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The bounds on the light quark masses are obtained by fitting the squares of pseudoscalar meson masses
m2

π andm2
K to second order in 1=Nc expansion. The result is an algebraic cubic curve whose coefficients are

the known Weinberg values for the quark mass ratios mu=md and ms=md. Additional restrictions arise
when using the ratioms=mud ¼ 27.23ð10Þ quoted by FLAG for lattice simulations with four quark flavors.
This provides a tight constraint on the ratio mu=md ¼ 0.455ð8Þ.
DOI: 10.1103/PhysRevD.110.014044

I. INTRODUCTION

The values of the u, d, and s light quark masses are the
fundamental parameters, which are responsible for the
explicit SUð3ÞL × SUð3ÞR chiral symmetry breaking in
the QCD Lagrangian. Their accurate determination is
important for both phenomenological and theoretical
applications [1]. One of the main sources for obtaining
information about the magnitude of the light quark masses
is the octet of pseudoscalar mesons, i.e., pions, kaons, and
etas. This is due to the special role it plays in particle
physics. Being Goldstone modes of spontaneously broken
chiral SUð3ÞL × SUð3ÞR symmetry, the members of the
octet acquire mass only due to nonzero values of the light
quark masses. The celebrated Gell-Mann-Oakes-Renner
relation [2] predicts that the squared mass of a Nambu-
Goldstone mode, μ2, is directly proportional to the sum of
the masses of the quark and antiquark which compose it, up
to electromagnetic and higher-order mass corrections. In
particular, for the masses of the π�, π0, K� and K0; K̄0

mesons, we have

μ̄2ij ¼ B0ðmi þmjÞ: ð1Þ

Henceforth, the bar over the mass symbol μ indicates that
electromagnetic corrections in the expressions for the
masses of charged states are neglected. The indices ði; jÞ
correspond to the quark content of a particular meson
state: ðu; dÞ → π�; π0, ðu; sÞ → K�, ðd; sÞ → K0; K̄0. The
dimensional parameter B0 is associated with the quark

condensate B0 ¼ −hq̄qi=F2, where F is the pion decay
constant (in the chiral limit).
To this current-algebra result one can apply Dashen’s

theorem [3], according to which, in the chiral limit, virtual
photons yield the same electromagnetic correction to the
observed masses of charged pionsmπ� and kaonsmK� , i.e.;
in the formulas m2

πþ ¼ μ̄2πþ þ Δ2
em, m2

Kþ ¼ μ̄2Kþ þ Δ̃2
em, one

should set Δ2
em ¼ Δ̃2

em. If we additionally neglect correc-
tions of order ðmd −muÞ2, then Δ2

em ¼ m2
πþ −m2

π0
. As a

consequence, one arrives at Weinberg’s values [4] of the
quark mass ratios

xW ¼
�
mu

md

�
W
¼ μ̄2Kþ − μ̄2K0 þ μ̄2πþ

μ̄2K0 − μ̄2Kþ þ μ̄2πþ

¼LOm
2
Kþ −m2

K0 þ 2m2
π0
−m2

πþ

m2
K0 −m2

Kþ þm2
πþ

¼ 0.56; ð2Þ

yW ¼
�
ms

md

�
W
¼ μ̄2Kþ þ μ̄2K0 − μ̄2πþ

μ̄2K0 − μ̄2Kþ þ μ̄2πþ

¼LOm
2
Kþ þm2

K0 −m2
πþ

m2
K0 −m2

Kþ þm2
πþ

¼ 20.18: ð3Þ

It also follows that the other two quark mass ratios are

S≡ ms

mud
¼LO26; ð4Þ

R≡ms −mud

md −mu
¼LO44; ð5Þ

where mud is the isospin-averaged quark mass mud ¼
ðmu þmdÞ=2.
A systematic study of the next-to-leading order (NLO)

correction to Weinberg’s values in chiral perturbation
theory (χPT), made by Gasser and Leutwyler (GL) [5],
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shows that this step constrains the ratiosmu=md andms=md
to an ellipse. The ellipse is due to a low-energy theorem
stating that there is a certain double ratio of the squared
meson masses in which NLO corrections are negligible
[∼ðmd −muÞ2=m2

s] and can therefore be discarded,

m2
Kðm2

K −m2
πÞ

m2
πðm̄2

K0 − m̄2
KþÞ ¼NLO m2

s −m2
ud

m2
d −m2

u
≡Q2

GL: ð6Þ

Here, m̄K0 , m̄Kþ denote the mass of the neutral and charged
kaons in QCD, while mπ , mK represent the mass of the
pions and kaons in the isospin limit, respectively. The
dispersive analysis of η → 3π decays [6,7] allows us to
establish a constraint on the value of the semimajor axis of
the ellipse QGL ¼ 22.1ð7Þ. Combined with the known
results from lattice calculations for S ¼ 27.30ð34Þ with
four quark flavors Nf ¼ 2þ 1þ 1 [8], this essentially
limits the range of allowed quark mass ratios: mu=md ¼
0.44ð3Þ, R ¼ 34.2ð2.2Þ [7].
It should be noted that there have beenmany attempts over

the years to extract the ratio QGL from η → 3π decays.
Different methods were applied (see, for example, Table 9
in [7]). Currently, there is some discrepancy between the
result accounting for the NNLO corrections in χPT and those
obtained by dispersion calculations. Namely, the NNLO
corrections in χPT (at first order in isospin breaking) lead to a
somewhat larger effect than that implied by the dispersive
estimates. This is reflected in the corresponding result for
QGL ¼ 23.2 [9], compared with QGL ¼ 22.7ð8Þ [10],
QGL ¼ 22.1ð7Þ [7], QGL ¼ 22.4ð9Þ [11], and QGL ¼
21.5ð1.0Þ [12]. One of the goals of this paper is to compute
the ratio QGL in yet another independent way.
There is a somewhat more phenomenological approach

to discussing the quark mass problem in the literature,
suggested by Kaplan and Manohar [13]. It is based on
setting bounds on the second-order contributions to the
pseudoscalar-meson masses, rather than bounding the
individual unmeasurable coefficients of the second-order
operators. In this case, the allowed values of mu=md and
ms=md are consistent with phenomenological values of
pseudoscalar-meson masses to second order in quark
masses and, as a consequence, belong to some curve that
is certainly not an ellipse (due to approximations made
in [13], this is a second-order curve that is reducible to a
parabola).
Of particular interest in the studies [5,13] is the form of

the implicit function fðx; yÞ ¼ 0 relating the current-quark-
mass ratios x ¼ mu=md, y ¼ ms=md. This is partly due to
the fact that the combined use of this theoretical informa-
tion with the results of lattice simulations, which have now
reached high accuracy [14], allows one to significantly
reduce the error bars when extracting quark mass ratios.
But how reliable are our theoretical ideas about the
function fðx; yÞ ¼ 0?

The results of [7] indicate that the low-energy theorem,
i.e., Eq. (6), works well. This means that the higher-order
contributions amount to remarkably small corrections to the
current-algebra estimates. However, if the current-algebra
result plays a dominant role at the physical values of mu,
md, and ms, then the results of the above-mentioned
approaches should coincide (up to computational errors).
This is what we want to verify in this paper, and it is the
second aim of our research.
Going beyond the current-algebra results requires a

careful consideration of the electromagnetic contributions
to the self-energy of charged pseudoscalars. At this stage
the Dashen theorem is violated, and, as calculations have
shown, this essentially affects the value of the quark mass
ratio mu=md. This was noticed both on the lattice
[mu=md ¼ 0.512ð6Þ [15]] and in the two-loop calculations
in χPT [mu=md ¼ 0.46ð9Þ [16]]. The problem has a rich
history [17–22]. Recently, FLAG averaged the Nf ¼
2þ 1þ 1 results of RM123 [23] and MILC [24] lattice
collaborations with the value of ðΔm2

KÞγ from BMW [25] to
estimate the parameter ϵ related to the violations of
Dashen’s theorem,

ϵ ¼ ðΔm2
K − Δm2

πÞγ
Δm2

π
≃
ðΔm2

KÞγ
Δm2

π
− 1; ð7Þ

where Δm2
K ¼ m2

Kþ −m2
K0 and Δm2

π ¼ m2
πþ −m2

π0
. The

last step in this formula corresponds to the leading order
in the isospin-breaking expansion. The superscript γ
denotes corrections that arise from electromagnetic effects
only. The obtained estimate ϵ ¼ 0.79ð6Þ significantly
improves the result based on the low-energy theorem
ϵ ¼ 0.70ð28Þ [8]. In the following, to take into account
the violation of Dashen’s theorem, we will use the latest
result of FLAG. This step significantly improves the
accuracy of the calculations and, together with the existing
estimate of S ¼ 27.30ð34Þ, allows us to obtain a more
accurate result for the ratio mu=md which agrees with the
lattice data listed in Table 9 of Ref. [14]. This is the third
goal of our study.
This paper is organized as follows. In Sec. II, we discuss

the basic assumptions of the approach used. Then, we show
that the function fðx; yÞ, in the case of bounding the
second-order contributions to the meson masses, is a cubic
curve with a number of remarkable properties. One such
property is the parametrization by means of the Weinberg
quantities r̄x and r̄y, which, unlike the ellipse case, act as
two independent variables. In Sec. III, based on existing
constraints on the values of S and ϵ, we find physical
regions corresponding to admissible values of mu=md and
ms=md for both the case of an ellipse and of a cubic curve.
This comparison allows us to conclude that the approaches
are self-consistent. In Sec. IV, the absolute values of quark
masses are calculated. The additional freedom associated
with the cubic curve allows us to take this step. In Sec. V,
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we show that considering higher-order corrections does not
affect the cubic curve. This important property explains
some approximations made when calculating the individual
quark masses. The results are summarized in Sec. VI.

II. CUBIC CURVE VS ELLIPSE

The calculation of corrections to the current-algebra
results is usually based on the effective chiral Lagrangian.
Such a Lagrangian was, for example, proposed in [26,27]
and represents the 1=Nc expansion of chiral perturbation
theory [5]. There are a couple of reasons for the inclusion of
an additional parameter (Nc is the number of colors). One is
the consistent description of the axial Uð1Þ anomaly. The
other is the wish to eliminate from the theory the unphysical
symmetry of the chiral Lagrangian with respect to the
Kaplan-Manohar transformations [13]. The latter is a
source of an ambiguity that affects phenomenological
determinations of the quark mass ratios. The large-Nc limit
also represents the only coherent theoretical explanation of
the Okubo-Zweig-Iizuka rule [28].
Our study is based on the 1=Nc Nambu–Jona-Lasinio

(NJL) model [29]. The effective Lagrangian of the model is
obtained by calculating the one-loop quark diagrams if
one additionally accepts the counting rules of large-Nc

chiral perturbation theory: 1=Nc ¼ OðδÞ, p2 ¼ OðδÞ,
mq ¼ OðδÞ [26,27]. The Fock-Schwinger proper time
method allows one to carry out calculations directly in
coordinate space and to consistently take into account the
effects of explicit violation of chiral symmetry [30–32]. We
emphasize that, for the issues discussed below, there are no
fundamental differences between these two approaches.
Moreover, given that the relation between the NJL model
and χPT is well known [33–35], the computational results
below are equally applicable to either version of the model.
The only requirement is a correct account of isospin
symmetry breaking, which, as is known, leads to the
following mass formulas for the pions and kaons in the
NLO approximation:

m̄2
ij ¼ μ̄2ij½1þ Δðmi þmjÞ� þOðδ3Þ; ð8Þ

where the low-energy constant Δ is model dependent. For
instance, within the framework of large-Nc chiral pertur-
bation theory Δ ¼ 8B0ð2L8 − L5Þ=F2 [26,27], in the large-
Nc NJL model,Δ ¼ δM=2M0 [29]. The value ofΔ does not
affect the form of the function fðx; yÞ, so it is not essential
at this stage to specify the values of the low-energy
constants entering Δ. In the following, to fix Δ we will
use the known lattice estimates. Along with formula (8),
this is one of our main assumptions. It additionally reduces
the model dependence of the result. Note also that chiral
logarithms generated by one-loop meson graphs are of
order Oðδ3Þ and therefore appear only at the next order of
the large-Nc expansion.

Counting parameters in Eq. (8) reveals that there are
4 degrees of freedom (e.g., mdB0, mdΔ, x, y) for fitting
three masses of πþ, Kþ, and K0 mesons. This explains why
ms=md may be expressed as a function of mu=md and the
physical masses mπþ , mKþ , and mK0 .
Indeed, proceeding from the ratios

r̄x ¼
m̄2

Kþ − m̄2
K0 þ m̄2

πþ

m̄2
K0 − m̄2

Kþ þ m̄2
πþ

;

r̄y ¼
m̄2

Kþ þ m̄2
K0 − m̄2

πþ

m̄2
K0 − m̄2

Kþ þ m̄2
πþ

; ð9Þ

we arrive at an implicit equation relating x and y,

ðy2 − 1Þð1 − xr̄xÞ ¼ ð1 − x2Þðyr̄y − 1Þ; ð10Þ

which describes an algebraic cubic curve of genus g ¼ 1.
This curve consists of two hyperbolic branches and one
straight (hyperbolic-type) branch. Point ðr̄x; r̄yÞ belongs to
the latter one.
The result (10) does not depend on the choice of starting

ratios in (9). Any two, independent, real fractional-linear
functions composed of the squares of the meson masses
lead to Eq. (10). There’s nothing surprising about that
because it is the way it is supposed to be. Note also that if
we use Dashen’s theorem to relate QCD values of the
meson masses to the phenomenological ones, we obtain
that r̄x ¼ xW , r̄y ¼ yW .
To obtain an ellipse, it is necessary to start from the ratios

whose chiral expansion completely excludes the NLO
correction. For instance, chiral expansion of the following
expressions,

r̄1 ¼
m̄2

Kþ

m̄2
πþ

¼NLO ms þmu

md þmu
ð1þ Δðms −mdÞÞ;

r̄2 ¼
m̄2

K0 − m̄2
Kþ

m̄2
K0 − m̄2

πþ

¼NLOmd −mu

ms −mu
ð1þ Δðms −mdÞÞ; ð11Þ

shows that NLO corrections drop out of the ratio

r̄1
r̄2

¼NLO m2
s −m2

u

m2
d −m2

u
≡Q2

1: ð12Þ

In this case, we have 3 degrees of freedom (mdΔ, x, y) for
fitting two phenomenological values r̄1, r̄2. As a result, x
and y belong to the ellipse. The actual values of x and y
depend on the dimensionless parameter mdΔ.
It is obvious that if any real number is subtracted from

both sides of Eq. (12), the curve described by the equation
will not change. In particular, subtracting 1 gives
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m̄2
K0

m̄2
πþ

�
m̄2

Kþ − m̄2
πþ

m̄2
K0 − m̄2

Kþ

�
¼NLOm

2
s −m2

d

m2
d −m2

u
≡Q2

2; ð13Þ

where Q2
2 ¼ Q2

1 − 1.
Rewriting the left-hand side of (12) in terms of (9), we

get

ðy2 − 1Þð1 − r̄2xÞ ¼ ð1 − x2Þðr̄2y − 1Þ: ð14Þ

Comparing Eqs. (10) and (14) (see Fig. 1), it can be seen
that both curves are parametrized by Weinberg values (2).
In the case of an ellipse, they form one common factor
which determines its semimajor axis,

Q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

2 þ 1

q
¼NLO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̄2y − r̄2x
1 − r̄2x

s
¼ 24.3: ð15Þ

In contrast, in the case of a cubic curve, r̄x and r̄y contribute
independently. As a consequence, the quark mass ratio Q2

1

is not fixed along the curve. The fixed quantities here are
the masses of K�, K0, and π� mesons. The cubic curve
intersects the y axis at the point y ¼ yW and the x axis at the
point x ¼ xW (this point belongs to another branch of the
curve and is not shown in Fig. 1).
The advantage of the cubic curve is its universality. An

arbitrarily chosen pair

r̄α ¼
ðαP; m̄2

PÞ
ðᾱP; m̄2

PÞ
; r̄β ¼

ðβP; m̄2
PÞ

ðβ̄P; m̄2
PÞ

; ð16Þ

where ðαP; m̄2
PÞ≡ αKþm̄2

Kþ þ αK0m̄2
K0 þ απþm̄2

πþ , leads to
the equation

ðαP; μ̄4PÞðβP; μ̄2PÞ − ðαP; μ̄2PÞðβP; μ̄4PÞ
þ r̄α½ðᾱP; μ̄2PÞðβP; μ̄4PÞ − ðᾱP; μ̄4PÞðβP; μ̄2PÞ�
þ r̄β½ðβ̄P; μ̄4PÞðαP; μ̄2PÞ − ðβ̄P; μ̄2PÞðαP; μ̄4PÞ�

¼ r̄αr̄β½ðβ̄P; μ̄4PÞðᾱP; μ̄2PÞ − ðβ̄P; μ̄2PÞðᾱP; μ̄4PÞ� ð17Þ

at next-to-leading order. The dependence on arbitrary
parameters αP; βP; ᾱP; β̄P can be factorized. For this pur-
pose, r̄α and r̄β need to be expressed in terms of r̄x and r̄y.
As a result, Eq. (17) takes the form

F ðαP; βP; ᾱP; β̄P; r̄x; r̄yÞ
× ½ðy2 − 1Þð1 − xr̄xÞ − ð1 − x2Þðyr̄y − 1Þ� ¼ 0: ð18Þ

If F ≠ 0, then Eq. (10) holds. Otherwise, r̄α and r̄β are not
independent.
Thus, different sets in Eq. (16) correspond to the same

curve. Moreover, in the specific case ᾱP ¼ β̄P, the ratios
(16) lead to the curve (10) regardless of whether chiral
expansion of the meson mass ratios is performed or not.
Indeed, the chiral expansion allows us to pass from r̄α to

an expression equivalent to (11),

r̄α ¼ kα½1þ lαmdΔþOðδ2Þ�; ð19Þ

where coefficients kα and lα are functions of quark mass
ratios x, y, and parameters αP, ᾱP,

kα ¼
ðαP; μ̄2PÞ
ðᾱP; μ̄2PÞ

;

lα ¼
1

B0md

�ðαP; μ̄4PÞ
ðαP; μ̄2PÞ

−
ðᾱP; μ̄4PÞ
ðᾱP; μ̄2PÞ

�
: ð20Þ

Obviously, if we consider two elements of this set, r̄α and
r̄β, we can exclude the dependence on mdΔ and find the
equation relating y and x,

kαkβðlα − lβÞ ¼ kαlαr̄β − kβlβr̄α: ð21Þ

It is easy to see that in the special case lα ¼ lβ, we arrive at
the low-energy theorem (12). If ᾱP ¼ β̄P, Eq. (21)
describes the cubic curve (10). For ᾱP ≠ β̄P, different pairs
of r̄α; r̄β lead to different algebraic curves. Some conse-
quences of this behavior have been studied in [29].
It should be emphasized that the low-energy theorem

plays a special role in selecting a specific curve from an
infinite set of possible curves. At the same time, the pair r̄1,
r̄2 (as well as any other pair r̄α, r̄β), when following the
phenomenological masses of pseudo-Goldstone bosons,
always leads to a cubic curve (10).

0.2 0.4 0.6 0.8 1.0
x

5

10

15

20

25

y

FIG. 1. Function y ¼ ms=md vs x ¼ mu=md in the NLO
approximation for the case of the low-energy Gasser-Leutwyler
theorem (ellipse) and for the case of the physical meson masses
(cubic curve). It is assumed that Dashen’s theorem is fulfilled.
The curves have a common tangent to the point ðxW; yWÞ and
intersect at the point (1,1). The horizontal line y ¼ yW intersects
the cubic curve at the points ðxW; yWÞ and ð0; yWÞ.

A. A. OSIPOV PHYS. REV. D 110, 014044 (2024)

014044-4



III. VIOLATIONS OF DASHEN’S THEOREM
AND QUARK MASS RATIOS

At NLO the ratios (9) should be adjusted to account for
deviations from the Dashen theorem.
The difference between the masses of charged and

neutral pions is almost entirely determined by the electro-
magnetic self-energy contribution Δ2

em to the mass of the
charged pion,

m2
πþ −m2

π0
¼ m̄2

πþ − m̄2
π0
þ Δ2

em: ð22Þ

Here, the value of m̄2
πþ − m̄2

π0
is proportional to ðmd −muÞ2

and has been estimated as m̄πþ − m̄π0 ¼ 0.17ð3Þ MeV [5].
Together with the observed mass difference, Eq. (22)
implies

Δ2
em ¼ 1.21ð1Þ × 10−3 GeV2: ð23Þ

In the case of the kaons, corrections from higher orders
of the chiral expansion can be characterized with the
dimensionless parameter ϵ, which is defined by [8]

Δ̃2
em ¼ Δ2

em þ ϵðm2
πþ −m2

π0
Þ: ð24Þ

Once known, ϵ allows one to consistently subtract the
electromagnetic part of the kaon-mass splitting to obtain
the QCD splitting,

m̄2
Kþ − m̄2

K0 ¼ m2
Kþ −m2

K0 − Δ̃2
em: ð25Þ

In a recent review of results obtained on the lattice by
various collaborations, FLAG [14] gives the following
averaged values for ϵ:

ϵ ¼ 0.79ð6Þ ðNf ¼ 2þ 1þ 1Þ; ð26Þ

ϵ ¼ 0.73ð17Þ ðNf ¼ 2þ 1Þ; ð27Þ

which are calculated with four Nf ¼ 4 and three Nf ¼ 3

quark flavors. Based on (26), we get

Δ̃2
em ¼ 2.21ð8Þ × 10−3 GeV2: ð28Þ

Numerical estimates of Δ2
em and Δ̃2

em allow us to
establish bounds on the values of the parameters (10)
and (14) in the case where Dashen theorem is violated,

rx ¼
m2

Kþ −m2
K0 þm2

πþ − Δ̃2
em − Δ2

em

m2
K0 −m2

Kþ þm2
πþ þ Δ̃2

em − Δ2
em

¼ 0.498ð5Þ;

ry ¼
m2

Kþ þm2
K0 −m2

πþ − Δ̃2
em þ Δ2

em

m2
K0 −m2

Kþ þm2
πþ þ Δ̃2

em − Δ2
em

¼ 19.32ð6Þ:

In particular, using the low-energy theorem (12), we find

Q2
1 ¼

ðm2
Kþ − Δ̃2

emÞðm2
K0 −m2

πþ þ Δ2
emÞ

ðm2
πþ − Δ2

emÞðm2
K0 −m2

Kþ þ Δ̃2
emÞ

: ð29Þ

This gives the following value for the semimajor axis of the
ellipse Q1 ¼ 22.28ð15Þ, which is in excellent agreement
with the result of [6], QGL ¼ 22.1ð7Þ, and the FLAG
estimate QGL ¼ 22.5ð5Þ [14]. Considering the cubic curve,
we find, in turn, QGL ¼ 22.23ð16Þ. Since the calculation
error in (26) is rather small, the theoretical estimate of QGL
also has a fairly high accuracy.
The quark mass ratio S ¼ ms=mud ¼ 27.23ð10Þ [14] is

well known from lattice simulations of QCD and can
therefore be used to estimate the value of mu=md. It is
worth noting that the uncertainties in the corrections to the
Dashen theorem barely affect this ratio (the electromagnetic
effects in this quantity are estimated to be ≃0.18% [36]).
Thus, the lattice result for S is a good approximation that
can be trusted. The idea was realized in [6], where the
authors found that mu=md ¼ 0.44ð3Þ, which corresponds
to QGL ¼ 22.1ð7Þ. This estimate can now be improved due
to the high precision of (26).
Figure 2 shows the result of such calculations. It can be

seen that, in the considered range for S, calculations based on
the low-energy theorem and the cubic curve are in remark-
able agreement with each other. Indeed, here we have

mu=md ¼ 0.455ð8Þ
ms=md ¼ 19.81ð10Þ

�
ðcubic curveÞ;

mu=md ¼ 0.456ð8Þ
ms=md ¼ 19.83ð11Þ

�
ðellipseÞ: ð30Þ

0.445 0.450 0.455 0.460 0.465 0.470
x

19.5

19.6

19.7

19.8

19.9

20.0

20.1

y

FIG. 2. Acceptable range for quark mass ratios in the case of an
ellipse (the corresponding interval is indicated by dotted lines)
and a cubic curve (filled band). Thin lines correspond to the ratio
ms=mud ¼ 27.23ð10Þ given by FLAG for lattice simulations with
four quark flavors [14]. Their intersection with the ellipse and the
cubic curve determines the boundaries of the region of admissible
values of the quark mass ratios x ¼ mu=md and y ¼ ms=md in
each of the two cases considered.
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Let us also indicate thevalue of the quarkmass ratioR, which
corresponds to the estimates made above: R ¼ 35.0ð6Þ
(cubic curve) and R ¼ 35.1ð6Þ (ellipse).
To be precise, it should be noted that the ratio mu=md

depends on the scale in QCD plus QED since up and down
quarks have different electric charges. However, this effect
appears only in the second order of isospin breaking, which
is beyond the accuracy of our calculations. The result (30)
is compatible with the FLAG average mu=md ¼ 0.465ð24Þ
(Nf ¼ 2þ 1þ 1) [14], but our precision is 2.5 times
higher.

IV. ABSOLUTE VALUES OF QUARK MASSES

It is well known that the running quark masses mqðμÞ in
QCDdepend on the renormalization-group scale μ in theMS
subtraction scheme. The same can be said about the
magnitude of the quark condensate hq̄qi, associated with
the low-energy constant B0. However, their productmqB0 is
a renormalization-group invariant quantity. Since this prod-
uct is one of the intrinsic parameters on the cubic curve, we
can estimate the masses of individual quarks if B0 is known,
and vice versa. The lattice calculations ofB0ðμÞ are currently
not highly accurate. For our estimates here, we will use the
NLO result B0ð2 GeVÞ ¼ 2.682ð36Þð39Þ GeV [37], the
total error of which is relatively small, ∼2%. This value is
reasonably consistent with the high-quality entries in
Table 21 of Ref. [14].
To determine the absolute values of quark masses, we

solve three equations (8) for a given value of B0. The
parameter Δ is varied, so the solution belongs to the region
of the intersection of the cubic curve with the interval
S ¼ 27.23ð10Þ (see Fig. 2). The corresponding results are
presented in Table I. All results are given in the MS scheme
at 2 GeV, which is standard nowadays.
The first line in Table I contains our results correspond-

ing to the values of B0 ¼ 2.682ð53Þ GeV. To get an idea of
the role of errors in the value of B0, we also present the
results of similar calculations performed at a strictly fixed
value of B0 ¼ 2.66 GeV (see second row in Table I). For
that purpose, we took the arithmetic mean of the central
values of [37] and the ETM Collaboration [39]. In the third

row, we also present results corresponding to the value of
B0ð2 GeVÞ ¼ 2.516ð67Þ GeV [40], which is obtained by
the ETM Collaboration with the use of Nf ¼ 2þ 1þ 1

flavors of twisted mass fermions by matching to the LO of
χPT. This allows us to trace how a change in the accuracy
of the χPT calculations affects the individual quark masses.
The fourth line shows the values quoted by the Particle Data
Group [38], and the fifth and sixth lines represent the FLAG
estimates [14] for the case of four and three quark flavors,
correspondingly. They are obtained by averaging the results
of the different lattice collaborations in accordance with the
FLAG’s selection criteria.
A direct comparison of our estimates presented in the

first three rows of Table I shows that an error of ≃2% in the
value of B0, together with the already existing ≃1.5%
uncertainty in the determination of the values of ϵ and S,
leads to an ≃3% error in the quark masses. This is enough
to claim that our results are in full agreement with the data
presented by the PDG, as well as the average values quoted
by FLAG. This agreement allows us to conclude that it is
reasonable to use the δ expansion, which is behind the
original formula of our analysis (8). In the next section, we
will discuss the results listed in the first and third rows of
Table I, but for that purpose, we must first clarify the role of
higher-order corrections in the approach considered.

V. HIGHER-ORDER 1=Nc CORRECTIONS

Let us turn to the study of the role played by higher-order
corrections in the case of a cubic curve. Consider ratios
(16), where now we expect that the mass squared m̄2

P
has next-to-next-to-leading order (NNLO) contributions
∼Oðδ3Þ,

m̄2
P → ZPM̄2

P ¼ m̄2
P þ δm̄2

P: ð31Þ

Here, m̄2
P is given by Eq. (8), δm̄2

P ¼ Oðδ3Þ is the NNLO
part, and ZP is due to renormalization of the one-loop
diagrams. The explicit expressions for δm̄2

P in 1=NcχPT are
well known (see, for example, Ref. [41] and references
therein), so we will only discuss general issues concerning
their role with respect to the results obtained above.

TABLE I. Light quark masses mu, md, ms; the isospin-averaged up- and down-quark mass mud; cubic root Σ1=3 ¼ jhq̄qi1=3j of the
SUð3Þ quark condensate hq̄qi (all in [MeV]); and quark mass ratios mu=md, QGL, R. The low-energy constant B0 is given in GeV. All
values refer to the MS scheme at the 2 GeV scale.

Source Details mu md mud ms mu=md QGL R Σ1=3

This work B0 ¼ 2.682ð53Þ 2.14� 0.07 4.70� 0.12 3.420(70) 93.13� 2.25 0.455(8) 22.23(16) 35.02(61) 280.71(1.86)
B0 ¼ 2.66 2.16� 0.03 4.74� 0.03 3.447(2) 93.85� 0.41 0.455(8) 22.23(16) 35.02(61) 280
B0 ¼ 2.516ð67Þ 2.28� 0.09 5.01� 0.16 3.647(100) 99.31� 3.08 0.455(8) 22.23(16) 35.02(61) 274.79(2.45)

PDG [38] � � � 2.16þ0.49
−0.26 4.67þ0.48

−0.17 3.45þ0.35
−0.15 93.4þ8.6

−3.4 0.474þ0.056
−0.074 � � � � � � � � �

FLAG [14] Nf ¼ 2þ 1þ 1 2.14� 0.08 4.70� 0.05 3.410(43) 93.44� 0.68 0.465(24) 22.5(5) 35.9(1.7) 286� 23

Nf ¼ 2þ 1 2.27� 0.09 4.67� 0.09 3.364(41) 92.03� 0.88 0.485(19) 23.3(5) 38.1(1.5) 272� 5
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Equation (31) can be written as

M̄2
ij ¼ B0ðmi þmjÞ½1þ Δðmi þmjÞ þ cij�
¼ m̄2

ijð1þ cijÞ; ð32Þ

where cij ¼ fcud ≡ cπþ ; cus ≡ cKþ ; cds ≡ cK0g ¼ Oðm2
qÞ

already contains a renormalization of the one-loop dia-
grams at the expense of ZP. The last equality in (32) is
satisfied up to and including the NNLO terms.
The first thing we must realize is that the NNLO

contribution has no effect on the shape of the cubic curve.
Indeed, the ratios (16) is now constructed from the physical
masses M̄2

P, but the result

R̄α ¼
ðαP; M̄2

PÞ
ðᾱP; M̄2

PÞ
¼ ðα0P; m̄2

PÞ
ðᾱ0Pm̄2

PÞ
ð33Þ

differs from (16) only by the values of the coefficients α0P ¼
ð1þ cPÞαP and ᾱ0P ¼ ð1þ cPÞᾱP. As we already learned,
the magnitude of these coefficients does not affect the
equation of the cubic curve due to universality (18). Thus, x
and y still belong to the curve (10) after accounting for the
NNLO corrections.
The same conclusion can be reached in another way. In

Eq. (32), the factor ð1þ cijÞ is the only effect of the NNLO
contributions on the meson masses. It can be absorbed
by redefining the quark masses ðmi þmjÞð1þ cijÞ ¼
ðm0

i þm0
jÞ, i.e.,

m0
u ¼ mu þ

1

2

�
muc

ðþÞ
Kþπþ −mdc

ð−Þ
K0πþ þmsc

ð−Þ
KþK0

	
;

m0
d ¼ md þ

1

2

�
mdc

ðþÞ
K0πþ −muc

ð−Þ
Kþπþ −msc

ð−Þ
KþK0

	
;

m0
s ¼ ms þ

1

2

�
msc

ðþÞ
KþK0 þmuc

ð−Þ
Kþπþ þmdc

ð−Þ
K0πþ

	
; ð34Þ

where cð�Þ
PP0 ¼ cP � cP0 . As a result, Eq. (32) retains the

form of Eq. (8),

M̄2
ij ¼ B0ðm0

i þm0
jÞ½1þ Δðm0

i þm0
jÞ�: ð35Þ

This means that if we repeat the calculations of Sec. II using
(35), we again arrive at Eq. (10).
The individual quark masses obtained with Eq. (35) and

the physical region of Fig. 2 depend on the particular value
of B0. In Table I, we consider two different values taken
from papers [37,40].
In [37], B0 results from the NLO-based fit to the SU(2)

χPT (the authors also studied the effect of NNLO correc-
tions, but unfortunately, they do not give the numerical
value of B0 for this case). The average value of the light
quark masses reported by the BMW Collaboration [42]
was used to find B0 ¼ 2.682ð53Þ GeV. Therefore, it
seems reasonable to compare the values of quark

masses listed in the first row of Table I with the estimates
of the BMW Collaboration: mu ¼ 2.15ð03Þð10Þ MeV,
md ¼ 4.79ð07Þð12Þ MeV, mud ¼ 3.469ð47Þð48Þ MeV,
and ms ¼ 95.5ð1.1Þð1.2Þ MeV [42]. Obviously, the data
here are in complete agreement.
On the contrary, in [40] the fit to the LO χPT is used to

find the value B0 ¼ 2.516ð67Þ GeV. In this case (see the
third row of Table I), one also observes full agreement
with the estimates of [40]: mud ¼ 3.636ð66Þðþ60

−57Þ MeV,
ms ¼ 98ð7Þð2.4Þðþ4

−3.2Þ MeV.
In both cases, there is a powerful tandem: Equation (35)

plus the cubic curve copes well with the calculation of
individual quark masses. The decisive property here is the
universality of the cubic curve, the shape of which does not
depend on higher-order corrections. We can conclude that if
B0 is known with a given accuracy, then the second
parameter Δ and, as a consequence, the individual quark
masses are uniquely fixed by the admissible region shown
in Fig. 2.
The final topic to be considered here is whether

formula (35) is suitable for evaluating corrections to the
quark mass ratios S, R, and QGL. These corrections are
widely discussed in the literature [7,23,43,44], as they are
important for the justification of the low-energy theorem.
Let us recall the relation between the corresponding

quantities and the ratios of the squared meson masses

2
M̄2

K

M̄2
πþ

¼ ðSþ 1Þð1þ ΔSÞ;

M̄2
K − M̄2

πþ

M̄2
K0 − M̄2

Kþ
¼ Rð1þ ΔRÞ;

M̄2
K

M̄2
πþ

M̄2
K − M̄2

πþ

M̄2
K0 − M̄2

Kþ
¼ Q2

GLð1þ ΔQÞ: ð36Þ

Since 2Q2
GL ¼ RðSþ 1Þ, the correction ΔQ is expressed in

terms of ΔS and ΔR, that is, ΔQ ¼ ΔS þ ΔR þ ΔSΔR. To
compute ΔS and ΔR, we use Eq. (35). This yields

ΔS ¼
Δðm2

s −mumdÞ
ðms þmudÞ½1þ 2ΔmudÞ�

;

ΔR ¼ −Δðms −muÞðms −mdÞ
ðms −mudÞ½1þ 2Δðms þmudÞ�

: ð37Þ

Numerical estimates of these quantities, obtained using the
quark masses presented in the first row of Table I, are
collected in the last row of Table II.
These estimates show that the low-energy theorem is

fulfilled with a high degree of accuracy. The correction
ΔQ ¼ 0.0032ð5Þ is small, and our result is in agreement
with calculations performed in the framework of χPT and
independently in the dispersive approach [7]. A recent
update of the higher-order corrections [44] shows that the
central value of ΔQ is indeed small, but due to the large
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uncertainty, it is still possible that ΔQ has the same
magnitude as ΔS. The latter is indicated by the data of
the lattice calculations, which we present here following
Table 10 of [7]. Lattice calculations should obviously
clarify this situation in the future.

VI. SUMMARY

We have shown that the cubic curve is another useful
source for obtaining information on quark masses. Indeed,
the ellipse represents the region allowed by the low-energy
theorem for QGL, and the cubic curve represents the region
allowed by the lattice result for ϵ. As we established
above, these regions are different, but for the interval
given by the quark mass ratio S, this difference turns out
to be negligible. As a consequence, the results of both
approaches are in excellent agreement with each other.

This fact allowed us to more seriously consider the next
alternative, the cubic curve instead of the ellipse, since it
allowed us to estimate the individual values of the quark
masses. The resulting estimates turned out to be quite
reasonable and, in principle, would be more accurate if the
precision of the value of the low-energy constant B0 were
improved.
Finally, we examined the role of higher-order 1=Nc

corrections on the presented results and showed that the
universality condition ensures that the equation of the cubic
curve is not affected by the NNLO corrections.
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