are only meant to demonstrate that one can easily find an
appropriate soft function model to describe the Pythia8
hadronization effects. We leave a more detailed and
rigorous best-fit extraction of the soft function model
parameters for future work. Relatedly, there can also be
important renormalon effects in the soft function [81,84]
that can affect the extraction of the soft function model
parameters, and is also left for future work.

The numerical results given in this section provide a
benchmark for further analyses using simulations for the
proposed EIC and data collected at HERA.

V. CONCLUSION

We have provided results for the 1-jettiness spectrum in
DIS, up to the N’LL+ O(a?) level of accuracy. In
particular, we considered two types of 1-jettiness distribu-
tions, dol[zy, P;, . y,] and do[ry,, Q% y], where 7; and 7y,
denote two different definitions of the 1-jettiness global
event shape. We also discussed the differences and

complementarity between these two types of 1-jettiness
distributions. In the resummation region, corresponding to
energetic final state radiation being closely aligned with
either the beam or leading jet directions, a factorization
framework is used and corresponding analytic formulas are
provided, up to the N*LL level of accuracy. In the region of
very small 1-jettiness, where the distribution becomes
sensitive to the nonperturbative soft radiation throughout
the event, a phenomenological model is employed to
describe nonperturbative effects. In the fixed-order region,
corresponding to energetic final state radiation at wide
angles from the beam or leading jet directions, fixed-order
perturbative QCD 1is appropriate. Fixed-order results up to
O(a?) are implemented using NLOJET + + [51] program
and smoothly matched with the factorization framework in
the resummation region. We also provided a comparison of
the theory predictions with Pythia8 simulation results,
including a preliminary study of hadronization effects.
These results allow for further detailed phenomenological
studies of nuclear structure, nuclear medium effects, and a
precision extraction of the strong coupling. The results
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presented here can be adapted to analyses with HERA data,
ongoing EIC simulation studies, and eventual real data
from the EIC.
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APPENDIX A: RELATIONSHIP BETWEEN 7,
AND 7;, IN THE RESUMMATION REGION

In this section, we derive the relationship in Eq. (21)
connecting doyeqym(t14. Q%.y] and doeqm[1. Py, y;]. In
the resummation region (7; < P, or7j, < 1), up to power
suppressed corrections, one can identify the 1-jettiness jet
momentum as

P;=q+xP, (A1)
corresponding to the momentum of the quark or antiquark

emerging from the hard parton-level scattering. Thus, the
partonic Mandelstam variables can be expressed as

§ = (k+xP)?,
i:l == (k—P1)2,

P= (P, xPP = ¢ = -0
(A2)

which can in turn be expressed in terms of s = (k + P)?,
Py, and y; as

>

xs i=-0%=-x\/sP; e,

it =—\/sP; e, (A3)
where we have ignored terms proportional to the electron or
parton masses. Furthermore, in this limit of massless
electrons and partons, the partonic Mandelstam variables
satisfy the constraint

§+i+a=0, (A4)
from which we can solve for the momentum fraction of the
struck quark or antiquark to get the result

PJTeyJ

x:\/_TJTe_yJ.

(A5)

Using this result for x in Eq. (A3), we can write Q? and the
inelasticity parameter y = P - q/P -k = Q*/(xs) as

P P
2 N A
Q 1_%e—y1’ Y N (A6)
N

Note that &2 in Eq. (27) is equivalent to Q” expressed in terms
of \/s, P;,, and y,, as above in Eq. (A6). Inverting these
equations, we can write P;_and y; in terms of Q% and y as

1 2(1 -
Py =/ 0*(1-y), yjzilniQ (yzs y),

from which we obtain the Jacobian for the change of
variables from (P;_,y;) to (Q?%,y):

(A7)

2

dQ*dy =2y dP; dy,. (A8)

Iy
From the definitions of z; and 7, in Egs. (4) and (7),

respectively, one can show that they are related to each
other as

1 —
Tla = \/@11 (QB - QZ’ QJ - Q2) s
1
ﬁd’[l . (Ag)

Putting together Eqgs. (A8) and (A9), we get

dTla =

2y

iy

which along with Eq. (A7) gives the final result of Eq. (21).

dr,,dQ*dy = dr,dP; dy,, (A10)

APPENDIX B: USEFUL IDENTITIES

The plus distributions £,(z), for n > 0, are defined as

_[0(z)In"z
o = [
[H(Z - A)n"z 8z p) In"*+1j

1m p P

p—0

| @

for any dimensionless variable z. Using this definition, for
a€R and a > 0, via explicit calculation the Laplace
transform of £, (z) is given by

n+1
1 - (_1)n+1—k(n+1>
k

x (Ina)"+1* /0 ¥ due*(Inu)t.  (B2)

This result can be analytically continued to a — iy, for
yER, to get the Fourier transform of the L,(z)
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distributions, which are useful for computing the Fourier
transforms of the beam, jet, and soft functions in Eq. (33).
Explicit results for the cases of n =0, 1, 2, and 3 are

/ " dze Lo (2) = ~L,
0

o . 1 7
dze 1z — _L2
A 2™ L (z2) 3 + o
0 . 1 7> 2
dze VL =—-L3-—"L-2¢(,
A e L,(2) 3 cL—36
® gLy = A E e 425 (B3)
, ¢ Ty 4 g0
where we have defined
L =In(iye’s), (B4)

Euler’s constant y; can be expressed as the definite integral:

Vg = — /oo due™1Inu, (B5)
0
and {; is the Riemann zeta function defined by
=1 1 [ x*!
= — == dx, B6
& ;ns F(S)A -1 (B6)

for Re(s) > 1 and by analytic continuation elsewhere.
Numerically, yg ~0.5772 and {3 ~ 1.202. The results in
Eq. (B3) follow from using the identities:

% 2
/ due™"In’u = y2 + 5
0
2

/ " duentu =~y —yp o= 25,
0 2

4

0 3z
/ due™"In*u = y‘}g + y%zzz + 8ypls +—-

; 20 (B7)

Another useful plus distribution is
0| _ . [0x=P) g
o] i sw-p ] ey

which can be used to show
ewYE . Q(Z)
VeVE)O — dze 2y .
(lye ) F(—a)) / “ LHW} +

APPENDIX C: FIXED-ORDER RESULTS

(B9)

In this section, we collect results for the hard, beam, jet,
and soft functions up to the O(a?) level of accuracy in
perturbation theory. These results are needed to carry out
resummation of the 7, and 7, distributions at the N3LL
level of accuracy, using Eqgs. (38) and (21), respectively.

1. Hard function
The hard function is given by

H(Q? ) = |C(Q p) %, (C1)
where C(Q?, u) is the Wilson coefficient that arises from
matching the QCD current operators in Eq. (12) onto the
corresponding SCET current operators. The fixed-order
perturbative expansion of the C(Q?, ) Wilson coefficient
is expressed as

C(Q%p) = i [%i‘)]"cw.

n=0

(C2)

The result for the Wilson coefficient is known up to O(a?)
[60,61]:

cO =1,
2
cl) = CF(—L2+3L—8+6>,
C(z) :CF(CFHF+CAHA+TanHf)’ (C3)

where L = lng—z2 and the Hp 4 ; coefficients are defined as

L4 3 25 7 5 45 372
255 Tx* 83x%
I A 1)\
s 2 7360 &3
11 233 z? 2545 11x%
Hy=— L3+ (=222 )24+ (220 7 262, )L
479 +< 18+3> +<54+ 9 6€3>
_51157_3377z2+11n4+ﬂ§
648 108 ' 45 ' 9 °¥

4, 38 418 47\ 4085
Hy=——L34+ 2124 (—— 2= | L+ ——
A (27 9> 162
2372 4
Z¢a. 4
77 +9C3 (C4)

The hard function can be can be correspondingly
expressed as

H(Q u) = |C(Q* u)|* = i {M} "H,(Cs)

— 4

where the coefficients H", expressed in terms of the c)
coefficients, up to O(a?) are given by

HO =1,
HWY =200,
H? =202 1 (C(l))Z.
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2. Soft function

The fixed-order perturbative expansion of the soft function in momentum space can be expressed as

- as(ﬂS) "
S(ty,ps) = —22 SO (g, ). c7
(t1.1s) ; { 4 } (t1.1s) (C7)
The results up to O(a?) [70,71] are given by
S(O) = 5(11)’
7> 16 B
0 = e[S o) - 22, e/m)]
7
@ _ g4c2[_3" 1 ; )1 . ! .
S 4C ——5(’[1)+64C3:£0(11/ﬂ)—12ﬂ' :£1<71/ﬂ)+32j£3(’[1/ﬂ)
40 f f Jz
2¢ n’ 1 1 .
+4n;Cp {735(71) 97 (Tl/ﬂ)+_?£2(71//‘):|
a 11¢ 535 3352 17xt 3414 11z 16¢3 404 112> 585
4C,C - ) —_—t - —L
TaCa FK240 9 81 216 144 18 ) (m) + ( 83 271 6 3 ) o(n1/R)
167° 268 1 . 88 44\ 1 .
+ <T - 7—4” ) F Ly(t /i) + <?—?> :52(71//1)]
20 37z 62§ 27 112 321
+4Cpn;Ty Kgl +?—T3>5(71) + (T_E —Loy(7,/ft) +——£ (r1/i) ———52(71/#)] (C8)
|
where we have defined the scale 2. [, ﬂ
o) =Y S N CE
~ 2q - q n=
H = HsTs, rs = QBQ L (C9)
BxJ The results are known up to O(a?) [60,61,63]:
The fixed-order expansion of the soft function in position
! JO —1
space can be obtained from the momentum space result ,
in Eq. (C7) by inverting the Fourier transform relation in | ) 272
Eq. (33). The corresponding perturbative expansion in JW = Cp <2LJ +3L;+7 - 3>,
position space can be expressed as
J@ = Cp(CpJp+ Cada +Tenglg),  (Cl4)

S(yers) = i [M} SO (yeps),  (C10)

— 4

where the S" (y,, ug) coefficients are functions of Ly =
In(iy,fie’r). This is apparent through the identities in
Eq. (B3) for the Fourier transforms of the 1/aL,(7,/j)
distributions that appear in Eq. (C8). Using Eq. (C9), we
can write the useful relation

ZS:Ls+lnrs,

and Jp, J4, and J; coefficients are defined as

37 4 45
Jp=2L4~ 6L3+(7—%>L3+(—74-471'2—2453)LJ

205 972> 61zt

2 B +— 90 —6¢5,

22 367 27z
(Cll) — L3 = L2
Ia=mglit\g 3 )b
where we have defined
3155 1122 4
Lg = In(iy puse’®). (C12) t\ =g T 1405 )Ly
53129 155> 37z
T 18E,
3. Jet function 6438 36 180
2
The fixed-order expansion of jet function in position  j f_§ L3—§ L2+ <% 4i> L J_4_057 137 . (C15)
space is parametrized as -9 9 27 9 162 9
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where the logarithm, L, is defined as
L; = In(iy,pje’). (C16)

4. Beam function

The beam function is given by the convolution

ldz X
Bitxm) =Y [Tz, (Yom). €
j X

T (1. x, 1) = 8(1)8,,6(1 - x),

1 .

1 ]

Il(])(t’ x’ﬂB) ) ’C](t/lu%)roél]é(l -
2 Hp

79 (o) =+ £3(e/3) T 5
/4

+4Z/

—2(rpo +Bo)P

1 , N S
+ —zﬁo(t/u%){ ((F6)2C3 + Fér%oﬁ -

(b + 290159 43 /

The quark flavor diagonal and universal structure of QCD
interactions results in two distinct types of nonzero match-
ing coefficients for each quark flavor ¢, denoted by
Iqq(t, x,up) and qu(t, x,ug). Explicit expressions for

the functions Il(-})(x) and If-? (x) are quite long and can
be found in Ref. [68]. Similarly, one can also find explicit
expressions for the splitting functions P (x) and P ( )
in Ref. [68]. The position space matchmg coefﬁc1ents can
be obtained by inverting the Fourier transform relation in
Eq. (33) and making use of the identities Eq. (B3) for the
Fourier transforms of the 1/upL, (t/u%) distributions that
appear in Eq. (C19). The corresponding perturbative
expansion in position space can be expressed as

Ilj VB> X, HB Z |:

} 70 (ypoxopg),  (C20)

where the 7 g;'>(y3,x, up) coefficients will be functions of

Ly = In(iygupe’®). (C21)

1
x) +— Lo(t/ug

@> 5,;6(1 —x) —

()P <Z> +4pP) (x)} + 8141 (x).

where the matching coefficients have the perturbative
expansion

Zij(t.x,up) = i’: [a‘l(:f)] nI,(';l)<l‘, X, Ug). (C18)

n

Up to O(a?) [65,68], the expressions for the matching
coefficients are given by

~T805,.5(1 - x) + 2P (x)} +8(1)21) (x),

2
o

31 =)+ Lo/ - (S 412 )01 =) + 32 )}

2
Ly(1/p3) {(r ——+ (ryy2 730)° i4) +yB0ﬂ°)5,,5(1—x)+2r11< (%)

()

7 0
YRS

(C19)

APPENDIX D: RENORMALIZATION
GROUP EVOLUTION

In this section, we collect useful results needed to carry
out resummation of the 7, and 7, , distributions at the N’LL
level of accuracy, using Eqgs. (38) and (21), respectively. In
particular, we collect the results for the RG evolution
factors appearing in Eq. (38).

1. Hard function

The RG evolution equation for the hard function is
given by

d
M@H(QZ,M) = yuH(Q% n), (D1)
where the anomalous dimension yy is given by
YH =T+ (D2)

where y,. is the anomalous dimension of the Wilson coef-
ficient C(Q? u) which satisfies H(Q?, u) = |C(Q?, u)|>.
The general form [85,86] of the anomalous dimension is
given by
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T;-T;

Ve = ZlTycusp as

(i.J)

(D3)

where s;; = 20;;p; - p; + i0 and 6;; = +1 if the momenta
p; and p; are both incoming or outgoing and ¢;; = —1
otherwise. The sum over i, j runs over the external partons of
the corresponding SCET operator and (i, j) denotes unor-
dered tuples of distinct parton indices. In our case, the SCET
operator is just the photon or Z-boson current operator
involving two quarks or antiquarks as the external partons.

Yeusp 18 related to the cusp anomalous dimension in the
fundamental and adjoint representations I, (a,) and
Ty (), Tespectively, as

Téusp(@) _ Tusp(ay)
ycusp<a ) CF - CA .

(D4)

For example, I'f,, (a;) and A, (@) correspond to the case
with all external lines being quarks or antiquarks and all
|

cusp __
70 - 4’

. 67 20
" :4K3—§)CA—§TFW],

external lines being gluons, respectively. The cusp and
noncusp anomalous dimensions and the beta function have
expansions in a, given by

n=0
ai 1 — N~ (%" g
Y [as] ;(477 n oo
S a n+1
ﬁ[as] = —2ay (E) P (DS)
n=0

For N’LL resummation of 7, and 7;, we need Yeusp» ¥4, and
p to four loops, three loops, and four loops, respectively,
along with O(a?) PDFs. Here y¢ denotes the noncusp
anomalous dimension contribution form light quarks or
antiquarks.

The coefficients of y.,, in Eq. (DS), up to four loops
[72,87,88], are given by

" 245 1347’ 11;: 418 407*> 56 55 16
7= 4{@( 3 7 T a5 C3> +CuTrpny <——+7—?C3> + CrTrny (‘@‘F 1653) —ﬁTF”f]
0 _ 56| 3 13095 112%¢; (3 45185 42139 55257°  451z* 313z
432 144 16 288 10368 7776 = 5760 90720
et (3615 172y 13185 24137 63572 1lx
MEA\ T sa 36 72 10386 ' 1944 2160
290y w2y 5¢s 17033 552 11zt L (37C5 5¢s 143
TpCpCy| =22 223 425 - TpCh( =22 -3
FrtECr A( 9 "6 4 584 288 720) M\ 24 T2 Togg
35¢, T2t 1922 923 _logs 299 265
ZTZC _ _ 2T2C 3T3 _
TtE A<27 1080 972 '5184) TR (g +180+648 TtE 81+27
danCddeCd 4'3 34}% 554’5 7'[2 317[ dabcddabcd ”2 443 52:5
A (223 - - L B S RN D6
TN, 6 2 T2 127 se0) T N, 6733 (D6)
The coefficients of y? in Eq. (D5), up to three loops [61,89], are given by
]/6]:—6CF,
961 11z 260 4>
]/i’ C ( 3+47T —48¢3)+C1:CA< 27 3 )+CFTan<7+T)’
167 3273 151 4107> 4947* 1688f; 1672
=C3(-29-67%— - 136 3 4480 CciC - . 3 _ 240
F< n ¢+ 7 T Cs)-f— A< -t t s 30 3 Cs
139345 716372 83z* 7052¢; 887 5906 527% 567*  1024¢
CrC3 | - - - . 3272 C2TyN - - s
+Cr A( 1458 243 45 9 9 55>+ FoE F( 27 9 27 9
34636 518872 44r*  3856(, 19336 8072 64¢
CrCyTpNp | — - CrT2N2 - -3, D7
+FAFF< 729 T 243 43 27 >+FFF<729 27 27) (D7)
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Finally, the coefficients of the f function in Eq. (D5), up to four loops [90-92], are given by

11 4
Po = ?CA - gTan,
34 20
ﬂl ?C - 3 CATfnf—4CFTan,
2857 205 1415 44 158
ﬂz = 54 C +Tfl’lf<2C - 9 CFCA 7 C2> (9 CF 27 CA)?
150653 44,5 39143 13645 7073 656¢;
b= Ci( 436 'T) + c/iTan<—8—1+ 3 ) PG 53—
4204 3524, 7930 224¢,
1352 704¢5 17152 448¢, 1232
CiT%n? CyCpTin> C,Tind C
v (27 9)+AF <243+9 +43AFf+3F
dj{”“idf"’”d 80 704¢, d“Fdedj””d 512 16644, ) d?,ded“Fde 704 512¢,
£ L | —— » —— e . (D8
TN, ot 3 )Ty, 9 3 )TN, 9 73 (D8)
|
/
The solution to the RG equations for the hard function in S(upop;) = — / s (uy) ﬂ}, [a] « da
Egs. (D1)-(D3) has the form in Eq. (35), where the hard ¥ ay(u;) pla] " as(u,-)ﬂ[a/] ,
function evolution factor has the form a(u) da
A(ﬂf’,“i) :_/( | m]’cusp[a]’
(i
UH(anu’ :uH) = CXP[4CFS(/1,/4H) - 2AH(/’£*/’£H)} ay(”f) da
> \ 26 Aan) Aulugop) == [ 2l (D10)
x (”g) , (D9) atu) Pl
Qo
The perturbative expansion of S(us,y;) needed for N*LL
where the functions S, A, and Ay are defined as resummation is given by
|
cusp 1 ycusp ﬁl ﬂl
S(psypi { ( ———1In )—l—(lug —> —r+Inr) +——In’r
agot) = 4/30 r 7~ g, ! 2py
2 2 cusp cusp 1— 2
S( <'Blzulsp ) l—r+rlnr)+ (ﬁ—é—&>(1—r)lnr— 'B—;—&—'Bl}/cusp—l- gu5p>( r)}
4r 070 0 Po 0 Po ﬂo}’o Yo 2
. [ o, (1) [(ﬁlﬁz BB <y§“" b B ﬂw“‘sp) pir )1 )
4x B 28y 280 \ryY B By Borg™) 2B
. < AT b 2 B ( 7 ﬂl) P _p y°““"> (11
o ﬂo BB\ Bo)  Bory™ ory™ 3
N <3ﬁ3 i B3P B B 7ﬂ1ﬁz) (1— 2
4p ZYCUSP By 4By Pory™  ABory A
PP B3 ﬁ%ﬁmp P }’CUSP) 1 - r]}
T\ 5 us; + S b D11
( B B By Borg™®) 2 (D1
the corresponding perturbative expansion for A(uy, y;) is given by
o as (i) (i B a(u)2[r2 B B (" B\ -1
= o ) P - (-5
s 1) =2, 4 \rg™ o 4r | 5™ Bo Bo\roT B/l 2
1 a, cusp cusp 2 9 o) cusp
_|: (/’4 ):| |:y(3:usp ﬁ_"’_ cusp <ﬁ__&> _&(ﬂ__ﬁ'f'ygusp)](’ﬁ_lp}v (D12)
3| 4r 7o 5 Po Po o 7o
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and, finally, the corresponding expansion for Ay (s, y;) is
given by

. N
Apsop;) —Zy—go{log”raigl) C%_%) =

LT ACR) )
4r Vg Bo Po yS Po 2 ‘

(D13)

2. Beam, jet, and soft functions

The RG equations for the beam, jet, and soft functions in
momentum are given by

d
ﬂd—ﬂBq(Lx,u) :/dt,?’B<t_t/n“)Bq(t/’xvﬂ)’
d !/ !/ /
MEJ(&M)I ds'y(s =", u)J(s", ),

d
p——S(tp) = /df’ys(f—f’,ﬂ)S(T’,u),

i (D14)

where the anomalous dimensions have the form

m@mz—%wmmm%awm%+%@wm,
nmm:—xwmmm;amma+ﬁ@wm,

me%mmmgmm+mwmxmm

where ji = prg and r is defined in Eq. (C9). The corre-
sponding RG equations for the position space for the jet,
beam, and soft functions, related to their corresponding
momentum space definitions as in Eq. (33), take the
multiplicative form

d
ﬂEJ(y’ﬂ) =y, ) (y. ).

d
ll@Bq()”x’ﬂ) =yp(y. 1)B,(y. x. ),

ud%S(y,u) =rs(y:)S(y. 1), (D16)

and the position and momentum space anomalous dimen-
sions are related by

ve(y. 1) = / dre™yp(t,p),
viy.pu) = / dse ™y, (s, p),

m@w%:/dM”WdaM- (D17)

Using Egs. (D17) and (B3), the position space anomalous
dimensions have the form

v8(y. 1) = 2Cryeusp(as) In(iyp?e’s) + y§(ay),
7. 1) = 2Cryeusp(ay) In(iype’s) + v (ay),

vs(y 1) = =4CrYeusp(@y) In(iype’s) + 2yi(a).  (DIB)

Solving the RG equations in Eq. (D16) gives the beam, jet,
and soft functions evolved to any arbitrary scale y from
their values at their natural scales ug, p;, and ug, respec-
tively, where large logarithms in their perturbative expan-
sions are minimized. They have the general form given in
Eq. (34), where the Ug, U;, and Ug denoting the RG
evolution factors have the form

Ug(yg, pig, p;) = exp[—4CpS(us, p;) — Ap(ug, ;)]
x (in,uizeYE)_chAOlfvﬂi)’
UJ()’Ja/if,/li) = eXP[—4CFS(ﬂf7Mi) - Al(ﬂf’/fti)]

0 e\ =2CRA
X (lyJ/t,-€7E) F (ﬂ/ﬂ)’

Us(vs iy i) = expldCpS(up, i) — 2As(py, 1i)]

X [(iyguirser)?|PCralurs), (D19)
where the function S is defined in Eq. (D10) and its
perturbative expansion needed for N*LL resummation is
given in Eq. (D11). The functions Ag, A;, and Ay are
defined as

as(ur) doa
Ap(py ;) = —/ ——rglal,
e (1) ﬁ[a] ?
as(/"f) da
Ay(pp, pi) = —/ —Yq[a]’
! a(u;) ﬁ [a] /
a.\'(”f) da
Astpops) == [ ZE g, (D20)
as(/"i) ﬁ[a] s
where 75, v, y{, and y satisfy the relations
vg=7v5  ri=-ri—rg—-v,  (D21)

where the second relation reflects from the cancellation of
renormalization scale dependence between the hard, beam,
jet, and soft functions in the resummation cross section
formula of Eq. (38). The perturbative expansion of ¥ up to
three loops [61] needed for N3LL resummation is given by
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73, = 6Cr.
v =Cp [(? - 80C3> Ca+ (3—4n* +48L3)Cr + (g + ?)ﬂo} ,
vl =20} (- % —322 - 8?”4 gy 10T 24ocs>
~acie, (-4 20 2T _SHE_STE a0z,
(A s
2Ty, <4g§4 ~ 329,;2 ) 122,4 203@) 2ChCaTn, <_ 5742796 N 112%‘03,,2 . 42,5,4 B 26§$C3>
(33

and the corresponding expressions for yj and yZ can be
obtained from a combination of Eqgs. (D21), (D22), and
(D7). The corresponding expressions for the perturbative
expansions of Ag, A;, and Ag in Eq. (D20) needed for
N3LL resummation can be obtained by replacing Vg,l.z -

with 7?30‘1,2’ 7/30.12’ and ygolm, respectively, in Eq. (D13).

3. Product of RG evolution factors

The factorization and resummation formula in Eq. (38)
contains a product of the position space RG evolution
factors for the hard, beam, jet, and soft functions, given by

Ve Yz
Utotal = UH(gz’ Hs ﬂH)UB <_7Iu7 MB) UJ <_ » Mo MJ)
Qa QJ

X US()’T?Mﬂ/"S)‘ <D23)

Using the results for the corresponding RG evolution
factors in Eqs. (D9) and (D19), the combined evolution
factor Uy, 1S given by

Ul = Ungsis (rS)4C1-‘A(MvﬂS) (rB)—chA(llaﬂB) (rj)_2cl-‘A(ﬂsﬂ.l>
X (iy-pse’®), (D24)

where we have defined Uypg as
|

Uyigys =exp[4Cr[S(u, pp) +S(us prs) = S(u, pg) = St )]
x exp[—2Ay (. i) — Ap(p.pp) — Ay (1. )

2\ 2CpA(p.py)
u
—2As(ﬂ,us)}( ”)

£ (D25)

and @ = @(u, up, iy, pis) as

(p, g,y ps) = 2Cp[2A(u, ps) — A(p, ) — Ap. py)]
= 2Cr[A(ug, ps) + Auy. ps))]. (D26)

APPENDIX E: NUMERICAL IMPLEMENTATION
OF RESUMMATION FACTORIZATION
FORMULA

In order to implement code that can generate numerical
results in the resummation region, it is useful work with the
position space resummation factorization formula in
Eq. (38). Using Eq. (37) to rewrite the model soft function
in momentum space, and using Eq. (D24), the resummation
factorization formula in Eq. (38) can be brought into
the form

d6esum (71, P,y )] =00 Unpys (3a7) 2CrAWHs) (1) ~2CrAWMS) (1) =2CFAGH))

dyTi Ti—u)(; w Ve
(&) [ [ e =0 i s (2 ) St ) P
J

\dz (x. v, e (x. v,
X |:ZZL11/ _ZIqi (x_’y_nuB>fi/p(Z’:uB) +ZZLq/ _ZI(]l <x_»y_al’l3>fi/p(znul?):| . (El)
q i Xy < < Qa 7 i X, Z Z Qa
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The hard function has a perturbative expansion expressed
as in Eq. (C5). The perturbative expansions of the soft, jet,
and beam functions in Egs. (C10), (C13), and (C20) can be
reexpressed in powers of Lg = In(iy use’®), when y; =

y:/Q, and yg = y./Qp, as

S(y'rnuS)part = :| L?S%l)a

Ji(y:/Qyomy) =

] Ly,

Igg?q)[(yr/QBvxhuB) = [M} nL?‘Ck(l - x)

v o S B
X T - (E2)

where, for ease of notation, we have defined £_,(x) = 6(x)

and £_;(x) = 60(x). Here, s and J” denote the coef-
ficients of (a,(ug)/(4m))"L% in the soft and jet function

perturbative series, respectively. 7 EZ?g)i,mk(x) denotes the

coefficient of L£;(1 — x)(a,(us)/(4x))"L in the perturba-
tive series for the beam function. In arriving at this form of
the perturbative series for the soft, jet, and beam functions,
we defined two new variables

|

8

M
B J — )
Ojus

_ M E3
Opps (E3)

which along with the definition of g in Eq. (C9) allowed us
to write the logarithms Lg, L,, and Ly that appear in the
position space perturbative expansions in Egs. (C10),
(C13), and (C20), for the soft, jet, and beam functions,
respectively, as

ZS = LS +1nr5,
LJ = ln(l’yJ//t‘%eYE) = LS +1n ry,

LB = h‘l(l.yB//{lz;e},E) = LS + In rg, (E4)

when y; = y./Q, and ygz = y./Op.
The hard function coefficient functions H™ in Eq. (E2)

are functions of In(&2/u%;) and the coefficients up to O(a?)
[59-61], H12) are given in Eq. (C6). The partonic soft
function [70,71], jet function [62-64], and beam function
[26,65-69] are also known up to O(a?). These fixed-order

results are used to extract the coefficient functions SS:),

J3), and If?ZWk(x) up to O(a?). Using these fixed-order
expansions of the hard, beam, jet, and partonic soft

functions in Eq. (E2), the resummation formula can be
brought into the final form

d6equml?1, Py ¥y = GOUHBJS(’S>4CFA(”'”S)(r3>_2CFA(”'”B)(”J)_2CFA<”'”’>

A (ﬂH)

X
ny.np, my.m3, 47[
n3.ng o my

X H(HI)JS,:?)S%I:)]C(M)

where we have defined the coefficient functions ICS,? as

n ZZ Id Z
K£”> - q i Lq 1* ?Z X z
DI I - CEN LT L
q i K k

and the d,,(7|, w, ug) functions as

dy, VT [ w71 m - e’ 1 ﬂl+w91
d, (71, o, ) E/Zey’ iy puse'®) Ly :a,,,{r |: E) (1) .
+

¥ 47 47

] g [as(ﬂj)} " {as (.“B):| " [as(us)} ™

/duFmod(u)dmz+m3+m4 (Tl —u,w, MS)’ (ES)
gimk (D) L1 = 2)f; <% 7MB>

(E6)

(—w)/l_s (z,) 1+ (E7)

In arriving at this result we made use of the relation (iy uge’s)”L% = 0}, (iy pse’®)” and the identity in Eq. (B9). In the
factorization formula, we always have w = w(ug,p;, pus) <0 as seen from Eq. (D26) and the hierarchy of scales
Us < pg, ;. This allows us to drop the plus prescription in the numerical evaluation of the d,,(z;, , ug) functions. The
explicit results for dy;,34 are
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ew7E s I+w
dole. 71~ u-pts) = I'(~o) ﬂs <Tl - “)
eWVE I+ [ YE
d(w, 7, — u, ps) < = ) S ‘//(0)(—0))},
71— u | T1—u
e®VE 4w [ YE 2
dy(@, 7y — u, ps) < s > <ln Hse +1l/(0)(—w)> —Wm(—a})}
,bl T, — L T1—u
eYE u I+w [ u evE 3 U elE
dy (0,71 — u. us) < 2 ) In == —+wo(-) =3y (~w) [ In =+ y O (~0) | + @ (-w)
T1—u L T — T1—Uu
ePrE 1 Ug 1+w [ 0) W 5 )
dy(w, 7 — u, pg) = o) s \z O (=)l + 3y (~0)? ¥ (~0)
VE
+ In* ( ) 4l O (=)} In #s +6[w(0>(—w)}2<ln2(ﬂse ) w(l)(-@)
T —U T — U
ﬂSeVE ﬂse},E
o () g
T —Uu

v v
+ 4y 0 (—w) (ln3 <ﬂS€E> —3y(-w) In 5~ + 1/1(2)(—60))] ,

T —u

where ") (x) is the PolyGamma function of order n:

dn+l

l//(n) (X) dxn+1

InT"(x). (E9)
Equation (E5) serves as the master formula for the
numerical implementation of the resummed factorization

formula.

APPENDIX F: NONPERTURBATIVE
SHAPE FUNCTION

In general, the 1-jettiness shape function F.q(u),
appearing in Eq. (30), can depend on the null beam and
jet reference vectors nfy = (1,7ig) and n'; = (1,7,), respec-
tively. Here 75 and 7i; are unit three-vectors that point along
the beam and leading jet directions, respectively. Note that
for each event the three-vector 7; can point in a different
direction, corresponding to the leading jet. In this section,
we derive an analytic formula that explicitly shows how
one can incorporate the dynamical dependence on the beam
and jet reference vectors into a model for the shape function
F mod (). We derive this result by following and building on
the analysis in Ref. [30].

The soft function that appears in the factorization
formula has the form

S(Tl’/"):/dkB/ko‘s(Tl_kB_kJ)S(kB’ka/")’ (F1)

as in Eq. (29), where S(kg,k;,pu) is the generalized
hemisphere soft function where the arguments kz and k;
correspond to the contribution to 7; of soft radiation
grouped with the beam and jet reference vector directions,

(E8)

T1—Uu

respectively. The field theoretic definition of the general-
ized soft function is [29,30]

_—trZ| (X, YZJ p)
4B qB

5|k o( 4Lk, — 98 k;

) {B ,;( Os )QB }
qj

ok 0 k-——k k

- {’ 2;( ey )Q, ]

(F2)

Sk kyp J(0)[o)?

The beam and jet reference vectors that appear in the
definition of 7;, in the resummation region, can be
written as

n’ n
Tp=wp=.  d=o5,
Op = wp, Q) = w,. (F3)

In our work, for 7;, we have wg = x+/s and w, =2P,_coshy,,
corresponding to Egs. (5), (6), and (20). In general, the scalar
dotproduct np - n; will depend on the direction of the leading
jet in each event.

As explained in Ref. [30], around their Eq. (133), one
can define new null reference vectors ny and n’; as
(F4)

nlenB/RB, n-/,:nj/R‘],

where Rp and R; are defined as
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@y Qpng -1y
Qrwpg 2

wp Qg -1y

Ry = ,
? Qpw; 2

RJ:

(F5)

which leads to the result
np - ny =2 = const, (Fo)
for every event. Using Egs. (F3) and the invariance [93] of

the Wilson lines under the transformations in Eq. (F4),
generalized hemisphere soft function can be written as

1
= N—trZ|<Xs|[Ylfj Y,,1(0
x—a{——ZQ Wy - ki = nly - k)l k,.]

S(kp. kg 1) )|O>|2

i€ X;
5[—29;13 ki — 1) - k)n) k,},
ieX;
(F7)

which corresponds to the relation [30]

! Sheml (kB kJ

Sy, kg, p) = RuR, Rs'R,’

w)i @
i.e. the generalized hemisphere soft function S(kg, k;, )
is related to the standard hemisphere soft function
Shemi(k1, ky, ), evaluated with the reference vectors n;
and n, such that n; - n, =2, a constant, if one makes
the substitution k; = kz/Rp and k, = k;/R;. Thus, all
the dependence on the reference vectors ng and n; in the
1-jettiness soft function is accounted for through the factors
Rp and R; as shown above.

Thus, the 1-jettiness soft function in Eq. (F1) can
now be written in terms of the standard hemisphere soft
function as

Tl, /dkB/ko Tl_kB_k./)

ks ks
S
XRBRJ herni (RB R, )

Through a simple change of integration variables, this can
be brought into the equivalent form

T], /dkB/dk_]5

X Shemi(kg. ky. ).

(F9)

— Rpkp — R;k;)
(F10)
Thus, a shape function model for S(z;,u) can now be

incorporated in terms of a shape function model for the
hemisphere soft function through the convolution

Sheml kakb k;;,kj—k‘/,,,u)

(F11)

/ dkiy / di,Shr (kg

x Smed (k1 k1),

hemi

where Sﬁiml is the partonic hemisphere soft function and
Smod

o is the model hemisphere shape function, which
satisfies the normalization condition:

/dkB/koSgggl kB,kj) - 1 <F12)

Using Eq. (F11) in Eq. (F10), following the procedure
outlined in pp. 17-19 of Ref. [29], one can compare the
result to Eq. (30), to extract F™4(u) as

mod _l/u mod u+€u—§
F (u)—2 _udé'S <2 , 2>

1 wRy o (u+RC u—Rgl
dé’sheml
RB+RJ —u/R, RB+RJ RB+RJ
(F13)

where we have expressed F™(u) in terms of the gener-
alized hemisphere function, S™¢, and the standard hemi-
sphere soft function, S™°4, in the first and second equalities,
respectively. In the first equality, the original kg and k;
variables are related to the transformed variables as
u=kg+k; and { = ky — k;. In the second equality, the
original kg and k; variables are related to the transformed
variables as u = Rgkp + R;k; and { = kg — k;. This
shows the explicit dependence of the shape function
F™d(y) on the reference vectors ng and n; through Ry
and R, defined in Eq. (F5) above. For 7, using Egs. (F3)
and (F5), we can have

Re— R, — nB'nJ: 2C]B‘CIJ:
e 2 050, °

where rg is defined in Eq. (C9). Thus, Eq. (F13) can be
written as entirely in terms of rg as

Fmod() L/"/ gsﬁ(ﬁi(uﬁLrSC’M—rsC)_ (F15)

2rS —u/rg 2rs 2rs

(F14)

Thus, one can construct a model for the standard hemi-
sphere shape function ST°4 (k. k,) and then use it in the
above equation to obtain the corresponding model for the
shape function F™9(yx) with the full dependence on
the beam and jet reference vectors, encoded in rg. This
result that determines the shape function F™4(u) for the 7,
observable in terms of the standard hemisphere function
Smod (k, ky) corresponds to a degree of universality among

shape functions in DIS event shapes.
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Finally, we note that the first moment of the shape function F™4(u) can be expressed in terms of the generalized
hemisphere function and the standard hemisphere function moments as

/duuFmOd(u)—/dkg/dkj(kB+kJ)Sm°d(kB,kj),

:rs/dkl/dkz(kl +k2)Shme(;gi(kl’k2)v

(F16)

again showing universality up to the overall factor of rg. This is consistent with the expected universality [30,93,94] of the
leading power correction, determined by the first moment of the shape function, in the tail region of the 7, distribution.
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